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We describe a framework for static verification of systems that base their decisions upon queries to databases.
The database is specified using constraints, typically a schema, and is not modified during a run of the
system. The system is equipped with a finite number of registers for storing intermediate information from
the database and the specification consists of a transition table described using quantifier-free formulas that
can query the database and the registers.

Our main result concerns systems querying XML databases – modeled as data trees – using quantifier-
free formulas with predicates such as the descendant axis or comparison of data values. In this scenario we
show an ExpSpace algorithm for deciding reachability.

Our technique is based on the notion of amalgamation and is quite general. For instance it also applies
to relational databases (with an optimal PSpace algorithm).

We also show that minor extensions of the model lead to undecidability.
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1. INTRODUCTION
In this paper we describe a framework for static verification of database-driven systems. Such
a system bases its decisions upon queries to databases. Typical examples are web services,
web applications, or data-centric business processes. These systems can be complex and
error prone. Computer-aided static analysis can improve their robustness and correctness.

In order to perform static analysis, the behavior of the database-driven system is specified
in a suitable formalism; the desired properties of its executions are also specified in a suitable
formalism. The computer then automatically checks whether all runs of the system verify
the expected properties.

As advocated in [Vianu 2009], classical software verification techniques have serious lim-
itations when applied to such systems – the main reason is that they abstract away data
values, resulting in serious loss of semantics for both the system and the properties being
verified.

For this reason, several specific formalisms have been designed allowing meaningful specifi-
cation of relational database-driven systems. See for instance [McIlraith et al. 2001; Deutsch
et al. 2006; Deutsch et al. 2009; Deutsch et al. 2007; Segoufin and Toruńczyk 2011]. As
demonstrated in [Segoufin and Toruńczyk 2011], for these scenarios, the system can be
described using a register automaton whose transition rules are quantifier-free first-order
formulas querying the database and the registers. The correctness criterion for executions
of the system is specified using a language mixing queries to the database and temporal
behavior that can easily be translated into the same register automata model. Altogether
the static analysis problem boils down to testing the existence of a database such that the
register automaton has an accepting run driven by that database.

In this paper we develop general techniques for testing reachability of such automata mod-
els. These techniques encompass the examples cited above concerning relational databases,
but also apply to XML databases, and – in general – to any kind of structures having “good”
model properties.

Following [Segoufin and Toruńczyk 2011], we specify database-driven systems using transi-
tion rules controlling their workflow. Each such rule may be based on the result of quantifier-
free queries to the database. The database is not fixed and may vary from run to run. It
is however restricted to range over a certain class of databases typically specified using a
schema and possibly several other constraints. Moreover the system has only read access to
the database and the database does not change during a run.
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To give an idea of the setting we are dealing with, let us describe a toy example of a
database-driven system S that fits into our framework. The system S is equipped with one
register capable of storing nodes of XML documents. We specify the transitions of S as
follows:

The node stored in the register after the transition is a descendant of the node
stored in the register before the transition and the attribute a of both nodes (before
and after) contains the same data value.

Furthermore, we specify that in the initial configuration of the system, the register stores
the root of the tree, and in an accepting configuration, it must store some leaf of the tree.
Note that the transitions of the system do not modify the database.

We are interested in the following question: is there some XML document t such that the
described system has an accepting run driven by t? We may ask more detailed questions:
is there some XML document t satisfying a certain XML schema such that the described
system has an accepting run driven by t?

In general our goal is to give an algorithm for the following problem, parametrized by a
class C of databases.

– Input. A database-driven system.
– Output. Does the system have some finite accepting run driven by some database in C?

We show that if the class C of databases satisfies a certain model-theoretic assumption –
namely, it is a computable Fraïssé class – then there exists an algorithm for the described
problem.

Our main technical result shows that many natural classes of databases are Fraïssé. Ex-
amples include: all databases over a given relational schema, three-colorable graphs (more
generally, any property of databases expressed as a Constraint Satisfaction Problem), XML
documents viewed as data trees satisfying a given XML schema (more generally, any prop-
erty of trees recognized by a tree automaton).

The most interesting and most difficult result is the XML case. In this scenario the
database is an XML document that must verify a certain XML schema. The system can
query the XML document using the descendant axis, the document order and the closest
common ancestor relation. It can also test equality or inequality between attribute values.
Our technique shows that in this setting the above problem is decidable in ExpSpace.

In the setting of relational databases, we derive from our technique an optimal PSpace
decision procedure.

We also show how extending the expressive power of these systems quickly leads to
undecidability. For instance, in the XML setting, allowing the system to use the sibling axis
or the child axis in queries leads to undecidability.

Comparison with previous work. The model described in this paper generalizes the pre-
vious existing models of automata introduced for relational database-driven systems [McIl-
raith et al. 2001; Deutsch et al. 2006; Deutsch et al. 2009; Deutsch et al. 2007; Segoufin and
Toruńczyk 2011]. In particular, the domain can be linearly ordered and the specification of
the database-driven system may use this order within the quantifier-free formulas. In this
paper we notice that the key is the Fraïssé property, which holds for linear orders, and show
that the XML setting is also Fraïssé.

In terms of results, this paper generalizes all the previous known results concerning the
existence of finite runs. As shown in several of the above cited papers, the existence of
infinite runs lead to additional challenges which are not solved by the Fraïssé property alone.
However, in most of the practical cases mentioned here the existence of infinite runs can be
reduced to the existence of finite runs using a Ramsey argument as described in [Segoufin
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and Toruńczyk 2011]. Our results only encompass the simple special case of infinite runs
where all data values come from a finite domain.

This paper is the journal version of [Bojańczyk et al. 2013]. Since the conference version
we have improved the complexity analysis by going from data complexity to combined
complexity. The proof have also been inlcuded.

2. PRELIMINARIES
We model databases as finite structures over finite schemas containing relation and function
symbols. We use notions which are standard in model theory (see [Hodges 1997] for a
reference), sometimes using terminology from database theory to denote them. We briefly
recall the relevant notions below.

A schema Σ is a finite set of relation symbols and function symbols, each with a given
arity (0-ary function symbols are constant symbols). A model, or structure, A over a schema
Σ is a set dom(A) – the domain of A – together with an interpretation sA for each symbol
s ∈ Σ as a relation or function over the domain of an appropriate arity, as described by the
schema. A structure is said to be finite if its domain is finite. A database is a finite structure
over a given schema.

By substructure we always mean in this paper an induced substructure, i.e. a restriction
of the initial structure to a subset of its domain, which is closed under the function symbols
from the schema.

A structure is said to be generated by a subset S of its domain if the structure has
no proper substructure whose domain also contains S. A structure is called n-generated if
its domain has a subset of size n that generates it, and is called finitely generated if it is
n-generated for some number n.

A homomorphism from a structure A to a structure B, is a mapping h : dom(A) →
dom(B) that preserves the relations and functions from Σ, i.e. (a1, . . . , ak) ∈ RA implies
h(a1, . . . , ak) ∈ RB, and h(fA(a1, . . . , ak)) = fB(h(a1, . . . , ak)), for all tuples a1, . . . , ak of
elements of dom(A) and function/relation symbols of arity k. An isomorphism is a bijective
homomorphism whose inverse mapping is also a homomorphism. An automorphism is an
isomorphism from A to itself. Finally an embedding is a mapping h that is an isomorphism
onto the substructure induced by the image of h.

We assume familiarity with first-order logic. We write A |=val ϕ to express the fact that
a first-order formula ϕ holds in the structure A with the valuation val for its free variables.

3. DATABASE-DRIVEN SYSTEMS
A database-driven system is a transition system whose decisions are based upon querying a
database. In this paper we consider models of automata equipped with registers for storing
data values and whose transitions are guarded by quantifier-free formulas that query the
database and update the content of the registers. More specifically we consider the follow-
ing systems: finite state register automata, Büchi automata, tree automata and pushdown
automata. However our results could work for other systems.

3.1. Database-driven register automata
A database-driven register automaton over a schema Σ is given by the following components.

– A finite set of control states Q = {p, q, . . .}
– A finite set of registers X = {x, y, . . .}
– A subset of initial states I ⊆ Q
– A subset of accepting states F ⊆ Q
– Finitely many transition rules of the form:

p
δ→ q (1)
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where p, q are control states and δ is a quantifier-free first-order formula over the schema
Σ whose variables are from two disjoint copies of the registers, called Xold and Xnew.
The formula δ is called the guard of the transition and relates the values of the registers
before and after the transition.

A configuration of the system consists of: a structure over the schema Σ, a control state,
and a valuation of the registers which maps each register to an element of the domain of
the structure.

A transition rule as in (1) is said to connect one configuration with another if: both
configurations have the same structure, the state in the first configuration is p, the state
in the second configuration is q, and the guard δ holds in the structure with a valuation
whose restriction to the variables Xold corresponds to the valuation of the registers of the
first configuration, and whose restriction to the variables Xnew corresponds to the valuation
of the registers of the second configuration.

A run of the system is a sequence of configurations that begins in a configuration with
an initial state, and where every two consecutive configurations are connected by some
transition rule. In the case of database-driven register automata we are interested in finite
runs. A finite run is accepting if the control state in its last configuration is accepting. Since
a transition rule cannot change the structure between configurations, every run has a unique
associated structure that is shared by all configurations in the run. We say that the run
is driven by that structure. Note that different runs of the same system may be driven by
different structures.

The problem we are interested in concerns runs driven by a database, i.e. a finite structure.
However our method uses an intermediate infinite structure as explained in Section 4. This
is why our definition of configuration and run allows for arbitrary structures.

Example 3.1. Consider directed graphs, where some of the nodes are colored red, and
the remaining nodes are white. This corresponds to a schema with one binary edge predicate
E and one unary predicate red.

We describe a database-driven register automata whose accepting runs trace odd-length
cycles of red nodes. The system has the following components.

– The control states are {start , q0, q1, end}. The initial state is start and the accepting
state is end .

– The registers are x, y.
– There is a transition rule q0

δ→ q1, where the guard δ is

(xold = xnew) ∧ E(yold, ynew) ∧ red(ynew).

There is also a transition rule q1
δ→ q0, with the same guard. This means that the system

alternates between the states q0 and q1, each time moving the content of register y along
an edge to some red node (the content of register x stays in place).
There is a transition rule start

α→ q0, where the guard α is

xold = xnew = yold = ynew

There is also a transition q1
α→ end , with the same guard. This means that, in order to

exit the initial state, both registers need to point to the same vertex; likewise, in order
to enter the accepting state, both registers need to point to the same vertex.

Here is an example run of the system. The run is driven by the database that is the graph
G depicted below. The nodes of the graph are colored red or white; the numbers are not
part of the database, they are used to identify the nodes.
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An accepting run of the system, driven by G is:

(G, start , [1, 1])→ (G, q0, [1, 1])→ (G, q1, [1, 2])→ (G, q0, [1, 3])→
→ (G, q1, [1, 4])→ (G, q0, [1, 5])→ (G, q1, [1, 1])→ (G, end , [1, 1]),

where [i, j] denotes the valuation that maps x to the node marked with i and y to the node
marked with j.

In general, the described system has an accepting run driven by a graph G if and only if
there is a cycle in G of odd length, consisting only of red nodes.

3.2. Database-driven Büchi register automata
We also consider infinite runs with a Büchi acceptance condition. The syntax and configu-
ration of a database-driven Büchi register automaton is the same as for a database-driven
register automaton, only the notion of accepting run is changed. We require that the infinite
run involves only finitely many different values for the registers. This condition is trivially
met when the run is driven by a finite database but may not be if the underlying structure
is infinite. Finally an infinite run is called accepting if it visits an accepting control state
infinitely often, possibly with different register valuations.

An alternative definition would say that an infinite run is accepting if there is some
configuration with an accepting control state that appears infinitely often, with the same
register valuations. As long as we are interested in finite databases, the alternative definition
is equivalent, since there are finitely many possible configurations over a given database.
More precisely, for every finite database, a run driven by the database is accepting under
one definition if and only if it is accepting run under the other definition.

Note that our technique can only deal with the simple case of infinite runs containing only
finitely many different values for its registers. Unlike [Vianu 2009; Deutsch et al. 2007] and
[Segoufin and Toruńczyk 2011] we don’t consider values ranging from an infinite numerical
domain such as 〈N, <〉 or 〈Q, <〉.

However, for the specific case of runs driven by 〈N, <〉 or 〈Q, <〉 (actually any linear
order), the existence of infinite runs can be reduced to the existence of finite runs using a
Ramsey argument as described in [Segoufin and Toruńczyk 2011].

3.3. Database-driven register tree automata
We also consider (finite) tree automata. The syntax of a database-driven register tree au-
tomaton is the same as for a database-driven register automaton, except for the transition
relation that contains now rules of the form:

p1, p2
δ→ q (2)

where p1, p2, q are control states and δ is a quantifier-free first-order formula over the schema
Σ whose variables are from three disjoint copies of the registers, called Xold,1, Xold,2 and
Xnew. The formula δ is called the guard of the transition and relates the values of the
registers before and after the transition.

A configuration is defined as before and three configurations are connected by a transi-
tion as in (2) if: all configurations have the same structure, the state in the first and second
configurations are p1, p2, the state in the third configurations is q, and the guard δ holds
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in the structure with a valuation whose restriction to the variables Xold,1 and Xold,2 cor-
responds to the valuation of the registers of the first and second configurations, and whose
restriction to the variables Xnew corresponds to the valuation of the registers of the third
configuration.

A run of such an automaton is then a finite binary tree labeled by configurations, such
that the configurations at the leaves have initial states, the configuration at the root has
an accepting state, and at any internal (non-leaf) node, the configuration is connected with
the configurations of its children by some rule in the transition relation.

3.4. Database-driven pushdown automata
We also consider pushdown automata. The idea is to extend a register automaton with
a pushdown stack, where tokens of the stack have registers that store elements of the
structure. A database-driven pushdown automaton over a schema Σ is given by the following
components.

– A finite set of control states Q
– A finite set of control registers X
– A finite set of stack labels Γ
– A finite set of stack registers Y
– A subset of initial states I ⊆ Q
– A subset of accepting states F ⊆ Q
– Finitely many transition rules which can have two possible forms:

(p, a)
δ→ q︸ ︷︷ ︸

pop
or q

δ→ (p, a)︸ ︷︷ ︸
push

(3)

where p, q are control states, a is a stack label and δ is a quantifier-free first-order formula
over the schema Σ with free variables included in Y ∪Xold ∪Xnew, with Xold and Xnew

being two copies of X. The formula δ is called the guard of the transition.

A stack token over a structure is a stack label and a valuation of the stack registers to
elements of the domain of the structure. A stack over a structure is defined to be a sequence
of stack tokens. A configuration of a database-driven pushdown automaton consists of a
structure, a control state, a valuation of the control registers, and a stack. Configurations
are connected by transition rules as in database-driven register automata, except that the
pop transition can also access the stack label and register valuation of the popped token
via the variables Y of the guard, while the push transition can access the stack label and
valuation of the pushed token via the variables Y of the guard. An accepting run is a
sequence of configurations that begins in an initial control states and ends in an accepting
control state.

3.5. The emptiness problem
For each kind of database-driven systems we are interested in the emptiness problem, which
is parametrized by a class C of databases (i.e. finite structures) over a common schema Σ,
and called emptiness of database-driven systems over C.

– Input. A database-driven system over Σ.
– Output. Does the system have some accepting run driven by some database in C?

Actually, in some of our results also a finite description of the class C will be given on
input.

The following observation shows that the problem is PSpace-hard for almost any choice
of parameter C.
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Lemma 3.2. The emptiness problem for database-driven systems over C is PSpace-hard
if C contains at least one database with at least two elements.

Proof. Assuming that there are at least two possible elements in the database, a bit
string of length n can be encoded in a valuation of registers numbered from 0 to n. The
value of bit i ∈ {1, . . . , n} is 1 if register i is equal to register 0, and false otherwise.

We reduce from the termination problem for Turing Machines working in linear space.
We use a register y to store one element of the domain. This value is decided via the
initial transition and remains unchanged during the run of the system. We use n registers
xi, · · · , xn for encoding the content of the tape of the Turing Machine: cell i of the tape
is equal to 1 iff the value of xi is equal to the value of y. Using quantifier free formulas
of length n, it is easy to simulate the transitions of a Turing Machine working in linear
space.

Existential guards. Before describing our results in more details, we point out that replac-
ing quantifier-free formulas by existential formulas in the guards when specifying the system
does not affect the expressive power nor the decidability results, as quantified variables can
be simulated by using extra registers and nondeterminism. However, as we shall show later
on, further extensions of the guards, such as boolean combinations of existential formulas,
break decidability.

3.6. Overview of the algorithm
We now give a high-level overview of our algorithm for the emptiness problem for database-
driven systems, on the example of database-driven register automata. If A is a database-
driven register automaton and C is a possibly infinite input structure over the schema of
A, then define the configuration structure of A over C, denoted by Conf(C,A), to be the
following structure. The domain is the configurations (i.e. recall that a configuration is a
control state plus a register valuation), there is a binary predicate for the one step transition
relation, and there are unary predicates for initial and accepting configurations. The two
main steps in the algorithm are:

(1) If a class of databases C is sufficiently well-behaved, namely it is a Fraïssé class, then
there exists a limit structure C, usually infinite, with the following property. For every
database-driven register automaton A, there exists an accepting run of A driven by some
database in C (a database is finite by definition) if and only if there exists an accepting
run driven by the limit structure.

(2) Whether or not A has an accepting run driven by the limit of the structure is a reacha-
bility problem which can be expressed by a formula of transitive closure logic evaluated
over the configuration structure Conf(C,A). Assuming further properties on C, this con-
figuration structure has decidable model checking for transitive closure logic.

A similar approach is used for Büchi automata, or tree automata, or pushdown automata.
The only difference is that for tree automata and pushdown automata, instead of transitive
closure logic we need to use the more powerful least fixpoint logic, at the cost of worse
complexity.

4. HOMOGENEITY, AMALGAMATION AND FRAÏSSÉ CLASSES
In this section, we define Fraïssé classes of finite structures (or databases) and their limits.
For Fraïssé classes, the proof strategy described in Section 3.6 works.

4.1. Limits of classes of databases
Let C be a class of structures over a schema Σ. We allow C to contain both finite or infinite
structures. By substructuresfin(C) we denote the class of all finite structures which embed
into some structure in C.
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Lemma 4.1. Let C and D be two classes of structures over a schema Σ, such that

substructuresfin(C) = substructuresfin(D).

Then the the following conditions are equivalent for a database-driven system:

– There is an accepting run driven by some structure from C;
– There is an accepting run driven by some structure from D.

Proof. Consider a database-driven system A over the schema Σ. The proof follows from
the immediate fact that if A is a substructure of B, then any run ρ driven by A induces a
run of ρ′ of driven by B, and conversely, any run ρ′ driven by B which only uses values from
A induces a run ρ driven by A. This is where we need the assumption that for infinite runs
we find only finitely many data values.

The lemma shows that from the point of view of database-driven systems, instead of consid-
ering a class C, we may consider the class substructuresfin(C), which is often better behaved
than C. Because of this, we often assume that the class C is closed under substructures. The
lemma also allows us to go in the other direction – to consider a single structure C instead of
the class C, as we now describe. If C is a class of finite structures, then we say that a structure
C is a limit of the class C if up to isomorphism, the substructures of C are precisely the struc-
tures in C. As a consequence of this definition, substructuresfin(C) = substructuresfin({C}).
This, together with Lemma 4.1, yields the following.

Fact 4.2. Let C be a class of finite structures over a common schema having a limit C.
Then the following conditions are equivalent for a database-driven system:

– There is an accepting run driven by some finite structure from C;
– There is an accepting run driven by C.

Example 4.3. Suppose that the schema is empty (has only equality), and we are in-
terested in the class C of all finite structures over this schema. Consider also the natural
numbers – or any other countably infinite set – with equality. For a database-driven register
automata, instead of asking if there is a finite run driven by some database from the class C,
we can ask if there is a finite run driven by the natural numbers with equality. The answers
to both questions turn out to be the same, because the natural numbers with equality are
a limit of the class C.

Note that not every class C has a limit – a necessary condition for the existence of a limit
of C is that C is closed under substructures. Also observe that for a given class C, there
might be several nonisomorphic limits. For instance, if C is the class of finite total orders,
then any infinite total order can be used as the a limit structure, e.g. the natural numbers
with order, the rational numbers with order, or a closed interval of rational numbers, with
order. As we will see below, for algorithmic reasons, the rational numbers will be preferable
as a limit for the class of finite total orders because the rational numbers are homogeneous,
in the following sense.

4.2. Homogeneity
A (possibly infinite) structure is called homogeneous if every partial isomorphism between
its finitely generated substructures extends to an automorphism of the entire structure.

Example 4.4. Consider the ordered integers (Z,≤). The automorphisms of this structure
are the translations, i.e. functions of the form x 7→ x+k. This structure is not homogeneous,
because the partial isomorphism which maps 0 to 0 and 1 to 2 does not extend to a full
automorphism. For similar reasons, the natural numbers with order (N,≤) are also not
homogeneous, this structure even has no automorphisms. It is not difficult to see that,
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in order to be homogeneous, a total order cannot have endpoints and must be dense. In
particular, the real numbers and the rational numbers are homogeneous.

We have advocated that the existence of a homogeneous limit for C is a desirable property
for manipulating database driven systems over C. But such a limit does not always exist,
even if C is closed under substructures.

Example 4.5. Consider the class C of all graphs which are disjoint unions of paths. Sup-
pose that A is a homogeneous limit of C. Then A contains an induced path of length 3, and
also an induced path of length 2. By homogeneity, there is an automorphism of A which
maps the endpoints of the first path to the endpoints of the second path. It is easy to see
that then A must contain a substructure which is isomorphic to a cycle, which is not in C,
a contradiction.

Classes of finite structures C which have a homogeneous limit have been characterized
by Fraïssé in terms of several closure properties of C, the most important one being closure
under amalgamation, which we describe in the following section.

4.3. Amalgamation
An instance of amalgamation consists of two embeddings of the same database C into two
other databases:

α1 : C→ A1 α2 : C→ A2.

A solution to the instance is a database D, together with embeddings

β1 : A1 → D β2 : A2 → D.

such that the diagram above commutes, i.e. β1 ◦ α1 = β2 ◦ α2.

Example 4.6. Consider a schema with one binary relation. The class of forests (under-
stood as undirected graphs) is not closed under amalgamation: the instance depicted below
does not have a solution which is a forest.
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4.4. Fraïssé classes and their limits
A class of structures is called a Fraïssé class if all its structures are finitely generated, and:

– is closed under amalgamation, i.e. if every instance of amalgamation which uses structures
from the class has a solution also in the class;

– is closed under embeddings, i.e., if it contains every finitely generated structure which
embeds into some structure from the class;

– has the joint embedding property, which means that every two structures from the class
can be embedded into a single structure from the class.

The definition above talks about finitely generated structures, because this is the classical
definition of a Fraïssé class (see [Hodges 1997, Chapter 6]). However, in this paper we are
only interested in the special case where the structures are actually finite.

Remark 4.7. The joint embedding property follows from closure under amalgamation
and embeddings if there exists a finitely generated structure which embeds into any other
structure in the class. This is the case when the schema has no constant symbols (nullary
function symbols), since then the empty structure embeds into any structure in the class.

In general, however, the joint embedding property does not follow from amalgamation.
For instance, consider a schema which consists of two constants c1 and c2, i.e. functions of
arity zero. Consider the class of all finite structures over this schema. This class is closed
under amalgamation and embedded substructures. However, a structure where the two
constants are equal, and a structure where the two constants are different, cannot be jointly
embedded into a single structure.

Example 4.8. Fraïssé classes over a schema with one binary relation symbol include: all
finite linear orders, all finite undirected graphs, all finite directed graphs, and all equivalence
relations.

Instead of proving that a class C is closed under amalgamation, it is enough to prove
that it is closed under inclusion amalgamation. An instance of inclusion amalgamation
consists of two structures A and B that are consistent, i.e. the functions and predicates are
defined the same way on the elements that appear in both domains. A solution of inclusion
amalgamation is a database C that contains both A and B as substructures.

Lemma 4.9. Let C be a class of structures closed under isomorphism. Then C is closed
under amalgamation if and only if it is closed under inclusion amalgamation.

An important property of a Fraïssé classes is that every Fraïssé class has a homogeneous
limit structure.

Theorem 4.10 (Fraïssé, see [Hodges 1997, Theorem 6.1.2]). Let C be a class of
finitely generated structures. Then C has a countable homogeneous limit if and only if C is
Fraïssé.

The limit from the theorem is unique up to isomorphism, and is called the Fraïssé limit of
the class C.

Note that in our case C will be a class of finite structures, hence finitely generated.

Example 4.11. The Fraïssé limit of the class of all finite total orders is the unique dense
total order without endpoints, namely the rational numbers. The Fraïssé limit of the class
of all finite sets (seen as finite structures with only equality) is any countable structure
with only equality, say the natural numbers. The Fraïssé limit of the class of all undirected
graphs is the Rado graph, also called the infinite random graph.
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5. EVALUATING FIXPOINT LOGICS OVER HOMOGENEOUS STRUCTURES
As described in Section 3.6, to solve the emptiness problem for database-driven systems,
we will reduce it to evaluating formulas of transitive closure logic and least fixpoint logic in
configuration structures. In this section we recall the syntax and semantics of these logics,
and show how they can be evaluated in homogeneous structures.

5.1. Syntax and semantics of transitive closure and least fixpoint logics
In this section we describe the two logics that will be used to solve the emptiness problem for
database-driven systems, namely transitive closure logic and least fixpoint logic. In terms
of expressive power, transitive closure logic is a fragment of least fixpoint logic, but we use
transitive closure logic when possible because its evaluation has better complexity.

Transitive closure logic. Transitive closure logic is obtained from first-order logic by the
following operator, which can be used in a nested way. Let x̄, ȳ, ū, v̄ be tuples of variables,
not necessarily disjoint, all of the same length n. Suppose that ϕ is a formula of transitive
closure logic with free variables included in x̄ȳ. Then

(TCx̄ȳ. ϕ)(ūv̄)

is a formula of transitive closure logic, with free variables ūv̄. The semantics of the formula
is the transitive closure of the semantics of ϕ, seen as a binary relation on n-tuples. Note
that the TC operator needs to be annotated by an ordering of the variables, to indicate
which variables are in the source and which variables are in the target of the relation whose
transitive closure is used.

Example 5.1. Whether a database-driven register automaton A has an accepting run
driven by C can be expressed as a formula of transitive closure logic over the configuration
structure Conf(C,A), namely

∃u∃v. I(u) ∧ F (v) ∧ (TCxy. ∆(x, y))(u, v)

where ∆ is the name of the binary relation of Conf(C,A), I the subset of initial config-
urations and F the subset of accepting configurations. The formula simply says that an
accepting configuration is reachable from some initial configuration via the transitive clo-
sure of the transition relation.

Least fixpoint logic. To describe nonemptiness for branching models, such as database-
driven tree automata, transitive closure logic is no longer expressive enough, and least
fixpoint logic will be needed.

Least fixpoint logic is obtained from first-order logic by the following operator, which can
be used in a nested way. Let ϕ be a formula of least fixpoint logic over a schema Σ, and
let R ∈ Σ be a predicate such that every appearance of R in ϕ is under an even number of
negations. Let n be the arity of R and assume that ϕ has n free variables (we could allow
parameters but we don’t for simplicity of the presentation). Then

(µx̄R. ϕ) (ȳ) (4)

is a formula of least fixpoint logic over the schema Σ−{R}, which has free variables ȳ. The
semantics of the formula is defined as follows. In a given structure, ϕ yields a function from
sets of n-tuples to sets of n-tuples, namely the function which inputs an interpretation of
the predicate R, and outputs the set of valuations of the free variables for which it is true.
By positivity, the function is monotone with respect to inclusion, and therefore admits a
least fixpoint. The semantics of (4) is defined to be this least fixpoint.
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Example 5.2. The transitive closure operator can be expressed in least fixpoint logic.
The formula (TCx̄ȳ. ϕ)(ūv̄) is equivalent to(

µx̄ȳR. ϕ(x̄, ȳ) ∨ ∃z̄R(x̄, z̄) ∧R(z̄, ȳ)
)
(ūv̄)

Example 5.3. LetA be a database-driven tree automaton, and C an input structure. The
configuration structure Conf(C,A) is defined the same way as for database-driven register
automata, except that the transition relation ∆ is not binary but ternary: the first argument
corresponds to the parent, and the other two arguments correspond to the two children. Let
us adopt the convention that the initial states are those in the leaves, and the accepting
state is in the root. The following formula of fixpoint logic, which has one fixpoint variable
x, defines the set of configurations reachable by a run which has only initial states in the
leaves:

(µxR. I(x) ∨ ∃y∃z R(y) ∧R(z) ∧∆(x, y, z)).

Therefore, nonemptiness can be expressed by a formula of least fixpoint logic, which asks if
the above fixpoint selects at least one accepting state.

5.2. Evaluation in homogeneous structures
In this section we describe the complexity of evaluating transitive closure logic and least
fixpoint logic in a homogeneous structure C. To analyze the complexity of this problem,
we need to assume some good computational properties of the underlying structure C. We
start with defining these properties.

Complexity of embeddability. Let C be a homogeneous structure. Embeddability in C is
the following decision problem: given on input a finite structure A, decide whether A em-
beds into C. If C is the Fraïssé limit of a class C of finite structures, then the embeddability
problem is equivalent to membership in C. The homogeneous structures that where men-
tioned earlier typically have embeddability decidable in PTime. For the following results,
it will suffice that C has embeddability decidable in PSpace.

Blowup functions. The blowup function of a structure C is the function

blowupC : N→ N ∪ {∞}
that maps n ∈ N to the least upper bound on the size of n-generated substructures of C.
Note that in the absence of function symbols in the schema, every n-generated structure
has size n and therefore blowupC(n) = n.

If C is the Fraïssé limit of a class C of finite structures, then blowupC(n) is equal to the
least upper bound on the size of n-generated structures in C.

Example 5.4. Consider the structure C, consisting of the set of integers equipped with a
bounded successor, which is a binary function f defined by

f(x, y) =

{
z if z is the successor of x and x < z ≤ y
x otherwise.

This structure is homogeneous, and has embeddability decidable in PTime. However, the
size of 2-generated substructures can be arbitrarily large, and therefore

blowupC(2) =∞.
Over this structure, emptiness of database-driven systems is undecidable. The idea is that
a system with four registers can simulate finite runs of two-counter machines. One of the
registers is used to store zero, and is unchanged during the run. One of the registers is used
to store the maximal counter value that will appear during the run. The remaining two
registers are used for the actual counters.
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Let Σ be a schema. For n ∈ N, let sΣ(n) denote the maximal size of a the standard
description of a structure over schema Σ with domain {1, . . . , n}, i.e., sΣ(n) is polynomial
in |Σ| and n, and exponential in the maximal arity of a symbol in Σ.

Theorem 5.5. Let C be a homogeneous structure over schema Σ, with embeddability
decidable in DSpace(e) and blowup function f such that f(n) is finite for all n. The model
checking problem C |= ϕ can be decided in time

poly(|ϕ|) · exp(e(sΣ(f(l)))) (5)

when ϕ is a sentence of fixpoint logic with l variables, and in space

poly(|ϕ|) · poly(e(sΣ(f(l)))) (6)

when ϕ is a sentence of transitive closure logic with l variables.

The rest of Section 5 is devoted to showing the above theorem.
Fix a structure C as in the statement of the theorem. If x̄ is a tuple of variables, then

by x̄-valuation we mean a valuation of the variables in x̄ by elements of C. Define the type
of an x̄-valuation to be the isomorphism type of the structure generated by its image, with
special constants for each variable in x̄. In other words, two x̄-valuations have the same type
if there is a partial automorphism π of C which maps one valuation to the other, i.e. makes
the following diagram commute

x̄
η1

zz
η2

$$
C π // C

(7)

If |x̄| denotes the number of variables in x̄, then each x̄-valuation induces a structure of
size f(|x̄|). The number of isomorphism types of such structures is exponential in f(|x̄|) and
each of them can be represented in space sΣ(f(|x̄|)). An isomorphism type of structures over
the schema of C is called a x̄-type if it is the type of some x̄-valuation. By the assumption
that embeddability is decidable in DSpace(e), deciding if an isomorphism type is a x̄-type
can be done in space e(sΣ(f(|x̄|))). In particular any algorithm trying naively all x̄-types
will take time exp(e(sΣ(f(l)))).

Since C is homogeneous, every partial automorphism extends to a full automorphism, and
therefore two x̄-valuations have the same type if and only if there is a full automorphism π
such that the diagram in (7) commutes. Both for transitive closure logic and least fixpoint
logic, the truth value of logical formulas is preserved under automorphisms, and therefore
x̄-valuations of the same type satisfy the same formulas of these logics.

Let ϕ be a formula of least fixpoint logic or transitive closure logic, with free variables
x̄. Define [ϕ]C to be the set of types of x̄-valuations that satisfy ϕ; this is a subset of all
x̄-types. By the discussion in the previous paragraph, whether or not a x̄-valuation satisfies
ϕ depends only on its type. By induction on the structure of ϕ, we will show that [ϕ]C can
be computed in time and space as described in the statement of the lemma. The proof is
essentially a naive evaluation algorithm except that the computation is done at the level of
types instead of the elements of the domain.

First order constructs. The base case for atomic formulas, as well as conjunction, disjunc-
tion and negation, are done in the obvious way. For existential quantification, we use the
projection operation from xȳ-types to ȳ-types, which maps the type of a xȳ-valuation to
the type of the same valuation with variable x removed.

Fixpoint. Consider the least fixpoint operator µx̄R.ψ. Define a sequence ψ0, ψ1, . . . of
formulas with free variables x̄ as follows. Let ψ0 = ⊥. For k ≥ 0, let ψk+1 be the formula ψ
in which each predicate R(ū) is replaced by ψk(ū). Assuming that [ψk]A has already been
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computed, then by induction assumption we can compute [ψk+1]A in time

poly(|ψ|) · exp(e(sΣ(f(l)))),

where l is the number of (possibly bound) variables in ψ. Note that when going from [ψk]A
to [ψk+1]A, we store the entire set [ψk]A, which is the reason why the algorithm does not run
in polynomial space. Because the predicate R occurs only positively in ψ, it follows that

[ψ0]A ⊆ [ψ1]A ⊆ [ψ2]A ⊆ . . .
Since each element of the sequence is a subset of all x̄-types, the sequence stabilizes in a
number of steps that is bounded by the number of x̄-types, which is at most exponential in
f(|x̄|). The value at which the sequence stabilizes is the least fixpoint.

Transitive closure. Consider the transitive closure TCx̄ȳψ. Let n be the number of vari-
ables in x̄, which is the same as the number of variables in ȳ. Let ā and b̄ be two n-tuples
of elements in C. We say that ā and b̄ are ψ-connected if the formula ψ is satisfied by the
valuation which uses ā for x̄ and which uses b̄ for ȳ. A ψ-path is a finite sequence of n-tuples,
where each two consecutive tuples are ψ-connected. By definition of the transitive closure
operator, a valuation āb̄ satisfies TCx̄ȳψ if and only if there is a ψ-path from ā to b̄. Consider
the directed graph where vertices are x̄ȳ-types, and there is an edge from τ to τ ′ if there is
an n-tuple ā and ψ-connected n-tuples b̄ and b̄′ such that

(1) τ is the type of the valuation which maps x̄ to ā and which maps ȳ to b̄;
(2) τ ′ is the type of the valuation which maps x̄ to ā and which maps ȳ to b̄′.

The graph characterizes the transitive closure thanks to the following lemma, which is shown
by induction on the number of steps in the transitive closure.

Lemma 5.6. An x̄ȳ-type belongs to [TCx̄ȳψ]A if and only if it can be reached in the
graph above from some vertex which corresponds to a x̄ȳ-valuation satisfying x̄ = ȳ.

The vertices of the graph, which are x̄ȳ-types, can be represented in space polynomial in
f(x̄ȳ). Thanks to the induction assumption, the edges of the graph can be computed in
space as required by the lemma. Therefore, [TCx̄ȳψ]A can be computed by using Savitch’s
theorem to test reachability in the graph.

This completes the proof of Theorem 5.5.

6. COMPLEXITY OF EMPTINESS FOR DATABASE-DRIVEN SYSTEMS
In this section we combine the results from the previous sections to show that it is decid-
able whether a database-driven system has an accepting run driven by a database in a given
Fraïssé class. We observe that each of our database-driven systems can be seen as a “defin-
able” structure over the Fraïssé limit of the class and that the existence of an accepting run
can be expressed by a sentence of fixpoint logic. We then show that it is decidable whether
a sentence of fixpoint logic is true or not on a structure definable over a Fraïssé limit.

6.1. Definable sets and structures
We consider two operations that transform structures into other structures, namely copying
and interpretation.

Copying. Let A be a structure with domain A. For k ∈ N, define k×A to be the following
structure. The domain is {1, . . . , k}×A, and the schema is the same as in A, except that for
every i ∈ {1, . . . , k} there is a unary function copyi defined by (j, a) 7→ (i, a). The symbols
from the original schema are defined as follows, for relations and functions respectively:

Rk×A((i1, a1), . . . , (ik, ak)) iff RA(a1, . . . , ak)

fk×A((i1, a1), . . . , (ik, ak)) = (1, fA(a1, . . . , ak))
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The following simple lemma follows immediately from the definitions.

Lemma 6.1. Assume that A is homogeneous, has embeddability in DSpace(e), and has
blowup function f . Then k×A is homogeneous, has embeddability in DSpace(e), and blowup
function n 7→ k · f(n).

Interpretation. Consider two schemas Γ and Σ, called the source schema and target
schema. For n ∈ N, an n-dimensional interpretation between these schemas is a family
of formulas {ϕσ}σ∈Σ over the source schema, such that when σ is a k-ary relation then ϕσ
has arity n · k, and when σ is a k-ary function then ϕσ has arity n · (k+ 1). For a structure
A over the source schema, we define the output of the interpretation to be the structure
over the target schema where the domain is n-tuples of the domain of A, and the functions
and relations are defined in the natural way. The output might be undefined if the formulas
for functions do not define functions, i.e. the output is defined if and only if for every k-ary
function symbol f , the interpretation of ϕf in A is a function form the first k ·n arguments
to the last n arguments.

In model theory, a more general notion of interpretation is sometimes used, where the
universe of the output is n-tuples modulo some partial equivalence relation; a formula
defining this partial equivalence relation is also part of the interpretation. The results below
would also hold for the more general notion, with the same proofs.

The following lemma establishes the complexity of evaluating fixpoint logics on structures
obtained from a homogeneous structure by first copying and then an interpretation. Recall
that sΣ(n) denotes the maximal size of a description of a structure over schema Σ with
domain {1, . . . , n}.

Lemma 6.2. Let A be a homogeneous structure over schema Σ, with embeddability de-
cidable in DSpace(e) and blowup function f , and let ϕ be a sentence of least fixpoint logic
using l variables. For every k and every n-dimensional interpretation I,

I(k × A) |= ϕ

can be decided in time

poly(|ϕ|, |I|) · exp(k, e(sΣ(f(l · n)))). (8)

If ϕ is a formula of transitive closure logic, then evaluation can be done in space

poly(|ϕ|, |I|) · poly(k, e(sΣ(f(l · n)))). (9)

Proof. By substituting formulas, one can compute a formula I(ϕ) such that

I(B) |= ϕ iff B |= I(ϕ).

holds for every structure B, in particular for B = k × A. The formula I(ϕ) and the time to
compute it are polynomial in |I| and |ϕ|, and it uses l · n variables. The result then follows
by applying Theorem 5.5, whose assumptions are met thanks to Lemma 6.1, and the fact
that sΣk

(n) = poly(k, sΣ), where Σk is the schema of k × A.

As an immediate corollary of Lemma 6.2, we get upper bounds on the complexities of
nonemptiness for various automata models.

Corollary 6.3. Let C be a Fraïssé class over schema Σ of maximal arity r, with blowup
function f and membership in DSpace(e). Then, over C,

(1 ) Emptiness for a database-driven register automaton A using n registers can be decided
in space poly(|Σ| · e(f(2n)r) · size(A)).

(2 ) Emptiness for a database-driven Büchi register automaton A using n registers can be
decided in space poly(|Σ| · e(f(2n))r · size(A)).
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(3 ) Emptiness for a database-driven register tree automaton using n registers can be decided
in time exp(|Σ| · e(f(3n))r) · poly(size(A)).

(4 ) Emptiness for a database-driven pushdown register automaton A, where n is the
maximum of control and stack registers, can be decided in time exp(|Σ| · e((3n))r) ·
poly(size(A)).

Proof. Let C be the homogeneous Fraïssé limit of C as given by Theorem 4.10.

(1) We start with a database-driven register automaton A. By Fact 4.2 it is enough to test
for the existence of an accepting run driven by C. As explained in Example 5.1, this
boils down to evaluating a formula ϕ of transitive closure in the configuration structure
Conf(C,A). It is not difficult to see that this configuration structure is equal to I(k×C)
where k is the number of states of A and I is an interpretation of dimension n, where
n is the number of registers of A, which can be obtained from the transition relation of
A in polynomial time. Therefore, emptiness is equivalent to evaluating the formula ϕ in
I(k×C). Since ϕ – the formula that tests reachability of some final state from the initial
state – has 2 variables, it follows from Lemma 6.2 that the emptiness problem can be
solved in space as in the statement of the corollary (recall that sΣ(n) is polynomial in
|Σ| and n and exponential in r).

(2) Consider now the case of Büchi register automata. The proof is the same as in the
previous case, except that in the transition structure Conf(C,A) we evaluate a slightly
different formula of transitive closure logic. As we have commented in Section 3.2, a
Büchi automaton is nonempty if and only if for some database in C, it admits a run
that visits some accepting configuration infinitely often. This is the same as saying that
over the limit C, there exists: an initial configuration x and an accepting configuration
y, such that y is reachable from both x and itself. This can be expressed by a formula
of transitive closure logic with 2 variables, and hence we get the same complexity as in
the previous case.

(3) For tree automata, we consider the transition structure and the least fixpoint logic for-
mula as defined in Example 5.3

(4) The proof for pushdown automata is a straightforward adaptation of the standard al-
gorithm for pushdown emptiness, which happens to be the same construction as when
converting a pushdown automaton into a context-free grammar. Consider a pushdown
automaton A. Define the transition structure Conf(C,A) to be the structure where the
domain is the disjoint union of the sets
C pairs consisting of a control state and a valuation of the registers;
S pairs consisting of a stack label and a valuation of the stack registers.

The schema has the following relations: unary relations I, F describing the subsets of
C that use initial and final control states respectively, and ternary relations pop, push
describing subsets of C × S × C. Define a well-nested run of the pushdown automaton
to be a run where the stack is the same at the beginning and the end, and none of the
contents of this stack are popped throughout the run, although additional tokens may
be pushed and then popped. Define the profile of such a run to be the triple in C×S×C
which consists of the: control state and valuation of the control registers at the beginning
of the run, the stack label and valuation of the stack registers in the topmost stack token,
and the control state and valuation of the control registers at the end of the run. It is
easy to see that the profiles of well-nested runs is the least set R of triples that satisfies
both formulas below:

∀x1, x2, x3, y R(x1, y, x2) ∧R(x2, y, x3)⇒ R(x1, y, x3)

∀x1, x2, x3, x4, y, z push(x1, y, x2) ∧R(x2, y, x3) ∧ pop(x3, y, x4)⇒ R(x1, z, x4)
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A pushdown automaton is nonempty if and only if some well-nested run has a profile
that has an initial state on the first coordinate and a final state on the last coordinate,
which is a property that can be defined in least fixpoint logic.

The bounds from the above corollary are tight in the following sense. Assume that the
structure A has a domain of size at least two. As shown in Lemma 3.2, the emptiness problem
is PSpace-hard for any Fraïssé limit which has a domain of size at least two, already for
finite words. For pushdown automata, the emptiness for pushdown register automata is
ExpTime-hard. The proof is the same as in Lemma 3.2, only now we can simulate an
alternating machine with space n. The configurations of the alternating machine can be
stored on the stack of the pushdown automaton.

7. SEMI-FRAÏSSÉ CLASSES
For some of the classes we are interested in, Theorem 5.5 will not work, since the class
is not Fraïssé. However, sometimes, the class is closely related to a Fraïssé class, so that
Corollary 6.3 can still be applied. In this section we study two ways of modifying a class C
to obtain a Fraïssé class:

– We show that if C is closed under amalgamation and under embeddings, but does not
have the joint embedding property, then it can be converted into a Fraïssé class C∗, and
the conclusion of Corollary 6.3 still holds.

– We show that if C can be obtained as a reduct of a Fraïssé class D, then the conclusion
of Corollary 6.3 still holds.

7.1. Classes closed under amalgamation and embeddings
We show that if a class C of finite databases is closed under amalgamation and embeddings,
but does not have the joint embedding property, then we still can deduce the complexity of
the emptiness problem of database-driven systems over C.

Fix a schema Σ. A type τ is a 0-generated structure (this corresponds to quantifier-
free 0-types). If C is a class of finite databases, then by types(C) we denote the types in
substructuresfin(C). If Σ contains no constant symbols, then types(C) consists of only one
structure, namely the empty structure. In general, types(C) contains the substructures of
structures in C which are generated by the constants.

If τ ∈ types(C) and C is a structure such that τ embeds into C, then we say that C
has type τ . By Cτ we denote the set of all structures in C which have type τ . Since every
structure has some type, it follows that

C =
⋃

τ∈types(C)

Cτ . (10)

Lemma 7.1. Let C be a class of finite databases over a common schema Σ which is closed
under amalgamation and under embeddings, and has blowup function f and membership in
PSpace. For each τ ∈ types(C), Cτ is a Fraïssé class with blowup function bounded by f
and membership in PSpace.

Proof. It is easy to see that Cτ is closed under embeddings and under amalgamation.
To see that Cτ has the joint embedding property, observe that if A1,A2 are two structures
in Cτ , then τ embeds into both A1 and A2. This defines an amalgamation instance, whose
solution yields a structure D which jointly embeds A1 and A2. Therefore, Cτ is a Fraïssé
class. Since Cτ ⊆ C, the blowup function of Cτ is bounded by f . To test whether a structure
C belongs to Cτ , it suffices to test whether it belongs to C and whether its 0-generated
substructure is isomorphic to τ , which can be done in PSpace.
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Corollary 7.2. Let C be a class which is closed under amalgamation and under em-
beddings, with blowup function f and membership in PSpace. Then emptiness of database-
driven systems over C can be decided with complexity as described in Corollary 6.3.

Proof. Consider a database-driven system over C. By the equality (10), there is an
accepting run driven by C ∈ C if and only if there is an accepting run driven by C ∈ Cτ , for
some τ ∈ types(C).

Each type τ ∈ types(C) has cardinality at most f(0), since it is a 0-generated structure.
Testing whether a structure τ of cardinality at most f(0) is a type of C can be done in
polynomial space with respect to f(0), and so the set types(C) can be iterated the same
space. For each type τ in this set, emptiness of S over Cτ can be done as described in
Corollary 6.3, since by Lemma 7.1 Cτ is a Fraïssé class with blowup function at most f and
membership in PSpace.

7.2. Semi-Fraïssé classes
We show that when a class C is not even closed under amalgamation, then sometimes it
can be enhanced to a Fraïssé class so that decidability of database-driven systems can be
deduced. Consider the following example.

Example 7.3. Consider graphs that are 2-colorable or, equivalently, have no odd-length
cycle. This class is HOM(H) where H is a 2-clique, over the schema Σ consisting of one
binary relation.

This class is not closed under amalgamation. Indeed, there is an odd-length cycle in every
solution of the instance of amalgamation depicted in Example 4.6.

A solution to the problem is to consider not 2-colorable graphs, but 2-colored graphs,
i.e. graphs with a 2-coloring. This corresponds to considering an extended schema Γ, with
the original binary edge relation, and two unary predicates denoting the colors. The 2-clique
H lifts to a canonical graph H̃ over this schema, where each node gets a different color. The
class HOM(H̃) is now closed under amalgamation, and is Fraïssé.

In the example above, we added some structure to the databases in order to recover
amalgamation. We formalize this strategy below. Let G be a database over a schema Γ and
let Σ be a subset of the schema Γ. The Σ-reduct of G, denoted Σ(G), is the set domain of
G, together with the relations in Σ. The Σ-reduct of a class D of databases over Γ, denoted
by Σ(D), is defined pointwise.

The following lemma is immediate.

Lemma 7.4. Let D be a class of finite databases over a schema Γ. If C is a class of
finite databases over a schema Σ ⊆ Γ such that

substructuresfin(C) = substructuresfin(Σ(D)), (11)

then the following conditions are equivalent for a database-driven system S over the
schema Σ:

– S has an accepting run driven by some database in C,
– S, treated as a system over the schema D, has an accepting run driven by some database
in D.

We call a class C semi-Fraïssé if there exists a class D which is closed under amalgamations
and embeddings and such that equation (11) holds.

Consider a semi-Fraïssé class C. From Lemma 7.4 it follows that the decidability of the
emptiness problem over C reduces to the decidability of the emptiness problem over D.
By Corollaries 7.2 and 6.3 the complexity of the latter does not depend on the automaton
depends but only on the function blowupD, the embeddability function e and the schema Σ.
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Hence it is crucial to witness semi-Fraïssé using a class of structures with these parameters
small.

7.3. Data values
In this section we show closure properties over Fraïssé classes. These closure properties will
be important to show our main results. As a main consequence they show that we can
treat separately the structure of the database (for instance XML trees) and the structure of
the data values they manipulate (for instance natural number with order). The method is
again very general – the data values themselves may carry some structure; we only require
that the data values come from a homogeneous relational structure. After introducing some
preliminary notions, we describe this general setting.

Data values. Fix a homogeneous structure F, whose elements will model data values. We
assume that the schema of F is purely relational, i.e. does not contain function symbols. For
instance F could be the structure 〈N,∼〉, where ∼ is the equality relation, or 〈Q, <〉.

Consider a finite database A over a schema Σ. Let λ : A → F be any labeling of the
elements of A by elements of F. We denote by A ⊗ λ the (finite) database extending A by
symbols from the schema of F, which are interpreted in A⊗ λ via the mapping λ: if R is a
relation symbol in F, then

(A⊗ λ) |= R(x1, . . . , xk) ⇐⇒ F |= R(λ(x1), . . . , λ(xk)).

The schema of A ⊗ λ is therefore the union of the schema of A and the schema of F. The
database A⊗ λ can be seen as a database whose elements are additionally labeled by data
values, and the database contains relation symbols from F allowing to compare the data
values. If C is a class of finite databases, then by C ⊗ F we denote the class of databases
of the form A ⊗ λ, where A ∈ C and λ is a mapping from A to F. By C � F we denote
subset of C ⊗ F consisting of those databases A ⊗ λ, where the mapping λ is injective, i.e.
each node gets a different data value. We consider the two variants ⊗ and � because in
relational databases, we want every value to be unique – to avoid redundancy – while in
XML databases, attributes are used for identifying distinct nodes (see Examples 7.5 and
7.6 below).

Example 7.5. Let w be a finite word over a finite alphabet seen as a database whose
domain is the set of positions in w and whose relations are the linear order among the
positions together with a unary predicate per letter of the alphabet. Let λ : w → N be a
labeling of the positions of w by natural numbers. Then the database w ⊗ λ can be seen as
a word equipped with data values (or attributes); two positions x, y store the same attribute
if x ∼ y. These structures are often denoted as data words in the literature.

Example 7.6. Let G be a finite graph and let λ : G→ N be an injective labeling of G by
natural numbers. Then the database G� λ can be seen as a graph whose nodes are natural
numbers: because λ is injective, we can identify a node x with the number λ(x). If G denotes
the class of all graphs, then the structures in G � 〈N,∼〉 can be interpreted as graphs on
natural numbers. Similarly, the structures in G � 〈Q, <〉 can be interpreted as graphs on
rational numbers; in particular, their nodes are linearly ordered.

Using the theorem of Fraïssé and a construction for combining two Fraïssé classes into
one class, we can obtain the following proposition:

Proposition 7.7. Let F be a purely relational homogeneous structure, such that embed-
dability is in PSpace. Then, for any Fraïssé class C (over any schema), the classes C ⊗ F
and C � F are Fraïssé classes, with the same blowup function as C.
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Proof. We prove the more general case of C�F. The case of C⊗F can be easily reduced
to this case, by observing that for the homogeneous structure

F̃ = F× 〈N,∼〉,

the class C ⊗ F is equivalent to the class C � F̃.
Let F denote the class of finite substructures of the homogeneous structure F. In par-

ticular, F is a class of finite databases over a purely relational schema Σ. Assuming that
F is nonempty, F contains at least one structure with a nonempty domain (the case of
Proposition 7.7 when F is empty is easy).

The following simple lemma uses the fact that F is purely relational.

Lemma 7.8. Consider an instance of inclusion amalgamation in F
C ⊆ A1, C ⊆ A2. (12)

Then for any finite set D such that dom(A1) ∪ dom(A2) ⊆ D, the instance (12) has a
solution with domain D.

Proof. Notice that on relational structures, any subset induces a substructure, so one
can easily restrict a solution to the amalgamation instance (12) to one whose domain is
equal to dom(A1) ∪ dom(A2). Further, one can extend any structure in F to a structure
in F whose domain contains some additional elements. The result follows from these two
observations.

We now continue with the proof of Proposition 7.7. Let Σ denote the schema of the
databases in the class F ; and let T denote the schema of the databases in the class C. We
assume that Σ and T are disjoint.

By C � F we denote the class of structures over the union schema Σ ∪ T , whose Σ-
projection belongs to F and T -projection belongs to C. It is easy to see that C � F is the
same class as C � F (up to isomorphisms of the databases). We now prove that the class
C � F is a Fraïssé class, and compute its blowup function.

Proof. It is obvious that C � F is a class which is closed under embeddings (this does
not require the assumption that Σ is a purely relational schema).

We prove that C � F is closed under amalgamation. The joint embedding property can
be proved similarly.

Consider the following instance of inclusion amalgamation:

C ⊆ A1, C ⊆ A2, (13)

with A1,A2,C ∈ C � F . This instance induces instances of inclusion amalgamation in F
and in C, respectively:

Σ(C) ⊆ Σ(A1), Σ(C) ⊆ Σ(A2) (14)
T (C) ⊆ T (A1), T (C) ⊆ T (A2). (15)

Since C is a Fraïssé class there exists a solution to the second instance (15),

T (A1) ⊆ DT , T (A2) ⊆ DT (16)

We now apply Lemma 7.8 to the first instance (14), and to D = dom(DT ), yielding a
solution

Σ(A1) ⊆ DΣ, Σ(A1) ⊆ DΣ (17)
in which the domain of DΣ is equal toD. In particular, DΣ and DT have the same domain. We
can therefore naturally combine these two relational structures into one relational structure
D over the schema Σ ∪ T . It is obvious by construction that D ∈ C � F and that

Σ(D) = DΣ, T (D) = DT .
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It follows from (16) and (17) that

A1 ⊆ D, A2 ⊆ D

is a solution to (13).
We now argue that the blowup function for C �F is the same as the blowup function for

C. For any A ∈ C �F , if A is generated by S, then T (A) is generated by S. This shows that
for all n ∈ N,

blowupC(n) ≤ blowupC�F (n).

Conversely, if AT ∈ C is a structure generated by S, then there is a structure A ∈ C � F
such that AT = T (A). Then A is also generated by S. This shows that for all n ∈ N,

blowupC(n) ≥ blowupC�F (n).

In view of applying Corollary 6.3 via Lemma 7.4 we stress that the embedding functions
of C ⊗ F and C � F are polynomial in the one of C and the one of F and that their schema
is simply the disjoint union of the schema of C and the one of F.

Hence for F such as 〈N,∼〉 or 〈Q, <〉, both homogeneous with a polynomial time embed-
ding decision, it follows immediately from Proposition 7.7 that we can assume without loss
of generality that our databases contain these numerical values and that our systems make
use of the corresponding numerical predicates.
〈N, <〉 is not homogeneous. However the proof of proposition 7.7 only require that F ,

the set of finite substructures of F, is a Fraïssé class. As the set of finite substructures of
〈N, <〉 is the same as the one of 〈Q, <〉, it is a Fraïssé class and therefore we can also assume
without loss of generality that our databases contain numerical values from N and that our
systems make use of the linear order.

7.4. HOMs are Semi-Fraïssé
As a simple application consider an extension of Example 7.3. Fix any schema with relations
only, and no functions. Suppose that G and H are two databases over the same schema.
Suppose that H is some database. Recall that HOM(H) denotes the class of all databases
over the schema of H that map homomorphically to H. In other words, G ∈ HOM(H) if
and only if there is a homomorphism f : G→ H.

Lemma 7.9. If H is a finite database, then HOM(H) is a semi-Fraïssé class.

Proof. The schema Γ is the schema Σ extended by a family {h}h∈H of unary predicates,
one for each element of the domain of H. We may view the database H as a database H̃
over the extended schema Γ, where a node h ∈ H gets the color h. It is easy to see that
HOM(H) is the Σ-reduct of HOM(H̃). To complete the lemma, we prove that HOM(H̃) is
Fraïssé.

We only show here amalgamation, the other two properties being trivial. Consider an
instance A1,A2,C of amalgamation. The desired structure D is simply constructed from
the disjoint union of A1 and A2 by identifying the images of C. It remains to show that
D ∈ HOM(H̃). This is witnessed by the mapping sending each node of D to its color. The
reader can verify that this mapping is a homomorphism.

Note that the schema of H̃ in the proof of Lemma 7.9 contains no function symbols, hence
we have blowupHOM(H̃)(n) = n.

The database H is called the template for the class HOM(H). Examples of HOM(H)
include n-colorable graphs for every n (when H is a n-clique).
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We show that if a class of databases can be defined as HOM(H) for some H, then it admits
an algorithm for emptiness of database-driven systems. We actually prove a stronger result
where the template is also part of the input.

Theorem 7.10. The following problem is PSpace-complete.

– Input. A template database H and a database-driven register automaton over the schema
of H

– Output. Does the system have an accepting run driven by some database in HOM(H)?

Example 7.11. Let H be the graph below, with nodes colored red or white.

Then a graph G maps homomorphically to H if and only if there is no red cycle of odd
length in G. On the other hand, the system from Example 3.1 has a G-driven run if and only
if there is some red cycle of odd length in G. Therefore, there is no database G ∈ HOM(H)
such that the system has an accepting run driven by G.

The lower bound of Theorem 7.10 follows from Lemma 3.2. Its upper-bound of is an
immediate consequence of Corollary 6.3 and the fact that HOM(H) is semi-Fraïssé with the
same blowup function (Lemma 7.9), same embeddability function, and same arity in the
schema. Note that we could also get the same result using database-driven Büchi automata
and an ExpSpace emptiness test for database-driven pushdown automata.

Adding data values. Moreover, using Theorem 7.7, the result of Theorem 7.10 remains
valid if each node of the graph carries a unique data value in N (or any other homogeneous
data structure) and the query can test these values using equalities or inequalities (or any
other predicate of the homogeneous data structure).

8. XML DOCUMENTS AND REGULAR TREE LANGUAGES
We now turn to the main result of the paper. We consider a class of databases motivated by
XML databases. We work with vertex-labeled, unranked and sibling-ordered trees. We use
the standard terminology for trees: root, leaf, descendant, ancestor, child, parent, sibling.
The next sibling of a node x is the first (and therefore unique) sibling after x in document
order, which might not exist if x is a rightmost child. The following sibling is the transitive
(but not reflexive) closure of the next sibling relation. Likewise, each node has at most one
previous sibling, but possibly many preceding siblings. We use the standard notion of regular
languages for unranked trees. The automata model is presented in Section 9.1.

It is easy to see that in the presence of a successor relation database-driven systems can
simulate counters and are therefore undecidable. See also Section 10.1. For this reason we
disallow in our model the use of the child, parent, next sibling and previous sibling relations
and only allow relations such as ancestor, descendant, following and preceding sibling. As
a matter of fact we can also include the document order2 and the closest common ancestor
function that maps x, y to the node that is a descendant of all common ancestors of both x
and y.

We model a tree t as a database, denoted by Treedb(t), whose domain is the nodes of the
tree, and which is equipped with the following predicates and functions:

– A unary predicate for every possible node label (there are finitely many labels);

2The document order is the order in which the nodes are first reached by a depth-first left-first traversal of
the tree
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– Binary predicates for document order (denoted by ≤doc) and descendant order (denoted by
�v);

– A binary function for closest common ancestor, which is denoted by x ∧ y. Observe that
the descendant relation is defined in terms of this function by a quantifier-free formula:

x �v y iff x = x ∧ y

If the set of node labels is A, then the schema above is denoted by TreeSchema(A).
Our main result on trees is that emptiness of database-driven systems is decidable over

any regular tree language, even when the description of the regular language is also part of
the input.

Theorem 8.1. The following problem is decidable:

– Input. A tree automaton defining a language L of trees labeled by an alphabet A, and a
database-driven register automaton S over TreeSchema(A).

– Output. Is there a tree t ∈ L and an accepting run of S driven by Treedb(t)?

For a fixed tree automaton, the problem is in PSpace and there are automaton for which
the problem is complete for PSpace. When both the tree automaton and the database-driven
register automaton are given on input, the problem is in ExpSpace.

The database-driven register automata are only allowed to access the trees through
quantifier-free formulas that use the predicates included in TreeSchema(A). Recall that
we could also allow them to use existential formulas defined in terms of the predicates in
TreeSchema(A). Some navigation predicates for trees, such as child, next sibling, or even
simply sibling are not definable this way. We will later show (Section 10) that adding any
one of the above three predicates leads to undecidability.

If L is a tree language then we denote by Treedb(L) the set of databases modeling trees
in L. The proof of Theorem 8.1 is a consequence of the fact that Treedb(L) is semi-Fraïssé
as we will prove in Section 9.

Adding data values. By Proposition 7.7 the result of Theorem 8.1 remains valid if each
node of the tree also carries a data value in F = 〈N,∼〉 (or any other homogeneous data
structure) and the query can test these values using equalities or inequalities (or any pred-
icate of the data structure). In the case where the data structure is 〈N,∼〉 the decidability
result concerns databases that are also known as data trees. The complexity bound is not
affected by this extension:

Theorem 8.2. The following problem is decidable:

– Input. A tree automaton defining a language L of trees labeled by an alphabet A, and a
database-driven register automaton over the schema TreeSchema(A) ∪ {∼}.

– Output. Is there a tree t ∈ L, a labeling λ of t by elements of N, and an accepting run
of the system driven by Treedb(t)⊗ λ?

For a fixed tree automaton, the problem is in PSpace and there are automaton for which
the problem is complete for PSpace. When both the tree automaton and the database-driven
register automaton are given input, the problem is in ExpSpace.

Remark 8.3. Theorem 8.2 builds on Theorem 8.1 and Proposition 7.7 with F = 〈N,∼〉.
But any homogeneous F with PSpace embeddability would also do the job. This includes
〈Q, <〉 and even 〈N, <〉 as argued before.

Remark 8.4. By repeatedly applying Proposition 7.7, we could have a stronger version of
Theorem 8.2, where each tree node stores k data values that can be compared for equality.
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In terms of complexity the results are polynomial in k which appears within the size of the
schema.

9. REGULAR TREE LANGUAGES
In this section, we prove Theorem 8.1, which is the main technical result of the paper.
The theorem says that emptiness is decidable for database-driven systems over regular tree
languages. We fix a regular language L of trees labeled by an alphabet A.

We start by defining a class C that represents substructures of runs, with good properties.

Proposition 9.1. For all regular tree language L over the alphabet A, there exists a
class of finite structures C over a schema RunSchema(A) ⊇ TreeSchema(A) such that the
following properties hold.

(1 ) C is closed under substructures and under amalgamation,
(2 ) substructuresfin(Treedb(L)) = substructuresfin(TreeSchema(A)(C)),
(3 ) the blowup function of C is n 7→ c ·n, where c is exponential in the size of the automaton

recognizing L,
(4 ) C has membership decidable in PSpace,
(5 ) The schema RunSchema(A) consists of function and relation symbols of arity at most

two, and the number of those symbols is exponential in the size of A.

The above proposition implies Theorem 8.1, using Lemma 7.4 and Corollary 7.2. In the rest
Section 9, we prove Proposition 9.1.

9.1. Tree automata and their components
We begin by presenting the model of tree automata that we use. This model is equivalent
to the models used in the literature [Comon et al. 2002].

A tree automaton consists of:

– An input alphabet A. The automaton is used to accept or reject trees labeled by A.
– A set of states Q.
– The automaton has a distinguished root state, which is the only state allowed at the root.
– With each state q ∈ Q there is an associated regular language Lq ⊆ Q∗, represented by

a nondeterministic finite automaton Aq over the alphabet Q. Without loss of generality
we assume the automaton Aq to have the property that for every of its state h there is
a unique letter q ∈ Q which can be read in state h.

A run over a tree labeled by elements of A is a labeling of the nodes and edges of the input
tree, which satisfies certain local consistency requirements described below. Every node is
labeled by exactly one state q ∈ Q. We adopt the convention that for each state q there is
precisely one label a ∈ A which can be read in state q, i.e. if a node is labeled by the state q,
then it is also labeled by the letter a. Furthermore, if a node x has label q, then every edge
leaving from x has some label h which is a state of the automaton Aq, and the sequence of
labels on the edges leaving from x forms an accepting run of Aq over the sequence formed
by the labels of the children of x.

A tree is accepted by the automaton if it admits some run whose root is labeled by the
root state. Let us fix for the rest of Section 9 a tree automaton as described above, which
recognizes a tree language L.

Descendant components. Define a binary relation →D on the states of the automaton
which contains all pairs p, q such that in some run, the state p appears in some node which
is an ancestor of a node with state q. This relation can be computed in polynomial time
from a given automaton. We may therefore enforce (in polynomial time) that the automaton
contains only useful states, i.e. if q is a state of the automaton and r is the root state, then
r →D q.
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We use the name descendant component for a strongly connected component ∆ of the
relation →D. We adopt the convention that when a state is not reachable from itself by
→D, then it still forms a (singleton) descendant component.

We distinguish two kinds of descendant components:

– A descendant component ∆ is called branching if in some run, some node with state in ∆
has two children with states in ∆.

– A descendant component ∆ is called linear otherwise. This means that in every run, every
node with state in ∆ has at most one child with a state in ∆.

Horizontal components. Fix a state q and its associated automaton Aq. Define a binary
relation →q

H on the states of the automaton Aq which contains all pairs h, h′ such that
in some (accepting) run of Aq, the state h appears before the state h′. This relation can
be computed in polynomial time from a given automaton. We use the name horizontal
component for a strongly connected component Γ of the relation →q

H (where q is implicit).
Again, we adopt the convention that when a state is not reachable from itself by →q

H , then
it still forms a (singleton) descendant component. We call a horizontal component repeating
if it is not of this form, i.e. if any two states h, h′ in this component can be reached from
each other by some nonempty word.

The set of horizontal components of the automaton Aq inherits from Aq the structure of
a directed acyclic graph: there is an edge between two horizontal components if there is a
transition from a state in the first component to a state in the second component. A history
is a simple directed path Π in the directed acyclic graph of horizontal components of Aq,
which starts in a component containing an initial state and ends in a component containing
an accepting state of the automaton Aq.

Fix a run π and a node x in π with state q as label. Let h1, . . . , hn be the sequence of
labels at the edges leaving from x in π. Then the sequence h1, . . . , hn induces a history Π in
the directed acyclic graph of horizontal components of the automaton Aq, by simply listing
(without repetitions) the horizontal components visited by h1, . . . , hn. We call Π the history
of x.

9.2. The class C
We are now ready to define the class C, which contains databases representing parts of runs.

The pointers. For a run π, we define Rundb(π) to be the following database.

– It contains the relations from Treedb(t) for the tree t underlying π: the node labels, the
descendant order, the document order, and the closest common ancestor function.

– There is a constant representing the root of π.
– For each state q and history Π in Aq there is a unary relation historyΠ(x) marking a node
x if it has state q and history Π in π.

– For each state q and horizontal component Γ of Aq there is one binary relation
directionΓ(x, y) which relates a node x with a node y if y is a descendant of x, the state in
x is q and the first edge on the path from x to y has a label in the component Γ.

– For each descendant component ∆, there is a unary function closest∆(x), whose value is
the first node different from x on the path from x to the root that has state in ∆. If there
is no such node, then the function is “undefined”, which is encoded by closest∆(x) = x.

– For each state q and non-repeating horizontal component Γ ofAq there is one unary function
uniqueΓ(x) which to a node x with state q assigns the child which is the target of the unique
edge leaving from x whose label is in the component Γ, under the condition that the state
in this child is in a different descendant component than q. If x does not have state q, or
does not have a unique edge with label in Γ, or the child at the end of that edge has state
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in the same descendant component as q, then uniqueΓ(x) is “undefined”, which is encoded
by uniqueΓ(x) = x.

– Suppose that x is a node whose state is in a linear descendant component ∆. Then
descendantmost(x) maps x to the unique descendant of x that has a state in ∆ but none
of its children has a state in ∆. If the state of x is not in a linear descendant component,
then the function is “undefined”, which is encoded by descendantmost(x) = x.

This ends the definition of the database Rundb(π). We define RunSchema(A) as the schema
of such structures. Clearly it consist of symbols of arity at most two, whose number is
exponential in the size of A (due to the predicates historyΠ(x)).

The class C. Define C to be the closure under substructures of the class

{Rundb(π) : π is a run of the automaton}.
In other words, a database belongs to C if it can be extracted from a run so that nodes

are extracted together with the values of their pointers. Clearly, since every tree in L is
the projection over TreeSchema(A) of a structure Rundb(π) for a run π, it follows that
the second condition of Proposition 9.1 holds. Also, C is closed under substructures by
definition.

We will call pre-runs the structures of C.
To prove Proposition 9.1 it remains to prove the following lemmas.

Lemma 9.2. The blowup function for C is n 7→ c ·n, where the constant c is exponential
in the state space Q.

Lemma 9.3. Membership in C can be decided in PTime.

Lemma 9.4. C is closed under amalgamation.

We proceed to the proof of the first lemma.

Proof of Lemma 9.2. Let F be the function symbols available in the schema, i.e. F
is the closest common ancestor function cca, as well as the pointer functions

uniqueΓ, descendantmost︸ ︷︷ ︸
P↓

, closest∆︸ ︷︷ ︸
P↑

for the possible choices of Γ and ∆. Let us write P ⊆ F for the pointer functions, and
partition P into two parts: the part P↑ which contains the closest∆ pointer functions, and
the part P↓ which contains the remaining pointer functions.

Fix a structure ρ of C. For a set X of nodes in ρ and a subset G ⊆ F , we write [X]G for
the smallest set of nodes that contains X and is closed under applying functions from G.
Our goal is to prove that for the set F of all functions, the size of [X]F is at most c times
the size of X, where the multiplicative constant c is at most exponential in the state space
of the automaton.

We use the two following claims which show that there is a natural order in applying
the functions. The proofs are a straightforward case analysis based on simple observations
such as within a any structure of C we have: closest∆′(descendantmost(closest∆(x))) =
closest∆′(x).

Claim 1. [X]F = [[X]cca]P

Claim 2. [X]P = [[X]P↑ ]P↓ .

Combining the two claims, we see that [X]F is obtained by first closing X under cca, then
closing the resulting set under P↑, and finally closing the resulting set under P↓. Closing a
set under cca makes it grow by at most a multiplicative factor of two. Closing a set under P↑
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makes it grow by at most a multiplicative factor of the number of descendant components.
Finally, closing a set under P↓ makes it grow by at most a multiplicative factor that is
exponential in the state space of the automaton. The second and third statements are
because applying a function from P↑ or P↓ that is not a self-loop requires a change of
component.

We now turn to the complexity of the membership problem. Note that it would be suffi-
cient to prove PSpace. But as it is merely tree automata evaluation, we get PTime.

Proof of Lemma 9.3. Let A be a database over the schema RunSchema(A). The fol-
lowing are necessary and sufficient conditions for the existence of a run π such that A is a
substructure of Rundb(π).

– The descendant order, the document order, the closest common ancestor function, con-
sistently describe a tree whose root is the root constant.

– Each note has a label in Q and the root has the root state as label.
– Each node x is labeled by predicate historyΠ, for some history Π of Aq where q is a label
of x.

– If x has history Π, each descendant y of xmust satisfy exactly one relation directionΓ(x, y)
for some Γ occurring in Π. Moreover, for Γ occurring in Π, the set of y such that
directionΓ(x, y) holds is either empty or forms a sibling sequence of subtrees of x. The
sequences are arranged in the order given by Π.

– The states q labeling the nodes of the tree correspond to a valid run of the automaton
consistent with the histories. This can be done in non deterministic LogSpace by guess-
ing for each node x of label q and history Π the sequence of states in Aq while testing it
is consistent with Π.

The above conditions can be verified in time polynomial in the size of the domain of A.

It remains to prove Lemma 9.4, i.e. that C is closed under amalgamation. We need a
notion for describing operations on trees, which amounts to replacing one part of a tree by
another tree.

Contexts and replacements. A run or a pre-run σ together with a distinguished set
y1, . . . , yn of nodes which are mutually incomparable with respect to the descendant re-
lation is called a multi-context of arity n. The nodes y1, . . . , yn are called the ports of the
multi-context σ; the ports are naturally ordered by the document order. Multi-contexts of
arity 0 are simply pre-runs, multi-contexts of arity 1 are contexts, and multi-contexts of
arity 2 are bi-contexts. Multi-contexts can be composed in the natural way, by replacing the
subtree at a specified port by another multi-context.

Given a run or a pre-run σ and nodes x, y1, . . . , yn in σ such that x is an ances-
tor of y1, . . . , yn and y1, . . . , yn are mutually incomparable, we define the multi-context
σ[x; y1, . . . , yn] as the substructure σ rooted at x with the nodes y1, . . . , yn as the ports.
In the extreme case where n = 0, then σ[x; ] denotes the substructure of σ induced by the
subtree rooted at x.

Given a run or a pre-run σ and a node x in σ, given a context δ define “σ with δ inserted
above x” the structure composing the following three contexts σ[r;x], δ and σ[x; ].

We will also use the following terminology. Given a pre-run ρ we say that an edge from
x to y has label Γ in ρ if directionΓ(x, y) holds in ρ.

Proof of Lemma 9.4. By Lemma 4.9, it suffices to show that C is closed under inclu-
sion amalgamation. Consider an instance of inclusion amalgamation in the class C, i.e. two
consistent pre-runs ρ1 and ρ2 of C. Let ρ0 be common part, i.e. the intersection of the two
databases, which is a substructure of both, so it also belongs to C.
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Fig. 1. The pre-runs ρ1 and ρ2. The red parts are fragments of the pre-run ρ1, and the blue parts are
fragments of the pre-run ρ2. The black nodes are the nodes of ρ0. Triangles represent subtrees with no node
in ρ0.

An impressionistic illustration of the situation is depicted in Figure 1.
We need to show a database in C that contains both ρ1 and ρ2 as substructures. The

proof is by induction on the number of nodes in ρ1 which are not in ρ0. In the induction
base, ρ1 is a substructure of ρ2, and we already have a solution to amalgamation.

Now consider the inductive step.
In the inductive step, there is a node y which is in ρ1 but not in ρ0. Choose the node y

so that all its ancestors are already in ρ0. Let x be the parent of y. There are two cases,
depending on whether or not y has a descendant in ρ1 which belongs to ρ0. In each case we
modify the pre-run ρ2 to a pre-run ρ′2, reducing the inductive parameter.

Case 1: The node y has a descendant which belongs to ρ0.
Let x′ be the unique child of x in ρ0 which is a descendant of y in ρ1. The fragments of

the pre-runs ρ1 and ρ2 between x and x′ are depicted in Figure 2, on the left.

x

x’

x

x’

z

y
y

δ

Fig. 2. Construction of ρ′2 in Case 1. Left: The fragments of the pre-runs ρ1 and ρ2 between the nodes x
and x′. The nodes of the pre-run ρ1 are marked red, and the nodes of the pre-run ρ2 are marked red. Right:
The pre-run ρ′2, obtained from run ρ2 by inserting the context δ above x′.

Let δ be the context ρ1[y;x′]. Let ρ̂2 be constructed by inserting δ above x′ as depicted
in Figure 2, on the right. We now set the remaining relations and functions in order to view
ρ̂2 as the desired pre-run ρ′2.
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The key observation is the following fact.

Fact 9.5. Both in ρ1 and in ρ2, all nodes between x and x′ have states in the same
descendant component as the state in x′.

Proof. We show the argument for nodes v in ρ1; the argument for nodes in ρ2 is the
same. Let v be a node different from x which lies on the path from x to x′ in ρ1. Let ∆ be
the descendant component of the state at the node v in ρ1. Suppose that the state at x′ is
not in ∆. Then in ρ1, closest∆(x′) points to a node z which is strictly between x and x′.
Since ρ0 is a substructure of ρ1, it follows that closest∆(x′) is also equal to z in ρ0. But in
ρ0 there is no node which is strictly between x and x′ – a contradiction.

By our assumption ρ2 and ρ1 are in C. Therefore they are substructures of Rundb(π1)
and Rundb(π2) for some runs π1 and π2. It follows from Fact 9.5 above that y and x′ are in
the same descendant component. Hence there is a run π which contains two nodes z and z′,
with z′ being the descendant of z, and such that the state at z in π is the same as the state
of x′, and the state at z′ in π is the same as the state of y. Let σ be the context π[z; z′].
Let δ′ be the context π1(y;x′). Let σ′ be the context composing σ and δ′. We extend π2

by inserting σ′ above x′ as depicted in Figure 3 below. It is easy to verify that this yields
a valid run π′2 that contains all nodes of ρ̂2. Hence the substructure ρ′2 induced by those
nodes is our desired pre-run.

x

x’

z

y

δ
y

π

σ

σ

Fig. 3. Left: The run π and its fragment σ. Right: The run π2 extended to a run by inserting the fragment
σ above y.

It is now easy to verify that ρ′2 extends ρ2, that ρ′2 is still consistent with ρ1 and that ρ1

and ρ′2 share at least one extra node, namely y (in fact all nodes in δ).

Case 2: The node y has no descendants which belong to ρ0.
Let Π = Γ1 . . . ,Γn be such that historyΠ(x) holds in ρ1. Therefore historyΠ(x) also holds

in ρ2, as x belongs to both structures. Hence labels of the edges leaving x form a subsequence
of Π.

There is some i such that the label of the edge from x to y in ρ1 belongs to Γi. Define
ρ′2 as the result of inserting ρ1[y; ] to ρ2 as a child of x, so that it follows all children whose
edge labels are in Γj with j < i and precedes all children of x whose edge labels are in Γj
with j ≥ i (see Figure 4). Moreover for all nodes z in ρ1[y; ] we have directionΓi

(x, z) in ρ2,
the remaining functions being defined in the natural way.
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y

x

Fig. 4. The fragment of the run ρ2 below the node x, with the subtree of y added in the appropriate place.

We need to show that ρ′2 is a pre-run. We distinguish between two cases, according to
the following fact.

Fact 9.6. At least one of the following cases occurs:

– The label of the edge from x to y in ρ1 is a repeating horizontal component Γ.
– The states in the nodes x and y in ρ1 are in the same descendant component ∆, which
is branching.

Proof. Suppose first that the states in x and y in ρ1 belong to the same descendant
component ∆. We show that ∆ is branching. Indeed, otherwise ∆ would be a linear compo-
nent, and descendantmost(x) would point to some descendant z of y in ρ1, and therefore also
in ρ0, and so z would belong to ρ0, contradicting the assumption that y has no descendants
in ρ0.

Now suppose that the states in x and y belong to different descendant components. Let
Γ be the label of the edge from x to y in ρ1. If Γ was a non-repeating horizontal component,
then uniqueΓ(x) would be equal to y, and so y would belong to ρ0, a contradiction.

Claim 3. ρ′2 is a pre-run.

Proof. By hypothesis ρ1 and ρ2 are substructures of Rundb(π1) and Rundb(π2) for
some runs π1 and π2.

We show how to extend ρ′2 to a run. Consider the two cases described in Fact 9.6.

– The label Γ of the edge from x to y in ρ1 is a repeating horizontal component.
Note that by construction the label h of the edge from x to y in π1 is in Γ. Let h1, . . . , hn
denote the labels of the edges leaving from x in π2 and let Γ1, . . . ,Γn be their corre-
sponding horizontal component. Let t be π1[y; ], i.e. the subrun of π1 that reaches y.
Recall that ρ′2 has been constructed from ρ2 by attaching ρ1[y; ] to x right before those
edges of label Γ. Let i be minimal such that hi belongs to Γ. In particular Γ = Γi.
By construction h is reachable from hi−1 in Aq because it belongs to Γi. Moreover hi is
reachable from h because both belongs to the same strongly connected component Γi of
Aq. Hence the sequence h1, . . . , hn can be extended into a sequence forming an accepting
run of Aq and having h1, . . . , hi−1, h, hi, . . . , hn as subsequence. Using this fact, by adding
to π2 the attaching the tree t to x at the corresponding place in this sequence and by
adding appropriate subruns for the other extra nodes of the sequence (here we use the
assumption that the tree automaton contains only useful states) we obtain a run π′2 such
that ρ′2 is a substructure of Rundb(π2).

– The states in the nodes x and y in ρ1 are in the same descendant component ∆, which
is branching. We furthermore assume that the previous case does not hold, i.e., the label
Γ of the edge from x to y in ρ1 is a non-repeating horizontal component. Let h be such
that Γ = {h}. In particular, since π2 is a run and the history of the node x in π1 and
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π2 are the same, it follows that there is a unique edge of label h leaving from x in π1

and in π2. Let z1 and z2 be the corresponding endpoints of those edges. Note that by
construction y is a descendant of z1. Since in a run the edge label determines the state at
the endpoint, it follows that the states in z1 and in z2 are the same, say, q. Moreover, q
is in the same branching descendant component ∆ as the state in x. It follows that there
is a run π which contains the node u with the same state and history as x in ρ0, and
two incomparable descendants v and v′, both with state q. Let σ denote the bi-context
π[u; v, v′]. Let σ1 be π1[z1; ], the subtree of π1 rooted at z1. Let σ′ denote the context
constructed by plugging σ1 in the first port of σ. Let π′2 be constructed from π2 by
replacing π2[x; z2] by σ′. It is easy to verify that π′2 is a run and that ρ′2 is a substructure
of Rundb(π′2).

It is easy to see that ρ′2 extends ρ2. Moreover ρ′2 and ρ1 share at least one extra node,
namely y (actually all the subtree of y).

Hence it remains to show:

Claim 4. ρ′2 is consistent with ρ1.

Proof. We only show that the unique functions are consistent in ρ1 and in ρ′2; the cases
of the remaining relations and functions are evident.

Let Γ be such that directionΓ(x, y) holds in ρ1. The value uniqueΓ(x) in ρ1 must be equal
to x – otherwise it would be equal to y and so y would belong to ρ0, a contradiction. It
follows that either Γ is a repeating horizontal component, or the descendant component of
the state in x and of the state in y are equal.

In either case, uniqueΓ(x) is equal to x in the ρ1, ρ2 and ρ′2.

The above analysis ends the inductive proof of Lemma 9.4, ending the proof of Proposi-
tion 9.1 and of Theorem 8.1.

10. UNDECIDABLE MODELS
We consider in this section several ways of extending the model. In most cases, the extensions
lead to undecidability. For instance, if the trees are additionally equipped with the child
relation or the sibling relation, then the emptiness problem becomes undecidable, even for a
fixed tree language. A more interesting question is what happens if we extend the expressive
power of the logics used for describing the transitions of the system. These extensions also
quickly lead to undecidability.

10.1. Child and sibling axes
Adding axes such as next sibling or child leads to undecidability. The reason is that already
for unary words with the successor relation on positions, we get undecidability. More pre-
cisely, a unary word w can be viewed as a structure whose domain is the set 1, 2, . . . , |w| of
positions of w, and succ(x, y) holds if y − x = 1.

Fact 10.1. Let L be any infinite set of words over the unary alphabet, viewed as struc-
tures over the schema consisting of the binary symbol succ. Then, the following problem is
undecidable.

– Input. A database-driven register automata over the schema consisting of succ.
– Output. Is there a word w ∈ L and an accepting run of the system driven by the word
w?

Proof sketch. Using one register, the system can simulate a counter of a counter
machine: a transition can increment or decrement the counter using the relation succ. There
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are no zero tests, but this can be simulated by keeping one register z that is never changed
(using zold = znew as a conjunct in all rules); then a zero test of the counter is simulated by
the formula x = z. Since the halting problem is undecidable for two-counter machines, the
fact follows.

It follows immediately from Fact 10.1 that in the presence of the child or next sibling axis
it is undecidable whether a database-driven has an accepting run.

The sibling axis. We show that even extending the set of predicates by the sibling relation
also leads to undecidability. Formally, we model a tree t as a database with two predicates:
the closest common ancestor ∧ and the transitive, symmetric and irreflexive binary sibling
relation (the document order nor the unary predicates are needed for this undecidability
result).

Fact 10.2. There exists a regular tree language L over a unary alphabet, such that the
following problem is undecidable:

– Input. A database-driven register automata over the schema consisting of ∧ and sibling.
– Output. Is there a tree t ∈ L and an accepting run of the system driven by the tree t?

Proof sketch. The language L is defined as the set of trees of the form tn, where
n ∈ N and tn is the tree depicted in the left-hand side of the figure below, of height n.

The reduction is again from counter machines. We show that a system can simulate a
counter using a register x.

To simulate incrementation of the counter, the machine uses an auxiliary register y (see
right-hand side of the figure above), and follows a transition whose guard is the following
formula: (

xold = (xnew ∧ ynew)
)
∧ sibling(xnew, ynew)

These conditions guarantee that xnew is a child of xold (they do not guarantee that xnew is
the left child, as is the case in the figure, but this is not necessary).

Decrementation of a counter is obtained by swapping “old” with “new” in the guard. As
in the proof of Fact 10.1, using additional counters, one can simulate zero tests. This way,
a database-driven system using the predicates ∧ and the successor relation can simulate a
counter machine.

Remark 10.3. We don’t know whether emptiness is decidable for database-driven sys-
tems over the schema consisting of the sibling relation, the document order and the vertical
order, but not the closest common ancestor.

10.2. Rules that are not existential
A legitimate question is whether one can extend the expressivity of our model by extending
the power of the formulas guarding the transitions of the system, for instance by allowing
first-order formulas, while preserving the decidability of the emptiness problem.
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We have seen in Section 3.5 that systems with transitions guarded by existential formulas
can be simulated by systems where the transitions are guarded by quantifier-free formulas.
However, already allowing boolean combinations of existential formulas quickly leads to
undecidability. For instance, in the tree case, this is a consequence of Fact 10.1. Indeed,
using boolean combinations of existential formulas, one can define the child axis:

child(x, y) ⇐⇒ x �v y ∧ ¬∃z : x ≺v z ≺v y

10.3. Data tree patterns
We also considered the setting where the queries are data tree patterns. A data tree pattern
selects data values within a tree, depending on the existence of nodes whose positions
verify the tree pattern (we use an injective semantics for tree patterns, where each node
of the tree pattern must match a different node of the tree). With our terminology, a tree
pattern is a special case of an existential formula; the hope being that systems using boolean
combination of tree patterns would be decidable.

To make this setting fit into our formalism, we assume the system is over TreeSchema(A)∪
{∼} and has rules guarded by boolean combinations of formulas of the following form (called
tree pattern formulas):

δ(x̄new, x̄old) : ∃6=v1, v2, . . . , vl ϕ(v1, . . . , vl),

where the notation ∃6= implies that the nodes v1, . . . , vl are pairwise distinct (to reflect the
injective semantics of tree patterns), and ϕ is a conjunction of conjuncts of the following
three possible forms:

vi ∼ xj , vi �v vj , λ(vi).

Note that the restriction on ϕ implies that a formula δ cannot (directly) tell whether two
registers x and y of the system point to the same node; it can only test whether they have
the same datavalue.

Example 10.4. Consider trees labeled by {a, b, r}. The following tree pattern:

∃ 6=v, la, lb, ra, rb.
(
a(la) ∧ b(lb) ∧ a(ra) ∧ b(rb) ∧ r(v)

)
∧

(v �v la �v lb) ∧ (v �v ra �v rb) ∧ (la ∼ xold) ∧ (ra ∼ xnew)

can be graphically represented as follows (dashed lines represent descendant relationships):

r

a ∼ xold a ∼ xnew

b b

Theorem 10.5. There is a language of A-labeled trees L such that the following decision
problem is undecidable.

– Input. A database-driven register automata over the schema {�v,∼, {a}a∈A} where
transitions are boolean combinations of tree pattern queries.

– Output. Is there a data tree t ∈ L ⊗ 〈N,∼〉 and an accepting run of the system driven
by the tree t?

Proof.
The language L consists of trees of the following form. I.e. unranked trees of depth three

where only the root may have more than one child.
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r

a a . . . a a

b b . . . b b

The general idea is to encode runs of counter (or Minsky) machines. More precisely, for
a given counter machine M with counters C we will construct a database-driven register
automata SM over the schema {�v,∼, {a}a∈A} such that

M has an accepting run if and only if SM has an accepting run driven by some
tree t ∈ L⊗ 〈N,∼〉.

Since the halting problem for counter machines is undecidable (even with two counters),
this will imply that emptiness of our systems is also undecidable.

We will describe a mechanism which allows to simulate each counter from C separately
in SM – this simulation allows increasing and decreasing counters, and testing whether two
counters are equal to each other.

The states Q of SM are precisely the states of the machine M . For simplicity, we assume
that the transition relation of the machine M is such that at each step, only one counter is
accessed (i.e. its value is incremented, decremented, or checked for equality with 0).

Consider a tree t ∈ L ⊗ 〈N,∼〉. Let t1, t2, . . . , tn be all the maximal subtrees of t not
containing the root of t: these trees have a root labeled a and a unique child of label b, both
nodes carrying a data value in N.

We will say that tj is a successor of ti (equivalently, that ti is a predecessor of tj), if the
a-node u of tj and the b-node v of ti have the same datavalues, i.e.

u ∼ v.

Note that a priori, ti may have many successors and many predecessors.
For each counter c ∈ C, the system SM will store in its variables, at any moment, two

nodes xc, yc. The invariant maintained during the run is:

– There is precisely one subtree ti of t whose a-node has the same value as xc;
– This unique subtree ti has b-node whose value is the same value as yc;
– There is precisely one subtree tj of t whose a-node has the same value as in yc.

Because of the uniqueness described in the first item above, we can say that the nodes
(xc, yc) define the subtree ti. We will now describe how the system SM can enforce, by
performing a suitable transition incc, that if the values (xc, yc) before the transition incc
define the subtree ti, then after performing the transition incc, the new values (x′c, y

′
c) will

define a subtree tj such that tj is the unique successor of ti and ti is the unique predecessor
of tj . In particular x′c = yc. This is done by verifying the matching in t of the following
boolean combination of conjunctive queries (with the natural semantics, as illustrated in
Example 10.4):
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r

a ∼ xc a x′c

b ∼ yc b ∼ y′c

∧

r

a ∼ xc a

∧ ¬
∼ xc

r

b ∼ yc b

∧ ¬
∼ yc

r

a ∼ x′c a

∧ ¬
∼ x′c

r

b ∼ y′c b

∧ ¬
∼ y′c

Satisfaction of the above formula, together with x′c = yc guarantees that (x′c, y
′
c) encodes

the successor of the tree encoded by (xc, yc), and that the invariant is maintained. This
way, we simulate an increment of the counter c. In a very similar way, we can simulate
decrementing counter c. Zero tests can be simulated by comparing to an extra counter
which is never incremented nor decremented.

It is easy to verify that the system SM has an accepting run (driven by some database
t ∈ L) if and only if M has an accepting run. Therefore, by using boolean combinations of
conjunctive queries and six variables – one pair for each counter, where a third counter is
used to simulate zero tests – our systems can simulate two-counter machines.

11. CONCLUSIONS
We have exhibited a generic framework for studying automata interacting with a database.
We have shown that decidability results could be derived easily assuming Fraïssé or semi-
Fraïssé with standard complexities for static analysis. Most classes studied in the literature
falls in our setting and we have added one: XML documents with data values.

We believe that the complexities of our results are tight. This isleft for future work.
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