
Addition-invariant FO and regularity
(Full Version)

Nicole Schweikardt
Goethe-Universität Frankfurt, Germany

Luc Segoufin
INRIA and ENS Cachan, France

March 5, 2018

Abstract
We consider formulas which, in addition to the symbols in the vocabulary, may

use two designated symbols≺ and + that must be interpreted as a linear order and
its associated addition. Such a formula is called addition-invariant if, for each fixed
interpretation of the initial vocabulary, its result is independent of the particular
interpretation of ≺ and +.

This paper studies the expressive power of addition-invariant first-order logic,
+-inv-FO, on the class of finite strings. Our first main result gives a characteriza-
tion of the regular languages definable in +-inv-FO: we show that these are exactly
the languages definable in FO with extra predicates, denoted by “lm” for short, for
testing the length of the string modulo some fixed number. Our second main result
shows that every language definable in +-inv-FO, that is bounded or commutative
or deterministic context-free, is regular. As an immediate consequence of these
two main results, we obtain that +-inv-FO is equivalent to FO(lm) on the class of
finite colored sets.

Our proof methods involve Ehrenfeucht-Fraı̈ssé games, tools from algebraic
automata theory, and reasoning about semi-linear sets.

1 Introduction
The model checking problem consists in testing whether a relational structure satisfies
a property expressed in a logical formalism. It is a central problem in many areas
of computer science such as databases or automated verification. In order to perform
model checking in an automated way, the structure must be stored on the disk, and
this induces a linear order on it. The logical formalism could then make use of this
linear order, typically for looping through all the elements of the structure. A desirable
property, however, is that the result should only depend on the structure itself and not
on the linear order that is specific to its current representation on the disk. This is
known as the data independence principle in the database context or as closure under
isomorphisms of the logical formalism.

1

In this paper, we call this property order-invariance, denoted “≺-inv-”. A logical
formalism L, with a designated binary symbol “≺” for accessing an extra linear order,
is said to be order-invariant if, over any structure, its output is independent on the actual
extra linear order. Two typical, celebrated examples are ≺-inv-LFP, which captures all
properties computable in PTime, and ≺-inv-PFP, which captures all properties com-
putable in PSpace [Imm86, Var82], whereas the least fixed-point logic LFP and the
partial fixed-point logic PFP themselves are known to be too weak for capturing all of
PTime and PSpace.

This shows that access to an arbitrary linear order increases expressiveness when
one deals with powerful logics that can express recursive operators. What about weaker
logics, such as first-order logic (FO)? A famous example due to Gurevich (see The-
orem 5.3 in [Lib04]) shows that ≺-inv-FO is more expressive than FO. But still,
≺-inv-FO is actually not very expressive. It can express only local queries in the sense
of Gaifman with a radius depending only on the query‘[GS00]. Furthermore, it lacks
arithmetic: while LFP is able to define addition and multiplication from the order, this
is no longer the case for FO.

This paper deals with a setting, where the FO-formulas not only have access to
an arbitrary extra linear order, but also to the addition and multiplication induced by
this order. As for order-invariance, the result should be independent on the extra linear
order. When only addition is used, we write “+-inv-” while, when both addition and
multiplication are used, we write “(+, ∗)-inv-”. Note that the least fixed-point formal-
ism of ≺-inv-LFP is strong enough to define arithmetic, thus ≺-inv-LFP is equivalent
to (+, ∗)-inv-LFP.

For weaker logics such as monadic least-fixed point logic MLFP or monadic second-
order logic MSO, however, the presence of extra arithmetic enables the logics to ex-
press interesting properties that they could not do with just the extra linear order. For
instance, on strings, ≺-inv-MSO and ≺-inv-MLFP both capture the regular languages
and are no more expressive than MSO and MLFP. But +-inv-MLFP can define all
properties in DLIN (i.e., computable by a deterministic linear time random access ma-
chine), while +-inv-MSO captures the linear time hierarchy LinH [MO97, Sch06].

What about the first-order case? Notice that, unlike for MLFP and MSO, multipli-
cation is no longer definable from addition, and hence we need to distinguish between
+-inv-FO and (+, ∗)-inv-FO. We know that all properties expressible in (+, ∗)-inv-FO
belong to uniform AC0. Moreover, they express only local properties in the sense of
Gaifman with a radius that may be polylog in the size of the database [AvMSS12].

It is not clear however whether a better radius could not be achieved with the weaker
logic +-inv-FO. Actually not much is known about this formalism except that it corre-
spond to a very strong notion of uniformity of AC0.

As a step towards understanding the expressive power of +-inv-FO, we propose
to investigate simple structures. We mainly consider strings, as structures of finite
labeled graphs whose edges form a single directed path, and transitive strings, as the
corresponding structures in which also the transitive closure of the edge relation is
present. The simplest structures we consider are finite colored sets.

2

Main results. We start our study by showing that the regular languages that can be
defined in +-inv-FO are exactly those definable in FO with extra predicates for testing
the length of the string modulo some fixed number. As an intermediate result of in-
dependent interest, we obtain a decidable characterization for definability in this later
logic. See Theorem 3.9, Theorem 3.13, and Theorem 3.14.

We then wonder whether all languages definable in +-inv-FO are regular. We show
that every language definable in +-inv-FO that is bounded or commutative or determin-
istic context-free is regular (cf., Theorem 4.1, Theorem 5.1, and Theorem 5.4). Here, a
language L is called bounded if there exists a number n and strings w1, . . . , wn such that
L ⊆ w∗1 w

∗
2 · · ·w∗n (cf. [GS66a]). A language L is called commutative if for any string

u ∈ L, any permutation of the letters of u is also a string in L. A language L is called
deterministic context-free if it is recognized by a deterministic pushdown-automaton.

As an immediate consequence of the result on commutative languages and our char-
acterization of regular languages definable in +-inv-FO, we obtain a characterization
of the colored sets definable in +-inv-FO: Over the class of finite colored sets, every
+-inv-FO-sentence is logically equivalent to an FO-sentence with extra predicates for
testing the cardinality of the underlying structure’s universe modulo some fixed number
(cf. Corollary 5.3).

We conclude with an example of a context-free (and non-regular) language that is
definable in (+, ∗)-inv-FO, but for which we could not settle whether it is definable
in +-inv-FO or not. We conjecture, however, that it is not definable in +-inv-FO and,
moreover, that all languages definable in +-inv-FO are regular.

Related work. Besides the references already cited above, we further note that≺-inv-FO(+1)
was studied over words and trees in [BS09], where it was shown to have the same ex-
pressive power as FO(+1). Note that≺-inv-FO(+1) is simpler than +-inv-FO(+1); in
particular it is immediate from the definition that ≺-inv-FO(+1) defines only regular
languages.

Structure of the paper. We start with the necessary notations and definitions in Sec-
tion 2. In Section 3 we characterize the regular languages definable in +-inv-FO. Sec-
tion 4 shows that bounded languages definable in +-inv-FO(<) are regular. Section 5
deals with commutative languages, deterministic context-free languages, and colored
sets.

2 Preliminaries
Basic notation. Z denotes the set of integers. N = {0, 1, 2, ...} and N>1 = N \ {0}
denote the set of natural numbers and of positive natural numbers, respectively. For
n ∈ N>1, we write [n] to denote the set {0, ... , n−1}. For i , j ∈ N and q ∈ N>1, we
write i ≡ j [q] to indicate that i is congruent to j modulo q. If S is a finite subset of
N>1, we write lcm S to denote the least common multiple of the elements in S .

Strings and transitive strings. We fix a finite alphabet Σ. We let % be the
signature that consists of a unary relation symbol Pa for each letter a ∈ Σ. In this paper,
a string over Σ is a finite relational structure over the signature σ = %∪{E}, containing

3

unary predicates Pa for all a ∈ Σ, partitioning the elements of the universe, and one
binary predicate E that is interpreted as a graph whose edges form a single directed
path. A transitive string over Σ is a finite relational structure over the signature σ′ that
extends σ with a binary predicate E+ interpreted as the transitive closure of E . Hence,
each element of Σ∗ can be viewed either as a transitive string or as a string, depending
on whether we can compare any two of its positions or only successive positions.

Given a string (or a transitive string) w , we denote its length (i.e., the cardinality of
its universe) by |w |.

Logics. We denote by FO(=), FO(+1), and FO(<) the first-order logics over %,
σ, and σ′ respectively. The semantics of their formulas are defined in the natural way
(where we assume that equality “=” can be used in atomic formulas). Each closed
formula ϕ defines a language Lϕ which is the set of all strings w ∈ Σ∗ that, when seen
as a logical structure, satisfy ϕ.

We will consider strings with an extra built-in linear order ≺ together with the
associated arithmetic, and logics that can make use of this extra arithmetic in an order-
invariant way. This is formalized as follows.

Let σ[+] (resp. σ′[+] or %[+]) be the extension of σ (resp. σ′ or %) with a binary
predicate ≺ and a ternary predicate +. We denote the corresponding first-order logics
on these extensions of σ, σ′, and % by FO(+1,≺, +), and FO(<,≺, +), and FO(=,≺,
+).

A σ[+]-expansion of a string w is a structure over σ[+] which interprets the predi-
cates of σ as in w and interprets ≺ as a linear order, and + as the addition induced by
≺. I.e., a + b = c holds true on a string w whose universe is linearly ordered by ≺
iff â + b̂ = ĉ , where x̂ denotes the index of the element x in the linear order ≺ (here
we adopt the convention that the smallest element w.r.t. ≺ has index 0). It is important
to not confuse the linear order ≺ with the transitive closure of E : they might not be
identical!

Example 2.1. For every q ∈ N>1 and every i ∈ [q] there is a FO(=,≺, +)-sentence
ϕi ,q such that a σ[+]-expansion of a string w satisfies ϕi ,q iff |w | ≡ i [q].

For example, the formula ϕ1,2, expressing that the length of a string is odd, can be
chosen as follows:

∃x ∃z
(
x + x = z ∧ ∀y (y ≺ z ∨ y = z)

)
(recall that we adopt the convention that the smallest element w.r.t.≺ has index 0).

A sentence ϕ of FO(+1,≺, +) is said to be addition-invariant if for any string w
and any two σ[+]-expansions w1 and w2 of w we have w1 |= ϕ iff w2 |= ϕ. We write
+-inv-FO(+1) to denote the class of all addition-invariant FO(+1,≺, +)-formulas. If
ϕ is a sentence in +-inv-FO(+1), we write w |= ϕ to indicate that for some (respec-
tively, every) σ[+]-expansion w1 of w we have w1 |= ϕ. The classes +-inv-FO(<) and
+-inv-FO(=) are defined in the analogous way.

Note that Example 2.1 shows that +-inv-FO(=) can test the length of a string mod-
ulo some constant.

The goal of this paper is to understand the expressive power of these logics. Note
that, as defined, their syntax is not necessarily recursive, as testing whether a formula of

4

FO(+1,≺) is order-invariant is undecidable [BS09]. Whether they have an equivalent
effective syntax is an interesting open problem. In Section 5 we show that this is the
case for +-inv-FO(=).

We start by investigating the regular languages definable in +-inv-FO(<), +-inv-FO(+1),
and +-inv-FO(=) in Section 3. Then we move to bounded languages in Section 4 and
to commutative languages and deterministic context-free languages in Section 5.

In our proofs, we will sometimes also refer to the logic FO(<, +), consisting of
all first-order formulas of signature σ′ ∪ {+}. When evaluating such a formula on a
transitive string, the symbol + is interpreted with the particular addition relation that
fits to the natural linear order < on the positions of the string.

3 Regular languages and addition-invariance
The goal of this section is to characterize the regular languages definable in +-inv-FO(<
), +-inv-FO(+1), and +-inv-FO(=). We start with the most expressive of the three,
+-inv-FO(<), and we follow the methodology of [BS09].

Using an Ehrenfeucht-Fraı̈ssé game argument, we show in Section 3.1 that regular
languages definable in +-inv-FO(<) have particular closure properties. Then, using
an algebraic argument, we show in Section 3.2 that the regular languages satisfying
these closure properties are exactly those definable in FO(<, lm), where lm provides
predicates for testing the total length of the string modulo some fixed number (see Sec-
tion 3.2 for the precise definition). As these predicates are expressible in +-inv-FO(<)
(cf., Example 2.1), we conclude that the languages definable in FO(<, lm) are exactly
the regular languages definable in +-inv-FO(<) (see Theorem 3.9).

Using similar arguments, we also obtain in Section 3.3 characterizations of the
regular languages definable in +-inv-FO(+1) and +-inv-FO(=) by the logics FO(+1,
lm) and FO(=, lm).

3.1 Closure properties of +-inv-FO(<)

Given a language L, its syntactic congruence =L is defined for strings x and y by
x =L y iff ∀u, v ∈ Σ∗, uxv ∈ L iff uyv ∈ L. A string x is called idempotent (for L) if
xx =L x . Recall that L is regular iff its syntactic congruence has finite index (see e.g.
[Str94]). Hence, for every regular language L there is a natural number ω, depending
only on L, such that for all strings x , the string xω is idempotent.

We say that L is closed under modulo transfers if for all x , y , z ∈ Σ∗ we have:

if |x | = |z |, then xωxyzω =L xωyzzω. (1)

The next theorem provides a closure property of regular languages definable in
+-inv-FO(<); the rest of Section 3.1 is devoted to the proof of this theorem.

Theorem 3.1. Let L be a regular language definable in +-inv-FO(<). Then L is closed
under modulo transfers.

Proof. For the sake of a contradiction, assume that L is a regular language that is not
closed under modulo transfers. Then there exist strings x , y , z such that |x | = |z |

5

but xωxyzω 6=L xωyzzω . By symmetry, we can assume that there exist strings u, v
such that uxωxyzωv ∈ L but uxωyzzωv 6∈ L. By the definition of ω we have for all
α,β ∈ N>1 that

uxαωxyzβωv ∈ L and uxαωyzzβωv 6∈ L. (2)

From Σ we construct the finite alphabet Σ̄ := Σ ∪ {(a, x) | a ∈ Σ} ∪ {(a, z) | a ∈
Σ}. Let x̄ and z̄ be the strings constructed from x and z by tagging the letters with the
appropriate symbol of Σ̄. I.e., x̄ is obtained from x by replacing every letter a of x with
the letter (a, x). Analogously, z̄ is obtained from z .

In the following, for w ∈ Σ̄∗ we write |w |x̄ (and |w |z̄) to denote the number of
occurrences of the string x̄ (and z̄) in w . We consider the languages

L1 := { w ∈ uyv x̄ (x̄ z̄ | z̄ z̄)∗ : |w |x̄ , |w |z̄ > ω,

|w |x̄ ≡ 1 [ω], |w |z̄ ≡ 0 [ω] },

L2 := { w ∈ uyv x̄ (x̄ z̄ | z̄ z̄)∗ : |w |x̄ , |w |z̄ > ω,

|w |x̄ ≡ 0 [ω], |w |z̄ ≡ 1 [ω] }.

A formula ϕ is said to separate L1 from L2, if Lϕ contains L1 but does not intersect
with L2. Using equation (2) and the assumption that L is definable in +-inv-FO(<), we
obtain:

Claim 3.2. There is a formula of FO(<, +) that separates L1 from L2.

Proof of Claim 3.2. Recall that, by assumption, L is definable in +-inv-FO(<). We
will use this formula, along with a suitable FO(<, +) interpretation, to obtain an FO(<
, +)-formula that separates L1 from L2.

The FO(<, +) interpretation is constructed in such a way that, when given a string
w ∈ uyv x̄ (x̄ z̄ | z̄ z̄)∗, it defines a string w ′ ∈ ux∗yz∗v such that w ∈ L1 implies
w ′ ∈ L, and w ∈ L2 implies w ′ 6∈ L.

This FO(<, +) interpretation replaces letters in x̄ and z̄ by the corresponding letters
in x and z . Furthermore, it consists of two formulas ψSucc and ψOrd, each with two free
variables. When evaluated in w , the formulas ψSucc and ψOrd define the following
successor relation and its associated transitive closure:

First, there come all the positions in u (in the order in which they appear in w).
Then, there come all positions that belong to one of the substrings x̄ , in the order in
which they appear in w (this is doable in FO because we use labels in Σ̄). Afterwards,
there come all positions that belong to y , in the order in which they appear in w . Then,
there come all positions that belong to one of the substrings z̄ , in the order in which
they appear in w (again, this is doable in FO since we use labels in Σ̄). Finally, there
come all positions that belong to v , in the order in which they appear in w .

From a word w ∈ uyv x̄ (x̄ z̄ | z̄ z̄)∗, this construction produces a word w ′ of the
form ux iyz jv with i = |w |x̄ and j = |w |z̄ . If w ∈ L1, then i , j > ω and i ≡ 1 [ω] and
j ≡ 0 [ω]. Similarly, if w ∈ L2, then i , j > ω and i ≡ 0 [ω] and j ≡ 1 [ω]. Thus, by
equation (2) we obtain:

If w ∈ L1, then w ′ ∈ L. If w ∈ L2, then w ′ 6∈ L.

6

Now recall that, by assumption, L is definable by a +-inv-FO(<)-sentence ϕL. We
modify this sentence according to the FO(<, +) interpretation that defines w ′ in w .
I.e., we replace every occurrence of the symbols E and E+ (for the successor and the
natural linear order on the positions of the string) with the formulas ψSucc and ψOrd.
Thereby, we obtain an FO(<, +)-sentence ϕ that is satisfied by w iff w ′ |= ϕL (note
that this is the place where addition-invariance of ϕL is essential). In particular, ϕ
separates L1 from L2. Thus, the proof of Claim 3.2 is complete.

The desired contradiction for finishing the proof of Theorem 3.1 now immediately
follows from Claim 3.2 and the next proposition.

Proposition 3.3. Let x , y , z , u, v be strings with |x | = |z | > 1, and let x̄ , z̄ be obtained
from x , z as above. Fix an arbitrary ω > 2, and let L1, L2 be chosen as above. Then,
no formula of FO(<, +) can separate L1 from L2.

Proof. The proof of the proposition is a consequence of the following technical
lemma that is based on an Ehrenfeucht-Fraı̈ssé game argument. In the statement below,
w ≈+

k w ′ indicates that the strings w and w ′ satisfy the same sentences of FO(<, +)
of quantifier rank 6 k . It has an Ehrenfeucht-Fraı̈ssé game counterpart requiring
the existence of a winning strategy for the duplicator in the corresponding k-round
game [Lib04]. Similarly, we define w ≈<k w ′ when only sentences of FO(<) are
considered.

Lemma 3.4. Let x̄ , z̄ , y , u, v be chosen as in Proposition 3.3. For any k , there exist
d , d ′ ∈ N>1 with d < d ′, and numbers i0, i1, ... , id′ ∈ N>1, such that:1

1. uyv x̄ (x̄ z̄)i0
(
z̄ z̄(x̄ z̄)ij

)
j∈{1,...,d} ≈

+
k

uyv x̄ (x̄ z̄)i0
(
z̄ z̄(x̄ z̄)ij

)
j∈{1,...,d′}

2.
∑d

j=0 ij ≡ −d ≡ 0 [ω]

3.
∑d′

j=0 ij ≡ −d ′ ≡ −1 [ω].

Before proving Lemma 3.4, let’s see why it implies the proposition. Assume for
the sake of a contradiction that there is a formula ϕ separating L1 from L2. Let k
be its quantifier rank, and let d , d ′, i0, · · · , id′ be as stated in Lemma 3.4. Let w be
uyv x̄(x̄ z̄)i0

(
z̄ z̄(x̄ z̄)ij

)
j∈{1,...,d} and let w ′ be uyv x̄(x̄ z̄)i0

(
z̄ z̄(x̄ z̄)ij

)
j∈{1,...,d′}.

By Item 2, |w |x̄ = 1 +
∑d

j=0 ij ≡ 1 [ω] and |w |z̄ = 2d +
∑d

j=0 ij ≡ 0 [ω]. Fur-
thermore, since i0, ... , id 6= 0, we have |w |x̄ , |w |z̄ > ω. Therefore, w ∈ L1. Similarly,
by Item 3, we have |w ′|x̄ = 1 +

∑d′

j=0 ij ≡ 0 [ω] and |w ′|z̄ = 2d ′ +
∑d′

j=0 ij ≡ 1 [ω].
Therefore, w ′ ∈ L2. But due to Item 1, either w and w ′ both satisfy ϕ, or neither of
them satisfies ϕ. Hence, ϕ cannot separate L1 from L2.

Proof of Lemma 3.4. The proof is essentially an Ehrenfeucht-Fraı̈ssé game argument,
the difficulty being to exhibit a winning strategy in the presence of addition. In order

1Here, we use the following notation: For strings w1, ... ,wd , we write (wj)j∈{1,...,d} to denote the string
w1w2 · · ·wd .

7

to do so, we use the following generalization of a result by Lynch [Lyn82], which was
proved in [Sch07] and which allows us to reduce the existence of a winning strategy
in a game with addition to the existence of a winning strategy in another game, where
addition is not present.

Proposition 3.5 (Immediate from [Sch07]). For all m, h, k ′ ∈ N there is a number
r = r(m, h, k ′) ∈ N and an infinite set P = { p1 < p2 < p3 < · · · } ⊆ N
with p1 > h and pj ≡ h [m], for all j > 1, such that the following is true for all
`1, `2 ∈ N>1:

if 1`1 ≈<r 1`2

then (Z,<, +,P,P1) ≈+
k′ (Z,<, +,P,P2),

where P1 is {p1, ... , p`1} while P2 is {p1, ... , p`2}, and 1`1 and 1`2 are words of length
`1 and `2 over the singleton alphabet {1}.

Fix m1 = |x̄ z̄ | = |z̄ z̄ |, m = m1ω, h = |uyv x̄ |. For any given k ′ let r , and
p1, p2, · · · be given by Proposition 3.5 with these values for k ′,m, and h.

Now let i0 = (p1 − h)/m1 and for j > 1, ij = (pj+1 − pj −m1)/m1. Then for all `
we have

∑`
j=0 ij = (p`+1 − h − `·m1)/m1 ≡ −` [ω].

We then choose d and d ′ in N>1 such that 1d ≈<r 1d′ , d ≡ 0 [ω] and d ′ ≡
1 [ω]. The existence of such d and d ′ is guaranteed using a standard game argument
on transitive strings (cf., [Lib04]). By Proposition 3.5 we have

(Z,<, +,P,P1) ≈+
k′ (Z,<, +,P,P2) . (3)

A standard first-order interpretation then transforms the structures of equation (3) into
the strings desired for Item 1 of the lemma. The interpretation assigns a label to each
number i with 0 6 i < µ (where µ is the minimum element in P that’s not in P1, resp.
P2), using the following rules:

1. if i < h, then it uses the label of the (i+1)st position in uyv x̄
(this is definable in FO, since h and uyv x̄ are fixed)

2. if i > h, i ≡ j [m1], 0 6 j < m1, and position i − j is not in P , then it uses the
label of the (j+1)st position of x̄ z̄ ,
(this is definable in FO, since h, m1, and x̄ z̄ are fixed and + is available in the
structures of equation (3))

3. if i > h, i ≡ j [m1], 0 6 j < m1, and position i − j is in P , then it uses the
label of the (j+1)st position of z̄ z̄ .

Let k0 be the quantifier rank of the FO interpretation that establishes this translation
of (Z,<, +,P,P1) and (Z,<, +,P,P2) into the corresponding strings w1 and w2.
Note that w1 and w2 are of the form stated in Item 1 of Lemma 3.4. Furthermore,
equation (3) implies that w1 ≈+

k w2, for k := k ′ − k0. This concludes the proof of
Lemma 3.4, of Proposition 3.3, and of Theorem 3.1.

8

3.2 Characterization of FO(<, lm)

We show in this section that closure under modulo transfers corresponds to definability
in FO(<, lm), where FO(<, lm) is the logic extending FO(<) with predicates lm(i , q)
(for all i , q ∈ N), that hold true in a structure iff the size of its universe is equal to i
modulo q.

Theorem 3.6. Let L be a regular language. Then L is definable in FO(<, lm) iff L is
closed under modulo transfers.

The “only if” direction of Theorem 3.6 follows for instance from Theorem 3.1, as
languages definable in FO(<, lm) are also definable in +-inv-FO(<) by Example 2.1.
Proving the “if” direction requires more work; the remainder of Section 3.2 is devoted
to the proof.

We will make use of the following straightforward observation:

Claim 3.7. A language is definable in FO(<, lm) iff it is a finite union of languages of
the form S ∩ Z q

i , where S is definable in FO(<) (i.e., S is a starfree regular language,
cf. [MP71]), i and q are natural numbers, and Z q

i is the set of all strings of length i
modulo q.

As a further ingredient, we use the following consequence of closure under modulo
transfers.

Proposition 3.8. Let L be a regular language that is closed under modulo trans-
fers. There exists q ∈ N>1 such that for all k ∈ N>1, and all strings v1, ... , vk and
x1, ... , xk+1 over Σ we have: If δ1, · · · , δk are natural numbers such that

δ1|v1|+ · · ·+ δk |vk | ≡ 0 [q] , (4)

then we have

x1v
ω
1 vδ1

1 x2v
ω
2 vδ2

2 · · · xkv
ω
k v

δk
k xk+1

=L x1v
ω
1 x2v

ω
2 · · · xkvωk xk+1. (5)

Proof. We start by defining q and then prove the proposition by induction on k .
Let L be a regular language. Recall that =L denotes the syntactic congruence of L.

Let µL be the syntactic morphism of L, i.e. the morphism sending a word u ∈ Σ∗ to
its syntactic equivalence class: µL(u) = µL(v) iff u =L v . Recall that =L has only
finitely many equivalence classes.

Fix a number p and let Σp be the strings of length p. Let Mp be the syntactic
classes of the strings of length p: Mp = µL(Σp). As we have only finitely many
equivalence classes there must be p < p′ such that Mp = Mp′ . Note that this implies
that for any i > p and j ∈ N, we have Mi = Mi+j(p′−p). Let p1, j ∈ N be such
that p = p1 + j(p′ − p) and p1 < (p′ − p). Let q = p′ − p1. Notice that we have
2q = q + p′ − p1 = q + p1 + j(p′ − p) + (p′ − p) − p1 = q + (j + 1)(p′ − p).
Hence we have Mq = M2q . A simple induction shows that if u has length 0 modulo q
we have µL(u) ∈ Mq . When combined with closure under modulo transfer this yield
the following interesting property (known as quasi aperiodicity [Str94]):

9

∀x ∈ Σ∗, |x | ≡ 0[q] implies xω =L xω+1 (6)

Indeed, consider x such that |x | ≡ 0[q]. By the remark above we have µL(xω) ∈
Mq . Hence there exist z of length q such that z =L xω . By closure under modulo
transfer we have xωxzω =L xωzωz . By definition of ω we have xωxzω =L xω+1 and
xωzωz =L xω and (6) is proved.

Hence for any string u and any j ∈ N, we have

j |u| ≡ 0 [q] implies uω =L uω+j (7)

because uω =L (uj)ω and by (6) (uj)ω =L (uj)ω+1 =L uω+j .
In particular, by taking j = q in (7), in the proof below, we can assume we have

enough copies of vq
i available, so that any negative integer that may occur is treated as

its positive counterpart modulo q.
We now show that q has the desired property by induction on k .
If k = 1, hypothesis (4) yields δ1|v1| ≡ 0 [q]. Therefore, from (7), we obtain

X1v
ω
1 X2 ∈ L iff X1v

ω+δ1
1 X2 ∈ L,

as required.
Assume now that k > 1. Set αi = |vi | for 1 6 i 6 k . Let d be the greatest common

divisor (gcd), of q,α2, · · · ,αk . Then we have by equation (4) that d also divides δ1α1.
Let q′ = q/d and, for j > 1, α′j = αj/d . Because of δ1·q′·α1 = δ1·α′1·q ≡ 0 [q], by
the observation above we have

vω1 =L vω1 vδ1q
′

1 . (8)

By the closure of L under modulo transfers, applied with x = v
δ1·α′j
1 , z = v

δ1·α′1
j (notice

that |x | = |z |), we also have for all x ′ ∈ Σ∗:

vω1 v
δ1α
′
j

1 x ′vωj =L vω1 x ′vωj v
δ1α
′
1

j . (9)

By Bézout’s identity2 there exist β1, ... ,βk ∈ Z such that 1 = β1q
′+β2α

′
2+· · ·+βkα′k .

Thus, we have
δ1 = β1δ1q

′ + β2δ1α
′
2 + · · ·+ βkδ1α

′
k . (10)

By replacing in x1v
ω
1 vδ1

1 x2v
ω
2 vδ2

2 · · · xkvωk v
δk
k xk+1, δ1 by the value provided by (10)

and applying equations (8) and (9) to each of the terms vβ1δ1q
′

1 , vβ2δ1α
′
2

1 , . . . , vβkδ1α
′
k

1 ,
we obtain:

x1v
ω
1 vδ1

1 x2v
ω
2 vδ2

2 · · · xkv
ω
k v

δk
k xk+1

=L x1v
ω
1 x2v

ω
2 v

δ′2
2 · · · xkv

ω
k v

δ′k
k xk+1 (11)

where, for j > 1, δ′j = δj + δ1α
′
1βj .

2Recall that Bézout’s identity states that the greatest common divisor of non-zero integers z1, ... , zn can
be written as a linear combination of z1, ... , zn with integer coefficients.

10

Consider now ∆ = δ′2α2 + · · · + δ′kαk = δ2α2 + · · · + δkαk + δ1α
′
1(β2α2 +

· · · + βkαk). Notice that (β2α2 + · · · + βkαk) = d(1 − β1q
′) ≡ d [q] and recall

that δ1α
′
1d = δ1α1. Thus ∆ ≡ δ1α1 + · · · + δkαk ≡ 0 [q], and we can conclude by

induction that

x2v
ω
2 v

δ′2
2 · · · xkv

ω
k v

δ′k
k xk+1

=L x2v
ω
2 · · · xkvωk xk+1. (12)

Combining (11) and (12) yields the desired result.

Let L be a regular language closed under modulo transfers. Let q be the number
given by Proposition 3.8. For 0 6 i < q, let Li be the restriction of L to strings of
length i modulo q. Notice that because of (4), both sides of (5) have the same length
modulo q. Hence, (5) remains true after replacing =L with =Li . We show that Li is
definable in FO(<, lm). This will conclude the proof, as L =

⋃
i Li .

Recall that Z q
i denotes the set of all strings of length i modulo q. Our goal is to

show that Li = M ∩ Z q
i for some FO(<) definable language M .

Let Mi be Zi \ Li . We show that Li and Mi are separable by a language definable
in FO(<), i.e. there is a language M definable in FO(<) such that Li is included in M
and M does not intersect with Mi . In particular Li = M ∩ Z q

i as desired. For this we
apply the algorithm for testing separability given by [PZ16].

We reuse the notations of [PZ16]. Consider a semigroup S recognizing both Li and
Mi via the morphism α. We view S as a subsemigroup of 2S (i.e. S is seen as the set
of singleton sets). We denote by sat(S) the closure of S by the following operations
(where Ω is the idempotent power of 2S):

1. composition: TT ′, for T ,T ′ ∈ sat(S)

2. omega: TΩ ∪ TΩ+1, for T ∈ sat(S)

The result of [PZ16] says that Mi and Li are separable by a language in FO(<) iff
there is no set T in sat(S) containing s, s ′ such that s ∈ α(Li) and s ′ ∈ α(Mi).

We show that this is indeed the case for Mi and Li .
We claim by induction on the construction of sat(S) that any T ∈ sat(S) is of the

form {Πiαiu
ω+δi
i βi | δi ∈ Xi} where Xi , ui ,αi ,βi depends only on T and not on the

particular element of T . To ease the notation we say that T = fT (X̄T) for X̄T = ΠXi

and fT (δ̄) = Πiαiu
ω+δ̄[i]
i βi .

The claim is clear for the base case, and obviously remains true under the compo-
sition operation. We only consider the omega operation. Let T ∈ sat(S). By induction
we know that the elements of T = fT (X̄T) for some function fT and finite set X̄T .

Hence an element of TΩ is of the form:

fT (δ̄1) · · · fT (δ̄Ω)

It can be decomposed as:

fT (δ̄1) · · · fT (δ̄Ω−ω−1)fT (δ̄Ω−ω)fT (δ̄Ω−ω+1) · · · fT (δ̄Ω)

11

By Proposition 3.8 this is equivalent to:

fT (δ̄1) · · · fT (δ̄Ω−ω−1)fT (δ̄′)fT (0̄)ω

for the appropriate value of δ′, namely δ̄Ω−ω + Σi=ω−1
i=0 δ̄Ω−i .

Viewing fT (0̄)ω as an idempotent, this can be seen as g(δ̄1, · · · , δ̄Ω−ω−1, δ̄′, 0) for
the appropriate g .

The very same computation when starting from an element of TΩ+1 would give:

fT (δ̄1) · · · fT (δ̄Ω−ω−1)fT (δ̄′)fT (0̄)ω+1

which is the same as g(δ̄1, · · · , δ̄Ω−ω−1, δ̄′, 1).
This concludes the proof of the claim.
We now show that any two elements of some T ∈ sat(S) of the same length modulo

q are equal. This is again a simple consequence of Proposition 3.8.
Consider s, s ′ ∈ T . By the previous claim we know that s = fT (δ̄) and s ′ = fT (δ̄′)

where fT is the function associated to T given by the claim above. Because they have
the same length, we know that Σi (δ̄[i] − δ̄′[i])|ui | is congruent to 0 modulo q. Hence
the elements are equal by Proposition 3.8.

This completes the proof of Theorem 3.6. Classical techniques now imply that,
given an automaton for L, it is decidable whether L is closed under modulo transfers:
Using the pumping lemma, one shows that all quantified strings can be assumed to be
short. Then, a brute force analysis yields the decision algorithm.

Hence, Theorem 3.6 provides an effective test for definability in FO(<, lm), a result
of independent interest.

As an immediate consequence of Theorem 3.1 and Theorem 3.6, we obtain an
effective syntax and a complete characterization of the regular languages definable in
+-inv-FO(<):

Theorem 3.9. A regular language is definable in +-inv-FO(<) iff it is definable in
FO(<, lm).
Furthermore, given an automaton for a regular language L, it is decidable whether L
is definable in FO(<, lm).

3.3 +-inv-FO(+1) and +-inv-FO(=)

A characterization of the regular languages definable in +-inv-FO(+1) can be obtained
in the same way, using an additional closure property taken from [Str94]. A regular
language L is closed under swaps if ∀e, f , x , y , z ∈ Σ∗ such that e, f are idempotent
we have:

e x f y e z f =L e z f y e x f . (13)

The proof of the following theorem is done as for Theorem 3.1, using an Ehrenfeucht-
Fraı̈ssé game argument.

Theorem 3.10. Let L be a regular language definable in +-inv-FO(+1). Then L is
closed under swaps.

12

Proof. Let L ⊆ Σ∗ be a regular language definable in +-inv-FO(+1). Let SL be
the syntactic monoid of L, i.e., SL is the set of equivalence classes of the syntactic
congruence =L.

For showing that L is closed under swaps, we let e, f , x , y , z be elements of SL
such that e and f are idempotent. Furthermore, we let E ,F ,X ,Y ,Z ∈ Σ∗ be shortest
strings in e, f , x , y , z , respectively.

Our goal is to prove that e x f y e z f = e z f y e x f . For showing this, let A and
B be arbitrary stings in Σ∗. It should be clear that, in order to prove the theorem, it
suffices to find natural numbers nV , n′V , nW , and n′W for which we can show that

A E nV X F nV Y E n′V Z F n′V B︸ ︷︷ ︸
=: V ′′

∈ L

⇐⇒ A E nW Z F nW Y E n′W X F n′W B︸ ︷︷ ︸
=: W ′′

∈ L

(14)

Aiming at applying Lemma A.2 we let ∆ be the alphabet

Σ× {A,B,E ,F ,X ,Y ,Z} × {start,−} × {end,−}.

With each of the words A, B , E , F , X , Y , Z , we associate words Ã, B̃ , Ẽ , F̃ , X̃ , Ỹ , Z̃
in ∆∗ as follows:

• If A = A1A2 · · ·A` with Aj ∈ Σ, then
Ã := Ã1Ã2 · · · Ã` with Ãj := (Aj ,A,µ, ν), where (µ = start ⇐⇒ j = 1)
and (ν = end ⇐⇒ j = `).

• The words B̃ , Ẽ , F̃ , X̃ , Ỹ , Z̃ are defined analogously.

Furthermore, let Γ := {1}, and let k ′ := k + 7, where k is the quantifier rank of the
+-inv-FO(+1)-sentence ϕ that, by assumption, defines L. Furthermore, we let

H := Ã X̃ Ỹ Z̃ B̃ , U := Ẽ F̃ Ẽ F̃ ,

G := Ẽ F̃ Ẽ F̃ Ẽ F̃ Ẽ F̃ , U1 := U.

We choose m := |U| and let h, g , k ′′ and r := r(m, h, g , k ′′) and P = {p1, p2, ...} ⊆ N
and ij (for j ∈ N) be chosen as in Lemma A.2. We let d ∈ N be a large enough even
number such that (v ,<) ≈r (w ,<) for v = 1d−1 and w = 1d (an easy EF-game
argument shows that any d > 2r + 1 will do, see e.g. [Lib04]).

Let V and W be chosen as in Lemma A.2. I.e., V is

ÃX̃ Ỹ Z̃ B̃
(
Ẽ F̃ Ẽ F̃

)i0 ((Ẽ F̃ Ẽ F̃)1+ij
)d−1

j=1
Ẽ F̃ Ẽ F̃ Ẽ F̃ Ẽ F̃

and W is
ÃX̃ Ỹ Z̃ B̃

(
Ẽ F̃ Ẽ F̃

)i0 ((Ẽ F̃ Ẽ F̃)1+ij
)d
j=1

Ẽ F̃ Ẽ F̃ Ẽ F̃ Ẽ F̃ .

Aiming at applying part (b) of Lemma A.2 we let, for each a ∈ Σ, ψa(x) be a
(quantifier-free) formula that states that there exist (j1, j2, j3) ∈ {A,B,E ,F ,X ,Y ,Z}×

13

{start,−} × {end,−} such that the letter at position x is (a, j1, j2, j3) ∈ ∆: the for-
mula ψa(x) is simply the disjunction of the formulas P(a,j1,j2,j3)(x) for all (j1, j2, j3) ∈
{A,B,E ,F ,X ,Y ,Z} × {start,−} × {end,−}. Then, the words V ′ and W ′ defined
in Lemma A.2 are identical to the words V and W , where each letter in ∆ is restricted
to its first component.

We let

`V := i0 +
(d−1∑

j=1

(1 + ij)
)

+ 2,

`W := i0 +
(d−1∑

j=1

(1 + ij)
)

+ (1 + id) + 2.

Note that

V ′ = AXYZB
(
EFEF

)`V ,

W ′ = AXYZB
(
EFEF

)`W .

We choose

nV := n′V := `V ,
nW := `W + 1 ,

n′W := `W − 1 ,
(15)

and let

V ′′ := AE nV X F nV Y E n′V Z F n′V B,

W ′′ := AE nW Z F nW Y E n′W X F n′W B .

Claim 3.11. There is a FO(τ∆ ∪ {<, +,P})-formula ψSucc(x , y) of quantifier rank at
most 73 which, when interpreted in (V ,<, +,P) and (W ,<, +,P), defines a successor
relation on the domain such that, when reading the letters of V ′ and W ′ according to
this particular successor relation, one obtains the words V ′′ and W ′′.

Before proving this claim, let us first note that part (b) (i) of Lemma A.2 then tells
us that V ′′ and W ′′ satisfy the same +-inv-FO(+1)-sentences of quantifier rank at
most k = k ′ − 7. Since k is the quantifier rank of the +-inv-FO(+1)-sentence ϕ
which, by assumption, defines L, we conclude that V ′′ ∈ L ⇐⇒ W ′′ ∈ L. Recalling
equation (14), the proof of Theorem 3.10 therefore is complete after having proved
Claim 3.11.

Proof of Claim 3.11: Note that V ′ and W ′ are “permutations” of V ′′ and W ′′ in the
following sense: V ′ — as well as V ′′ — contains one occurrence of each of the sub-
strings A,X ,Y ,Z ,B , and nV +n′V = 2`V occurrences of each of the substrings E and
F (and the analogous statement holds for W ′ and W ′′).

37 is just an upper bound here; when writing down the formulas in detail, one will most probably end up
with formulas of quantifier rank smaller than 7.

14

Furthermore, when making the convention that the leftmost position of Ã is the
position 0, we have the following situation: the Ẽ directly right to the prefix

ÃX̃ Ỹ Z̃ B̃
(
Ẽ F̃ Ẽ F̃

)i0
starts at position p1. Similarly, for every j ′ ∈ {1, . . , d}, we have that the Ẽ directly
right to the prefix

ÃX̃ Ỹ Z̃ B̃
(
Ẽ F̃ Ẽ F̃

)i0 ((Ẽ F̃ Ẽ F̃)1+ij
)j′
j=1

starts at position pj′+1.
The formula ψSucc(x , y) defines the following successor relation Succ (where “left-

most”, “rightmost”, “first”, and “last” always corresponds to the natural linear order <
available in the schema):

1. The first position of Succ is the first position of the natural linear order <.

2. Within each substring of the form Ã, X̃ , Ỹ , Z̃ , B̃ , Ẽ , F̃ , Succ corresponds to the
successor associated with the natural linear order <. Note that because we use
Ã, X̃ , Ỹ , ... instead of A,X ,Y , ... , it is definable in FO whether we are in this case.

3. The Succ-successor of the last position in Ã (i.e., the unique position that carries a
letter of the form (a,A, j , end) with a ∈ Σ and j ∈ {start,−}) is the first position
of the first occurrence, relative to <, of Ẽ .

4. The Succ-successor of the last position of the last-but-one occurrence, relative to <,
of Ẽ is the first position of X̃ .

5. The Succ-successor of the last position in X̃ is the first position of the last-but-one
occurrence, relative to <, of F̃ .

6. The Succ-successor of the last position of the first occurrence, relative to <, of F̃ is
the first position of Ỹ .

7. The Succ-successor of the last position of Ỹ is the first position of the second oc-
currence, relative to <, of Ẽ .

8. The Succ-successor of the last position of the last occurrence, relative to <, of Ẽ is
the first position of Z̃ .

9. The Succ-successor of the last position of Z̃ is the first position, relative to <, of the
last occurrence of F̃ .

10. The Succ-successor of the last position of the second occurrence, relative to <, of
F̃ is the first position of B̃ .

11. The last position in B̃ is the last position of Succ.

12. The Succ-successor of the last position (denoted x in the following) of an occur-
rence, relative to <, of Ẽ that is neither the last nor the last-but-one occurrence,
relative to <, of Ẽ , is chosen as follows:

15

• If this particular Ẽ starts at a position that belongs to P , then the Succ-successor
of x is the first position of the next (relative to <) occurrence of Ẽ .

• If the next (relative to<) occurrence of Ẽ starts at a position that belongs to P ,
then the Succ-successor of x is the first position (denoted y in the following)
of the next-but-next-but-one occurrence of Ẽ . (I.e., between x and y there are
2 occurrences of Ẽ .)

• In all other cases, the Succ-successor of x is the first position of the next-but-
one (relative to <) occurrence of Ẽ .

13. The Succ-successor of the last position (denoted x in the following) of an occurrence
of F̃ that is neither the first nor the second occurrence, relative to <, of F̃ , is chosen
as follows: Let x ′ be the starting position of the particular occurrence of Ẽ that
ends directly to the left of x , and let y ′ be such that x ′ is the Succ-successor of
y ′ (note that this y ′ is uniquely defined in item 12, and y ′ is the last position of
a particular occurrence of Ẽ). Then, the Succ-successor of x is the first position
of the first occurrence of F̃ to the right of y ′. (Thus, in some sense, the Succ-
successors corresponding to F̃ s are the “reversed”-versions of the Succ-successors
corresponding to Ẽ s.)

Note that in (V ,<, +,P), the predicate P is interpreted by the set PV = {p1, . . , pd}.
In (W ,<, +,P), the predicate P is interpreted by the set PW = {p1, . . , pd , pd+1}.
Recall that d is even. Note that the Succ relation that is defined through 1–13 forms a
path that connects the first position of the first occurrence of Ẽ with the first position
of the occurrence of Ẽ that starts at position p1, from there on, the path leads to the
first positions of the occurrences of Ẽ that start at positions p3, p5, p7, etc. Since d is
even, the unique Succ-path in V that only visits Ẽ s and starts at the first position of the
leftmost Ẽ in V , ends at the last position of the last-but-one Ẽ in V . Continuing this
kind of reasoning, it is not difficult to see that the string obtained by reading the letters
of V in the order specified by the relation Succ, is exactly the word

Ã Ẽ nV X̃ F̃ nV Ỹ Ẽ n′V Z̃ F̃ n′V B̃.

Similarly, since d+1 is odd, the unique Succ-path in W that only visits Ẽ s and
starts at the first position of the leftmost Ẽ in W , ends at the last position of the last
Ẽ in W . Continuing this kind of reasoning, it again is not difficult to see that the
string obtained by reading the letters of W in the order specified by the relation Succ,
is exactly the string

Ã Ẽ nW Z̃ F̃ nW Ỹ Ẽ n′W X̃ F̃ n′W B̃.

Finally, it is straightforward to formalize items 1–13 by a first-order formulaψSucc(x , y)
over the signature of (V ,<, +,P) and (W ,<, +,P) (which even does not need to
make use of the addition predicate +).
This completes the proof of Claim 3.11 and thus also the proof of Theorem 3.10.

As for Theorem 3.6, we now build on the following:

16

Theorem 3.12. [HS12] Let L be a regular language. Then L is definable in FO(+1,
lm) iff L is closed under modulo transfers and under swaps.

In summary, we have:

Theorem 3.13. A regular language is definable in +-inv-FO(+1) iff it is definable in
FO(+1, lm).
Furthermore, given an automaton for a regular language L, it is decidable whether L
is definable in FO(+1, lm).

We stress that Theorem 3.13 has been extended to languages over trees in [HS12].

By further requiring commutativity of the language, we obtain similar results for
+-inv-FO(=).

Theorem 3.14. A regular language is definable in +-inv-FO(=) iff it is definable in
FO(=, lm) iff it is commutative and closed under modulo transfers.
Furthermore, given an automaton for a regular language L, it is decidable whether L
is definable in FO(=, lm).

Proof. Obviously, every language definable in +-inv-FO(=) has to be commutative.
All that remains to show is that a commutative regular language closed under modulo
transfers is definable in FO(=, lm). This follows from a simple counting argument:

Fix such a language L, and let q be the number derived from Proposition 3.8. As-
sume Σ = {a1, ... , ak}. Let f be the function that associates to a string w ∈ Σ∗ a
tuple f (w) = (α1, · · · ,αk ,β), where αi is the number of occurrences of ai in w up to
threshold q·ω, while β is the length of w modulo q·ω. Let S be the image of f . Notice
that S is a finite set and that for each τ ∈ S , the language Lτ = {w | f (w) = τ} is
definable in FO(=, lm).

The result then follows from the next lemma, showing that L is of the form
⋃
τ∈SL

Lτ ,
for a suitable SL ⊆ S .

Lemma 3.15. For all w ,w ′ ∈ Σ∗ with f (w) = f (w ′) we have: w ∈ L iff w ′ ∈ L.

Proof. For any string u, let ū be the string ai11 · · · a
ik
k , where, for any j , ij is the number

of occurrences of aj in u. Obviously, f (u) = f (ū). Furthermore, by commutativity of
L, we have u ∈ L iff ū ∈ L.

Now let w ,w ′ be strings with f (w) = f (w ′). Our aim is to show that w ∈ L iff
w ′ ∈ L.

To this end, let τ := f (w) = f (w ′). For each j ∈ {1, ... , k+1}, by τ [j] we refer
to the j th element of τ . If all the components in τ are strictly smaller than q·ω, then
w̄ = w̄ ′ and the lemma is proved.

From now on we assume without loss of generality that τ [1] = q·ω.
Assume that τ [2] = q·ω and that the number of occurrences of a2 in w is q·ω + α.

Then, by modulo transfers, we can, in w̄ , transfer α occurrences of a2 into α occur-
rences of a1. By repeating this argument for all letters of Σ, we end up in a string ŵ
such that f (ŵ) = τ , ŵ ∈ L iff w̄ ∈ L, and a1 is the only letter occurring strictly more
than q·ω times in ŵ .

17

Analogously, we construct ŵ ′ from w ′. Notice that ŵ and ŵ ′ are identical, except
maybe for their number of occurrences of a1. It remains to show that ŵ ∈ L iff ŵ ′ ∈ L.

Let α be the number of occurrences of a1 in ŵ , and let α′ be the corresponding
number for ŵ ′. By construction, α > q·ω and, as f (ŵ) = f (ŵ ′), we have α ≡
α′ [q·ω]. From (6) we have, for any k > 0, that aqω1 =L akqω1 . Therefore, ŵ ∈ L iff
ŵ ′ ∈ L, and w ∈ L iff w ′ ∈ L.

This completes the proof of Lemma 3.15.

This complete the proof of Theorem 3.14.

4 Bounded languages
A language L ⊆ Σ∗ is called bounded if there exists an n ∈ N>1 and n strings
w1, ... ,wn ∈ Σ∗ such that L ⊆ w∗1 w

∗
2 · · ·w∗n . Bounded languages received quite some

attention in the literature, cf. e.g. [Gin66, GS66a, GS64, Raz97, DIV09]. This sec-
tion’s main result is:

Theorem 4.1. Every bounded language definable in +-inv-FO(<) is regular.

Due to space limitations, we prove Theorem 4.1 only for the special case where
|w1| = · · · = |wn|; the proof of the general version will be given in the full paper.
More precisely, we here give the proof of the following Proposition 4.2. The proof of
this proposition contains already all the ingredients necessary for proving Theorem 4.1.

Proposition 4.2. Let n ∈ N>1, let w1, ... ,wn ∈ Σ∗ be such that |w1| = · · · = |wn| > 1,
and let α1, ... ,αn+1 ∈ Σ∗. Every language L ⊆ α1 w

∗
1 α2 w

∗
2 · · · αn w

∗
n αn+1 that is

definable in +-inv-FO(<) is regular.

The remainder of Section 4 is devoted to the proof of Proposition 4.2.
For n ∈ N>1 and α1, ... ,αn+1,w1, ... ,wn ∈ Σ∗ we write α and w to denote the tu-

ples (α1, ... ,αn+1) and (w1, ... ,wn). By Mw
α we denote the languageα1 w

∗
1 α2 w

∗
2 · · · αn w

∗
n αn+1.

For proving Proposition 4.2, it is convenient to identify a vector x = (x1, ... , xn) ∈ Nn

with the string α1 w
x1
1 α2 w

x2
2 · · · αn w

xn
n αn+1 ∈ Mw

α . For each L ⊆ Mw
α , let S w

α (L) ⊆
Nn be the set of vectors associated with the words of L.

It turns out that for languages L ⊆ Mw
α definable in +-inv-FO(<), S w

α (L) is semi-
linear in the following sense: A set S ⊆ Nn is called linear if there exist a number
t ∈ N and vectors v0, ... , vt ∈ Nn such that

S = v0 + Nv1 + · · ·+ Nvt .

A set S ⊆ Nn is called semi-linear if S is empty or S is a finite union of linear sets.
A set S ⊆ Nn is called first-order definable in (N,<, +) if there is a FO(<, +)-formula
ϕ(y1, ... , yn) such that
S = {(x1, ... , xn) ∈ Nn : (N,<, +) |= ϕ(x1, ... , xn)}.

Theorem 4.3 ([GS66b]). A set S ⊆ Nn is first-order definable in (N,<, +) if and only
if it is semi-linear.

18

Using Theorem 4.3 along with a standard FO interpretation, it is easy to prove the
following (in fact, the lemma is true not only for +-inv-FO(<), but even for FO(<, +))
(see Appendix B.1):

Lemma 4.4. Let L ⊆ Mw
α be a language that is definable in +-inv-FO(<). Then

S w
α (L) is semi-linear.

It is easy to see that there are non-regular languages such that the associated set of
vectors is semi-linear. Hence, in order to derive regularity, we need to show that the set
of vectors associated with a language definable in +-inv-FO(<) has a special property.

For this, we use Ginsburg and Spanier’s characterization [GS66a] of regular bounded
languages by subsets of Nn that we call semi-diced here4: A set S ⊆ Nn is called diced
if there exist a number t ∈ N, an arbitrary vector v0 ∈ Nn, and vectors v1, ... , vt ∈ Nn

each of which has exactly one non-zero component, such that S = v0 + Nv1 +
· · · + Nvt . S is called semi-diced if S is empty or S is a finite union of diced sets. In
[GS66a] it was shown that a bounded language is regular iff its associated set of vectors
is semi-diced. From this, we obtain:

Theorem 4.5 (Immediate from [GS66a]). Let L ⊆ Mw
α . Then, L is regular iff S w

α (L)
is semi-diced.

For proving Proposition 4.2, it therefore suffices to show that for a language de-
finable in +-inv-FO(<), the associated set is semi-diced. This is our goal throughout
the remainder of Section 4. For achieving this goal, we give in Section 4.1 character-
izations for semi-linear sets and semi-diced sets. Based on these characterizations, in
Section 4.2 we use a game argument to show that for every +-inv-FO(<)-definable
bounded language L, the semi-linear set S w

α (L) is actually semi-diced.

4.1 Semi-linear sets and semi-diced sets
For x ∈ Zn let ||x || :=

∑n
i=1 |xi |. For K > 0, we write NK (x) to denote the K -

neighborhood of x , i.e.,

NK (x) := {y ∈ Zn : ||x − y || 6 K}.

For S ⊆ Nn, x , y ∈ Nn, and K ∈ N we say that NK (x) and NK (y) are identical
with respect to S if for all z ∈ Zn with ||z || 6 K we have x + z ∈ S ⇐⇒ y + z ∈ S .

We believe that the next lemma, which essentially says that any semi-linear set is
ultimately periodic, is known to researchers in the area of algebra and number theory.
Note, however, that Muchnik [Muc03] gave a characterization of semi-linear sets based
on a similar closure property that differs with the one stated in the lemma in the fact
that it does not include the universal quantification over j (it is assuming j = 1). As this
extra quantification will be important for us, and since we are not aware of a reference
that contains a proof of the closure property as stated below, we included a proof in
Appendix B.3.

4Ginsburg and Spanier did not assign a particular name to these sets

19

Lemma 4.6. For every semi-linear set S ⊆ Nn there exists a finite set U ⊆ Nn \ {0}
such that ∀K ∈ N,∃` ∈ N such that the following is true: ∀x ∈ Nn with ||x || > `,
∃u ∈ U such that ∀j ∈ N, NK (x) and NK (x + j ·u) are identical with respect to S .

Lemma 4.6 will be our starting point for showing that the set of vectors associated
with a language definable in +-inv-FO(<) is semi-diced. The second ingredient is a
characterization of semi-diced sets analogous to the one given in [Muc03] for semi-
linear sets. A section of a set S ⊆ Nn is any set of the form Si ,` := {x = (x1, ... , xn) ∈
S : xi = `}, where i ∈ {1, ... , n} and ` ∈ N.

Theorem 4.7. A set S ⊆ Nn is semi-diced iff the following is true: (a) every section
of S is semi-diced, and (b) there exists a finite set V ⊆ Nn \ {0} such that every
element in V has exactly one non-zero coordinate and ∀K ∈ N,∃` ∈ N such that
the following is true: ∀x ∈ Nn with ||x || > `, ∃v ∈ V such that NK (x) and NK (x + v)
are identical with respect to S .

The proof of the “only if” direction is straightforward. The proof of the “if” di-
rection is more elaborate. It proceeds by induction on |V |; details can be found in
Appendix B.4.

4.2 Proof of Proposition 4.2
Fix a language L ⊆ Mw

α that is definable in +-inv-FO(<). Let S ⊆ Nn be S w
α (L).

By Theorem 4.5 it suffices to show that S is semi-diced. By Theorem 4.7 it suffices
to show that S has the properties (a) and (b) stated in Theorem 4.7. The most difficult
part is to show property (b). Property (a) then follows essentially by induction on n.
The induction argument can be found in Appendix B.5. We sketch here the proof for
property (b).

By Lemma 4.4, S is semi-linear. Let U be the finite set given by Lemma 4.6 for S .
For any vector u = (u1, ... , un), we let supp(u) := {i ∈ {1, ... , n} : ui 6= 0} be

the support of u. We choose

V := { ||u|| · ei : u ∈ U and i ∈ supp(u) }, (16)

where ei is the unit vector of Nn which has a 1 in its i-th component and 0s in all other
components. Clearly, V is a finite subset of Nn, and every element in V has exactly
one non-zero coordinate. We need to show that V has the desired property formulated
in Theorem 4.7.

Let K0 := max{||v || : v ∈ V }. Now let K ∈ N be an arbitrary number. Let
K̂ := K + K0. Choose ` to be the number obtained from Lemma 4.6 for the number
K̂ .

Now let x ∈ Nn be an arbitrary vector with ||x || > `. By Lemma 4.6 we obtain an
u ∈ U such that for all j ∈ N, NK̂ (x) and NK̂ (x + ju) are identical with respect to S .

If |supp(u)| = 1, then u ∈ V , and by choosing v := u and j := 1 we obtain that
NK (x) and NK (x + v) are identical with respect to S , and we are done.

For the remainder of this proof we consider the case that |supp(u)| > 2. In order to
simplify the presentation, we assume that supp(u) = {1, 2} (the general case is based

20

on the same ideas and is presented in Appendix B.5). We choose v := ||u|| ·e1. By (16)
we have v ∈ V . Our goal is to prove that NK (x) and NK (x + v) are identical with
respect to S . To this end, let us fix an arbitrary z ∈ Zn with ||z || 6 K . We need to
show that x + z ∈ S ⇐⇒ x + v + z ∈ S . This is a consequence of the following
claim.

Claim 4.8. There exists a J ∈ N such that x+Ju+u+z ∈ S ⇐⇒ x+Ju+v+z ∈ S .

Before proving this claim, let us point out how to use the claim for showing that
x + z ∈ S ⇐⇒ x + v + z ∈ S .

Let J be chosen according to Claim 4.8. We know that NK̂ (x), NK̂ (x + Ju), and
NK̂ (x+(J+1)u) are identical with respect to S . Furthermore, ||z || 6 K and ||v || 6 K0,
thus ||z + v || 6 K + K0 = K̂ . Therefore,

x + z ∈ S ⇐⇒ x + (J+1)u + z ∈ S since ||z || 6 K̂

⇐⇒ x + Ju + v + z ∈ S by Claim 4.8

⇐⇒ x + v + z ∈ S since ||v + z || 6 K̂ .

In summary, we obtain that NK (x) and NK (x + v) are identical with respect to S .
Therefore, in order to finish the proof of Proposition 4.2, it suffices to prove Claim 4.8.
This is, where the game argument comes in.

Proof of Claim 4.8. We make use of a result similar to Proposition 3.5, in order to
reduce the existence of a winning strategy in a game with addition to the existence of a
winning strategy in another game, where addition is not present.

Proposition 4.9 (Immediate from [Sch07]). For all m, h, k ′ ∈ N there is a number
r = r(m, h, k ′) ∈ N and an infinite set P = { p1 < p2 < p3 < · · · } ⊆ N
with p1 > h and pj ≡ h [m], for all j > 1, such that the following is true for all
d , d ′ ∈ N>1:

if 0d0d
′
1d2d ≈<r 0d1d

′
1d2d

then (Z,<, +,P,P0,P1,P2) ≈+
k′ (Z,<, +,P,P ′0,P

′
1,P
′
2),

where, for dj = d ′+jd , P0 = {p1, ... , pd1}, P1 = {pd1+1, ... , pd2}, P2 = {pd2 , ... , pd3},
while P ′0 = {p1, ... , pd}, P ′1 = {pd+1, ... , pd2}, P ′2 = P2.

From Proposition 4.9, the result essentially follows by an FO interpretation. We
here present the main ideas underlying this interpretation; the details are given in Ap-
pendix B.5.

For any χ := (χ1, ... ,χn) ∈ Nn, let W(χ) be the word wχ1

1 · · ·wχn
n . We let

H := α1 α2 · · · αn+1W(x+z), U0 :=W(u), U1 :=W(u+e1−e2) and U2 :=W(u−
e1 +e2). We then set h := |H| and m := |U0|. Notice that by our assumption on |w1| =
· · · = |wn|, we have |U0| = |U1| = |U2| = m. For any given k ′ ∈ N let r and p1, p2, ...
be the numbers given by Proposition 4.9 with these values of m, h and k ′. Let d ′ be
the second component of u, and let d be such that 0d0d′1d2d ≈<r 0d1d

′
1d2d (the

existence of d is guaranteed by standard Ehrenfeucht-Fraı̈ssé game results [Lib04]).
By Proposition 4.9 we then have:

(Z,<, +,P,P0,P1,P2) ≈+
k′
(
Z,<, +,P,P ′0,P

′
1,P
′
2

)
(17)

21

In order to transfer identity (17) into an identity over strings, we use an FO in-
terpretation similar to the one given in the proof of Lemma 3.4 for assigning labels
to numbers. This interpretation uses H for labeling the positions 0 up to h−1. For
every i ∈ {0, 1, 2}, it uses Ui for labeling m consecutive positions, the first of which
is marked by Pi . Furthermore, it uses U0 (and counting modulo m) for labeling all
remaining positions. Thus, the interpretation transforms the structures of (17) into the
strings

H (U0)
i0
(
U0 U

ij
0

)d1

j=1

(
U1 U

ij
0

)d2

j=d1+1

(
U2 U

ij
0

)d3

j=d2+1

and
H (U0)

i0
(
U0 U

ij
0

)d
j=1

(
U1 U

ij
0

)d2

j=d+1

(
U2 U

ij
0

)d3

j=d2+1

where i0 = (p1−h)/m, and for j > 1, ij = (pj+1−pj −m)/m. Denoting these strings
by V and W , and letting k1 be the quantifier rank of the FO interpretation, we obtain
from (17) that

V ≈+
k′−k1

W . (18)

Now let us consider the vector yV (resp. yW) in Nn that counts the number of
occurrences of each of the wi in the string V (resp. W), i.e.,

yV = x + z +
(d3∑

j=0

ij
)
·u + 3d ·u + d ′·u

yW = x + z +
(d3∑

j=0

ij
)
·u + 3d ·u + d ′·(u + e1 − e2).

(19)

Recall that supp(u) = {1, 2}, and d ′ is the second component of u. Thus, v =
||u|| · e1 = u + d ′ · (e1 − e2).
By setting J :=

(∑d3

j=0 ij
)

+3d +d ′−1, we therefore have that yV = x +z +Ju+u

and yW = x + z + Ju + v .
In view of (19) and (18), in order to conclude the proof of Claim 4.8, it would suffice

to have an FO interpretation similar to the one in the proof of Claim 3.2 transforming
the strings V and W into strings in Mw

α .
However, depending on the shape of α and w , it might be the case that such an

FO interpretation does not exist, because once in the middle of the string V or W ,
there is no way of distinguishing a letter in a copy of wi from the same letter in a
copy of wj , for i 6= j . This problem is overcome in the same way as in Section 3.1,
by using an expanded alphabet when performing the first interpretation after applying
Proposition 4.9. The alphabet would be of the form ∆ := Σ×{w ,α}×{1, ... , n+1}
and, in the argument above, instead of working with the strings wi (resp., αi), we use
strings w̃i (resp., α̃i) in ∆∗, obtained by expanding the label of each letter in the obvious
way.

Once this is done, we can conclude in the same way as in the proof of Claim 3.2.
I.e., we construct an FO(<, +)-formula ψOrd defining a linear order such that read-
ing the letters of V and W according to this linear order, one obtains the strings
α1w

y1

1 α2 · · ·αnw
yn
n αn+1 andα1w

y ′1
1 α2 · · ·αnw

y ′n
n αn+1, for (y1, ... , yn) = yV and (y ′1, ... , y ′n) =

yW . Letting k2 be the quantifier rank of the formula ψOrd and choosing k ′ large enough

22

such that k ′−k1−k2 is bigger than the quantifier rank of the +-inv-FO(<)-formula that
defines L, we obtain that yV ∈ S iff yW ∈ S . This concludes the proof of Claim 4.8.
The missing details can be found in Appendix B.5.

5 Commutative languages, colored sets, and
deterministic context-free languages

Commutative languages. Recall that we call a language L commutative if for any
string u ∈ L, any permutation of the letters of u is in L. As an easy consequence of
Theorem 4.1, we obtain:

Theorem 5.1. Every commutative language definable in +-inv-FO(<) is regular.

Proof. For a string w = w1w2 · · ·w` of length ` ∈ N and a permutation π of {1, ... , `},
be write wπ to denote the string wπ(1)wπ(2) · · ·wπ(`). The commutative closure c(L)
of a language L ⊆ Σ∗ consists of the strings wπ for all w ∈ L and all permutations π
of {1, ... , |w |}. We use the following result by Ginsburg and Spanier [GS66a], where
n ∈ N>1 and σ1, ... ,σn are pairwise distinct letters:

Theorem 5.2 ([GS66a]). A language L ⊆ σ∗1σ
∗
2 · · ·σ∗n is regular if and only if the

commutative closure c(L) is regular.

The proof of Theorem 5.1 now follows by a simple combination of Theorem 5.2 and
Theorem 4.1 (details can be found in Appendix C.1).

Colored sets. A colored set over Σ is a finite relational structure over the signature
% = {Pa : a ∈ Σ}, such that the predicates Pa form a partition of the structure’s
universe. By combining Theorem 5.1 and Theorem 3.14, we immediately obtain the
following.

Corollary 5.3. Over the class of colored sets, +-inv-FO(=) and FO(=, lm) have the
same expressive power.

DCFL. By using similar Ehrenfeucht-Fraı̈ssé game arguments as in Section 3.1 and
4.2, along with particular pumping properties of deterministic context-free languages
exposed by Valiant in [Val75], we obtain the following (see the full paper Appendix C.2).

Theorem 5.4. Every deterministic context-free language definable in +-inv-FO(<) is
regular.

6 Discussion
The first main result of this paper is a characterization of the regular languages de-
finable in +-inv-FO(<) (resp. +-inv-FO(+1)) by the logic FO(<, lm) (resp. FO(+1,
lm)). We also show that a language is definable in +-inv-FO(=) iff it is definable in
FO(=, lm).

23

We conjecture that +-inv-FO(<) can only define regular languages. If this con-
jecture were true, our first main result would completely characterize the languages
definable in +-inv-FO(<) and +-inv-FO(+1).

As a step towards proving this conjecture, our second main result shows that any
language definable in +-inv-FO(<) that is also bounded, commutative, or determinis-
tic context-free, is actually regular, and therefore definable in FO(<, lm).

Note that if we also have access to multiplication and define (+, ∗)-inv-FO in the
obvious way, this formalism can express non-regular languages (e.g., the language of
all strings whose length is a prime number).

As a challenge towards proving or disproving our conjecture, we conclude with
the following example of a non-regular, context-free language, that is definable in
(+, ∗)-inv-FO(<) as well as in FO(<, +), but for which we do not know whether or
not it is definable in +-inv-FO(<).

For n, i ∈ N we denote by binn(i) (resp., binn(i)) the {0, 1}-string w of length
n representing the binary encoding of i , starting with the least significant bit (resp.,
starting with the most significant bit). Let L be the language of strings of the form
binn(0)#binn(1)#binn(2)#binn(3)# · · ·#binn(2n−1), for n ∈ N. For instance, L
contains the string 000#001#010#011#001#101#011#111. Let L̄ be the comple-
ment of L. We then have (details in Appendix D):

Proposition 6.1. L̄ is context-free and definable in (+, ∗)-inv-FO(<) and in FO(<, +).

Acknowledgements. We thank Howard Straubing for pointing to us that our earliest
characterization given in Theorem 3.12 could be simplified to the current statement.
We also thank Jean-Eric Pin for drawing our attention to the article [Muc03].

References
[AvMSS12] Matthew Anderson, Dieter van Melkebeek, Nicole Schweikardt, and

Luc Segoufin. Locality from circuit lower bounds. SIAM J. Comput.,
41(6):1481–1523, 2012.

[BIL+05] David A. Mix Barrington, Neil Immerman, Clemens Lautemann, Nicole
Schweikardt, and Denis Thérien. First-order expressibility of languages
with neutral letters or: The Crane Beach conjecture. J. Comput. Syst. Sci.,
70(2):101–127, 2005.

[BP89] Daniele Beauquier and Jean-Eric Pin. Factors of words. In Proc. ICALP,
pages 63–79, 1989.

[BS09] Michael Benedikt and Luc Segoufin. Towards a characterization of order-
invariant queries over tame structures. J. of Symbolic Logic, 74(1):168–
186, 2009.

[DIV09] Flavio D’Alessandro, Benedetto Intrigila, and Stefano Varricchio. The
Parikh counting functions of sparse context-free languages are quasi-
polynomials. Theor. Comput. Sci., 410(47-49):5158–5181, 2009.

24

[Gin66] Seymour Ginsburg. The mathematical theory of context-free languages.
McGraw-Hill, New York, 1966.

[GS64] Seymour Ginsburg and Edwin H. Spanier. Bounded ALGOL-like lan-
guages. Trans. of the Amer. Math. Soc., 113:333–368, 1964.

[GS66a] Seymour Ginsburg and Edwin. H. Spanier. Bounded regular sets. Proc.
of the American Math. Soc., 17(5):1043–1049, 1966.

[GS66b] Seymour Ginsburg and E.H. Spanier. Semigroups, Presburger formulas,
and languages. Pacific J. Math., 16(2):285–296, 1966.

[GS00] Martin Grohe and Thomas Schwentick. Locality of order-invariant first-
order formulas. ACM Trans. Computational Logic, 1(1):112–130, 2000.

[HS12] Frederik Harwath and Nicole Schweikardt. Regular tree languages, car-
dinality predicates, and addition-invariant FO. In Symp. on Theoretical
Aspects of Computer Science (STACS’12), 2012.

[Imm86] N. Immerman. Relational queries computable in polynomial time. Infor-
mation and Control, 68(1-3):86–104, 1986.

[Lib04] Leonid Libkin. Elements of Finite Model Theory. Springer, 2004.

[Lyn82] J.F Lynch. On sets of relations definable by addition. J. of Symbolic
Logic, 47:659–668, 1982.

[MO97] Malika More and Frédéric Olive. Rudimentary languages and second
order logic. Math. Log. Q., 43:419–426, 1997.

[MP71] R. McNaughton and S. Papert. Counter-free Automata. MIT Press, 1971.

[Muc03] A.A. Muchnik. The definable criterion for definability in Presburger arith-
metic and its applications. Theor. Comput. Sci., 290:1433–1444, 2003.

[PZ16] Thomas Place and Marc Zeitoun. Separating regular languages with first-
order logic. Logical Methods in Computer Science, 12(1), 2016.

[Raz97] D. Raz. Length considerations in context-free languages. Theor. Comput.
Sci., 183:21–32, 1997.

[Sch06] Nicole Schweikardt. On the expressive power of monadic least fixed point
logic. Theor. Comput. Sci., 350(2-3):325–344, 2006.

[Sch07] Nicole Schweikardt. An Ehrenfeucht-Fraı̈ssé game approach to collapse
results in database theory. Information and Computation, 205(3):311–
379, 2007.

[Str94] Howard Straubing. Finite Automata, Formal Logic, and Circuit Complex-
ity. Birkhäuser, 1994.

25

[Val75] L. G. Valiant. Regularity and related problems for deterministic push-
down automata. J. ACM, 22(1):1–10, 1975.

[Var82] Moshe Vardi. The complexity of relational query languages. In Proc.
STOC, pages 137–146, 1982.

26

APPENDIX
This appendix gives detailed proofs of the article’s claims. Parts B, C, and D contain
detailed proofs of the results in sections 4, 5, and 6, respectively. Part A contains
notations and technical material convenient for presenting these proofs.

A A technical lemma summarizing our Ehrenfeucht-
Fraı̈ssé game arguments

Basic notation. We write ε to denote the empty string. For an alphabet Σ, we let
%Σ := {Pa : a ∈ Σ} be the signature that consists of a unary relation symbol Pa for
each a ∈ Σ.

The standard representation of a string w = w1 · · ·wN ∈ Σ∗ of length N > 1 by a
%Σ-structure is the structure

w = ([N], (Pw
a)a∈Σ)

with domain [N] = {0, ... ,N−1}, where, for each a ∈ Σ, Pw
a = {i ∈ [N] : wi+1 =

a}.
The standard interpretations of < and + on Z are the relations

<Z := {(i , j) : i , j ∈ Z and i < j},
+Z := {(i , j , k) : i , j , k ∈ Z and i + j = k}

For any N ∈ N>1 and any relation RZ ⊆ Zr (for r > 1) we let RN := {(i1, ... , ir) ∈
RZ : i1, ... , ir ∈ [N]}. For each N ∈ N>1, the standard interpretation of < and + on
[N] are the relations <N and +N .

From now on, when the context is clear, we will omit superscripts ·Z (resp. ·N) and
simply write < and + to denote the standard interpretations of < and + on Z (or [N],
for N ∈ N>1).

If A is a structure whose domain dom(A) is a subset of Z, we write (A,<) to
denote the expansion of A by the relation <Z ∩ dom(A)2. Accordingly, (A,<, +)
denotes the expansion of (A,<) by the relation +Z ∩ dom(A)3. Furthermore, if P
is a subset of Z, we write (A,<, +,P) to denote the expansion of (A,<, +) by an
additional unary predicate that is interpreted by the set P ∩ dom(A).

If ϕ is a first-order formula, we write qr (ϕ) to denote the quantifier rank of ϕ.

EF-games. We use the standard notation concerning Ehrenfeucht-Fraı̈ssé games (EF-
games, for short); see e.g. the textbook [Lib04]. In particular, we write A ≈r B to
indicate that the duplicator has a winning strategy in the r -round EF-game (for FO)
played on two relational structures A and B of the same signature.

Furthermore, we will use dom(A) and dom(B) to denote the domain (i.e., the uni-
verse) of the structures A and B, respectively. If τ is the signature of A, we write τA

to denote the collection of relations and constants of A. I.e., for every relation symbol

27

R and every constant symbol c in τ , τA contains the relation RA and the constant cA

with which the symbols R and c are interpreted in A.
If α is a mapping whose domain is dom(A), then α(RA) denotes the set of all tuples

(α(x1), ... ,α(xr)) for which (x1, ... , xr) ∈ RA. By α(τA) we denote the collection of
relations α(RA) and elements α(cA) for all relation symbols R and constant symbols
c in τ .

The following is a generalization of a result by Lynch [Lyn82] which was proved
in [Sch07] and which establishes a winning strategy for the duplicator in an EF-game
on particular structures which have a built-in addition relation.

Proposition A.1 ([Sch07]). For all m, h, g , k ∈ N there is a number r = r(m, h, g , k) ∈
N and an infinite set

P = { p1 < p2 < p3 < · · · } ⊆ N

with p1 > h and pj ≡ h (mod m), for all j > 1, such that the following is true
for every signature τ , all linearly ordered finite τ ∪ {<}-structures A and B, and the
mappings α : dom(A) → P and β : dom(B) → P which, for each j , map the j-th
smallest element of dom(A) w.r.t. the linear order <A (respectively, of dom(B) w.r.t.
<B) to the j-th smallest element in P: If A ≈r B, then the duplicator has a winning
strategy in the k-round EF-game on

A :=
(
Z,<, +,P,α(τA)

)
and B :=

(
Z,<, +,P,β(τB)

)
such that after the k-th round the following holds true: Let, for every i ∈ {1, . . , k}, ai
and bi be the elements chosen in the i-th round on A and B. Then we have

(I) ai ≡ bi [m], for all i ∈ {1, . . , k}, and

(II)
(
ai − aj = bi − bj

)
or(

|ai − aj | > 2g and |bi − bj | > 2g
)
,

for all i , j ∈ {1, . . , k}.

This proposition is an immediate consequence of [Sch07, Proposition 6.11 and 6.12].
Using this proposition, we can prove the following lemma that will serve as one of

the main technical tools for proving our results on +-inv-FO(+1) and +-inv-FO(<).

Lemma A.2. Let Σ, ∆, Γ be finite alphabets. Let k ′ ∈ N>1, let H,G ,U ∈ ∆∗ with
|U| > 1 and, for each γ ∈ Γ, let Uγ ∈ ∆∗ with |Uγ | = |U|. Let m > |U| be a multiple
of |U|. For

h := |H|, g := max{h,m, |G |}, k ′′ := 2k ′ + 3

let r := r(m, h, g , k ′′) ∈ N and P := { p1, p2, p3, ...} ⊆ N be chosen according
to Proposition A.1. Let i0 := p1−h

|U| and, for each j > 1, let ij :=
pj+1−(pj+|U|)

|U| . In
particular, i0 ≡ 0 (mod m

|U|) and, for each j > 1, ij ≡ −1 (mod m
|U|).

Let v ,w ∈ Γ∗ be strings such that (v ,<) ≈r (w ,<), and let dv = |v | and dw =
|w |. Let V ,W ∈ ∆∗ be the following strings:

V := H U i0
(
Qj U

ij
)
j=1,...,dv

G ,

W := H U i0
(
Rj U

ij
)
j=1,...,dw

G ,

28

where, for each j > 1 and each γ ∈ Γ the following is true: If γ is the j-th letter in v
(respectively, w), then Qj = Uγ (respectively, Rj = Uγ). Then, the following holds:

(a) (V ,<, +,P) ≈k′ (W ,<, +,P).

(b) Let
(
ψa(x)

)
a∈Σ

be a collection of FO(%∆ ∪ {<, +,P})-formulas which, on each
of the structures (V ,<,+,P) and (W ,<, +,P), defines a partition of the domain
into |Σ| disjoint sets, and let V ′,W ′ ∈ Σ∗ be the strings obtained from V and W
by replacing, for each x , the letter at position x with the particular letter a ∈ Σ for
which the formula ψa(x) is satisfied.

Let ψSucc(x , y) be a FO(%∆ ∪ {<, +,P})-formula which, when interpreted in
(V ,<, +,P) and (W ,<,+,P), defines a successor relation on the domain. Let
V ′′,W ′′ ∈ Σ∗ be the strings obtained from reading the letters of V ′ and W ′ ac-
cording to this particular successor relation.

Let q be an upper bound on the quantifier rank of the formulas ψa(x), for all a ∈ Σ.
Then the following is true:

(i) V ′′ and W ′′ satisfy the same +-inv-FO(+1)-sentences of quantifier rank at
most k := k ′ −max{q, qr (ψSucc)}.

(ii) If ψOrd(x , y) is a FO(%∆ ∪ {<, +,P})-formula which, when interpreted in
(V ,<, +,P) and (W ,<, +,P), defines the linear order that fits to the suc-
cessor relation defined by ψSucc(x , y), then V ′′ and W ′′ satisfy the same
+-inv-FO(<)-sentences of quantifier rank at most k := k ′−max{q, qr (ψSucc), qr (ψOrd)}.

Proof. Ad (a): We apply Proposition A.1 for τ := %Γ and A := (v ,<) and B :=
(w ,<). By assumption we know that A ≈r B. Letting α and β be the mappings
defined in Proposition A.1, we obtain that the duplicator has a winning strategy in the
k ′′-round EF-game on

A :=
(
Z,<, +,P,α(τA)

)
and B :=

(
Z,<, +,P,β(τB)

)
such that after the k ′′-th round the following holds true: Let, for every i ∈ {1, . . , k ′′},
ai and bi be the elements chosen in the i-th round on A and B. Then we have

(I) ai ≡ bi [m], for all i ∈ {1, . . , k ′′}, and

(II)
(
ai − aj = bi − bj

)
or(

|ai − aj | > 2g and |bi − bj | > 2g
)
,

for all i , j ∈ {1, . . , k ′′}.

We let A′ := (V ,<, +,P) and B′ := (W ,<, +,P). Recall that P = {p1 < p2 <
p3 < · · · } and note that the string V (resp. W) is defined in such a way that (when
making the convention that the first letter of H is at position 0), the first letter of Qj

(resp. Rj) is at position pj (for each j > 1).
For showing that A′ ≈k′ B

′, we use the duplicator’s winning strategy in the k ′′ =
2k ′ + 3-round EF-game on A and B.

For finding a strategy for the duplicator in the game on A′ and B′, we let a “virtual
duplicator” and a “virtual spoiler” play a game on A and B as follows: In the first three

29

rounds, the “virtual spoiler” chooses positions a1 := 0, a2 := pdv+1 ∈ P (i.e., the
smallest element in P that does not carry any of the letters in Γ), and a3 := a2 + |G | in
the structure A. It is easy to see that — in order to win this “virtual” game on A and B
in such a way that condition (II) is satisfied — the “virtual duplicator” has to answer
with b1 = 0, b2 = pdw+1 (i.e., the smallest element in P that does not carry any of the
letters in Γ in B), and b3 = b2 + |G |. Note that a3 (resp. b3) is the smallest element
that does not belong to the domain of A′ (resp. B′).

Now, for each i ∈ {1, . . , k ′}, the i-th round of the “real” game on A′ and B′ is
played as follows: Let us assume that the spoiler chooses an a′i in A′ (the case where
he chooses b′i in B′ is symmetric). To find a suitable answer b′i in B′, the duplicator
plays two rounds (namely, rounds 2i+2 and 2i+3) of the “virtual” game as follows:
first, she assumes that the “virtual spoiler” chooses in round 2i+2 the particular ele-
ment a2i+2 which is the largest integer 6 a′i that is congruent h modulo |U|. Let b2i+2

be the “virtual duplicator’s” answer in B′.
Next, in round 2i+3, the “virtual spoiler” chooses a2i+3 := a′i . As |a2i+3 − a2i+2| <
|U| 6 m 6 g , we obtain that according to condition (II), which is enforced by the “vir-
tual duplicator’s” winning strategy on A and B, the “virtual duplicator” then answers
with the particular element b2i+3 that has the same distance from b2i+2 as a2i+3 has
from a2i+2, i.e., b2i+3 = b2i+2 + (a′i − a2i+2).
Note that since a2i+3 = a′i is a position in A′, we know that 0 = a1 6 a2i+3 < a3.
Thus, since the “virtual duplicator” wins the “virtual” game on A and B, we also have
0 = b1 6 b2i+3 < b3. Hence, b2i+3 belongs to the domain of B′, and thus the dupli-
cator in the “real” game on A′ and B′ can choose the element b′i := b2i+3 in B′ as her
answer in the i-th round of the “real” game on A′ and B′.

It is straightforward (but tedious) to check that after k ′ rounds of the “real” game
on A′ and B′ (i.e., after k ′′ = 2k ′ + 3 rounds of the “virtual” game on A and B), the
duplicator has won the game on A′ and B′. — To see this, use the fact that the “virtual
duplicator” wins the “virtual” game on A and B in such a way that the conditions (I)
and (II) are satisfied, and note the following:

• If a′i = a2i+3 is one of the positions in H , then, in particular, a′i < h 6 g , and
due to (II) we have b′i = b2i+3 = a2i+3 = a′i . In particular, position a′i in A′

carries the same letter as position b′i in B′.

• Similarly, if a′i = a2i+3 is one of the positions in G , then b′i = b2i+3 has the
same distance from b3 as a′i has from a3. In particular, position b′i in B′ carries
the same letter as position a′i in A′.

• With the same reasoning one obtains that if a′i is a position that neither belongs
to H nor to G , then also b′i is a position that neither belongs to H nor to G .
Furthermore, we know from (I) that a′i ≡ b′i [m] and, since m is a multiple of
|U|, also a′i ≡ b′i [|U|].
Along the particular choice of the duplicator’s strategy, it is not difficult to see
that there exists a p ∈ P such that 0 6 a′i − p < |U| if, and only if, there exists
a q ∈ P such that b′i − q = a′i − p, and, moreover, position p in A carries the
same letter from Γ as position q in B (to see this note that, if such p and q exist,

30

then p = a2i+2 and q = b2i+2).
Recall that |U| = |Qj | = |Rj | (for any j > 1).

– If, for p, q ∈ P , a′i − p = b′i − q =: δ ∈ {0, . . , |U|−1}, then we know
from the particular choice of V and W that both, a′i in A′ and b′i in B′ carry
the same letter (namely, the (δ+1)-st letter of Uγ , where γ is the particular
letter that positions p and q carry in A and B.

– On the other hand, if there do not exist p, q ∈ P such that 0 6 a′i −p < |U|
and 0 6 b′i−q < |U|, then we immediately obtain from the definition of V
and W and from the fact that a′i ≡ b′i [|U|], that a′i in A′ and b′i in B′ both
carry the (δ+1)-st letter of U , for the particular number δ ∈ {0, . . , |U|−1}
with a′i ≡ h+δ [|U|].

Altogether, this completes the proof of part (a) of Lemma A.2.

Ad (b): Let ϕ a +-inv-FO(+1)-sentence of vocabulary %Σ∪{+1, +} and of quan-
tifier rank at most k . Our aim is to show that V ′′ |= ϕ ⇐⇒ W ′′ |= ϕ.

To this end let ϕ̃ be the FO(%∆∪{<, +,P})-sentence obtained from ϕ by replacing
every atom of the form Pa(x) (for a ∈ Σ) by the formula ψa(x), and replacing every
atom of the form E (x , y) by the formula ψSucc(x , y). It is not difficult to see that

(V ,<, +,P) |= ϕ̃ ⇐⇒ V ′′ |= ϕ , and

(W ,<, +,P) |= ϕ̃ ⇐⇒ W ′′ |= ϕ.

Furthermore, ϕ̃ has quantifier rank at most k ′ = k + max{q, qr (ψSucc)}. From part (a)
of the lemma we know that (V ,<, +,P) ≈k′ (W ,<, +,P).
Thus, (V ,<, +,P) |= ϕ̃ ⇐⇒ (W ,<, +,P) |= ϕ̃.
In summary, we obtain that V ′′ |= ϕ ⇐⇒ W ′′ |= ϕ. I.e., V ′′ and W ′′ satisfy the
same +-inv-FO(+1)-sentences of quantifier rank at most k , and the proof of part (b) (i)
of Lemma A.2 is complete. The proof of part (b) (ii) follows along the same lines.

Let us give an easy example of how to use Lemma A.2.

Example A.3. In this example we show that the language L := {anbn : n ∈ N} is
FO(<, +)-definable, but not +-inv-FO(<)-definable.

It is easy to see that L is FO(<, +)-definable via a sentence which expresses that
there exists a position x such that all positions 6 x carry the letter a, all positions > x
carry the letter b, and x + x + 1 is the maximum position in the domain.

A simple application of Lemma A.2 shows that L is not +-inv-FO(<)-definable:
For contradiction, assume that L is definable by a +-inv-FO(<)-sentence ϕ. Aiming at
applying Lemma A.2, choose Σ = ∆ = {a, b} and Γ = {0, 1}. Let k ′ := 1 + qr (ϕ).
Let H = G = ε and U = ab, U0 = aa, and U1 = bb. Choose m := |U| = 2 and
let h, g , k ′′ and r := r(m, h, g , k ′′) and P ⊆ N and ij (for j ∈ N) be chosen as in
Lemma A.2.

We let d ∈ N>1 be large enough such that

(v ,<) ≈r (w ,<)

31

for the strings v := 0d 1d and w := 0d 1d+1 (an easy EF-game argument shows that
any d > 2r will do, see e.g. [Lib04]).
Let V and W be chosen as in Lemma A.2, i.e.,

V = (ab)i0
(
aa (ab)ij

)
j=1,...,d

(
bb (ab)ij

)
j=d+1,...,2d

W = V
(
bb (ab)i2d+1

)
Note that for `V :=

∑2d
j=0 ij and `W := `V + i2d+1, the following is true: The string V

consists of nV := `V + 2d occurrences of the letter a and nV occurrences of the letter
b. The string W consists of nW := `W + 2d occurrences of the letter a and nW + 2
occurrences of the letter b.

Aiming at applying part (b) of Lemma A.2, let ψa(x) := Pa(x) and ψb(x) :=
Pb(x). Furthermore, let ψOrd(x , y) be a quantifier-free formula which, when inter-
preted in (V ,<) and (W ,<), defines a linear order on the domain of V and W , in
which the positions that carry the letter a precede all positions that carry the letter b.
For example, we can choose

ψOrd(x , y) :=(
Pa(x) ∧ Pb(y)

)
∨
∨

c∈{a,b}

(
x < y ∧ Pc(x) ∧ Pc(y)

)
.

Finally, let ψSucc(x , y) be a formula (of quantifier rank 1) that defines the successor
relation that corresponds to the linear order defined by ψOrd(x , y). Then, the strings
V ′′ and W ′′ chosen in Lemma A.2 (b) are exactly the strings V ′′ = anV bnV and
W ′′ = anW bnW +2. In particular, V ′′ ∈ L and W ′′ 6∈ L.

From Lemma A.2 (b) (ii) we obtain that V ′′ and W ′′ satisfy the same +-inv-FO(<)-
sentences of quantifier rank at most k = k ′−1. Since, by our assumption, L is definable
by a +-inv-FO(<)-sentence ϕ of quantifier rank k , this is a contradiction to the fact
that V ′′ ∈ L and W ′′ 6∈ L.

B Proofs omitted in Section 4

B.1 Proof of Lemma 4.4
Proof of Lemma 4.4:
According to Theorem 4.3, it suffices to show that the set S := S w

α (L) is first-order
definable in (N,<, +).

For showing this, it will be convenient to use the following notation. For any (tran-
sitive) string u over Σ we write û to denote the σ′[+]-expansion of u in which the
predicate ≺ is interpreted by the natural linear order of u (i.e., by E+, cf. Section 2),
and + is interpreted by the addition induced by ≺.

For proving Lemma 4.4, we do not really need the assumption that L is +-inv-FO(<
)-definable. In fact, the following assumption will suffice (note that this assumption is
met, in particular, by languages definable in +-inv-FO(<)):

32

There is a FO(<,≺, +)-sentence ϕ such that for every string u ∈ Mw
α we

have: u ∈ L iff û |= ϕ.

Let S := S w
α (L). Our aim is to find a FO(<, +)-formula ϕ′ with n free variables such

that
S = {(x1, ... , xn) ∈ Nn : (N,<, +) |= ϕ′(x1, ... , xn)}.

The straightforward idea is to construct ϕ′ in such a way that, when interpreted in
(N,<, +) for a tuple (x1, ... , xn) ∈ Nn, it simulates ϕ when evaluated on û, for

u := α1 w
x1
1 α2 w

x2
2 · · · αn w

xn
n αn+1. (20)

To this end, note that the strings α1, ... ,αn+1 and w1, ... ,wn are fixed and thus
can be “hard-coded” in the formula ϕ′. In particular, e.g., there is a formula ψi (v , xi)
ensuring that v = |wi | · xi by stating that

v = xi + · · ·+ xi︸ ︷︷ ︸
|wi |

.

Similarly, for every j with 0 6 j < |wi | there is a formula χi ,j(v) ensuring that v is
congruent j modulo |wi | by stating that there exists a v ′ such that

v = j + v ′ + · · ·+ v ′︸ ︷︷ ︸
|wi |

.

We choose the formula ϕ′ defining S in (N,<, +) as

ϕ′ = ∃y1 · · · ∃yn+1 ∃z1 · · · ∃zn+1 (ϕ′1 ∧ ϕ′2),

where ϕ′1 and ϕ′2 are defined as follows:
The formula ϕ′1 ensures that the variables y1, ... , yn+1 and z1, ... , zn+1 are inter-

preted by the following natural numbers:

• y1 = 0,

• for each i ∈ {1, ... , n}, zi = yi + |αi |,
yi+1 = zi + |wi | · xi , and

• zn+1 = yn+1 + |αn+1|.

Thus, when identifying the positions of the string u from (20) with the numbers 0, 1, ... , |u|−1,
then yi denotes the first position of αi in u, zi denotes the first position of w xi

i in u (for
i 6 n), and zn+1 denotes the first position to the right of u.

The formula ϕ′2 is obtained from the FO(<,≺, +)-sentence ϕ that, by assumption,
defines the language L, by

(1) relativizing all quantifications to numbers < zn+1,

(2) replacing every atomic subformula of ϕ of the form E+(v1, v2) or v1 ≺ v2 by the
formula v1 < v2,

33

(3) replacing every atomic subformula of ϕ of the form E (v1, v2) by the formula(
v1 < v2 ∧ ¬∃v3(v1 < v3 ∧ v3 < v2)

)
, and

(4) replacing every atomic subformula of ϕ of the form Pa(v) (for a ∈ Σ) by a formula
stating that

• either, there is an i ∈ {1, ... , n+1} such that yi 6 v < zi , and there is a j
with 0 6 j < |αi | such that the (j+1)st position of αi carries the letter a, and
v = yi + j ,

• or, there is a number i ∈ {1, ... , n} such that zi 6 v < yi+1, and there is a
number j with 0 6 j < |wi | such that the (j+1)st position of wi carries the
letter a, and v − zi is congruent j modulo |wi |.

It is straightforward to formalize this in FO(<, +). Furthermore, it can easily be seen
that for any (x1, ... , xn) ∈ Nn and the associated string

u := α1 w
x1
1 α2 w

x2
2 · · · αn w

xn
n αn+1

we have:
(N,<, +) |= ϕ′(x1, ... , xn) ⇐⇒ û |= ϕ

⇐⇒ u ∈ L
⇐⇒ (x1, ... , xn) ∈ S .

Thus, S is first-order definable in (N,<, +) and hence, by Theorem 4.3, S is semi-
linear. This completes the proof of Lemma 4.4.

B.2 Proof of Theorem 4.5
Proof of Theorem 4.5:
The proof makes use of the following result of Ginsburg and Spanier [GS66a].

Theorem B.1 ([GS66a]). Let Σ be a finite alphabet, n ∈ N>1, v1, ... , vn ∈ Σ∗, and
L ⊆ v∗1 v

∗
2 · · · v∗n . Then, L is regular iff the set {(x1, ... , xn) ∈ Nn : v x1

1 v x2
2 · · · v xn

n ∈ L}
is semi-diced.

Now, let T := {y = (y1, ... , y2n+1) ∈ N2n+1 : αy1

1 w y2

1 αy3

2 · · · α2n−1
n w y2n

n αy2n+1

n+1 ∈
L}, and let S := S w

α (L) ⊆ Nn. By Theorem B.1 we know that L is regular if and
only if T is semi-diced. Clearly, S = π2,4,6,...,2n(T), where π2,4,6,...,2n : N2n+1 → Nn

denotes the projection onto the “even” components. Our aim is to show that L is regular
if and only if S is semi-diced.

For the “only if” direction, assume that L is regular. Then, by Theorem B.1, T is
semi-diced. It is straightforward to see that the class of semi-diced sets is closed under
projections. Thus, S = π2,4,6,...,2n(T) is semi-diced.

For the “if” direction, assume that S is semi-diced. Let σ1, ... ,σn be n pairwise
distinct letters that do not belong to Σ. Since S is semi-diced, we obtain from Theo-
rem B.1 that the language L1 := {σx1

1 σ
x2
2 · · ·σxn

n : (x1, ... , xn) ∈ S} is regular. It is
then straightforward to see that also the language L2 := {α1 σ

x1
1 α2 · · · αn σ

xn
n αn+1 :

(x1, ... , xn) ∈ S} is regular. Let h : {σ1, ... ,σn} → Σ∗ be the mapping that substitutes,
for every i ∈ {1, ... , n}, the letter σi by the word h(σi) := wi . Since L2 is regular, we

34

obtain that also the language h(L2) = {α1 w
x1
1 α2 · · · αn w

xn
n αn+1 : (x1, ... , xn) ∈ S}

is regular. Note that h(L2) = L. Thus, L is regular, and the proof of Theorem 4.5 is
complete.

B.3 Proof of Lemma 4.6
Proof of Lemma 4.6:
For the proof, we use the following lemma that is implicit in [GS64] (see the proof of
Theorem 6.1 in [GS64]).

Lemma B.2 ([GS64]). Let T be a finite set of linear sets L ⊆ Nn. For each L ∈ T , let
tL ∈ N and vL

0 , ... , vL
tL ∈ Nn such that L = vL

0 + NvL
1 + · · ·+ NvL

tL . For the set

MT :=
⋂
L∈T

(
NvL

1 + · · ·+ NvL
tL

)
,

the following is true:

(a) Either MT = {0}, or there exists a number tT ∈ N>1 and vectors vT
1 , ... , vT

tT ∈
Nn \ {0} such that MT = NvT

1 + · · ·+ NvT
tT .

(b) There exists a finite set CT ⊆ Nn such that⋂
L∈T

L =
⋃

c∈CT

c + MT .

We will use this lemma for proving Lemma 4.6. Obviously, Lemma 4.6 holds if
S = ∅ or S = Nn. Let us thus assume that ∅ 6= S 6= Nn. Since S is semi-linear, there
exists an r ∈ N>1 and linear sets L1, ... , Lr such that

S = L1 ∪ · · · ∪ Lr .

The class of semi-linear sets is closed under complementation (cf., Theorem 4.3).
Therefore, for each i ∈ {1, ... , r}, the set Li := Nn \ Li is semi-linear, and there
exists an ri ∈ N>1 and linear sets Li ,1, ... , Li ,ri such that

Li = Li ,1 ∪ · · · ∪ Li ,ri .

We let Li ,0 := Li and consider the collection

L := {Li ,j : i ∈ {1, ... , r} and j ∈ {0, ... , ri}}

of the linear sets that all the Li and Li are composed of.
Every L ∈ L is linear, thus there exists a number tL ∈ N and vectors vL

0 , ... , vL
tL ∈

Nn such that
L = vL

0 + NvL
1 + · · ·+ NvL

tL .

For every T ⊆ L we let

MT :=
⋂
L∈T

(
NvL

1 + · · ·+ NvL
tL

)
.

35

From Lemma B.2 (a) we know that either MT = {0}, or there exists a number tT ∈
N>1 and vectors vT

1 , ... , vT
tT ∈ Nn \ {0} such that

MT = NvT
1 + · · ·+ NvT

tT .

We choose
U := {vT

1 , ... , vT
tT : T ⊆ L such that MT 6= {0}}.

Clearly, U is a finite subset of Nn \ {0}.
For each x ∈ Zn let

type(x) := {L ∈ L : x ∈ L}.

Let
T := {type(x) : x ∈ Zn}

be the set of types that are realizable in Zn. Note that for every τ ∈ T and every
i ∈ {1, ... , r}, the following is true:

Li ,0 ∈ τ ⇐⇒ for all j ∈ {1, ... , ri}, Li ,j 6∈ τ .

Therefore, for any τ ∈ T and the set

Lτ :=
⋂
L∈τ

L,

the following is true:

(1) for all x , y ∈ Lτ we have x ∈ S ⇐⇒ y ∈ S , and

(2) for all x ∈ Zn with type(x) = τ we have x ∈ Lτ .

Now let K be an arbitrary number with K ∈ N. We let the K -type of x be the mapping

typeK (x) : NK (0)→ T

which associates with every vector w ∈ NK (0) the set type(x + w), i.e.,

typeK (x)(w) := type(x + w), for each w ∈ NK (0).

Let
TK := {typeK (x) : x ∈ Zn}

be the set of all realizable K -types. For each τ ∈ TK let

Rτ := { x ∈ Zn :

for each w ∈ NK (0) we have x + w ∈ Lτ(w)}.

Note that the following is true for every τ ∈ TK :

(I) for all vectors x , y ∈ Rτ and all w ∈ NK (0) we have x +w ∈ S ⇐⇒ y +w ∈
S , and

36

(II) for all vectors x ∈ Zn with typeK (x) = τ we have x ∈ Rτ .

Furthermore, Rτ =⋂
w∈NK (0),

L∈τ(w)

(−w) + L =
⋂

w∈NK (0),

L∈τ(w)

(vL
0 − w) + NvL

1 + · · ·+ NvL
tL .

For each τ ∈ TK let Tτ :=

{L ∈ L : there is a w ∈ NK (0) such that L ∈ τ(w)} .

Recall that for the set
MTτ =

⋂
L∈Tτ

NvL
1 + · · ·+ NvL

tL

we know that either MTτ = {0} or MTτ = NvTτ
1 + · · ·+ NvTτ

tTτ
. Furthermore, from

Lemma B.2 (b) we obtain that there is a finite set Cτ ⊆ Nn such that

Rτ =
⋃

c∈Cτ

c + MTτ .

We choose ` ∈ N to be bigger than the norm ||·|| of any element in Cτ for any realizable
K -type τ , i.e.,

` := 1 + max{||c || : c ∈
⋃
τ∈TK

Cτ}.

Now let x ∈ Nn be an arbitrary vector with ||x || > `. Let τ := typeK (x). Clearly,
x ∈ Rτ . Furthermore, since ||x || > ` we know that MTτ 6= {0} and thus MTτ =
NvTτ

1 + · · · + NvTτ
tTτ

. In particular, u := vTτ
1 ∈ U , and x (j) ∈ Rτ for every j ∈ N

and x (j) := x + ju. From observation (I) we thus obtain that for any j ∈ N and any
w ∈ NK (0) we have x + w ∈ S ⇐⇒ x (j) + w ∈ S . I.e., NK (x) and NK (x (j)) are
identical with respect to S . This completes the proof of Lemma 4.6.

B.4 Proof of Theorem 4.7
This section is devoted to the proof of Theorem 4.7. We start with some basic observa-
tions on the structure of semi-diced sets.

By using Theorem B.1 (cf., Section B.2), one easily obtains the following closure
properties of the class of semi-diced subsets of Nn.

Lemma B.3 (closure properties of semi-diced sets).
The class of all semi-diced sets contains the empty set and every finite subset of Nn

and is closed under union, intersection, complement, taking sections, projection, and
cartesian product. In other words: ∅ is semi-diced, every finite set F ⊆ Nn is semi-
diced, and if S ,T ⊆ Nn are semi-diced, then also S ∪ T , S ∩ T and S := Nn \ S
are semi-diced. Furthermore, if S ⊆ Nn is semi-diced, i ∈ {1, ... , n}, ` ∈ N, then
Si ,` is semi-diced. If S ⊆ Nn and T ⊆ Nm are semi-diced, then S × T ⊆ Nn+m is
semi-diced. If S ⊆ Nn is semi-diced, r 6 n and j1, ... , jr are pairwise distinct elements
in {1, ... , n}, then and πj1,...,jr (S) := {(xj1 , ... , xjr) : (x1, ... , xn) ∈ S} is semi-diced.

37

Proof. From the definition of semi-diced sets, one immediately obtains the following:

• The empty set ∅ is semi-diced

• every finite set F ⊆ Nn is semi-diced,

• the union of two semi-diced sets is semi-diced, and

• if S ⊆ Nn is semi-diced and j1, ... , jr are pairwise distinct elements in {1, ... , n},
then πj1,...,jr (S) is semi-diced.

For proving the remaining closure properties, we apply Theorem B.1 for the special
case where the alphabet Σ consists of n pairwise distinct letters σ1, ... ,σn, with vi := σi
for every i ∈ {1, ... , n}.

We use the following notation: For a string w and a letter σi we write |w |σi to
denote the number of occurrences of the letter σi in w . For a set S ⊆ Nn we let
L (S) := {σx1

1 σ
x2
2 · · ·σxn

n : x = (x1, ... , xn) ∈ S}. For a language L ⊆ σ∗1σ
∗
2 · · ·σ∗n

we let S (L) := {x = (x1, ... , xn) ∈ Nn : σx1
1 σ

x2
2 · · ·σxn

n ∈ L}. Note that for each
S ⊆ Nn we have S (L (S)) = S . Similarly, for each L ⊆ σ∗1σ

∗
2 · · ·σ∗n we have

L (S (L)) = L. Theorem B.1 states that L ⊆ σ∗1σ
∗
2 · · ·σ∗n is regular if and only if

S (L) is semi-diced.
For showing closure under intersection, complement, and taking sections let S ,T ⊆

Nn be semi-diced sets. Theorem B.1 tells us that in order to show that S ∩ T , S , and
Si ,` are semi-diced, it suffices to show that L (S ∩ T), L (S), and L (Si ,`) are reg-
ular. Note that L (S ∩ T) = L (S) ∩ L (T), L (S) = σ∗1σ

∗
2 · · ·σ∗n \ L (S), and

L (Si ,`) = L (S) ∩ {w ∈ σ∗1σ∗2 · · ·σ∗n : |w |σi = `}.
Since S and T are semi-diced, we obtain from Theorem B.1 that L (S) and L (T)

are regular. Furthermore, the languages σ∗1σ
∗
2 · · ·σ∗n and {w ∈ σ∗1σ∗2 · · ·σ∗n : |w |σi =

`} are regular. Since the class of regular languages is closed under intersection and
complement, the languages L (S) ∩L (T), σ∗1σ

∗
2 · · ·σ∗n \L (S), and L (S) ∩ {w ∈

σ∗1σ
∗
2 · · ·σ∗n : |w |σi = `} are regular. Therefore, S ∩ T , S , and Si ,` are semi-diced.
For showing closure under cartesian product, let S ⊆ Nn and T ⊆ Nm be semi-

diced. We view L (S) as a regular subset of σ∗1σ
∗
2 · · ·σ∗n , and we view L (T) as a

regular subset of σ∗n+1 · · ·σ∗n+m. Clearly, the concatenation L of L (S) and L (T) is
regular, and L = L (S × T). Due to Theorem B.1, thus S × T is semi-diced.

For reasoning about semi-diced sets, it is convenient to note that every semi-diced
set is a finite union of uniformly diced sets, defined as follows.

Definition B.4 (uniformly diced). A set S is called uniformly diced iff there are a
vector v0 ∈ Nn, a number q ∈ N>1, and a set I ⊆ {1, ... , n}, such that

S = v0 +
∑
i∈I

Nqei .

The number q is called the period of S .

Lemma B.5. Every nonempty semi-diced set is a union of a finite number of uniformly
diced sets, each with the same period.

38

Proof. Let us start with a straightforward observation: For all a, b ∈ N>1,

Na + Nb =
⋃

06a′<b,

06b′<a

aa′ + bb′ + Nab ,

and in general, for arbitrary k ∈ N>1, a1, ... , ak ∈ N>1, ` := lcm{a1, ... , ak}, and q
any multiple of `,

k∑
j=1

Naj =
⋃

(06a′j<q/aj)j=1,...,k

(k∑
j=1

aja
′
j

)
+ Nq. (21)

Now, let S = v0 + Nv1 + · · · + Nvt be an arbitrary diced subset of Nn. For each
coordinate i ∈ {1, ... , n} let Ji be the set of all those j ∈ {1, ... , t} such that vj is
a multiple of the i-th unit vector ei , and let aj ∈ N>1 such that vj = ajei . Let I be
the set of all those i ∈ {1, ... , n} such that Ji 6= ∅. Let q ∈ N>1 be any mulitple of
lcm{aj : j ∈ {1, ... , t}}. For each i ∈ I we apply equation (21) to obtain a finite set
Ki and numbers bi ,k ∈ N for all k ∈ Ki such that∑

j∈Ji

Naj =
⋃
k∈Ki

bi ,k + Nq.

Now it is easy to see that

S = v0 +
∑
i∈I

(∑
j∈Ji

Nvj
)

= v0 +
∑
i∈I

(∑
j∈Ji

Najei
)

= v0 +
∑
i∈I

(⋃
k∈Ki

bi ,kei + Nqei
)

= v0 +
∑
i∈I

{
bi ,kei : k ∈ Ki

}
+
∑
i∈I

Nqei .

Thus, every diced set S is a finite union of uniformly diced sets, each with the same
period q. From this, one easily obtains that every semi-diced set is the finite union of
uniformly diced sets, each with the same period q.

For proving Theorem 4.7, it will be convenient to use the following notation.

Definition B.6. Let S ,N ⊆ Nn, and let v ∈ Zn. We say that v is a period of S in N if
the equivalence

y ∈ S ⇐⇒ y + v ∈ S

is true for all y ∈ Nn such that y ∈ N and y + v ∈ N .

Definition B.7. Let S ,V ⊆ Nn.

(a) We say that S has property (∗) with respect to V if the following is true:

39

∀K ∈ N, ∃` ∈ N such that the following is true:
∀x ∈ Nn with ||x || > `, ∃v ∈ V such that

v is a period of S in NK (x).

(b) We say that S has property (∗∗) with respect to V if the following is true:

∀K ∈ N, ∃` ∈ N such that the following is true:
∀x ∈ Nn with ||x || > `, ∃v ∈ V such that
NK (x) and NK (x + v) are identical w.r.t. S .

Note that property (∗∗) is used in the formulation of Theorem 4.7. The next lemma
is an easy observation showing that, for finite V , property (∗) is equivalent to prop-
erty (∗∗).

Lemma B.8. Let S ,V ⊆ Nn such that V is finite. Then, S has property (∗) w.r.t. V iff
S has property (∗∗) w.r.t. V .

Proof. For the “if” direction it suffices to show the following: If NK (x) and NK (x +v)
are identical w.r.t. S , then v is a period of S in NK (x).

Let us therefore assume that NK (x) and NK (x + v) are identical w.r.t. S . In order
to show that v is a period of S in NK (x), consider an arbitrary y ∈ Nn with y ∈ NK (x)
and y + v ∈ NK (x). Our goal is to show that y ∈ S iff y + v ∈ S .

Since y ∈ NK (x), we have for z := y − x , ||z || 6 K . Since NK (x) and NK (x + v)
are identical w.r.t. S , we therefore know that x + z ∈ S iff x + v + z ∈ S . I.e., y ∈ S
iff y + v ∈ S . Thus, v is a period of S in NK (x).

For the “only if” direction let K0 := max{||v || : v ∈ V }, and note that it suffices
to show the following: If v is a period of S in NK+K0 (x), then NK (x) and NK (x + v)
are identical w.r.t. S .

Let us now assume that v is a period of S in NK+K0 (x). In order to show that NK (x)
and NK (x + v) are identical w.r.t. S , consider an arbitrary z ∈ Zn with ||z || 6 K . Our
goal is to show that x + z ∈ S iff x + v + z ∈ S .

Since ||z || 6 K 6 K + K0 and ||v + z || 6 K + K0, we have x + z ∈ NK+K0 (x)
and x + v + z ∈ NK+K0 (x). Thus, for y := x + z we have y ∈ NK+K0 (x) and
y + v ∈ NK+K0 (x). Since v is a period of S in NK+K0 (x), we therefore know that
y ∈ S iff y + v ∈ S . Thus, x + z ∈ S iff x + v + z ∈ S . Hence, NK (x) and NK (x + v)
are identical w.r.t. S .

Our proof of Theorem 4.7 will proceed by induction on the size of the set V . The
induction base is established by the following lemma.

Lemma B.9. Let S ⊆ Nn be a set for which the following is true: (1) There exists a
vector v of the form k · ei (with k ∈ N>1 and i ∈ {1, ... , n}) such that S has property
(∗) with respect to the set V := {v}, and (2) every section Si ,` (for every ` ∈ N) of S
is semi-diced. Then, S is semi-diced.

Proof. For simplicity in notation we assume that i = 1, i.e., v = k · e1 = (k, 0, ... , 0).
By assumption, S has property (∗) with respect to {v}. Thus, there exists an ` > 0
such that for every x ∈ Nn with ||x || > `, v is a period of S in Nk(x). Since x

40

and x + v belong to Nk(x), we therefore know for all x ∈ Nn with ||x || > ` that
x ∈ S ⇐⇒ x + v ∈ S . Thus, v = (k, 0, ... , 0) is a period of S in the set Nn

>` :=
{x ∈ Nn : ||x || > `}.

Therefore, for an arbitrary x = (x1, x2, ... , xn) ∈ Nn with x1 > ` the following is
true: If r ∈ {0, ... , k − 1} and q ∈ N such that x1 = `+ r + qk , then

(x1, x2, ... , xn) ∈ S ⇐⇒ (`+ r , x2, ... , xn) ∈ S .

By assumption, the section S1,`+r is semi-diced, i.e., a finite union of diced sets of
the form v0 + Nv1 + · · · + Nvt . Now let S̃1,`+r be the union of the according sets
v0 + Nv1 + · · ·+ Nvt + Nv . Clearly, S̃1,`+r is semi-diced, and S̃1,`+r =

{x = (x1, x2, ... , xn) ∈ S : x1 > ` and x1 ≡ `+ r [k]}.

Therefore,
S1,>` := {x = (x1, x2, ... , xn) ∈ S : x1 > `}

is equal to
⋃k−1

r=0 S̃1,`+r , and thus S1,>` is semi-diced. Furthermore, by assumption we
know that each of the sections S1,0, S1,1, . . . , S1,`−1 is semi-diced. Since

S = S1,0 ∪ S1,1 ∪ · · · ∪ S1,`−1 ∪ S1,>` ,

we therefore obtain that S is semi-diced. This concludes the proof of Lemma B.9.

For the induction step in our proof of Theorem 4.7, the following notion is conve-
nient.

Definition B.10. Let S ⊆ Nn and v ∈ Zn. The boundary Bd(S , v) of S in the direction
v is the set

Bd(S , v) := {x ∈ S : x + v 6∈ S}.

The next two lemmas are analogues of lemmas given in [Muc03]; they will be used
for the induction step in our proof of Theorem 4.7.

Lemma B.11. Let S ⊆ Nn and let v ∈ Nn such that v has exactly one non-zero
coordinate. If all sections of S are semi-diced, then all sections of Bd(S , v) and all
sections of Bd(S ,−v) are semi-diced.

Proof. For simplicity in notation we assume w.l.o.g. that v = k · e1 for some k ∈ N>1.
Consider the (i , `)-section of Bd(S , v) and Bd(S ,−v), i.e., the sets Bd(S , v)i ,` and
Bd(S ,−v)i ,`. Let v ′ ∈ {v ,−v} and let k ′ be the first component of v ′ (i.e., k ′ is either
k or −k).

Case 1: i = 1. Then, Bd(S , v ′)1,` =

{ x = (`, x2, ... , xn) ∈ S1,` :

(`+ k ′, x2, ... , xn) 6∈ S1,`+k′ }.

By assumption, S1,` and S1,`+k′ are semi-diced. Due to Lemma B.3, also the projec-
tions of S1,` and S1,`+k′ to the coordinates 2, ... , n are semi-diced. From Lemma B.3

41

we know that the class of semi-diced sets is closed under intersection and complement.
Therefore, also the set

T := { (x2, ... , xn) : (`, x2, ... , xn) ∈ S1,`

and (`+ k ′, x2, ... , xn) 6∈ S1,`+k′ }

is semi-diced.
Due to the closure under cartesian product and since the finite set {(`)} ⊆ N1 is

semi-diced, we obtain that also the set {(`)} × T =

{(`, x2, ... , xn) : (x2, ... , xn) ∈ T} = Bd(S , v ′)1,`

is semi-diced.
Case 2: i > 2. Then, Bd(S , v ′)i ,` =

{ x = (x1, x2, ... , xn) ∈ Si ,` :

(x1 + k ′, x2, ... , xn) 6∈ Si ,` }.

By assumption we know that Si ,` is semi-diced. From the definition of semi-diced sets
it is straightforward to see that also the set

S ′i ,` := {(x1, x2, ... , xn) : (x1 + k ′, x2, ... , xn) ∈ Si ,`}

is semi-diced. From Lemma B.3 we know that the class of semi-diced subsets is closed
under intersection and complement. Therefore, also the set

Bd(S , v ′)i ,` = Si ,` ∩ S ′i ,`

is semi-diced. This completes the proof of Lemma B.11.

Lemma B.12. Let S ,V ⊆ Nn such that S has property (∗) with respect to V , V is
finite with |V | > 2, and every v ∈ V has exactly one non-zero coordinate. Then for
every v ∈ V the following is true: Bd(S , v) and Bd(S ,−v) have property (∗) with
respect to V \ {v}.

Proof. For simplicity in notation we assume w.l.o.g. that v = k · e1 for some k ∈ N>1.
Let v ′ ∈ {v ,−v}. We have to show that Bd(S , v ′) has property (∗) with respect to
V \ {v}. To this end, let k ′ > 0 be an arbitrary size of a neighborhood.

By assumption, S has property (∗) with respect to V . In particular, for k ′+ k there
exists an ` > 0 such that for every x ∈ Nn with ||x || > ` there is a ṽ ∈ V such that ṽ
is a period of S in Nk′+k(x).

If ṽ = v , then v is a period of S in Nk′+k(x). Note that for each y ∈ Nk′(x),
Nk′+k(x) contains each of the vectors y and y+v ′. Therefore, Bd(S , v ′)∩Nk′(x) = ∅,
and thus any element in V \ {v} is a period of Bd(S , v ′) in Nk′(x).

If ṽ 6= v , then ṽ is a period of Bd(S , v ′) in Nk′(x): To see this, let y ∈ Nk′(x)
such that y + ṽ ∈ Nk′(x) and note that y ∈ Bd(S , v ′) ⇐⇒ y ∈ S and y + v ′ 6∈ S
⇐⇒ y + ṽ ∈ S and y + v ′ + ṽ 6∈ S ⇐⇒ y + ṽ ∈ Bd(S , v ′).

In summary, we have shown that Bd(S , v ′) has property (∗) with respect to V \{v}.
This completes the proof of Lemma B.12.

42

We are now ready for the proof of Theorem 4.7.

Proof of Theorem 4.7:
Due to Lemma B.8, it suffices to show the following:

A set S ⊆ Nn is semi-diced iff the following is true:

(a) every section of S is semi-diced, and
(b) there exists a finite set V ⊆ Nn \ {0} such that

every element in V has exactly one non-zero
coordinate and S has property (∗) w.r.t. V .

The “only if” direction follows easily from Lemma B.5 along with the definition of
semi-diced sets. The proof of the “if” direction proceeds by induction on |V |. The
induction base for |V | = 1 is established by Lemma B.9.

For the induction step, assume that |V | > 2, and let v be an arbitrary element in V .
By assumption we know that V ⊆ Nn is finite, that every element in V has exactly one
non-zero coordinate, that all sections of S are semi-diced, and that S has property (∗)
with respect to V .

Lemma B.11 tells us that all sections of Bd(S , v) and all sections of Bd(S ,−v) are
semi-diced. From Lemma B.12 we obtain that Bd(S , v) and Bd(S ,−v) have property
(∗) with respect to V \ {v}. The induction hypothesis thus tells us that Bd(S , v) and
Bd(S ,−v) are semi-diced.

Our aim is to show that S is semi-diced. For simplicity in notation we assume
w.l.o.g. that

v = k · e1 = (k, 0, ... , 0)

for some k ∈ N>1. Furthermore, we write

B+ := Bd(S , v) and B− := Bd(S ,−v).

We already know that B+ and B− are semi-diced. Using the construction from the
proof of Lemma B.5, we obtain that there exists a period q ∈ N>1 such that the follow-
ing is true: q is a multiple of k , and for each ♦ ∈ {+,−} there exists a finite set J♦

such that for each j ∈ J♦ there is a vector v♦j ∈ Nn and a set I♦j ⊆ {1, ... , n} such that

B♦ =
⋃
j∈J♦

(
v♦j +

∑
i∈I♦j

Nqei
)

.

Let d be the smallest integer that is bigger than any component in any vector in

{v♦j : ♦ ∈ {+,−}, j ∈ J♦}.

From the particular choice of d and q we immediately obtain the following:

Claim B.13. For every ♦ ∈ {+,−} and for every x ∈ Nn such that each component
of x is > d , the following is true:
If x ∈ B♦, then x +

∑n
i=1 Nqei ⊆ B♦. If x 6∈ B♦, then x +

∑n
i=1 Nqei ⊆ Nn \B♦.

43

Let c := d + q. Furthermore, let

Nn
>c := {x ∈ Nn : each component of x is > c}

and S>c := S ∩ Nn
>c . Note that

S = S>c ∪
n⋃

i=1

c−1⋃
`=0

Si ,`.

Since, by assumption, all sections Si ,` of S are semi-diced, in order to show that S is
semi-diced it suffices to show that S>c is semi-diced. The remainder of the proof is
devoted to showing that S>c is semi-diced.

Recall that v = k · e1. For x = (x1, ... , xn) ∈ Nn let

〈x〉v>d := {x + j · v : j ∈ Z such that x1 + j · k > d}

Let

S (1) := {x ∈ S>c : 〈x〉v>d ⊆ S} and

S (2) := S>c \ S (1).

Note that S>c = S (1) ∪ S (2). In order to show that S>c is semi-diced, it therefore
suffices to show that S (1) is semi-diced and to find a semi-diced set S ′ such that S (2) ⊆
S ′ ⊆ S>c . To this end let us consider the set

T := {x ∈ Nn
>c : 〈x〉v>d ⊆ S or 〈x〉v>d ⊆ Nn \ S}

and the cube

C := { x = (x1, ... , xn) ∈ Nn :

c 6 xi < c + q, for each i ∈ {1, ... , n} }.

Note that T ⊇ S (1).

Claim B.14. For all x ∈ C \ T , the following is true:
If x ∈ S , then x +

∑n
i=1 Nqei ⊆ S .

If x 6∈ S , then x +
∑n

i=1 Nqei ⊆ Nn \ S .

Proof. Let x ∈ C \ T . Since x 6∈ T , there exist x ′, x ′′ ∈ 〈x〉v>d with x ′ ∈ S and
x ′′ 6∈ S . By choice of C and q we obtain that there must exist integers j+ and j− that
have the following three properties:

• 0 6 j+ < q
k and 0 > j− > q

k ,

• x ∈ S ⇐⇒ x + j+ · v ∈ S

⇐⇒ x + (j+ + 1) · v 6∈ S ,

• x ∈ S ⇐⇒ x + j− · v ∈ S

⇐⇒ x + (j− − 1) · v 6∈ S .

44

Let j+ and j− be chosen such that these conditions are met and |j+| and |j−| is as small
as possible. Clearly, for any j with j− 6 j 6 j+ we have that x+j ·v ∈ S ⇐⇒ x ∈ S .

Now let y be an arbitrary element in x +
n∑

i=1

Nqei . It suffices to show that x ∈

S ⇐⇒ y ∈ S .
The proof of “=⇒” proceeds as follows. If x ∈ S , then the following is true: x+j+·v ∈
B+, x+j− ·v ∈ B−, and x+jv 6∈ B+∪B− for any j with j− < j < j+. By Claim B.13
we obtain that y + j+ · v ∈ B+, y + j− · v ∈ B−, and y + jv 6∈ B+ ∪ B− for any
j with j− < j < j+. Thus, Definition B.10 tells us that y + j · v ∈ S for all j with
j− 6 j 6 j+. In particular, y ∈ S .

The proof of “⇐=” proceeds as follows. If x 6∈ S , then the following is true:
x + (j+ + 1) · v ∈ B−, x + (j−− 1) · v ∈ B+, and x + j · v 6∈ B+ ∪B− for any j with
j− 6 j 6 j+. By Claim B.13 we obtain that y+(j++1)·v ∈ B−, y+(j−−1)·v ∈ B+,
and y + j · v 6∈ B+ ∪ B− for any j with j− 6 j 6 j+. Thus, Definition B.10 tells us
that y + j · v 6∈ S for any j with j− 6 j 6 j+. In particular, y 6∈ S . This completes the
proof of Claim B.14.

Claim B.15. T =
⋃

x∈C∩T

x +
n∑

i=1

Nqei . In particular, T is semi-diced.

Proof. Let y = (y1, ... , yn) ∈ Nn
>c . Consider the particular element x = (x1, ... , xn) ∈

C where xi ≡ yi [q], for every i ∈ {1, ... , n}. Obviously,

y ∈ x +
n∑

i=1

Nqei .

It suffices to show that x ∈ T ⇐⇒ y ∈ T .
The proof of “=⇒” proceeds as follows: If x ∈ T , then (by definition of T), we

have 〈x〉v>d ⊆ S or 〈x〉v>d ⊆ Nn \S . In particular, this implies that 〈x〉v>d ⊆ Nn \B♦, for
any ♦ ∈ {+,−}. By Claim B.13 we obtain that 〈y〉v>d ⊆ Nn \B♦, for any ♦ ∈ {+,−}.
Thus, either 〈y〉v>d ⊆ S or 〈y〉v>d ⊆ Nn \ S . I.e., y ∈ T .

The proof of “⇐=” follows analogously.

Claim B.16. S (1) is semi-diced.

Proof. It is straighforward to verify that S (1) has property (∗) with respect to the set
{v}. Lemma B.9 thus tells us that in order to show that S (1) is semi-diced, it suffices
to show that every section S

(1)
1,` (for any ` ∈ N) is semi-diced.

Note that S (1)
1,` = S1,` ∩ T . By assumption we know that every section S1,` of S

is semi-diced, and by Claim B.15 we know that T is semi-diced. Since the class of
semi-diced sets is closed under intersection (cf., Lemma B.3), we therefore obtain that
S

(1)
1,` is semi-diced.

Claim B.17. The set

S ′ :=
⋃

x∈S∩(C\T)

x +
n∑

i=1

Nqei

45

is semi-diced, and S (2) ⊆ S ′ ⊆ S .

Proof. S ′ is semi-diced by definition. Due to Claim B.14, S ′ ⊆ S . It remains to show
that S (2) ⊆ S ′. To this end, consider an arbitrary y ∈ S (2) = S>c \ S (1). In particular,
y 6∈ T .

Consider the particular element x = (x1, ... , xn) ∈ C where xi ≡ yi [q], for every
i ∈ {1, ... , n}. Obviously, y ∈ x +

∑n
i=1 Nqei .

Since y 6∈ T , Claim B.15 tells us that x 6∈ T . Thus, Claim B.14 (together with
the fact that y ∈ S) tells us that x ∈ S . By definition of S ′, we then have that x +∑n

i=1 Nqei ⊆ S ′, and hence y ∈ S ′.

In summary, we know that S>c = S (1) ∪ S ′, and S (1) and S ′ are semi-diced. Thus,
S>c is semi-diced, and the proof of Theorem 4.7 is complete.

B.5 Proof of Proposition 4.2
We actually prove a result slightly stronger than Proposition 4.2. For formulating this
result in the next lemma, we need the following notation.

Definition B.18. A language L is called +-inv-FO(<)-definable in a language M iff if
there exists a sentence ϕ of FO(<,≺, +) such that for any string u ∈ M and any two
σ[+]-expansions u1 and u2 of u we have u1 |= ϕ iff u2 |= ϕ.

Note that Proposition 4.2 is an immediate consequence of the following lemma.

Lemma B.19. Let n ∈ N>1, let w1, ... ,wn ∈ Σ∗ such that |w1| = · · · = |wn| > 1,
let α1, ... ,αn+1 ∈ Σ∗, and let M := α1 w

∗
1 α2 w

∗
2 · · · αn w

∗
n αn+1. Every language

L ⊆ M that is +-inv-FO(<)-definable in M is regular.

The proof of Lemma B.19 follows the line sketched in Section 4.2. We recall here
the main steps and provide the missing details.

Recall that for α := (α1, ... ,αn+1) and w := (w1, ... ,wn) we use the following
notation:

• Mw
α = α1 w

∗
1 α2 w

∗
2 · · · αn w

∗
n αn+1.

• For L ⊆ Mw
α , the set S w

α (L) ⊆ Nn consists of all vectors x = (x1, ... , xn) ∈ Nn

such that the string α1 w
x1
1 α2 w

x2
2 · · · αn w

xn
n αn+1 associated to x belongs to L.

Proof of Lemma B.19:
Let M := Mw

α . Fix a language L ⊆ M that is +-inv-FO(<)-definable in M . Let
S ⊆ Nn be S w

α (L).
Our goal is to show that L is regular. By Theorem 4.5, it suffices to show that S is

semi-diced. By Theorem 4.7 it suffices to show that S has the properties (a) and (b)
stated in Theorem 4.7. I.e., it suffices to show that

(a) every section of S is semi-diced, and

46

(b) there is a finite set V ⊆ Nn \ {0} such that every element in V has exactly one
non-zero coordinate and ∀K ∈ N,∃` ∈ N such that the following is true: ∀x ∈ Nn

with ||x || > `, ∃v ∈ V such that NK (x) and NK (x + v) are identical with respect
to S .

The most difficult part is to show property (b). Property (a) then follows essentially by
induction on n. We split the proof of (b) and (a) into two claims.

Claim B.20. S has property (b).

Proof. By Lemma 4.4, S is semi-linear. Let U ⊆ Nn \ {0} be the finite set given by
Lemma 4.6 for S .

Let V be defined as in (16), i.e.,

V := { ||u|| · ei : u ∈ U and i ∈ supp(u) },

where ei is the unit vector of Nn which has a 1 in its i-th component and 0s in all other
components. Clearly, V is a finite subset of Nn, and every element in V has exactly
one non-zero coordinate.

All we need to show is that V has the following property:

∀K ∈ N,∃` ∈ N such that the following is true: ∀x ∈ Nn with ||x || > `,
∃v ∈ V such that NK (x) and NK (x + v) are identical with respect to S .

Let K0 := max{||v || : v ∈ V }. Now let K ∈ N be an arbitrary number. Let
K̂ := K + K0. Choose ` := ˆ̀ to be the number obtained from Lemma 4.6 for the
number K̂ .

Now let x ∈ Nn be an arbitrary vector with ||x || > `. By Lemma 4.6 we obtain an
u ∈ U such that for all j ∈ N and for x (j) := x + ju, NK̂ (x) and NK̂ (x (j)) are identical
with respect to S .

If |supp(u)| = 1, then u ∈ V , and by choosing v := u we obtain that x + v = x (1),
and thus NK (x) and NK (x + v) are identical with respect to S .

For the remainder of this proof we consider the case that |supp(u)| > 2. For
simplicity in notation we assume w.l.o.g. that supp(u) = {1, ... , t} for some t ∈ N
with 2 6 t 6 n.

We choose v := ||u|| · e1. By (16) we have v ∈ V . Our goal is to prove that NK (x)
and NK (x+v) are identical with respect to S . To this end, let us fix an arbitrary z ∈ Zn

with ||z || 6 K . We need to show that x + z ∈ S ⇐⇒ x + v + z ∈ S . We will see
that this is a consequence of:

Claim 4.8. There exists a J ∈ N such that
x + Ju + u + z ∈ S ⇐⇒ x + Ju + v + z ∈ S .

Before proving this claim, let us point out how to use the claim in order to show
that x + z ∈ S ⇐⇒ x + v + z ∈ S .

Let J be chosen according to Claim 4.8. We know that NK̂ (x), NK̂ (x (J)), and
NK̂ (x (J+1)) are identical with respect to S . Furthermore, ||z || 6 K and ||v || 6 K0,

47

thus ||z + v || 6 K + K0 = K̂ . Therefore,

x + z ∈ S ⇐⇒ x (J+1) + z ∈ S (1)
⇐⇒ x (J) + u + z ∈ S (2)
⇐⇒ x (J) + v + z ∈ S (3)
⇐⇒ x + v + z ∈ S (4).

Here, equivalence (1) holds since NK̂ (x) and NK̂ (x (J+1)) are identical w.r.t. S . Equiv-
alence (2) holds since x (J+1) = x (J) + u. Equivalence (3) holds due to Claim 4.8.
Equivalence (4) holds since NK̂ (x (J)) and NK̂ (x) are identical w.r.t. S .

In summary, we obtain that NK (x) and NK (x + v) are identical with respect to S .
Therefore, in order to finish the proof of Claim B.20, it suffices to prove Claim 4.8.

Proof of Claim 4.8:
By the assumption of Lemma B.19 we are given strings α1, ... ,αn+1 ∈ Σ∗ and strings
w1, ... ,wn ∈ Σ∗ such that |w1| = · · · = |wn| > 1.

Let ` := max{|w1|, |α1|, ... , |αn+1|}. We consider the alphabet

∆ := Σ× {w ,α} × {1, ... , n+1} × {1, ... , `}. (22)

With each of the strings wi (resp., αi) we associate a string w̃i (resp., α̃i) in ∆∗ as
follows:

• If wi = wi ,1wi ,2 · · ·wi ,`i with wi ,j ∈ Σ, then w̃i := w̃i ,1w̃i ,2 · · · w̃i ,`i with w̃i ,j :=
(wi ,j ,w , i , j).

• If αi = αi ,1αi ,2 · · ·αi ,si with αi ,j ∈ Σ, then α̃i := α̃i ,1α̃i ,2 · · · α̃i ,si with α̃i ,j :=
(αi ,j ,α, i , j).

For each x = (x1, ... , xn) ∈ Nn let

W̃(x) := w̃ x1
1 w̃ x2

2 · · · w̃
xn
n ∈ ∆∗.

Aiming at applying Lemma A.2 we choose ∆ as in equation (22), and Γ := {0i , 1i , 2i :
i ∈ {2, ... , t}}. We let k ′ := 1 + qr (ϕ), where ϕ is the +-inv-FO(<)-sentence that,
by assumption, defines language L in M . Furthermore, we let

H := α̃1 α̃2 · · · α̃n+1 W̃(x + z),

G := ε,

U := W̃(u).

Note that |U| > 1. For each γ ∈ Γ, the string Uγ is defined as follows: For every
i ∈ {2, ... , t},

U0i := U,

U1i := W̃(u + e1 − ei),

U2i := W̃(u − e1 + ei).

48

Note that |Uγ | = |U| for every γ ∈ Γ (since |w̃1| = · · · = |w̃n|).
We choose m := |U|. Let h, g , k ′′ and r := r(m, h, g , k ′′) and P ⊆ N and ij (for

j ∈ N) be chosen as in Lemma A.2.
We let d ∈ N be large enough such that (v ,<) ≈r (w ,<) for the strings

v := 0d
2 0u2

2 1d2 2d
2 0d2 0u3

3 1d3 2d3 · · · 0dt 0utt 1d
t 2dt

and
w := 0d

2 1u2
2 1d

2 2d
2 0d2 1u3

3 1d3 2d3 · · · 0dt 1utt 1d
t 2dt

(an easy EF-game argument shows that any d > 2r will do, see e.g. [Lib04]). Let
D = dv = dw be the length of each of these strings, i.e., D = 3d · (t−1) +

∑t
i=2 ui .

Let V and W be chosen as in Lemma A.2, i.e., (recall that G = ε)

V = H U i0
(
Qj U

ij
)
j=1,...,D

and

W = H U i0
(
Rj U

ij
)
j=1,...,D

where, for each j > 1 and each γ ∈ Γ the following is true: If γ is the j-th letter in v
(respectively, w), then Qj = Uγ (respectively, Rj = Uγ).

Aiming at applying part (b) of Lemma A.2, we let, for each a ∈ Σ, ψa(x) be a
(quantifier-free) formula that states that there exists (j1, j2, j3) ∈ {w ,α}×{1, ... , n+1}×
{1, ... , `} such that the letter at position x is (a, j1, j2, j3) ∈ ∆: The formula ψa(x)
is simply the disjunction of the formulas P(a,j1,j2,j3)(x) for all (j1, j2, j3) ∈ {w ,α} ×
{1, ... , n+1} × {1, ... , `}.

Then, the strings V ′ and W ′ defined in Lemma A.2 are identical to the strings V
and W , where each letter in ∆ is restricted to its first component.

We let ψOrd(x , y) be a formula which, when interpreted in (V ,<, +,P) and (W ,<
, +,P), defines a linear order on the domain of V and W such that when reading the
letters of V and W according to this particular linear order, one obtains strings that
belong to

α̃1 w̃
∗
1 α̃2 w̃

∗
2 · · · α̃n w̃

∗
n α̃n+1.

By our particular choice of the alphabet ∆, it is straightforward to see that this can be
formalized by a quantifier-free formula ψOrd(x , y).

Furthermore, we let ψSucc(x , y) be a first-order formula (of quantifier rank 1) that
defines the successor relation that corresponds to the linear order defined by ψOrd(x , y).

Let V ′′ and W ′′ be chosen as in Lemma A.2 (b). I.e., V ′′ and W ′′ are the strings
obtained from reading the letters of V ′ and W ′ according to the successor relation
defined by ψSucc. It is straightforward to see that V ′′ and W ′′ both belong to M =
Mw
α = α1 w

∗
1 α2 w

∗
2 · · · αn w

∗
n αn+1.

From Lemma A.2 (b) (ii) we obtain that V ′′ and W ′′ satisfy the same +-inv-FO(<
)-sentences of quantifier rank at most k := k ′ − 1. Since, by assumption, ϕ is a
+-inv-FO(<)-sentence of quantifier rank k that defines the language L in M , we obtain
that V ′′ ∈ L ⇐⇒ W ′′ ∈ L. Thus, if yV and yW are elements in Nn such that

V ′′ = α1 w
yV ,1

1 α2 w
yV ,2

2 · · · αn w
yV ,n
n αn+1,

W ′′ = α1 w
yW ,1

1 α2 w
yW ,2

2 · · · αn w
yW ,n
n αn+1,

49

then we have
yV ∈ S ⇐⇒ yW ∈ S . (23)

Now let ỹV and ỹW be the vectors in Nn which, for each i ∈ {1, ... , n}, indicate in
their i-th component the number of copies of w̃i that occur in V and W , respectively.
Note that

V ′′ = α1 w
ỹV ,1

1 α2 w
ỹV ,2

2 · · · αn w
ỹV ,n
n αn+1,

W ′′ = α1 w
ỹW ,1

1 α2 w
ỹW ,2

2 · · · αn w
ỹW ,n
n αn+1.

Therefore, from equation (23) we obtain that ỹV ∈ S ⇐⇒ ỹW ∈ S . To finish the
proof of Claim 4.8, it thus suffices to show that there exists a J ∈ N such that

ỹV = x (J) + u + z and ỹV = x (J) + v + z .

To this end, note that

ỹV =

x + z +
(D∑

j=0

ij
)
· u + 3d(t − 1) · u

︸ ︷︷ ︸
=: y ′

+
(t∑

i=2

ui
)
· u

and

ỹW = y ′ +
t∑

i=2

(
ui · (u + e1 − ei)

)
.

Note that v = ||u|| · e1 = u +
∑t

i=2

(
ui · (e1 − ei)

)
.

Therefore,

t∑
i=2

(
ui · (u + e1 − ei)

)
=
((t∑

i=2

ui
)
− 1
)
· u + v .

For

J :=
(D∑

j=0

ij
)

+ 3d(t − 1) +
((t∑

i=2

ui
)
− 1
)

we thus obtain that ỹV = x + z + J · u + u and ỹW = x + z + J · u + v . I.e.,

ỹV = x (J) + u + z and ỹW = x (J) + v + z .

Thus, the proof of Claim 4.8 — and hence also the proof of Claim B.20 — is complete.

We are now ready to finish the proof of Lemma B.19, i.e., to show the following:

Claim B.21. S has property (a) and (b), i.e., S is semi-diced.

50

Proof. We proceed by induction on n. From Lemma 4.4, we know that the set S =
S w
α (L) ⊆ Nn is semi-linear.

For the induction base n= 1 note that every semi-linear set is a finite union of sets
of the form m + Np, where m, p ∈ N. Note that since n = 1, each of these sets is
diced, and thus S is semi-diced. Theorem 4.7 therefore tells us that S has property (a)
and (b).

For the induction step let n > 2. Let w1, ... ,wn, α1, ... ,αn+1, and M be chosen as
in the assumption of Lemma B.19, and let α := (α1, ... ,αn+1) and w := (w1, ... ,wn).
Let L ⊆ M be a language that is +-inv-FO(<)-definable in M . Our aim is to show
that the set S = S w

α (L) ⊆ Nn has property (a) and (b) (i.e., by Theorem 4.7, S is
semi-diced).

From Claim B.20 we already know that S has property (b). For showing that S
also has property (a), we choose i ∈ {1, ... , n} and ` ∈ N, and show that the set Si ,`
is semi-diced. For simplicity in notation, we only consider the case where i = n (the
proof for i < n is analogous).
Let w ′ := (w1, ... ,wn−1) and α′ := (α1, ... ,αn−1,α′n) where α′n := αn w

`
n αn+1.

Clearly, for every x = (x1, ... , xn−1) ∈ Nn−1 we have Ww ′

α′ (x) = Ww
α (x , `),

where

Ww′

α′ (x) := α1 w
x1
1 α2 w

x2
2 · · · αn−1 w

xn−1
n−1 α′n,

Ww
α (x , `) := α1 w

x1
1 α2 w

x2
2 · · · αn−1w

n−1
n−1 αn w

`
n αn+1.

Let us consider the set Sn,` = {y = (y1, ... , yn−1, `) : y ∈ S} and the language L′ :=

{Ww
α (y) : y ∈ Sn,`} = {Ww ′

α′ (x) : (x , `) ∈ Sn,`}. (24)

Clearly, L′ ⊆ M ′ := Mw ′

α′ , and L′ is +-inv-FO(<)-definable in M ′ (by the same
+-inv-FO(<)-sentence that, by assumption, defines L in M).

From the induction hypothesis we obtain that the set S ′ := S w ′

α′ (L′) ⊆ Nn−1 has
property (a) and (b), i.e., S ′ is semi-diced. Note that

S ′ = {x ∈ Nn−1 : Ww ′

α′ (x) ∈ L′}
eq. (24)

= {x ∈ Nn−1 : (x , `) ∈ S}.

Thus, Sn,` = S ′ × {(`)}. We already know that S ′ is semi-diced. Consequently, also
Sn,` is semi-diced. This completes the proof Claim B.21 and thus also the proof of
Lemma B.19.

B.6 Proof of Theorem 4.1
In fact, we even get a result slightly stronger than Theorem 4.1. The following formu-
lation of this result uses the notation introduced in Definition B.18.

Theorem B.22. Let n ∈ N>1, and let w1, ... ,wn ∈ Σ∗. Every language L ⊆ w∗1 w
∗
2 · · ·w∗n

that is +-inv-FO(<)-definable in w∗1 w
∗
2 · · ·w∗n is regular.

51

Note that Theorem 4.1 is an immediate consequence of Theorem B.22. The proof
of Theorem B.22 can be obtained as an easy consequence of Lemma B.19 from Sec-
tion B.5:

Proof of Theorem B.22:
Let L ⊆ w∗1 w

∗
2 · · ·w∗n be +-inv-FO(<)-definable in w∗1 w

∗
2 · · ·w∗n by a +-inv-FO(<)-

sentence ϕ. W.l.o.g. we can assume that each wi is nonempty, i.e, |wi | > 1.
Let ` := lcm{|w1|, ... , |wn|}. For each i ∈ {1, ... , n} let `i := `

|wi | , let ŵi := w `i
i ,

and for each j ∈ [`i] = {0, ... , `i−1} let αi ,j := w j
i .

Clearly, for J := [`1]× · · · × [`n] we have w∗1 w
∗
2 · · ·w∗n =⋃

(j1,...,jn)∈J

α1,j1 ŵ
∗
1 α2,j2 ŵ

∗
2 · · · αn,jn ŵ

∗
n︸ ︷︷ ︸

=: Mj for j := (j1, ... , jn)

. (25)

For each j ∈ J let Lj := L ∩ Mj . Note that for every word w ∈ Mj we have w ∈
Lj ⇐⇒ w |= ϕ. Thus, Lj is +-inv-FO(<)-definable in Mj . Furthermore, |ŵ1| =
· · · = |ŵn| > 1. Thus, we obtain from Lemma B.19 (with αn+1 being the empty
word) that Lj is regular. Since L =

⋃
j∈J Lj and since the class of regular languages

is closed under union, we obtain that L is regular. Thus, the proof of Theorem B.22 is
complete.

C Proofs omitted in Section 5

C.1 Proof of Theorem 5.1
Proof of Theorem 5.1 (continued):
Let L be a commutative language that is definable in +-inv-FO(<). Let Σ be the
alphabet of L, let n := |Σ|, and let σ1, ...σn be an enumeration of all letters in Σ.

Let L′ := L ∩ σ∗1σ∗2 · · ·σ∗n . Clearly, L′ is +-inv-FO(<)-definable (since, by as-
sumption, L is definable in +-inv-FO(<) and, obviously, σ∗1σ

∗
2 · · ·σ∗n is definable in

FO(<)). By Theorem 4.1 we obtain that L′ is regular. Since L is commutative, we
know that L = c(L′). From Theorem 5.2 we obtain that L is regular.

C.2 Proof of Theorem 5.4
We will make use of the following pumping lemma for languages definable in +-inv-FO(<
).

Lemma C.1. Let L be a language definable in +-inv-FO(<). Let u, v ,w1,w2,w3 be
five words of Σ∗. Let

δu = |v |·(|u|+ |v |) and δv = |u|·(|u|+ |v |).

Then we have: ∀l ∈ N, ∃ν ∈ N such that

w1u
ν+lδuw2v

ν−lδvw3 ∈ L iff w1u
νw2v

νw3 ∈ L. (26)

52

Proof. We assume w.l.o.g. that |u| > 1 and |v | > 1 (note that the lemma’s statement is
trivial if |u| = 0 or |v | = 0).

Let α = |u|, β = |v |, and z = αβ. Let k be the quantifier rank of the +-inv-FO(<)
formula defining L, and choose k ′ := k + 1.

Aiming at applying Lemma A.2, we let Γ := {0, 1} and

∆ := Σ ∪ {(a, u) | a ∈ Σ}
∪ {(a, v) | a ∈ Σ}
∪ {(a,w1) | a ∈ Σ}
∪ {(a,w2) | a ∈ Σ}
∪ {(a,w3) | a ∈ Σ}.

With each of the strings u, v ,w1,w2,w3 we associate a string ũ, ṽ , w̃1, w̃2, w̃3 of ∆∗ by
using the letters marking the string it belongs to.

We further let

H := w̃1w̃2w̃3, G := ε,

U := (ũṽ)z , U0 := ũδu , U1 = ṽδv .
(27)

We choose m := |U| and note that m > 1 and |U| = |U0| = |U1|. We let h, g , k ′′ and
r := r(m, h, g , k ′′) and P = {p1, p2, ...} ⊆ N and ij (for j ∈ N) be chosen according
to Lemma A.2.

Now fix an arbitrary l ∈ N, and let d ∈ N be a large enough number such that for
all d0, d1 > d ,

0d0 1d1 ≈r 0d0+l 1d1−l . (28)

An easy EF-game argument shows that any d > 2r+l will do, see e.g. [Lib04].
We choose

d0 := d ·α, d1 := d ·β, d ′ := d0 + d1. (29)

Notice that δu·d0 = δv ·d1 = d ·α·β·(α + β), and that both d0 and d1 are greater
than d (since α 6= 0 and β 6= 0).

Recall that according to Lemma A.2, i0, i1, ... , id′ are the following numbers: i0 =
p1−h
m , and ij =

pj+1−pj
m − 1 for all 1 6 j 6 d ′. We set

ν = z ·(i0 + i1 + · · ·+ id′) + δu·d0. (30)

Now let V and W be chosen according to Lemma A.2 i.e.,

V = w̃1w̃2w̃3(ũṽ)
zi0
(
ũδu (ũṽ)zij

)d0

j=1

(
ṽδv (ũṽ)zij

)d′
j=d0+1

W = w̃1w̃2w̃3(ũṽ)
zi0
(
ũδu (ũṽ)zij

)d0+l

j=1

(
ṽδv (ũṽ)zij

)d′
j=d0+l+1

Note that the number of occurences of ũ in V is ν, and the number of occurrences
of ṽ in V is ν, while the number of occurrences of ũ and ṽ in W is, respectively, ν+δu l
and ν − δv l .

53

Aiming at applying part (b) of Lemma A.2 we let, for each a ∈ Σ, ψa(x) be the
quantifier-free formula satisfied by all positions x whose label is either a or (a, u) or
(a, v) or (a,wi) for i ∈ {1, 2, 3}.

We let ψOrd(x , y) be a formula which, when interpreted in (V ,<, +,P) and (W ,<
, +,P), defines a linear order on the domain of V and W such that, when reading the
letters of V and W according to this particular linear order, one obtains strings that
belong to

w̃1 ũ
∗ w̃2 ṽ

∗ w̃3.

By our particular choice of the alphabet ∆, it is straightforward to see that this can be
formalized by a quantifier-free formula ψOrd(x , y).

Furthermore, we let ψSucc(x , y) be a first-order formula (of quantifier-rank 1) that
defines the successor relation that corresponds to the linear order defined by ψOrd(x , y).

Then, the strings V ′′ and W ′′ defined in Lemma A.2 are:

V ′′ = w1 u
ν w2 v

ν w3,

W ′′ = w1 u
ν+δu l w2 v

ν−δv l w3.
(31)

Now, by Lemma A.2 we know that V ′′ and W ′′ satisfy the same +-inv-FO(<)-
sentences of quantifier-rank at most k ′ − 1. Thus, by our choice of k ′ we obtain that
V ′′ ∈ L iff W ′′ ∈ L. This completes the proof of Lemma C.1.

The following notation will be useful for our proof of Theorem 5.4.
Let A be a deterministic pushdown-automaton (DPDA, for short) whose set of

states is Q , and whose stack alphabet is Γ. A configuration of A is a pair (q, γ) where
q ∈ Q and γ ∈ Γ∗ is the content of the stack. The type of a configuration (q, γ) is the
pair (q,S) where S is the top symbol of the stack γ. Because A is deterministic, for
each w ∈ Σ∗ there is a unique type reached by A after reading w , denoted by τA(w).
Given a string w ∈ Σ∗ we say that w is a loop for the type (q,S) if, when starting in
the configuration (q,S) (where the stack contains only the symbol S), A ends in the
same configuration (q,S) after reading w .

Definition C.2. Let A be a DPDA, and let L be the language accepted by A. A tuple
(u, v ,w1,w2) is a pumping pair for L if

1. w2 is a loop for τA(w1u),

2. uw2v is a loop for τA(w1),

3. τA(w1) = τA(w1u), and

4. τA(w1uw2) = τA(w1uw2v).

Note that if (u, v ,w1,w2) is a pumping pair for L, then also (u, v ,w1u,w2) is a
pumping pair for L.

We will make use of the following pumping lemma for deterministic context-free
languages:

54

Lemma C.3. Let L be a deterministic context-free language recognized by a DPDA A.
Let (u, v ,w1,w2) be a pumping pair for L. Then, for all w3 ∈ Σ∗ and all k , l ∈ N we
have:

w1u
kulw2v

lw3 ∈ L iff w1u
kw2w3 ∈ L. (32)

Proof. By induction on l , using Definition C.2, one easily sees that ulw2v
l is a loop

for τA(w1). By induction on k , using Definition C.2 we also obtain that τA(w1) =
τA(w1u

k). The lemma then follows easily.

We are now ready to prove a pumping lemma for deterministic context-free lan-
guages definable in +-inv-FO(<).

Lemma C.4. Let L be a deterministic context-free language definable in +-inv-FO(<).
Let (u, v ,w1,w2) be a pumping pair for L, and let δ = (|u|+ |v |)2.
Then, for all w3 ∈ Σ∗ and for all l ∈ N we have:

w1uw2vw3 ∈ L iff w1uu
lδw2vw3 ∈ L. (33)

Proof. Fix w3 and l .
Since L is definable in +-inv-FO(<), we can apply Lemma C.1 with l , and we get

a number ν ∈ N such that

w1u
ν+lδuw2v

ν−lδvw3 ∈ L iff w1u
νw2v

νw3 ∈ L. (34)

Notice that δ = δu +δv . Since L is deterministic context-free, applying Lemma C.3
to the left hand side of (34) yields:

w1u
ν+lδuw2v

ν−lδvw3 ∈ L iff w1u
ν+lδw2v

νw3 ∈ L

iff w1uu
lδw2vw3 ∈ L.

(35)

Applying Lemma C.3 to the right hand side of (34) yields:

w1u
νw2v

νw3 ∈ L iff w1uw2vw3 ∈ L. (36)

Now, combining (34), (35), and (36) concludes the proof of Lemma C.4.

For the proof of Theorem 5.4 we use the following notation:
If L is a language, then two words w and w ′ are said to be L-equivalent if ∀γ,wγ ∈

L iff w ′γ ∈ L. We are now ready to conclude the proof of Theorem 5.4.
The next notation is taken from [Val75]. A word u is said to be null-transparent for

L if it satisfies the following:

∀x , y ∈ Σ∗, ∀m, n ∈ N,

if |y | < min{m, n}
then xumy ∈ L iff xuny ∈ L.

(37)

We will use the next lemma, proved by Valiant in [Val75] (there, the lemma was
used in order to show the decidability of the problem whether a given deterministic
context-free language is regular).

55

Lemma C.5 (Implicit in [Val75]). If L is a deterministic context-free language that is
not regular, then there exist strings w1, u,w2, v such that:

1. (u, v ,w1,w2) is a pumping pair for L,

2. w1u
2w2v is not L-equivalent to w1uw2v , and

3. u is null-transparent for L.

We are finally ready for the proof of Theorem 5.4.

Proof of Theorem 5.4:
Let L be a deterministic context-free language definable in +-inv-FO(<).

Aiming at a contradiction, let us assume that L is not regular. Then, let w1, u, w2, v
be the strings given by Lemma C.5.

Since (u, v ,w1,w2) is a pumping pair for L, by Lemma C.4 we have for all w3 and
all l ∈ N:

w1uw2vw3 ∈ L iff w1uu
lδw2vw3 ∈ L. (38)

For a given w3, fix l such that lδ > |w2vw3|. Since u is null-transparent for L, using
(37) we obtain:

w1uu
lδw2vw3 ∈ L iff w1uu

lδ+1w2vw3 ∈ L. (39)

Applying, again, Lemma C.4, gives:

w1uu
lδ+1w2vw3 ∈ L iff w1u

2w2vw3 ∈ L. (40)

By combining equations (38), (39), and (40) we obtain that for all strings w3:

w1uw2vw3 ∈ L iff w1u
2w2vw3 ∈ L. (41)

Therefore, w1uw2v is L-equivalent to w1u
2w2v , contradiction Item 2 of Lemma C.5.

Thus, L is regular, and the proof of Theorem 5.4 is complete.

D Proof omitted in Section 6
Proof of Proposition 6.1:
Let us first show that L̄ is context-free: A non-deterministic pushdown automaton
(PDA) recognizing L̄ first guesses why the input string w is not in L, and then veri-
fies that its guess is correct.

In the following, by block we mean a factor of w between two consecutive #
symbols.

A string w is not in L because either (i) two consecutive blocks do not have the
same length or (ii) they correspond to non-consecutive numbers. In the case of (i) the
PDA guesses the corresponding blocks and compares their respective length using the
stack. In the case of (ii), the PDA guesses the corresponding block while maintaining
in its state whether the corresponding number is coded with least or most significant
bit first. It is then not too hard to use the stack for performing an increment.

56

It is not difficult to see that L̄ is in FO(<, +): The position of the leftmost #
provides the length n of the blocks and can then be used with addition to test whether all
blocks have the same length. Testing that two consecutive blocks represent consecutive
numbers is done bit by bit using the fact that the i th bit of a number represented by some
block is at distance exactly n − i + 2 from the i th bit of the number represented by the
following block.

That L̄ is expressible in (+, ∗)-inv-FO(<) follows along the same lines as Lemma 5.4
in [BIL+05].

57

