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We study the complexity of two central XML processing problems. The first is XPath 1.0 query
processing, which has been shown to be in PTime in previous work. We prove that both the data
complexity and the query complexity of XPath 1.0 fall into lower (highly parallelizable) complexity
classes, while the combined complexity is PTime-hard. Subsequently, we study the sources of this
hardness and identify a large and practically important fragment of XPath 1.0 for which the
combined complexity is LogCFL-complete and, therefore, in the highly parallelizable complexity
class NC2. The second problem is the complexity of validating XML documents against various
typing schemes like Document Type Definitions (DTDs), XML Schema Definitions (XSDs), and
tree automata, both with respect to data and to combined complexity. For data complexity, we
prove that validation is in LogSpace and depends crucially on how XML data is represented.
For the combined complexity, we show that the complexity ranges from LogSpace to LogCFL,
depending on the typing scheme.
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1. INTRODUCTION

The Extensible Markup Language (XML) is emerging as the global standard for data
exchange. Two of the most central problems related to processing XML data are the
problem of evaluating an XPath query and the document validation problem (i.e.,
the problem of checking whether an XML document matches a predefined type).
Both occur frequently in practice; the former because XPath forms an essential
part of query and data transformation languages such as XQuery and XSLT. As
an XQuery or an XSLT stylesheet usually contains several XPath queries, XPath
queries are also probably the most common form of queries on XML. The latter
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problem, validation, plays an important role because most web services check that
their input and their output conform to a pre-specified type (SOAP requirement).

While it is folklore that both XQuery and XSLT are Turing-complete1, the ba-
sic XPath processing and XML validation problems can be made subject to a
complexity-theoretical study. Indeed, both problems are polynomial, but so far no
detailed study of their precise complexity has been undertaken.

Many applications require the processing of large amounts of XML data using
limited (CPU and memory) resources. Efficient practical algorithms for document
validation and XPath processing are therefore crucial. In order to evaluate the
efficiency of such algorithms it is often useful to know the best possible theoretical
complexity bounds. The goal of this article is to provide such bounds.

The XPath Query Processing Problem

XPath 1.0 is the node-selecting query language central to most core XML-related
technologies that are under the auspices of the W3C, including XQuery, XSLT, and
XML Schema. Evaluating XPath queries efficiently is essential to the effectiveness
and real-world impact of these technologies. The most natural question related to
XPath query processing, its complexity, however, has received surprisingly little
attention. The first polynomial-time algorithms for XPath processing (w.r.t. both
the size of the data and the query, i.e., combined complexity, cf. [Vardi 1982]) were
proposed only recently [Gottlob et al. 2002; 2003b]. The polynomial-time result of
[Gottlob et al. 2002] was shown using a form of dynamic programming. Based on
this, algorithms were presented that run in time O(|t|4 ·|Q|2) and space O(|t|2 ·|Q|2),
where |t| denotes the size of the XML document tree and |Q| is the size of the query
[Gottlob et al. 2003b]. In [Gottlob et al. 2002], also the logical core fragment of
XPath was introduced, which was called Core XPath and which includes the logical
and navigational (path processing) features of XPath but excludes the manipulation
of data values (and thus arithmetics and string manipulations). Core XPath queries
can be evaluated in time O(|t| · |Q|), i.e. time linear in the size of the query and of
the data tree.

Now that the combined complexity of XPath is known to be polynomial, a natu-
ral question emerges, namely whether XPath is also PTime-hard, or alternatively,
whether it is in the complexity class NC and thus effectively parallelizable. In case
the problem is PTime-hard, it is interesting to understand the sources of this hard-
ness, and to find large, effectively parallelizable fragments. Apart from theoretical
interest, a precise characterization of these problems in terms of parallel complexity
classes provides us with a detailed understanding of precisely what computational
resources are required to solve them. For example, it is strongly conjectured that all
algorithms for solving PTime-hard problems actually require a polynomial amount
of working memory. However, performing XPath query evaluation and document
validation with limited memory resources is important in practice, e.g. in the con-
text of data stream processing (which obtains its relevance from the fact that the
primary purpose of XML is as a data exchange format).

1XQuery is a descendant of the Quilt language, which was deliberately chosen to be Turing-
complete [Chamberlin et al. 2000], while there is even a Turing machine simulator implemented
in XSLT available on the Web [Lyons 2001].
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Fig. 1. Combined complexity of XPath. An arrow L1 → L2 means that language L1 is a fragment
of language L2.

This article thus studies the precise complexity of XPath 1.0 query processing.
The contributions are as follows.

—We establish the combined complexity of XPath to be PTime-hard. This remains
true even for the Core XPath fragment.

—We show that positive Core XPath, i.e. Core XPath without negation, is Log-
CFL-complete, and thus highly parallelizable. Moreover, if the language is fur-
ther restricted to the path expressions fragment (PF) without conditions, the
complexity of evaluating queries is complete for NLogSpace.

—We study a fragment of PF (called PF↓) and a fragment of Core XPath with
negation, Core XPath1, which are obtained by restricting the navigational capa-
bilities (in terms of supported axes) rather than the language features. We show
that all three fragments are highly parallelizable by proving LogSpace upper
bounds.

—We extend Core XPath by the arithmetics features of XPath, to the so-called
Wadler Fragment (WF), and show that a large fragment of it, which we call
pWF (“positive”/“parallel” WF), is still in LogCFL. Thus, the evaluation of
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pWF queries can be massively parallelized in theory because LogCFL is in the
complexity class NC2 of problems solvable in time O(log2 n) with polynomially
much hardware. The main features excluded from WF to obtain pWF are nega-
tion and sequences of condition predicates.

—This leads us to an even larger fragment of XPath, called pXPath, which we
believe contains most practical XPath queries and for which query evaluation can
be massively parallelized (the combined complexity is still LogCFL-complete).

—Finally, we complement our results on the combined complexity of XPath with
a study of data complexity and query complexity. Both problems fall into low
(highly parallelizable) complexity classes (LogSpace) even in the presence of
negation in queries.
Since the data complexity of XPath is very low, details of the representation
become important, as for the validation problem. We show that the data com-
plexity of evaluating Core XPath is in TC0 on string representations of the data
trees, while it is LogSpace-complete on pointer representations.

The inclusion relationships2 between fragments discussed and their (combined)
complexities are shown in Figure 1.

The XML Validation Problem

In the second part of the paper we study the problem of checking whether an XML
document conforms to some typing scheme. For this we model XML documents by
labeled unranked ordered trees. This is classical in the literature (see for instance
the surveys [Neven 2002; Suciu 2001; Abiteboul 2001]) because it permits to for-
malize XML typing specifications and XML query languages using unranked tree
automata and their well-established theory (cf. [Comon et al. 1999; Brüggemann-
Klein et al. 2001]).

We consider various kinds of typing systems under which we study the type
checking problem for labeled trees. The first two, called DTDs and extended DTDs
(which extend DTDs by a specialization mechanism [Papakonstantinou and Vianu
2000]), are motivated by XML standards as they roughly correspond to XML DTDs
and XSDs. Both typing systems are subsumed by tree automata. We therefore
generalize our study to the main variants of tree automata, namely top-down,
bottom-up, deterministic, nondeterministic, and tree walking automata.

We consider two variants of the type checking problem. In the first, the type
is fixed and the input consists only of the data tree. In the second, the type is
also part of the input. The first case is called the data complexity of the validation
problem and gives a good approximation of the behavior of the problem when the
size of the type is assumed to be unimportant compared to the size of the data.
The second is the combined complexity and gives a more accurate measure of the
difficulty of the problem.

Our study shows that the data complexity is independent of the typing system
while the typing system used is crucial for the combined complexity bounds.

The data complexity of the validation problem depends crucially on the coding of
the input tree because the complexity classes involved are low (below LogSpace).

2In the drawing, we assume that LogSpace ⊂ NLogSpace ⊂ LogCFL ⊂ PTime.
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While the membership of a tree in a language defined by a tree automaton over a
ranked alphabet was already studied in [Lohrey 2001], the extension to unranked
trees is not immediate for coding issues. We consider two codings that reflect the
two most widely used models for representing XML. The first is a pointer structure
as in the DOM model [World Wide Web Consortium 2004]. The second is a string
corresponding to the succession of opening and closing tags encountered during the
depth-first, left-to-right traversal of the tree, as used in the SAX data model [SAX
Project Collaboration 2004].

For the DOM-like coding we show that, for all typing systems considered here,
the data complexity of the validation problem is in LogSpace and that this upper
bound is tight. For the SAX-like coding we show that, for all typing systems con-
sidered here, the data complexity problem is even in NC1. This therefore extends
the results of [Lohrey 2001] to unranked trees with the SAX-like coding. Again our
upper bound is tight.

The combined complexity of the validation problem depends on the syntax of
the typing system and we obtain complexities ranging from LogSpace-complete
to LogCFL-complete. Again the results for tree automata over ranked alphabets
can be found in [Lohrey 2001]. For nondeterministic tree automata over ranked
alphabets, [Lohrey 2001] showed that the validation problem is LogCFL-complete
using a nontrivial reduction from membership in a context-free language. We give
a new, short and elementary, proof of this result using a circuit characterization
of LogCFL, and then extend it to unranked tree automata. Note again that the
extension is not straightforward as the coding of an automaton over unranked trees
is more complex than for trees over a ranked alphabet. Indeed, each transition now
consists of a regular expression instead of a finite set of words. As a matter of fact,
for deterministic unranked tree automata, we obtain complexities that are slightly
greater than for the ranked case.

Some of the algorithms given in this article reduce the unranked tree case to the
ranked one. This is done by encoding an unranked tree into a ranked one. It is a well
known fact that there exists a mapping from unranked trees to ranked trees which
preserves the recognition by regular tree automata [Suciu 2001; Papakonstantinou
and Vianu 2003; Neven 2002]. As a side result of independent interest we show that
for this transformation, the coding of the output (ranked) tree can be computed in
TC0 (resp. LogSpace) from the coding of the input (unranked) tree if the coding is
SAX (resp. DOM), and that the output automaton can be computed in LogSpace
from the input automaton.

The article is organized as follows. Section 2 introduces the necessary background
from complexity theory and introduces (XML) trees and XPath. In Section 3 we
provide a thorough complexity analysis of XPath evaluation. We first introduce
XPath in Section 2.3. In Sections 3.1 through 3.5, we present several results on
the combined complexity of XPath, while Section 3.6 studies the data and query
complexity of XPath. Section 4 addresses the XML validation problem. We start by
introducing the necessary foundations on logic, encodings, and typing formalisms.
The membership problem for unranked tree automata is studied in Section 4.4.
Section 4.5 is devoted to the combined complexity problem for validation. Finally,
in Section 5, we give a brief discussion of our results.
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2. PRELIMINARIES

2.1 Complexity-theoretic Background

We briefly discuss the complexity classes and some of their characterizations used
throughout the article. For more thorough surveys of the related theory see [John-
son 1990; Papadimitriou 1994; Greenlaw et al. 1995].

By PTime, LogSpace, and NLogSpace we denote the well-known complex-
ity classes of problems solvable on Turing machines in deterministic polynomial
time, deterministic logarithmic space, and nondeterministic logarithmic space, re-
spectively. A language (analogously, a problem) is in ULogSpace (unambiguous
LogSpace) iff there is a LogSpace-bounded nondeterministic Turing Machine
such that there is at most one accepting computation for each input.

It is a widely-held conjecture that problems complete for PTime are inherently
sequential and cannot profit from parallel computation (cf. e.g. [Greenlaw et al.
1995]). Instead, a problem is called highly parallelizable if it can be solved within
the complexity class NC of all problems solvable in polylogarithmic time on a
polynomial number of processors working in parallel [Greenlaw et al. 1995].

A simple model of parallel computation is that of Boolean circuits. By a mono-
tone circuit, we denote a circuit in which only the input gates may possibly be
negated. All other gates are either ∧-gates or ∨-gates (but no ¬-gates). A family
of circuits is a sequence G0,G1,G2, . . . , where the n-th circuit Gn has n inputs. Such
a family is called LogSpace-uniform if there exists a LogSpace-bounded deter-
ministic Turing machine which, on the input of n bits 1 (the string 1n), outputs the
circuit Gn. DLogTime-uniformity is defined by means of a Turing machine that
checks in deterministic logarithmic time whether a gate is connected to another one
(cf. [Barrington et al. 1990] for details). Moreover, a family of circuits has bounded
fan-in if all of the gates in these circuits have fan-in bounded by some constant.
On the other hand, a family of monotone circuits is called semi-unbounded if all
∧-gates are of bounded fan-in (without loss of generality, we may restrict the fan-in
to two) but the ∨-gates may have unbounded fan-in.

By NCi, we denote the class of languages recognizable using LogSpace-uniform
Boolean circuit families of polynomial size and depth O(logi n) (in terms of the
size n of the input). By AC0, we denote the class of languages that can be recog-
nized by a DLogTime-uniform family of Boolean circuits of constant depth and
polynomial size in the input consisting of ∧ and ∨-gates of unbounded fan-in (and
¬-gates). TC0 additionally has MAJORITY-gates of unbounded fan-in. NC1 can
be alternatively characterized using circuits as the class of languages recognizable
by DLogTime-uniform Boolean circuits (there are no MAJORITY gates) of log-
arithmic depth and gates of bounded fan-in. (Thus, the uniformity measure used
in this article for all three classes AC0, TC0 and NC1 is DLogTime-uniformity
as in [Barrington et al. 1990].) SAC1 is the class of languages recognizable by
LogSpace-uniform families of semi-unbounded circuits of depth O(log n) (SAC1

circuits).
The following problem is known to be LogSpace-complete under AC0-reductions.

[ORD]: INPUT: a directed graph G = (V,E) which is a line
and two nodes vi, vj

OUTPUT: true iff vi < vj in the order induced by the graph.
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Proposition 2.1 [Etessami 1997]. ORD is LogSpace-complete under AC0

reductions.

LogCFL is usually defined as the complexity class consisting of all problems
LogSpace-reducible to a context-free language. LogDCFL (resp. LogUCFL) is
the analogous class of all problems LogSpace-reducible to a deterministic (resp.
unambiguous) context-free language. There are two important alternative charac-
terizations of LogCFL that we are going to use. They are recalled in Proposi-
tion 2.2 and 2.3, respectively.

Proposition 2.2 [Venkateswaran 1991]. LogCFL = SAC1. SAC1 Cir-
cuit Value is LogCFL-complete.

An auxiliary pushdown automaton is a Turing machine with a distinguished
input tape, a worktape, and a stack (of which strictly only the topmost element
can be accessed at any time). We use the acronyms AuxPDA and NAuxPDA for
its deterministic and nondeterministic versions, respectively.

Proposition 2.3 [Sudborough 1977]. LogCFL (LogDCFL) is the class of
all decision problems solvable by a NAuxPDA (an AuxPDA) with a logarithmic
space-bounded worktape in polynomial time.

Proposition 2.4 [Borodin et al. 1989]. LogCFL is closed under comple-
ment.

We have AC0 ( TC0 ⊆ NC1 ⊆ LogSpace ⊆ NLogSpace ⊆ LogCFL ⊆
NC2 ⊆ NC ⊆ PTime and LogSpace ⊆ LogDCFL ⊆ LogCFL. All inclusions
⊆ are suspected to be strict. PTime, LogCFL, LogDCFL, and NLogSpace are
closed under LogSpace-reductions. The forms of reductions used for complexity
classes are explicitly stated in the results. Roughly, we use LogSpace-reductions
for complexity classes above LogSpace and AC0 and DLogTime-reductions for
complexity classes below LogSpace. In all classes completeness is relative to many-
one reductions. We do not consider lower bounds within TC0 because no complete
problem for TC0 under many-one reductions is known [Allender 2001].

2.2 Trees

We view XML documents as unranked ordered trees in which nodes are labeled
using an alphabet Σ. Given a tree t, its number of nodes is denoted by |t|. The
rank of a node n is the number of children of n. The label of a node n is denoted
by label(n). The rank of a tree t is the maximum rank of any node n of t. A class
of trees is unranked if there is no bound on their rank. Two representations of such
trees will be considered:

Trees as strings. The second encoding is close to the model used in the SAX
interface [SAX Project Collaboration 2004]. It is the actual text representation of
an XML document, with no data values, which is a succession of opening and closing
tags. It corresponds to a depth-first, left-to-right traversal of the tree. We reuse
the notations of [Segoufin and Vianu 2002]. For each a ∈ Σ, let a itself represent
the opening tag and ā represent the closing tag for a. Let Σ̄ = {ā | a ∈ Σ}.

We associate to each labeled tree t a string representation denoted [t] and defined
inductively as follows. If t consists of just a single (root) node labeled a, then [t] =
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aā. If t consists of a root labeled a and subtrees t1 . . . tk then [t] = a[t1] . . . [tk]ā.
If T is a set of trees, we denote by L(T ) the language consisting of the string
representations of the trees in T .

Example 2.5. With this notation, the string associated to the labeled tree of
Figure 2 is rabcc̄b̄cc̄cc̄āabb̄cc̄cc̄āaār̄. 2

r

a

b

c

c c

a

b c c

a

Fig. 2. A labeled tree.

If t is a tree, the size of [t] is twice the number of nodes in t. Thus we also use
the notation |t| to denote the size of the string encoding of t.

In the string encoding, a forest is thus a “well-balanced” string over Σ ∪ Σ̄ (i.e.,
the parenthesis sequence in this string must be correct, where each pair (a, ā) with
a ∈ Σ and ā ∈ Σ̄ is considered as left and right parenthesis, respectively). This can
be checked efficiently as the following shows.

Proposition 2.6 [Barrington and Corbett 1989]. Given a word w over
the alphabet Σ ∪ Σ̄, it is decidable in TC0 whether w is well-balanced.

Trees as pointer structures. We represent trees as pointer structures roughly us-
ing the DOM encoding [World Wide Web Consortium 2004]: Each node is an object
containing its label and pointers to (i) its parent, (ii) its first child, (iii) its previous
sibling (i.e., left neighbour), and (iv) its next sibling (i.e., right neighbor).

Unless stated otherwise, we will represent trees as pointer structures.

2.3 A Brief Introduction to XPath

XPath 1.0 is a language with a large number of features and therefore somewhat
unwieldy for theoretical treatment. In this article, we restrict ourselves to intro-
ducing only some of these features, and to giving an informal explanation of their
semantics. For a detailed definition of the full XPath language, we refer to [World
Wide Web Consortium 1999], and for a concise yet complete formal definition of
the XPath semantics see [Gottlob et al. 2002].

In this section, we define two basic fragments of XPath. Core XPath, first defined
in [Gottlob et al. 2002], supports the most commonly used features of XPath, path
navigation and conditions with logical connectives, but excludes arithmetics, string
manipulations, and some of the more esoteric aspects of the language. The second
fragment, which was first discussed in [Wadler 2000], contains XPath’s logical and
arithmetic features, but excludes string manipulations. We refer to it as the Wadler
Fragment, short WF.

We start by discussing Core XPath. We sketch the fragment in terms of its
syntax and then informally discuss the semantics.
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Definition 2.7. The syntax of Core XPath is defined by the grammar

locpath ::= ‘/’ locpath | locpath ‘/’ locpath | locpath ‘ |’ locpath | locstep.
locstep ::= axis ‘::’ ntst ‘[’ bexpr ‘]’ . . . ‘[’ bexpr ‘]’.
bexpr ::= bexpr ‘and’ bexpr | bexpr ‘or’ bexpr | ‘not(’ bexpr ‘)’ | locpath.
axis ::= ‘self’ | ‘child’ | ‘parent’ |

‘descendant’ | ‘descendant-or-self’ |
‘ancestor’ | ‘ancestor-or-self’
‘following’ | ‘following-sibling’
‘preceding’ | ‘preceding-sibling’.

where “locpath” is the start production, “axis” denotes axis relations (see below),
and “ntst” denotes tags labeling document nodes or the star ‘*’ that matches all
tags (“node tests”). 2

The main syntactical feature of Core XPath are location paths . Expressions
enclosed in square brackets are called conditions or predicates .

The main application of XPath is the navigation in XML document trees. This
is done using the axis relations , natural binary relations such as “child” and “de-
scendant” between nodes, which we do not define here (but see [World Wide Web
Consortium 1999; Gottlob et al. 2002]; they also have the intuitive meanings con-
veyed by their names). The probably most common use of XPath is to compose
axis applications with selections of document nodes by their tags (“node tests”).
For instance, the XPath expression /descendant::a/child::b selects all those nodes
labeled “b” that are children of nodes labeled “a” that are in turn descendants of
the root node (denoted by the initial slash).

Conditions enclosed in square brackets allow to impose additional constraints on
node selections. For example,

/descendant::a/child::b[descendant::c and not(following-sibling::d)]

selects exactly those nodes v from the nodes in the result of /descendant::a/child::b
that have at least one3 descendant labeled “c” and do not have a right sibling in
the tree that is labeled “d” (i.e., there is no child v′ of the parent of v which follows
v in the flow of the document and is labeled “d”).

Definition 2.8. The syntax of the “Wadler Fragment” WF is defined by the
Core XPath grammar with the following extensions. “bexpr” is now

bexpr ::= bexpr ‘and’ bexpr | bexpr ‘or’ bexpr | ‘not(’ bexpr ‘)’ | locpath |
nexpr relop nexpr.

Moreover,

expr ::= locpath | bexpr | nexpr.
nexpr ::= ‘position()’ | last()’ | number | nexpr arithop nexpr.
arithop ::= ‘+’ | ‘-’ | ‘*’ | ‘div’ | ‘mod’.
relop ::= ‘=’ | ‘!=’ | ‘<’ | ‘<=’ | ‘>’ | ‘>=’.

3Location paths occurring in conditions – i.e., within square brackets – have an “exists”-semantics,
meaning that at least one node must match the location path starting from the current node.
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“expr” (rather than “locpath”) is now the start production and “number” denotes
constant real-valued numbers. 2

XPath is mainly understood as a language for selecting a subset of the nodes of an
XML document tree. Hence, we shall refer to XPath expressions also synonymously
as XPath queries. Note, however, that XPath query results can also be of different
types, namely – for the WF – numbers and Booleans (as well as character strings
for full XPath). XPath expressions are evaluated relative to a context, which by
definition is a triple of a context-node and two integers, the so-called context-position
and the context-size. For details, we refer to [World Wide Web Consortium 1999;
Gottlob et al. 2002], but consider the example query

child::a[position() + 1 = last()].

Relative to a context-triple (v, i, j), i and j are ignored when the location step
child::a selects those children of v that are labeled “a”. Let {w1, . . . , wm} be this
set of nodes, where the indices correspond to the relative order of the nodes in the
document, simply speaking4. The application of an axis causes a change of context
to which the condition [position() + 1 = last()] is applied. The condition is tried
on each of the triples (w1, 1,m), . . . , (wm,m,m). It will select all those nodes wk

for which k + 1 = m, i.e. it will select the singleton {wm−1}.
In this work, we are going to study the complexity of XPath evaluation. Formally,

we are thus considering the following decision problem: Given an XPath query Q, a
data tree t, a context ~c, and a result value r, one has to decide whether evaluating
the query Q over the data tree t for the context ~c yields the result value r.

Sometimes, the result of an XPath query is independent of a context (e.g., ab-
solute location paths). In this case, we shall use the short-hand notation Q(t) to
denote the result of evaluating Q over the data tree t.

Let C denote some complexity class and let X be some fragment of XPath. If the
above decision problem of evaluating XPath queries from the fragment X is in the
complexity class C (resp. C-hard or C-complete), then we shall say, as a short-hand,
that “the fragment X is in C” (resp. “C-hard” or “C-complete”).

Proposition 2.9 [Gottlob et al. 2002]. The XPath query evaluation prob-
lem is in PTime with respect to combined complexity.

Proposition 2.10 [Gottlob et al. 2002]. Core XPath queries can be eval-
uated in time O(|Q| · |t|), where |Q| denotes the size of the query and |t| denotes
the size of the data tree.

3. COMPLEXITY OF XPATH QUERY EVALUATION

3.1 Combined Complexity of Core XPath

Core XPath expressions always evaluate to node sets. It is therefore convenient to
consider the following modified complexity problem in our complexity analysis of
Core XPath and some sub-fragments thereof, namely: Given a Core XPath query
Q, a data tree t, a context node c, and a result node v, one has to decide whether
the node v lies in the node set that we get by evaluating the query Q on the data

4To be precise, for some axes this order is reversed, see [World Wide Web Consortium 1999].
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tree t for the context node c. It is easy to check that the complexity results obtained
in the Sections 3.1 through 3.3 carry over to the definition of the XPath evaluation
problem from Section 2.

Actually, it is easy to verify that we would get essentially the same complex-
ity results (in particular, the same upper bounds) if we considered the functional
problem of XPath evaluation rather than the decision problem, i.e.: Given a triple
(Q, t,~c ), one has to compute the result value r of evaluating the query Q over the
data tree t for the context ~c. For instance, for some fragment of (Core) XPath,
let the decision problem of XPath evaluation be in the complexity class C. Then
we could solve the functional problem for this (Core) XPath fragment by checking
in a loop over all nodes v of t whether v is in the resulting node set. Hence, this
functional problem is in LogSpaceC , i.e., in LogSpace with oracle in C.

In this section, we show that XPath and even Core XPath are PTime-hard with
respect to combined complexity, i.e. the problem of deciding, given a query Q, a
data tree t, and a node v in t, whether v ∈ Q(t).

Remark 3.1. All results presented in this article hold for data trees in which
each tree node has a single label. However, to shorten and simplify some proofs
about XPath fragments that support the child axis and conditions, it will sometimes
be convenient to assume that data tree nodes may have multiple labels.5 We can
simulate a tree t0 with multiple node labels by a tree t obtained from t0 by relabeling
each node with special label M (that is not used by t0) and adding for each node v
of t0 and each label l carried by v in t0 a new child of v labeled l to t. Now we can
check whether an M -labeled node has label l using the condition expression child::l.
(We will use the shortcut T (l) for child::l.) A query such as descendant::*[T (a) and
T (b)] on tree t0 evaluates as descendant::M [child::a and child::b].

Let C be a circuit with gates G1, . . . , Gn. In the following, C is called lay-
ered iff there is an integer k (the number of layers) and a surjective function
f : {G1, . . . , Gn} → {1, . . . , k} which maps each gate of C to its layer such that if
the output of Gi is connected to the input of Gj , then f(Gi) + 1 = f(Gj).

Theorem 3.2. Core XPath is PTime-complete w.r.t. combined complexity.

Proof. The combined complexity even of full XPath was shown to be in PTime
in [Gottlob et al. 2002], thus all we need to show is PTime-hardness. This is done
by reduction from the monotone Boolean circuit value problem, which is PTime-
complete. Note that the classical reduction from PTime-bounded Turing machines
to (monotone) Boolean circuits proving this (see e.g. the proof of Theorem 8.1 in
[Papadimitriou 1994]) only produces layered circuits.

Given an instance of this problem (a monotone Boolean circuit), let M denote
the number of input gates and let N denote the number of all other gates in the
circuit. Let the gates be named G1 . . . GM+N . Without loss of generality6, we may

5Of course, each node of an XML document tree can have only one tag, but multiple labels can
be simulated using attributes. In our lower-bound proofs we will only use a lightweight unranked
labeled tree model.
6The gates can be “sorted” to adhere to such an ordering in logarithmic space. This is trivial if
the circuit is layered, which we may assume by the observation made above.

11



∧ ∧ ∧

∨

∧

�

i
6

I

Y6*

K� 3 3

G3 G4G2G1

G5

(a1) (b1) (a0) (b0)

G9

G8G7G6

Fig. 3. A 2-bit full adder carry-bit circuit.

v′8 v′9

v0

v1 v2 v3 v4 v5 v6 v7 v8 v9

v′1 v′2 v′3 v′4 v′5 v′6 v′7

Fig. 4. Document tree corresponding to the carry-bit circuit.

assume that the gates G1 . . . GM+N are numbered in some order such that no gate
Gi depends on the output of another gate Gj with j > i. In particular, the input
gates are named G1 . . . GM and the output gate is GM+N .

An example of a circuit with appropriately numbered gates is shown in Figure 3.
This circuit computes the carry-bit of a two-bit full-adder, i.e. it tells whether
adding the two-bit numbers a1a0 and b1b0 leads to an overflow. The carry-bit c1 is
computed as (a1 ∧ b1) ∨ (a1 ∧ c0) ∨ (b1 ∧ c0) where c0 = a0 ∧ b0 is the carry-bit of
the lower digit (a0 and b0).

For a given instance of the monotone Boolean circuit value problem, we compute
a pair of a document tree and a Core XPath query as follows.

The document tree representing the circuit consists of a root node v0 with
M +N children v1 . . . vM+N , of which each vi again has exactly one child v′i (thus,
the tree has depth two).

Node labels are taken from the alphabet {0, 1, G,R, I1, . . . , IN , O1, . . . , ON} and
each tree node is assigned a set of such labels. This is done as follows. The root
node v0 has no labels. The nodes v1 . . . vM+N are assigned the label G each. (In a
way described later, node vi represents the value of gate Gi). Node vM+N is also
assigned label R (for “result”). Each node out of v1 . . . vM is assigned the truth
value at the input gate of the same index (i.e., out of G1 . . . GM ), respectively. This
is either the label 0 or 1. Each node vM+k with 1 ≤ k ≤ N gets the additional
label Ok. Moreover, if the output of gate Gi is an input of gate GM+k (thus, by
our gate ordering requirement, i < M + k), we add Ik to the labels of vi. The
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nodes v′1 . . . v
′
M are labeled {I1, . . . , IN , O1, . . . , ON} each and the nodes v′M+i, for

1 ≤ i ≤ N , are labeled {Ik, Ok | i < k ≤ N}.
For our carry-bit example of Figure 3 with M = 4 and N = 5, the tree is as

shown in Figure 4. The node labels are as follows:

v0: ∅ v1: {G, v(a1), I2, I3} v2: {G, v(b1), I2, I4}
v3: {G, v(a0), I1} v4: {G, v(b0), I1} v5: {G,O1, I3, I4}
v6: {G,O2, I5} v7: {G,O3, I5} v8: {G,O4, I5}
v9: {G,R,O5} v′1, v

′
2, v

′
3, v

′
4: {I1, . . . , I5, O1, . . . , O5}

v′5: {I2, . . . , I5, O2, . . . , O5} v′6: {I3, I4, I5, O3, O4, O5} v′7: {I4, I5, O4, O5}
v′8: {I5, O5} v′9: ∅

where v(a1), v(b1), v(a0), v(b0) ∈ {0, 1} are the truth values a1, b1, a0, and b0, re-
spectively, at the input gates.

The query evaluating the circuit is

/descendant-or-self::*[T (R) and ϕN ]

with the condition expressions

ϕk := descendant-or-self::*[T (Ok) and parent::*[ψk]]

ψk :=

{
child::*[T (Ik) and πk] . . . GM+k is an ∨-gate
not(child::*[T (Ik) and not(πk)]) . . . GM+k is an ∧-gate

πk := ancestor-or-self::*[T (G) and ϕk−1].

for 1 ≤ k ≤ N and ϕ0 := T (1). It uses the intuition of processing one gate out of
GM+1 . . . GM+N at a time, in the order of ascending index.

The input node for which we will check whether it is returned by our query
on our document is vM+N . Indeed, by our construction, the query will select node
vM+N iff the circuit evaluates to true, and no other node will be selected.

It is easy to see that the reduction can be effected in LogSpace. We next argue
that it is also correct.

Discussion. We use the ordering of the circuit in that we, intuitively, will
evaluate the circuit in Core XPath one gate at a time. We treat the circuit as if
layered, with all gates of a layer of the same type (“∧” or “∨”) and only exactly
one per layer with fan-in greater than one. (Our encoding permits unbounded fan-
in, including one.) Figure 5 shows this alternative view of the example circuit of
Figure 3. The N = 5 non-input gates have been aligned using five layers L1 . . . L5.
The smaller empty circles denote “dummy” gates of fan-in one, which are needed
to propagate the values of gates that are already available to the layers above. In
our encoding, intuitively, all gates of layer Lk have the same type. The type of the
dummy gates7 in layer Lk is thus determined by the type of the one gate of fan-in
greater than one (namely GM+k). In the example, all gates of layers L1 . . . L4 are
of type ∧ and the gates of layer L5 are all of type ∨.

The ϕk , ψk, and πk are condition expressions, and there is a natural meaning to
“ϕk matches node w” or equivalently “node w satisfies ϕk”, which we will denote as

7In fact, the types of gates of fan-in one do not matter in the circuit: the conjunction as well as
the disjunction of a single truth value is the identity. For this reason, and to save space, we do
not show the types of the dummy gates in Figure 5.
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Fig. 5. Circuit of Figure 3 with gates serialized.

w ∈ [[ϕk ]] below. Formally, w ∈ [[ϕk]] if and only if query /descendant-or-self::*[ϕk]
selects node w. We define w ∈ [[ψk]] and w ∈ [[πk]] analogously. This notation helps
to imagine the query (tree) being processed bottom-up.

Claim. Let 0 ≤ k ≤ N . Then, for all 1 ≤ i ≤M + k,

vi ∈ [[ϕk ]] ⇔ gate Gi evaluates to true.

This can be shown by an easy induction.
Induction start (k = 0). For a given 1 ≤ i ≤M , the gate Gi is an input gate,

whose initial value (either 0 or 1) has been assigned to the corresponding node vi

as a label. By definition, ϕ0 is the expression T (1), which selects the nodes labeled
1 and therefore vi if Gi is true. For the converse, the label 1 is not used elsewhere
in the tree besides on nodes v1, . . . , vM . Thus our claim holds for k = 0.

Induction step. Now assume that our claim holds for k−1 ≥ 0 (i.e., vi ∈ [[ϕk−1]]
iff gate Gi has been established to be true by step k − 1). We show that it also
holds for k. We proceed by computing first [[πk ]], then [[ψk]], and finally [[ϕk]].

Since πk = ancestor-or-self::*[T (G) and ϕk−1] matches the nodes both labeled G
and in [[ϕk−1]], as well as their descendants, and precisely the nodes v1 . . . vM+N

are labeled G, for 1 ≤ i ≤M + k − 1,

vi ∈ [[ϕk−1]] ⇒ vi, v
′
i ∈ [[πk ]] and vi 6∈ [[ϕk−1]] ⇒ vi, v

′
i 6∈ [[πk ]].

Hence, by induction, for 1 ≤ i ≤M + k − 1,

vi ∈ [[πk ]] ⇔ v′i ∈ [[πk ]] ⇔ gate Gi evaluates to true.

In other words, the purpose of the auxiliary path πk is to turn the property of vi

(relatively to ϕk−1) into a property of both vi and v′i (relatively to πk). This step
of “copying” the information on the truth value of Gi from vi also to v′i will turn

14



out to be crucial for treating the gate GM+k and the dummy gates on the layer k
simultaneously by a single formula ψk.

The formula ψk is at the heart of our construction and performs the actual
computation of the M + k gates in layer k. These are the “dummy” gates of fan-in
one (which just propagate the truth values of gates G1, . . . , GM+k−1 from layer
k − 1 to layer k), plus the one gate GM+k of fan-in greater than one from the
input circuit that resides in layer k. Using [[ψk]], we compute the truth value of
gate GM+k as a property of node v0 and preserve the truth values of the gates
G1, . . . , GM+k−1 as properties of the nodes v1, . . . , vM+k−1. We discuss the two
forms of gates separately:

Gate GM+k . In our document tree, a node vi is labeled Ik iff gate GM+k takes
input from gate Gi. By the assumed ordering of gates of the input circuit, if vi is
labeled Ik (that is, Gi is a fan-in gate of GM+k), then i < M + k. For this case we
already know that

vi ∈ [[πk]] ⇔ gate Gi evaluates to true.

We distinguish two cases, depending on the type of gate GM+k :

—GM+k is an ∧-gate and ψk = not(child::*[T (Ik) and not(πk)]): Here, v0 ∈ [[ψk ]]
iff all children of v0 that are labeled Ik (that is, the fan-in gates of GM+k) satisfy
πk. By induction, that is the case if and only if GM+k is true.

—GM+k is an ∨-gate and ψk = child::*[T (Ik) and πk]: Here, v0 ∈ [[ψk]] iff there is
a child of v0 labeled Ik (that is, a fan-in gate of GM+k) which satisfies πk. By
induction, that is the case if and only if GM+k is true.

Thus,

v0 ∈ [[ψk ]] ⇔ gate GM+k evaluates to true.

Dummy gates. By construction v′i has the label Ik for each 1 ≤ i < M + k.
Moreover vi has only one child (namely, v′i), so when checking whether vi ∈ [[ψk]],
it does not matter whether ψk is of the ∧- or the ∨-type. Therefore by induction
we have for 1 ≤ i < M + k,

vi ∈ [[ψk ]] ⇔ gate Gi evaluates to true.

Formula ϕk = descendant-or-self::*[T (Ok) and parent::*[ψk]] “stores” the truth val-
ues of gates Gi in nodes vi for all 1 ≤ i ≤M + k:

vi ∈ [[ϕk ]] ⇔ gate Gi evaluates to true.

Indeed, for all 1 ≤ i ≤M + k, vi ∈ [[ϕk]] if and only if

—vi is labeled Ok (thus, by the construction of the document tree, i = M + k) and
its parent (v0) satisfies [[ψk]] or

—vi has a descendant (v′i) that is labeled Ok (this is the case for 1 ≤ i < M + k)
and whose parent (vi) satisfies [[ψk]].

This proves our claim.
The overall query /descendant-or-self::*[T (R) and ϕN ] has a nonempty result

(consisting of precisely the node vM+N ) exactly if the output gate GM+N of the
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Fig. 6. Schematic design of relevant tree region and ϕk/ψk/πk-matchings made for (a) dummy
gates and (b) gates of fan-in greater than one (here, two).

circuit evaluates to true, because vM+N is the only node labeled R and vM+N ∈
[[ϕN ]] if and only if GM+N evaluates to true.

In summary, we have provided a LogSpace reduction that maps any mono-
tone Boolean circuit to a Core XPath query and a document tree such that the
query evaluated on the tree returns node vM+N precisely if the circuit evaluates to
true. As the monotone Boolean circuit value problem is P-complete, our theorem
is proven. 2

The crucial steps of the above proof are illustrated in the schematic designs of
Figure 6, which show the regions of the document tree that we are interested in, the
relevant labels, and the matchings of condition expressions ϕk , ψk, and πk at step k,
for both cases of gates (dummy gates in Figure 6 (a) and gateGM+k in Figure 6 (b)).
Figure 6 (a) shows the matchings implied by vi ∈ [[ϕk−1]] (that is, gate Gi is true
in layer k − 1), namely, vi, v

′
i ∈ [[πk ]], vi ∈ [[ψk]], and v0, vi, v

′
i ∈ [[ϕk]]. Figure 6 (b)

shows matchings that hold for gate GM+k with two fan-in gates Gi and Gj such
that vi, vj ∈ [[ϕk−1]], namely, vi, v

′
i, vj , v

′
j ∈ [[πk]], v0 ∈ [[ψk ]], and v0, vM+k ∈ [[ϕk]].

(Formula ϕk also matches other nodes above and below v1 . . . vM+k , but this does
not matter because these nodes are labeled neither G nor R.)

Corollary 3.3. Core XPath remains PTime-hard even if

(1 ) the document tree is limited to depth three and

(2 ) only the axes child, parent, and descendant-or-self are allowed.

Proof. The previous proof has the stated properties, except that it uses the
ancestor-or-self axis in the definition of πk. All we need to do is to replace ancestor-
or-self::* in πk by descendant-or-self::*/parent::*. πk then additionally matches the
root node v0, but this does not matter to the remainder of the construction because
v0 never carries an Ik label and thus never has an impact on ψk. 2

We overstated the required tree depth in Corollary 3.3 to allow for multiple
node labels to be encoded as additional children, as discussed in Remark 3.1. The
document trees of the encoding of the proof of Theorem 3.2 are only of depth two.

Note also that the queries used in the encoding essentially do not branch out
in terms of axis applications. That is, in each conjunction (“or” is not used) of
expressions, there is at most one subexpression that contains an axis application.
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3.2 Inside Core XPath

The result of the previous section is essentially negative: As Core XPath is PTime-
hard, it is considered unlikely that a parallel algorithm exists for evaluating all
queries of this language. It is thus natural to search for fragments of Core XPath
that we can show to be in NC and therefore highly parallelizable. In fact, such a
fragment is obtained by removing negation (“not”) from Core XPath. This frag-
ment will be called positive Core XPath.

For proving the desired upper bound on the complexity of positive Core XPath
and some related results in the next section, the XPath query is viewed as a tree
or, equivalently, as a term.

Definition 3.4. Let e be a Core XPath expression. W.l.o.g, we may assume
that e contains no step-expressions of the form e = χ :: a[e1] . . . [ek] with k > 1
since they can be replaced by χ :: a[e1 and . . . and ek]. This is due to the fact that
Core XPath does not contain the functions position() and last().

We define the query-tree Te (which we will denote in term notation) as follows:
Each node in Te is labeled either by a Boolean operator (∨,∧,¬) or by a step-
expression of the form χ :: a where a ∈ Σ ∪ {∗} or by the operator / indicating an
absolute location path.

Te =







/(Te1
) if e = /e1

∨(Te1
, Te2

) if e = e1 | e2
χ :: a(Te1

) if e = χ :: a/e1
χ :: a if e = χ :: a
χ :: a(∧(Te1

, Te2
)) if e = χ :: a[e1]/e2

χ :: a(∧(Te1
, self :: a)) if e = χ :: a[e1]

∧(Te1
, Te2

) if e = e1 and e2
∨(Te1

, Te2
) if e = e1 or e2

not(Te1
) if e = not(e1)

Finally, a special tag † is added for the leaf of the tree corresponding to the last
step-expression of the path-expression which does not occur inside some predicate.

2

For instance, the tree associated to the XPath expression

following :: a[descendant :: b or descendant :: c]/following :: d

is shown in Figure 7.

following :: a

∧

∨ following :: d, †

descendant :: b descendant :: c

Fig. 7. Query-tree for expression following :: a[descendant :: b or descendant :: c]/following :: d.
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This query tree will never be materialized but all queries will be parsed by doing a
partial depth-first, left-to-right traversal of the corresponding tree. A pointer to a
Core XPath expression will always point to the first character of a step-expression
or a Boolean operator and will thus correspond to a node of the query-tree.

Note that a Core XPath expression e is essentially composed of location paths
π which may occur in three different forms: π may be an operand of a Boolean
expression (e.g., “not(π)”, “π and e1”, “π or e1”), π may be a predicate condition
(e.g., e = χ :: a[π]), or π may be the main path (i.e., e = π). Now let n be a node
in the query-tree Te with label χ :: a. Then χ :: a is clearly a location step within
some location path π contained in e, i.e., π is either of the form π = π1/χ :: a/π2 or
π1/χ :: a[e′]/π2 where π1 and π2 are path-expressions consisting of k ≥ 0 location
steps. We shall refer to π1/χ :: a or π1/χ :: a[e′], respectively, as the “location
path corresponding to n”. Suppose that we want to evaluate the location path π
relatively to some context-node u. Then we shall say that a node w from the data
tree t “satisfies” the location path corresponding to n if w is indeed in the node set
resulting from the evaluation of this location path w.r.t. the context-node u.

Theorem 3.5. The combined complexity of positive Core XPath is in LogCFL.

Proof. We use Sudborough’s characterization of LogCFL ([Sudborough 1978;
1977]) and exhibit a NAuxPDA A which, on input (Q, t, c, v) – where Q is a query
from positive Core XPath, t is a data tree, c is a context-node, and v is a node in t
– decides in logarithmic space and polynomial time whether the evaluation of the
query Q over the data tree t for the context-node c yields a node-set containing v. A
will maintain a pointer p on the input XPath expression that will perform a partial
depth-first, left-to-right traversal of the query-tree TQ. This traversal is partial in
the sense that, for every node labeled with ∨, we will non-deterministically choose
one child and completely exclude the subtree rooted at the other child from our
traversal.

Moreover, A will use another pointer q on the input data tree t, such that the
next step-expression χ :: a to be evaluated along our partial traversal of TQ will be
evaluated relatively to the node pointed to by q.
A starts by setting p to the root of the input query and q to the input context

node c. In the main loop of the automaton A, the “current node” n in the query-
tree (i.e., the node pointed to by p) is processed as follows: If the label of n is /
(indicating an absolute location path), then q is set to the root node of t and p
is moved to the child node of n. If the label of n is ∨, then A guesses a number
i ∈ {1, 2} and p is moved on to the i-th child of n. In case of label ∧, the automaton
pushes the pointer q onto the stack and sets p to the first child of n. In all of these
cases, the automaton A continues the main loop for the new value of p.

Finally, suppose that the label of n is a step-expression χ :: a. Then A guesses
a node u of t such that the path from the node pointed to by q to u satisfies the
step-expression. If no such node exists then A rejects. If n contains the special tag
† then A checks that u = v holds, otherwise it rejects.

The continuation of A after processing a step-expression is as follows: If n has no
successor (i.e., n contains the special tag † and the above check u = v was positive),
then A accepts. Otherwise, q is set to the node u in t that has just been guessed.
If n has a child, then this child is the next node to be processed by A. Finally, if n
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has no child, then the successor of n in our partial depth-first traversal (recall that
of all nodes labeled with ∨, only one child is selected whereas the subtree rooted
at the other child is excluded from the traversal) must be the second child of some
ancestor of n, such that this ancestor has the label ∧. Then A pops q from the
stack and continues with this second child of the ∧-node.

It can be verified that this algorithm is correct. Suppose that A is processing
a node n labeled with a step-expression χ :: a. Of course, the node u guessed by
A satisfies the step-expression χ :: a. Moreover, the result of this step (i.e., the
node u pointed to by q) is used as the context-node for a predicate (if present)
and for the continuation of the location path after the step χ :: a. Hence, by
an easy induction argument, it can be shown that whenever A guesses a node u,
then u in fact satisfies the whole location path corresponding to the node n in the
query-tree. For the node n carrying the additional label †, the automaton checks
that the corresponding location path (which is the input XPath expression e) is
not only satisfied by “some” node u but indeed by the input node v. Note that
absolute location paths /π are handled correctly by A, i.e., π is indeed evaluated
relatively to the root of the data tree t. Likewise, Boolean operators are handled
correctly: First of all, the context-node relatively to which ∨ and ∧ are processed
is exactly the node u obtained by the last location step. For ∨ it is clearly correct
to check for only one of its operands that it is satisfied. For ∧, the handling of
the stack guarantees that also for the evaluation of the second operand the correct
context-node is used. Finally, note that the effect of the Boolean function “and” is
indeed the same as the effect of first restricting a location step by some predicate
and then continuing the location path, i.e., χ :: a[π1 and π2] is satisfied by some
node of t iff χ :: a[π1]/π2 is satisfied.

As for the complexity of A, note that, given an XPath expression as a string,
the pointer to the next node in this partial depth-first, left-to-right traversal can
be computed in LogSpace. Moreover, A uses only a constant number of pointers
to its input and thus indeed works in LogSpace. In the main loop, A processes
each node of the query-tree at most once. Moreover, the work carried out when
processing a node can be clearly done in polynomial time. In particular, the check
performed by A when processing a step-expression can be done in time O(|t|). Thus
the NAuxPDA works in time O(|e| · |t|). This proves the theorem. 2

Actually, rather than completely forbidding negation, it suffices to bound the
depth of negation in order to guarantee that the evaluation of Core XPath expres-
sions is in LogCFL.

Definition 3.6. Let e be an XPath expression. We say that “the depth of
negation of e is bounded by 0” iff the not-function does not occur at all in e. For
any k > 0, we say that “the depth of negation of e is bounded by k” iff for any
subexpression not(e′) occurring in e, the depth of negation of e′ is bounded by some
l with 0 ≤ l < k.

Theorem 3.7. The combined complexity of positive Core XPath queries aug-
mented by negation with bounded depth is in LogCFL.

Proof. We proceed by induction on the bound k of the depth of negation:
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Induction start (k = 0), i.e., the input query contains no negation at all. This
case is covered by Theorem 3.5.

Induction step. Now assume that our claim holds for k − 1 ≥ 0, i.e., on input
(Q′, t, c′, v′) (where Q′ is a Core XPath query with depth of negation bounded by
k − 1) one has to decide whether the node v′ lies in the node set that we get by
evaluating the query Q′ on the data tree t for the context node c′. For short,
we write v′ ∈ Q′(t). Recall from Proposition 2.4 that LogCFL is closed under
complement. Hence, there exists a log-space and polynomial-time NAuxPDA Āk−1

that decides the complement problem, i.e., v′ 6∈ Q′(t).
Then we construct a NAuxPDA Ak for Core XPath expressions with depth of

negation bounded by k as follows: Let (Q, t, c, v) denote the input to Ak. Note
that “not(e)” is equivalent to “not(self::*[e])” for any Core XPath expression e. (In
fact, this equivalence holds for any XPath expression e without position() and last()
function, since the self-step only alters context-position and context-size, whereas
it leaves the context-node for the evaluation of e unchanged.) Hence, w.l.o.g., we
may assume that the not-function only occurs in the form not(π) for a location
path π = self::*[e].

Analogously to the NAuxPDA A in the proof of Theorem 3.5, the automaton Ak

carries out a partial depth-first, left-to-right traversal of the query-tree. For nodes
labeled with /, ∨, ∧, or χ :: a, we proceed as before. However, when we reach a
sub-expression not(π) of Q with π = self::*[e] (i.e, the pointer p of the NAuxPDA
A points to a node n in the query-tree labeled with “not”), then we proceed as
follows: Note that we have to check that the current context-node c′ is not selected
when evaluating π relatively to c′ itself. By definition, the depth of negation of π is
bounded by k−1. Hence, the desired check can be done by running the NAuxPDA
Āk−1 on the input (π, t, c′, c′).

The correctness of this algorithm follows immediately from the correctness proof
of Theorem 3.5. Since the depth of negation is bounded by some constant k, there
are at most k nested oracles Ā0, . . . Āk−1 working in parallel. Each of these oracles
works in LogSpace and PTime. Hence, also the complexity of the automaton
Ak is within these desired space and time bounds. For the space complexity, it
is essential that the oracle Āk−1 of course operates on the same input tape as Ak

(and we only pass on a pointer to the sub-expression π rather than π itself). 2

As we will see next, the LogCFL upper bound established previously is also
tight. In the following, we will abbreviate the n-times repeated application of an
axis χ, (χ::*/)n−1χ::*, as χn::*. By χn::c, we denote (χ::*/)n−1χ::c.

Theorem 3.8. Positive Core XPath is LogCFL-hard (combined complexity).

Proof. By reduction from SAC1 circuit value, which is LogCFL-complete (see
Proposition 2.2). As shown in [Gottlob et al. 2001], we may assume without loss
of generality that all ∧-gates have fan-in 2 and that the SAC1 circuits are layered
such that, for each k, the gates at height k are all of the same type (either ∧ or ∨)
and the internal gates of layer k only take input from gates of layer k − 1. (The
input gates are at height 0.) Given a SAC1 circuit, we employ a reduction which
is a modified version of the one of the proof of Theorem 3.2.

Let M be again the number of the input gates of the circuit and let N be the
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number of internal gates. Let K be the number of layers in the circuit, that is, the
height of the circuit.

The document tree consists of nodes uj , vi, and wi,j for all 1 ≤ i ≤ M +N ,
M + 1 ≤ j ≤ M + N . The root node is uM+1, and there are edges from uj to
uj+1 for M + 1 ≤ j < M + N , from uM+N to vi and from vi to wi,M+1 for all
1 ≤ i ≤M+N , and from wi,j to wi,j+1 for all 1 ≤ i ≤M+N , M+1 ≤ j < M+N .

A node vi has a label from {G,R, 0, 1} precisely if node vi in the construction of
the proof of Theorem 3.2 has that label. In addition, we assign label Ik to node
wi,j iff internal ∨-gate Gj is in layer 1 ≤ k ≤ K and takes input from gate Gi. We
assign label I1

k (resp., I2
k) to node wi,j iff internal ∧-gate Gj is in layer k and gate

Gi is its left (resp., right) input. We assign label Ok to node wj,j iff internal gate
Gj is in layer k.

The query evaluating the circuit is

/descendant-or-self::*[T (R) and ϕK ]

with the condition expressions

ϕk := descendant-or-self::*[T (Ok) and parentN+1::*[ψk]]

ψk :=







childN+1::*[T (Ik) and πk ] . . . layer k consists of ∨-gates

childN+1::*[T (I1
k) and πk] and

childN+1::*[T (I2
k) and πk] . . . layer k consists of ∧-gates

πk := ancestor-or-self::*[T (G) and ϕk−1].

for 1 ≤ k ≤ K and ϕ0 := T (1).
Discussion. The proof uses the same ideas as that of Theorem 3.2, but now we

evaluate ∧-gates using conjunction rather than universal quantification (which we
had obtained via negation). This requires us to define ψk for ∧-layers k using two
copies of πk. Even though the query grows exponentially in the height of the circuit
K, it can be computed in LogSpace because K is only logarithmic in the size of
the input. But since the number of internal gates in the circuit is much larger than
K (linear), we cannot compute the values of internal gates one at a time as we did
in the proof of Theorem 3.2. This causes the second modification of that proof.
We now evaluate all the gates of a layer of the circuit in a single step. We achieve
this by computing the value of gate Gj at node uj , which is always precisely N + 1
levels above the unique descendant (wj,j) of node vj in the data tree that has an Ok

label. The reduction exploits the fact that in a layered circuit, each internal gate
at layer k takes input only from gates of layer k− 1, thus we do not need “dummy
gates” in this proof. The correctness of the reduction can be shown by a simple
induction analogously to that of the proof of Theorem 3.2. 2

Let PF be the fragment of Core XPath containing only the location paths, with-
out conditions (i.e., no expressions enclosed in brackets are permitted).

Theorem 3.9. PF is NLogSpace-complete under LogSpace-reductions with
respect to combined complexity.

Proof. Membership in NLogSpace is obvious: we can just guess one node
after the other along the path while we verify each location step in LogSpace.
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Fig. 8. Graph (a), its transposed adjacency matrix (b), and data tree with node labels (c) and
node names (d) shown.

NLogSpace-hardness follows from a LogSpace-reduction from the directed graph
reachability problem, which is NLogSpace-complete (cf. [Papadimitriou 1994]).
Given a directed graph G = (V,E), we compute data tree T = (VT , ET ) as

VT = {u1, . . . , u2·|V |−1} ∪ {uk,l | 1 ≤ k ≤ |V |, k + |V | ≤ l ≤ 3 · |V |},

ET = {〈ui, ui+1〉 | ui, ui+1 ∈ V } ∪ {〈ui+|V |−1, ui,i+|V |〉 | 1 ≤ i ≤ |V |}∪

{〈uk,l, uk,l+1〉 | uk,l, uk,l+1 ∈ V }.

Nodes ui,i+|V | are labeled c, nodes ui+|V |−1 are labeled vi, and node ui,j+2·|V | is
labeled e iff aij = 1, where a is the adjacency matrix of G. An example of the
construction can be found in Figure 8.

Let

π := child::c/descendant::e/parent2·|V |::*/child|V |::c/parent::*.

Claim. There is an edge from vi to vj in G if and only if node uj+|V |−1 is
reachable from node ui+|V |−1 through path π.

Indeed,

(1) child::c: node ui+|V |−1 has precisely one child labeled c, ui,i+4.

(2) descendant::e: By the definition of T , a descendant node of ui,i+4, say ui,2∗|V |+j ,
is labeled e if and only if there is an edge from vi to vj in G.

(3) parent2·|V |::*: The (2 · |V |)-th ancestor of ui,2∗|V |+j is uj .

(4) child|V | :: c: Node uj has only one |V |-th descendant that is labeled c, uj,j+|V |.

(5) parent::*: The parent of uj,j+|V | is uj+|V |−1.

Note that ui+|V |−1 is the unique node in T labeled vi and uj+|V |−1 is the unique
node in T labeled vj . It is easy to verify that, given a positive integer m, the query

/descendant::vi/π/ . . . /π
︸ ︷︷ ︸

m times

/self::vj
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computes the node (uj+|V |−1) labeled vj if and only if node vj is reachable from
node vi in graph G in m steps. To extend reachability in m steps to reachability
in at most m steps, we add a self-loop for each node of G (or equivalently, set the
main diagonal of the adjacency matrix to ones only). For m = |E|, this is graph
reachability. 2

3.3 Restricted-Axis Fragments of Core XPath

In this section, we take an approach different from the one of the previous section
to obtain fragments of Core XPath which are highly parallelizable and can thus be
processed with limited resources. Rather than pruning the language features, we re-
strict the navigational capabilities, i.e. the supported axes. We obtain better upper
bounds for a number of sublanguages of Core XPath with restricted navigational
capabilities.

In the following, by PF↓ we denote PF with the permitted axes restricted to the
downward axes “child” and “descendant”.

Theorem 3.10. PF↓ is in LogSpace w.r.t. combined complexity.

Proof. We consider the problem of deciding, given a node w, whether w matches
a PF↓ query

/s1,1/ . . . /s1,k1
// . . . //sn,1/ . . . /sn,kn

(where the si,j are node tests, i.e. labels or ‘*’) on a given data tree.
This can be achieve in LogSpace because (i) it is enough to consider the path

from w to the root and (ii) more importantly for each section si,1/ . . . /si,ki
it is

enough to consider the lowest possible place on that path with the corresponding
pattern as it occurs after a descendant axis.

By the parent of a node and the depth of a node in the data tree we understand
the usual graph-theoretic notions (where the depth of the root node is zero). We
assume that k1 may be zero to allow for queries of the form

//s2,1/ . . . /s2,k2
// . . . //sn,1/ . . . /sn,kn

.

We apply the following test to match the query (backward) on the path from w to
the root.

v := w;
for each i in the list [n, . . . , 1] do

begin

if depth(v) + 1 < ki then fail;

if i = 1 then for (depth(v) + 1 − k1) times do v := parent(v);
if procedure p fails then

begin

if i = n or i = 1 then fail

else do v := parent(v) while procedure p fails;

end;

end;

success

where the auxiliary procedure p is as follows:
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/* v is a global variable */

u := v;
for each si,j in the list [si,ki

, . . . , si,1] do

begin

if si,j matches the label of u then u := parent(u);
else fail;

end;

v := u;
success

We do not need to explicitly compute the lists [n, . . . , 1] or [si,ki
, . . . , si,1]; in-

stead one “cursor” for processing the query backward is sufficient for our purposes
(the “//” serve as separators between node tests si,ki

and si+1,1). Note that the
processing is not strictly backwards; the cursor sometimes has to backtrack to the
node test just before the next occurrence of “//” to the right to retest the auxiliary
procedure p or to compute some ki. In addition, we only need three registers for
storing tree nodes (u, v, and one further to compute depth(v)) and two counters,
for depth(v) and ki. Each of these is of size logarithmic in the size of the input.

It is easy to check (by induction on n) that the algorithm above is correct. 2

Let Core XPath1 be the restriction of Core XPath that supports only the axes
self, child, and parent. Core XPath1 allows only step-expressions which can go to
a node at distance at most one from the current node.

Theorem 3.11. Core XPath1 is in LogSpace w.r.t. combined complexity. This
problem remains in LogSpace even if we augment Core XPath1 by the “axes”
previous-sibling and next-sibling.8

Proof. The first step of the algorithm is to remove the step-expressions that
look backward : parent and previous-sibling. This can be done in LogSpace using
rewriting rules. The idea is the same as for computing an automaton for the reverse
language of L (the set of mirrors of words from L) given an automaton from L.
This is achieved using simple rewriting rules replacing a parent relation using child
relations. This fact has already been established and generalized in [Olteanu et al.
2002] which gives a complete list of rewriting rules removing the backward axes
from an XPath expression. In our much simpler setting it is immediate to check
that this can be done in LogSpace.

The input of the algorithm is a query Q and a data tree t. The algorithm will
perform a depth-first, left-to-right traversal of the query-tree of Q and, for each
(query) node, it will look for a matching (data) node by doing a depth-first, left-
to-right traversal of the data tree. Those two traversals require only LogSpace
as it suffices to maintain only two pointers on the current query and data nodes.
The trick is that when no matching is found, backtracking can be performed in
LogSpace as it suffices to execute each axis-step in reverse order.

8Actually, previous-sibling and next-sibling are not contained in XPath. However, these steps
to siblings at distance 1 can be easily expressed in XPath using position arithmetics, namely as
preceding-sibling [1] and following-sibling [1], respectively.
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We now give more details. Recall that Boolean expressions can be validated in
LogSpace by skipping the disjunctions as soon as one of its subtrees evaluates to
1 and successively evaluating all the subtrees of a conjunction. Negation is handled
by reversing the truth value. In order to simplify the presentation in the following,
we ignore the nodes of the query-tree labeled with a Boolean predicate and always
evaluate all subtrees. Using the procedure for Boolean expressions described above,
it is straightforward to extend it in order to include Boolean gates while maintaining
the LogSpace constraint.

Let next-sibling, child, parent and leaf be LogSpace subroutines which,
given a pointer to a node, compute the pointer of its right sibling, parent, first child
or check whether the node is a leaf.

Let match(i, β, j) be a subroutine which takes as input two pointers i and j to
the data tree and one pointer β to the query tree, and returns a pointer k to a data
node such that (i) k is strictly bigger than j in the depth-first, left-to-right traversal
of the data tree, and (ii) the path from i to k satisfies the location step defined
by the label of β. match looks for the next (after j) data node which matches the
current step as described by the query node β. If no such node exists, it returns 0.
This subroutine can easily be implemented so as to run in LogSpace.

Let backtrack(α, i) be the subroutine which takes as input a pointer α to the
query-tree and a pointer i to a node n of the data tree and returns a pointer k to a
data node. It simply returns the pointer to the node m of the data tree such that
the transition from m to n corresponds to the axis of the label of the query node
pointed to by α.

With the above subroutines, Core XPath1 queries can be evaluated using the
following algorithm (where done is a shortcut for α = root ∧ v 6= ⊥ :

/* initialization */

α := root(query-tree); v:= ⊥; i := match(0,α,0);
if i = 0 then return 0;

/* main loop */

while ¬done do begin

/* case analysis depending on the value of the current query node */

/* case 1 : we don’t know yet the current status of this node */

if v = ⊥ then begin

/* if the current query node is a leaf, then the evaluation of

/* this branch of the query is successful */

if leaf(α) then v := 1

/* if not we proceed downwards in the query-tree*/

else begin β := child(α); j:=match(i,α,i);
/* there is no matching data node, the current evaluation fails */

if j = 0 then v := 0

/* there is one, we proceed with it*/

else begin α := β; i:=j; v := ⊥ end

end

end
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/* case 2 : so far it is a success, we now have to investigate */

/* the next sibling in the query-tree if one exists or else we */

/* propagate the success upward */

else if v = 1 then begin

β := parent(α); j:= backtrack(α,i);
if α has no sibling then begin α := β; i := j; v:=1 end

else begin β′ := next-sibling(α); k:=match(j, β ′,j);
/* there is no matching data node, the current evaluation fails */

if k = 0 then begin v := 0; α:= β; i:=j end

/* there is one, we proceed with it*/

else begin α := β′; i:=k; v := ⊥ end;

end

end

/* case 3 : so far it is a failure, we backtrack */

else if v = 0 then begin

β := parent(α); j:= backtrack(α,i);
/* we now look for another possible candidate

/* (a data node bigger than i) */

k:=match(α,j,i);
/* if there is none, proceed upward */

if k=0 then begin α := β; i:=j; v := 0 end

/* if there is one we continue with it */

else begin i:=k; v:=⊥ end

end

end; /*while*/

return v;

It is immediate to see that the algorithm is correct and in LogSpace. 2

3.4 Parallelizing WF

We are now going to search for restrictions on WF (Wadler fragment) that push
the complexity of the query evaluation problem down to LogCFL. To achieve this,
we require that scalar values (i.e., values different from node sets) can be stored
in logarithmic space. Moreover, we also have to exclude two important constructs
from WF, namely negation and iterated predicates, i.e., expressions of the form
χ :: a[e1] . . . [ek] with k ≥ 2. The resulting XPath fragment will be referred to as
the “positive” (or “parallel”) WF (short pWF). It is formally defined as follows:

Definition 3.12. pWF is obtained by restricting WF in the following way:

(1) Expressions of the form χ :: a[e1] . . . [ek] with k ≥ 2 are not allowed, where χ
denotes an axis, a is a node test and the ei’s are XPath expressions.

(2) Negation may not be used.

(3) The nesting depth of arithmetic operators is bounded by some constant k. 2

The first two restrictions above mean that the grammar from Definitions 2.7 and
2.8 has to be modified as follows:
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locstep ::= axis ‘::’ ntst ‘[’ bexpr ‘]’
bexpr ::= bexpr ‘and’ bexpr | bexpr ‘or’ bexpr | locpath | nexpr relop nexpr.

Remark 3.13. Note that positive Core XPath is strictly a fragment of pWF.
This is due to the fact that the first restriction above plays no role in Core XPath.
More generally, an XPath expression of the form χ :: a[e1] . . . [ek] is equivalent to
χ :: a[e1 and . . . and ek] as long as position() and last() are not used.

Theorem 3.14. pWF is in LogCFL with respect to combined complexity.

Proof. It is sufficient to consider the following decision problem: The input is
given through a tuple (t, Q,~c, v), where Q is a pWF query, t is a document tree,
~c = 〈cn, cp, cs〉 is a context-triple and v is a value (of type Boolean, number or a
single node in t). In case of result type Boolean, we require that v = true. Then we
have to decide whether, relatively to the context ~c, the query Q over the document
t evaluates to v (in case of result type Boolean or number) or to some node set X
with v ∈ X (in case of result type node set).

The LogCFL-membership of this problem is shown by appropriately modifying
the NAuxPDA in the proof of Theorem 3.5. First of all, we have to modify the
definition of the query-tree Te of an XPath expression e. W.l.o.g., we may assume
that all type conversions in Q are made implicit. In particular, χ :: a[π] is replaced
by χ :: a[boolean(π)]. Likewise, location paths π occurring as operands of Boolean
expressions are replaced by boolean(π). Moreover, the abbreviated syntax χ :: a[e]
for some number expression e is replaced by χ :: a[position() = e]. Then we have to
consider expressions e of the form Op(e1, . . . , el) (written in prefix-notation), where
Op is one of the operators “|”, “boolean()”, “and”, “or”, an arithmetic operator
(+,−, ∗, . . . ), or a relational operator (=, 6=, ≤,. . . ). In this case, we simply set
Te = Op(Te1

, . . . , Tel
) – where we are again using term notation. Moreover, step-

expressions are no longer treated like the “and”-operator. Instead we define

Te =







χ :: a if e = χ :: a
χ :: a(Te1

) if e = χ :: a/e1
χ :: a(Te1

) if e = χ :: a[e1]
χ :: a(Te1

, Te2
) if e = χ :: a[e1]/e2

Finally, the special symbol † is no longer needed.
Our modified NAuxPDA A′ will maintain a pointer p to the input XPath expres-

sion whose movements are again interpreted as a partial depth-first, left-to-right
traversal of the query-tree. Suppose that p points to some node n in the query-tree
and let Te be the subtree rooted at n. Then we will write expr(p) to refer to the
corresponding sub-expression e of Q.

The modified NAuxPDA A′ has to store more information on the worktape and
also on the stack. In total, we need variables cn, cp, cs, r (for context-node, context-
position, context-size, and result at some node n in the query-tree) as well as
cni, cpi, csi, ri with i ∈ {1, 2} (for each child node of n). Actually, if the result r
or ri is of type node set, then it suffices to store only one representative from the
resulting node set r or ri, respectively. Note that in Theorem 3.5, cp and cs are
not needed, since Core XPath does not contain the functions position() and size().
Moreover, the necessity to store the result values r and ri is mainly due to the
possibility of arithmetic expressions in pWF.

27



Finally, also the partial traversal of the query-tree has to be slightly modified.
Most importantly, each node n in the query-tree has to be processed twice: When
n is visited for the first time, we guess values for the context cn, cp, cs and for
the result r. In case of the root of TQ, rather than guessing 〈cn, cp, cs〉 and r, we
assign the values of the input context ~c and the input result value v, respectively.
Before A′ moves on to the next node in TQ, the values cn, cp, cs, r at n are pushed
onto the stack. When A′ has finished processing the entire subtree below n, then
n is visited for the second time. At this stage, the values of cn, cp, cs, r as well as
cni, cpi, csi, ri for all required child nodes of n can be popped from the stack. In case
of the operators “|” and “or”, the values cni, cpi, csi, ri of exactly one child of n are
required. In all other cases, the values cni, cpi, csi, ri of each child of n are required.
On this second visit of n, the NAuxPDA A′ has to check the consistency of the
guesses cn, cp, cs, r and cni, cpi, csi, ri (with i ∈ {1, 2}) with the XPath expression
expr(p). For a leaf node n, the two visits of n collapse to a single one, i.e., first A′

guesses values for cn, cp, cs, and r. Then A′ checks the consistency of these guesses
with the XPath expression expr(p).

When a consistency check fails, then A′ rejects. Otherwise A′ pushes cn, cp, cs, r
back onto the stack and p is moved on to the next node in TQ. All possible kinds
of checks (depending on the form of expr(p)) are given in Table I, where we use
the following notation: We write e for any XPath expression and π for a location
path. By RelOp and ArithOp we denote relational operators (=, 6=, ≤, . . . ) and
arithmetic operators (+,−, ∗, . . . ), respectively. The set of all nodes in t is denoted
by dom and root denotes the conceptual root node in the XPath data model (cf.
[World Wide Web Consortium 1999]).

Our partial traversal of TQ starts at the root of TQ. Eventually, we shall have
visited all nodes of TQ that are required to determine the overall result and we shall
come back to the root of TQ. If all the consistency checks thus carried out were
successful, then A′ accepts. As soon as one such check fails, then A′ rejects.

The correctness of A′ can be shown similarly to the correctness of A in the proof
of Theorem 3.5. Moreover, the modified NAuxPDA A′ still works simultaneously
in LogSpace and PTime. In particular, for the bound on the space complexity,
two observations are crucial: First, for pWF, every node in the query-tree has at
most 2 child nodes. Second, we never have to compute node sets of intermediate
results explicitly, e.g. checking r ∈ Y and determining the position of r in Y and
the size of Y can be done without explicitly computing the node set Y itself (cf.
the consistency check for χ :: a[e] in Table I). 2

Remark 3.15. It is well known that the complexity class LogCFL is inside the
class NC2 of problems solvable in time O(log2 n) with polynomially much hard-
ware working in parallel. In fact, given this intuition and the insights obtained
from the reduction to NAuxPDA, it is not hard to find a highly parallel algorithm
for evaluating pWF queries. The intuition for matching straight-line path queries
(cf. our PF fragment from Section 3.2) is similar to parallel algorithms for graph
reachability (cf. [Papadimitriou 1994]); however, rather than connecting nodes in a
graph, the goal is to connect contexts with nodes in the query result. Additional
synchronization is required for branches in the query-tree (e.g. “and”), which is
not surprising as graph reachability is in NLogSpace and thus presumably simpler
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expressions expr(p) at leaf nodes of the query-tree TQ

expr(p) local consistency condition
χ :: a r can be reached from cn via χ :: a
position() r = cp
last() r = cs
const r = const

expressions expr(p) at internal nodes of the query-tree TQ

expr(p) local consistency condition
/π cn1 = root ∧ r = r1
π1 |π2 (cn = cn1 ∧ r = r1) ∨ (cn = cn2 ∧ r = r2)
π1/π2 (cn = cn1 ∧ cn2 = r1 ∧ r = r2)
χ :: a[e] let Y = {y ∈ dom | y can be reached from cn via χ :: a}

r ∈ Y ∧ (let cpnew = position of r in Y , let csnew = |Y |
cn1 = r ∧ cp1 = cpnew ∧ cs1 = csnew ∧ r1 = true)

boolean(π) r = true ∧ (cn1 = cn ∧ cp1 = cp ∧ cs1 = cs ∧ r1 ∈ dom)
e1 and e2 r = true ∧ [(cn1 = cn ∧ cp1 = cp ∧ cs1 = cs ∧ r1 = true) ∧

(cn2 = cn ∧ cp2 = cp ∧ cs2 = cs ∧ r2 = true)]
e1 or e2 r = true ∧ [(cn1 = cn ∧ cp1 = cp ∧ cs1 = cs ∧ r1 = true) ∨

(cn2 = cn ∧ cp2 = cp ∧ cs2 = cs ∧ r2 = true)]
e1 RelOp e2 r = true ∧ r1 RelOp r2 ∧ [(cn1 = cn ∧ cp1 = cp ∧ cs1 = cs) ∧

(cn2 = cn ∧ cp2 = cp ∧ cs2 = cs)]
e1 ArithOp e2 r = r1 ArithOp r2 ∧ [(cn1 = cn ∧ cp1 = cp ∧ cs1 = cs) ∧

(cn2 = cn ∧ cp2 = cp ∧ cs2 = cs)]

Table I. Local consistency checks for pWF.

than a LogCFL-complete problem. However, at the branches, the subexpressions
below can be evaluated in parallel before finalizing the branch (i.e., proceeding
bottom-up). 2

The next result shows that pWF is in a sense a maximal LogCFL fragment of
WF. Of course, we are not really interested in dealing with arbitrarily big number
expressions. As far as the other two restrictions in Definition 3.12 are concerned,
none of them can be simply omitted. This is clear for negation, as Core XPath
is strictly a fragment of pWF extended by negation. As shown next, the final
restriction is essential as well. By iterated predicates, we again refer to location
steps of the form χ :: a[e1] . . . [ek] with k ≥ 2.

Theorem 3.16. The combined complexity of pWF queries extended by iterated
predicates is PTime-complete.

Proof. The proof is by an appropriate modification of the data tree t and the
location paths ϕ, ψ, and π from the proof of Theorem 3.2.

XML document tree. We extend t to t′ by adding one additional child wi to
every node vi with i ∈ {0, . . . ,M +N} (as the right-most child, say). Each node wi

is labeled W . Hence, the condition T (W ) is fulfilled exactly by these new nodes.
Moreover, for the node v0, we introduce an additional label A (“auxiliary”). Thus,
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Fig. 9. Document tree t′ of the proof of Theorem 3.16.

the condition T (A) is only fulfilled by the root node v0. For the use of these labels
T (W ) and T (A), recall Remark 3.1. The new document tree t′ corresponding to
the example in the proof of Theorem 3.2 is shown in Figure 9.

XPath query. The desired query (encoding the value of the gate GM+N ) is now

/descendant-or-self::*[T (R) and ϕ′
N ]

where the auxiliary location paths ϕ′
k, ψ′

k, and π′
k with 1 ≤ k ≤ N are defined as

ϕ′
k := descendant-or-self::*[T (Ok) and parent::*[ψ′

k]]

ψ′
k :=







child::*[T (Ik) and π′
k[last() > 1]] . . . GM+k is an ∨-gate

child::*[(T (Ik) and π′
k[last()=1]) or

T (W )][last()=1] . . . GM+k is an ∧-gate

πk := ancestor-or-self::*[(T (G) and ϕ′
k−1

) or T (A)].

Moreover, we set ϕ′
0 := T (1) as in Theorem 3.2.

Of course, this problem reduction can be done in LogSpace. In order to prove the
correctness of this reduction, we introduce the following notion: Let ρ and σ be
XPath queries that are evaluated on the data tree t or on t′, respectively. Then we
call ρ and σ equivalent on a node x (that occurs both in t and t′), iff the evaluation
of boolean(ρ) on t and the evaluation of boolean(σ) on t′ for the context-node x
yield the same result. Then the following equivalences hold:

Claim.
(1) For all k ≥ 1, the expressions πk and π′

k[last() > 1] as well as not(πk) and
π′

k[last() = 1] are equivalent on v1, . . . , vM+N , v′1, . . . , v′M+N .
(2) For all k ≥ 1, the expressions ψk and ψ′

k are equivalent on v0, . . . , vM+N .
(3) For all k ≥ 0, the expressions ϕk and ϕ′

k are equivalent on v1, . . . , vM+N .

We prove properties (1) through (3) simultaneously by induction on k.

Induction start (k = 0). Note that only ϕ0 and ϕ′
0 are defined (but not ψ0, ψ

′
0,

π0, and π′
0). Moreover, the equivalence of ϕ0 and ϕ′

0 is obvious by the definition
ϕ0 = ϕ′

0 = T (1).

Induction step. We start with (1), where the central idea of “encoding” nega-
tion by iterated predicates becomes clear: By the induction hypothesis, ϕk−1 and
ϕ′

k−1 are equivalent on v1, . . . , vM+N , that is, on the nodes for which the condition
T (G) is true. For the context-nodes v1, . . . , vM+N , the location path π′

k evaluates
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to the same set as πk plus the node v0, due to the new disjunct T (A) in the predi-
cate of π′

k. Moreover, by the condition T (G), the node set resulting from πk never
contains the node v0. The equivalence of πk with π′

k[last() > 1] and the equivalence
of not(πk) with π′

k[last() = 1] (on v1, . . . , vM+N , v′1, . . . , v′M+N ) are thus obvious.
Now consider (2). The case of an ∨-gate GM+k is obvious since the equivalence

of πk and π′
k[last() > 1] has just been shown for the nodes vi and v′i with i ≥ 1,

which are the only nodes that may possibly fulfill the condition T (Ik). It remains
to consider the case of an ∧-gate GM+k . Again, by property (1), not(πk) and
π′

k[last() = 1] are equivalent on all nodes vi and v′i with i ≥ 1. Note that the
predicate in the definition of ψ′

k contains the new disjunct T (W ). Hence, for any
context-node vi with i ∈ {0, . . . , N}, the node set resulting from the query ρ′k :=
child::*[(T (Ik) and π′

k[last()=1]) or T (W )] is exactly the node set resulting from
ρk := child::*[T (Ik) and not(πk))] plus the new child wi (labeled W ) of vi. Thus,
the equivalence of ψk = not(ρk) with ψ′

k = ρ′k[last() = 1] follows immediately.
We finally show (3). In the definition of ϕk and ϕ′

k, the predicates [ψk] and [ψ′
k]

are evaluated after a parent-step, that is, for the nodes v0, . . . , vM+N only. By
property (2), ψk and ψ′

k are equivalent on v0, . . . , vM+N . Hence, ψk may indeed
be replaced by ψ′

k in the definition of ϕk without altering the meaning of ϕk.
This proves the claim. The correctness of the whole problem reduction follows

immediately from the equivalence (3) for k = N . 2

Note that in the above proof of Theorem 3.16, we only made use of predicate
sequences [e1] . . . [ek] whose length k was bounded by 2. We thus have:

Corollary 3.17. The combined complexity of pWF extended by iterated pred-
icates of the form χ :: a[e1][e2] is PTime-complete.

Despite the negative result of Theorem 3.16, there is of course a direction in
which the pWF fragment can be extended without leaving the complexity class
LogCFL. Analogously to Theorem 3.7, we may allow bounded negation:

Theorem 3.18. The combined complexity of pWF queries augmented by nega-
tion with bounded depth is in LogCFL.

Proof. The proof is by induction on the bound k on the depth of negation. If
k = 0, then negation does not occur at all and we are back to Theorem 3.14. For
the induction step, recall that LogCFL is closed under complement (cf. Proposi-
tion 2.4). Hence, by the induction hypothesis and by Proposition 2.4, there exists a
LogSpace and polynomial-time NAuxPDA Āk−1 that decides the following prob-
lem: Let Q′ be an XPath query from pWF augmented by negation with depth
bounded by k − 1 and let the result type of Q′ be boolean. Moreover, let t be a
data tree and ~c ′ be a context. Then Āk−1 decides that Q′ evaluates to false over
the data tree t for the context ~c ′. Analogously to the proof of Theorem 3.7, we
construct a NAuxPDA Ak with oracle Āk−1 s.t. Ak decides the XPath evaluation
problem for pWF augmented by negation with depth bounded by k:

In principle, Ak carries out the same partial traversal of the query-tree TQ as
the NAuxPDA A from the proof of Theorem 3.14. However, when Ak encounters a
subexpression of the form not(Q′), then Ak proceeds differently from A: W.l.o.g.,
we may assume that the result of Q′ is of type boolean, since otherwise we would
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simply replace not(Q′) by not(boolean((Q′)). Then the node n in the query tree
corresponding to the subexpression not(Q′) is processed by Ak as follows: Anal-
ogously to the automaton A in the proof of Theorem 3.14, we first guess cn, cp,
cs, and r with r = true. But then, rather than visiting the subtree below n in the
query-tree, we immediately carry out the consistency check for the values guessed
at n by calling the oracle Āk−1 with the input (Q′, t,~c ′ false), i.e. Āk−1 checks that
Q′ evaluates to false over the data tree t for the context ~c ′. In other words, Āk−1

checks that not(Q′) evaluates to true over the data tree t for the context ~c ′.
The correctness of the resulting automaton Ak can be easily verified. Moreover,

analogously to the proof of Theorem 3.7, one can show that Ak works in LogSpace
and PTime. 2

3.5 Parallelizing XPath

In Section 3.4, we proved the LogCFL-membership for a fragment of XPath that
was derived from WF by imposing some restrictions. In fact, we can get a much
larger LogCFL fragment of XPath by starting from full XPath and defining the
analogous restrictions. The important fact is again that the evaluation can be done
without the need to ever compute node sets explicitly and without having to deal
with scalars (i.e., values different from node sets) that do not fit into LogSpace.
Analogously to pWF, we thus define:

Definition 3.19. Positive (or parallel) XPath (pXPath) is obtained by impos-
ing the following restrictions on XPath:

(1) Expressions of the form χ :: a[e1] . . . [ek] with k ≥ 2 are not allowed.

(2) The following functions may not be used: not, count, sum, string, and number
as well as the string functions local-name, namespace-uri, name, string-length,
and normalize-space.

(3) Constructs of the form e1 RelOp e2 where at least one of the expressions ei is
of type boolean, are forbidden.

(4) The depth of nesting of arithmetic operators and of the concat-function is
bounded by some given constant L. Moreover, without loss of generality, the
arity of the concat-function is bounded by some constant K. 2

The above restrictions extend the ones in Definition 3.12 in the following way:
The evaluation of expressions of the form count(e) and sum(e) requires the explicit
computation of the node set value of e unless we again introduce loops over dom into
the NAuxPDA as in Theorem 3.18. With the functions string and number as well as
the string functions listed above, we would have to manipulate items of information
in the data tree t whose size is not necessarily logarithmically bounded. Moreover,
the functions string and number could also be used to “encode” negation, e.g.,
number(e) = 0 for a Boolean expression e evaluates to true, iff e evaluates to false.
Similarly, constructs of the form e1 RelOp e2 where at least one of the expressions
ei is of type boolean are forbidden since they can also be used to “encode” negation,
e.g., by an expression of the form e 6= true().

Analogously to Theorem 3.14, we have

Theorem 3.20. The combined complexity of pXPath is in LogCFL.
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Proof. The LogCFL-membership of pXPath can be established by the same
kind of NAuxPDA as in the proof of Theorem 3.14. The only adaptation required
is an extension of the consistency checks of the guesses cn, cp, cs, r at some node n
(pointed to by p) in TQ and cni, cpi, csi, ri (at the required child nodes of n) with
the XPath expression expr(p). Thus, for each of the additionally allowed XPath
constructs, a new line with the corresponding local consistency check has to be
added to Table I. Of course, now the result values may also be of type string (in
addition to number, boolean, and node-set).

The polynomial time and logarithmic space upper bound on the complexity also
holds for the thus extended NAuxPDA. In particular, in pXPath, the arity of the
concat-function is bounded by some constant K. Moreover, for all other operators
Op in XPath, the maximum arity is bounded by 3 anyway. Hence, the number
of child nodes of the nodes in TQ (and thus the number of blocks of variables
cni, cpi, csi, ri maintained by A′) is no longer bounded by 2 but it is still bounded
by some constant. Moreover, it can be easily verified (by a “big” case distinction
over all additionally allowed XPath constructs) that the new consistency checks
required for pXPath also fit into logarithmic space and polynomial time. 2

Finally, analogously to Theorems 3.7 and 3.18, also pXPath can be extended by
negation with bounded depth without destroying the LogCFL-membership.

Theorem 3.21. The combined complexity of pXPath augmented by negation
with bounded depth is in LogCFL.

Proof. This theorem can be shown by induction on the bound k on the depth
of negation – exactly like Theorem 3.18. 2

3.6 Query and Data Complexity

So far, we have addressed the combined complexity of various fragments of XPath.
While the general problem is PTime-hard, we have engineered large fragments that
can be massively parallelized. We conclude this treatment with a study of the two
main other complexity measures, the complexity of queries when either the size of
the query or of the data is fixed.

Theorem 3.22. PF is LogSpace-hard under AC0-reductions (with respect to
data complexity) if data trees are represented as pointer structures.

Proof. Recall the problem ORD, which is LogSpace-complete under AC0 re-
ductions (see Proposition 2.1 [Etessami 1997]). It can be expressed by the PF query
/descendant-or-self::vi/descendant::vj . The result follows. 2

Theorem 3.23. XPath is in LogSpace w.r.t. data complexity.

Proof. In [Gottlob et al. 2002], a PTime bottom-up dynamic programming
algorithm for full XPath is given. It is based on the notion of so-called context-value
tables , relations consisting of tuples 〈~c, v〉 containing a context ~c and a corresponding
value v for (a subexpression of) the given query, one tuple for each meaningful
context. (By the usual XPath semantics definitions, there are no more than n3

meaningful contexts, where n is the number of nodes in the input tree.)
The algorithm of [Gottlob et al. 2002] simply computes one such context-value

table for each node of the query-tree, bottom-up. As shown in [Gottlob et al. 2002],
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context-value tables of XPath expressions are guaranteed to be of polynomial size.
Given the context-value tables for the direct subexpressions e1, . . . , en, computing
the context-value table of expression Op(e1, . . . , en), where Op is an atomic XPath
operation (a node in the query-tree), only requires a very simple computational
task. It is beyond the scope of this article to study the operations of XPath in
detail, but it is easy to verify by inspection of the complete definition of all XPath
operations in [Gottlob et al. 2002] that each of the operations can be carried out in
LogSpace, that is, the context-value table of an arbitrary XPath expression can be
computed in LogSpace given the context-value tables of its direct subexpressions.

Since we consider data complexity, the query and the number of operations in
its query-tree is fixed. The evaluation of a fixed XPath query requires the subse-
quent evaluation of a fixed number of steps that individually run in LogSpace. In
order to be able to compose these LogSpace computations (which me may pro-
cess according to any topological ordering of the nodes/operations in the parse tree
of the query), we assume that each computation receives the input tree and the
context-value tables computed earlier on the input tape in a suitable representa-
tion and writes its input followed by the newly computed context-value table to the
output tape. Our theorem follows from the fact that LogSpace is closed under
composition (cf. e.g. [Papadimitriou 1994]). 2

In the case of data complexity, which is very low (within LogSpace for all of
XPath), the precise model by which data trees are represented matters. The data
complexity of Core XPath is lower if data trees are represented as strings rather
than as pointer structures:

Theorem 3.24. If the data trees are given as strings, Core XPath is in TC0

w.r.t. data complexity.

The proof of this theorem is delayed until the end of Section 4.3, where we will
have introduced the necessary background.

Finally, we consider the query complexity of XPath.

Theorem 3.25. XPath without multiplication or the “concat” operation is in
LogSpace w.r.t. query complexity.

Proof. Let Q be the input query and t the (fixed) data tree. All operations in
Q have a fixed arity not greater than K = 3.

Let us first assume that Q does not contain operations such as + that make
strings or numbers grow (logarithmically) with the size of the query. Then, it is
known from [Gottlob et al. 2002] that the size of each context-value table is bounded
by the constant |t|4. To compute the context-value table holding the result of Q
on t, we simply have to make a bottom-up traversal of the query-tree of Q, which
can be performed in LogSpace. Regarding storage requirements, only a stack
bounded by K · log |Q| context-value tables is needed, which holds context-value
tables computed bottom-up but not used yet and waiting to be employed for the
computation of context-value tables higher up in the query tree. (Note that this is
not the depth of the query-tree, which is not necessarily bounded by O(log |Q|).)

Computing context-value tables bottom-up step by step is important for handling
path expressions and negation well. For string- or number-typed expressions e, these
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relations do not have to be materialized, but results can be generated and checked
top-down when computing a node set-typed context-value table for an expression
that contains e as a direct subexpression with only an additional |t| · log |Q|-sized
memory window. 2

We did not provide a lower bound for the query complexity of XPath, but con-
jecture a considerable fragment of XPath to be ALogTime-complete with respect
to query complexity.

4. XML VALIDATION

In this section we study the complexity of validating an XML document against a
typing system. We consider various kinds of typing systems. The first two, called
DTDs and extended DTDs (which extend DTDs by a specialization mechanism
[Papakonstantinou and Vianu 2000]), are motivated by XML standards as they
roughly correspond to XML DTDs and XSDs. Both typing systems are subsumed
by tree automata. We therefore generalize our study to the main variants of tree
automata, namely top-down, bottom-up, deterministic, nondeterministic, and tree
walking automata.

We consider two variants of the type checking problem. In the first, the type
is fixed and the input consists only of the data tree. In the second, the type is
also part of the input. The first case is called the data complexity of the validation
problem and gives a good approximation of the behavior of the problem when the
size of the type is assumed to be unimportant compared to the size of the data.
The second is the combined complexity and gives a more accurate measure of the
difficulty of the problem.

We start by defining in Section 4.1 all the typing systems considered in this arti-
cle. The complexities involved for validation are low (below LogSpace) therefore
the coding of the input tree is crucial. Moreover many proofs use a logical charac-
terization of the corresponding complexity classes. Preliminary results about logics
and complexities are presented in Sections 4.2 and Section 4.3. Section 4.4 deals
with data complexity while Section 4.5 considers combined complexity.

4.1 DTDs and Tree Automata

We assume familiarity with regular languages, regular expressions, and finite state
automata on strings, in their nondeterministic (NSA) and deterministic (DSA) fla-
vors. In this article, NSA and DSA are ε-free automata. If A is an NSA, e a regular
expression, L(A) and L(e) denote the associated regular languages. Context-free
grammars (CFG) and context-free languages (CFL) are defined in the normal way
(cf. [Rozenberg and Salomaa 1997]). If G is a CFG, L(G) denotes the associated
CFL.

Tree types and DTDs. DTDs and their variants provide a typing mechanism
for XML documents. We will use two notions of types for trees. The first one
corresponds closely to the DTD formalism proposed for XML documents, and we
therefore (by slight abuse) continue to use the same term. A DTD consists of an
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extended context-free grammar9 over alphabet Σ (we make no distinction between
terminal and non-terminal symbols at this point). Since regular expressions are
closed under union, we can assume without loss of generality, that each DTD has a
unique rule a → e for each symbol a ∈ Σ. We then denote the regular expression e
for a by Ra. An XML document satisfies a DTD τ (or is valid w.r.t. τ) if, for each
node labeled a, the ordered list of its children forms a word contained in Ra. For
example, the labeled tree of Figure 2 is valid w.r.t. the DTD

r → a∗ a→ bc∗ | ε b→ c | ε c→ ε

The second type system corresponds closely to XML Schema. It is an extension of
DTDs with specialization (also called decoupled types) which, intuitively, allows one
to define the type of a tag by several “cases” depending on the context. Extended
DTDs (EDTD) have been studied in [Papakonstantinou and Vianu 2000] and are
equivalent to formalisms proposed in [Beeri and Milo 1999; Cluet et al. 1998]. They
are present in a restricted form in XML Schema.

By SAT (), we denote the set of trees that satisfy a given DTD or a given au-
tomaton, respectively. Then we can formally define EDTDs as follows:

Definition 4.1. An EDTD over Σ is a tuple τ = (Σ,Σ′, τ ′, µ) where (i) Σ and
Σ′ are finite alphabets, (ii) τ ′ is a DTD over Σ′, and (iii) µ is a mapping from Σ′

to Σ which is canonically extended to trees. A tree document t over Σ satisfies an
EDTD τ iff t ∈ µ(SAT (τ ′)). 2

Intuitively, Σ′ provides for some a’s in Σ a set of specializations of a, namely
those a′ ∈ Σ′ for which µ(a′) = a.

When considering only string representations it may be easier to see DTDs and
EDTDs as extended context-free grammars with terminal alphabet Σ ∪ Σ̄, non-
terminal alphabet V = Σ′, containing rules of the form S → aRS ā, where S ∈
V, a ∈ Σ, RS is a regular relation over V . DTDs have the restriction that for each
a ∈ Σ there is a unique rule involving a. EDTDs do not have this restriction and
have one rule per element in Σ′.

If τ is a (E)DTD, L(τ) is the language over Σ ∪ Σ̄ consisting of the string repre-
sentations of all tree documents in SAT (τ), that is, L(SAT (τ)).

Tree automata. We also consider tree automata (TA). We recall quickly their
definitions for unranked trees. The reader is referred to [Brüggemann-Klein et al.
2001] for a more detailed presentation. As usual they are either bottom-up (BU)
or top-down (TD) and either deterministic (D) or nondeterministic (N).

A nondeterministic top-down tree automaton (NTDTA) is a tuple (Σ, Q, q0, δ)
where Q is a finite set of states, q0 is the initial state, and δ ⊆ Σ ×Q×Q∗ is such
that δ(a, q) is a regular language over Q for each a ∈ Σ and each q ∈ Q (we assume
that for a ∈ Σ and each q ∈ Q, δ(a, q) is given as an NSA). The computation starts
at the root of the tree in the initial state and proceeds towards the leaves of the tree
by assigning states to the children of a node according to its label, a, the current
state, q, and δ(a, q) (see [Brüggemann-Klein et al. 2001] for more details). The tree

9In an extended CFG, the right-hand sides of productions are regular expressions over terminals
and non-terminals.
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is accepted if, for each leaf n of the tree, the automaton reaches n in a state q such
that ε is in δ(label(n), q). A deterministic TDTA (DTDTA) is an NTDTA such
that for each a ∈ Σ, each q ∈ Q, and each n ∈ N there exists a unique w ∈ δ(a, q)
of length n.

A nondeterministic bottom-up tree automaton (NBUTA) is a tuple (Σ, Q, F, δ)
where Q is a finite set of states, F is a set of accepting states and δ ⊆ Σ×Q∗×Q is
such that {w ∈ Σ∗ | δ(a, w, q)} is a regular language over Q for each a ∈ Σ and each
q ∈ Q. The computation starts at the leaves by assigning to each leaf of label a a
state q such that δ(a, ε, q) and proceeds towards the root of the tree by assigning
states q to a node according to its label, a, the sequence of states of its children,
w, and such that δ(a, w, q) (see [Brüggemann-Klein et al. 2001] for more details).
The tree is accepted if the automaton reaches the root in an accepting state. A
deterministic BUTA (DBUTA) is an NBUTA such that for each a ∈ Σ and each
w ∈ Q∗ there is a unique q such that δ(a, w) = q.

If A is a tree automaton (bottom-up or top-down), then we denote by SAT(A)
the set of trees accepted by A, and by L(A) the set of string encodings of trees
accepted by A.

Fact 4.2 (Folklore, see also [Brüggemann-Klein et al. 2001]). Let
T be a set of labeled unranked trees. T is defined by an EDTD iff T is recognized
by an NBUTA iff T is recognized by an NTDTA iff T is recognized by a DBUTA.
In this case, T is said to be a regular tree language. On the other hand, DTDs and
DTDTA fail to capture all regular languages.

Finally we consider tree walking automata (TWA). TWA were initially intro-
duced in [Aho and Ullman 1971] (see also [Engelfriet and Hoogeboom 1999; En-
gelfriet et al. 1999]). A nondeterministic TWA (NTWA) is a tuple (Σ, Q, q0, F, δ)
where Q is a finite set of states, q0 is the initial state, F is a set of accepting states
and δ ⊆ Σ × Q × {root, leaf, leftchild, rightchild, other} × Q × {up, down, left,
right, stay}. The computation starts at the root in the initial state and proceeds
by walking in the tree as follows: when reaching node n of label a in state q, the
automaton checks whether the status of the current node is a root or a leaf or a
leftmost (rightmost) child or just a regular inner node, and, changes its state to q′

and moves in direction D sucj that δ(a, q, status, q′, D). A TWA accepts whenever
it reaches an accepting states.

A deterministic TWA (DTWA) is an NTWA such that there is a unique q′ and
D such that δ(a, q, status, q′, D) for each a ∈ Σ and each q ∈ Q.

It can be shown that NTWA and DTWA recognize only regular tree languages.
It was shown recently that NTWA cannot be determinized [Bojanczyk and Col-
combet 2004b] and that they do not recognize all regular languages [Bojanczyk and
Colcombet 2004a].

4.2 Logic and Complexity

We will use characterizations of some complexity classes in terms of logic. For this,
we consider strings as first-order structures whose universe consists of an initial
segment of the integers {1, . . . , n}, where n is the length of the string and each
integer corresponds to a position in the string. First-order logic (FO) over these
structures may use a unary predicate Qa(i) for each letter a in Σ saying that the
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position i of the string is an a, a binary predicate ≤ denoting the usual order over
the integers and a binary predicate BIT(i, j) which is true iff the i-th bit of j in
the binary representation of j is 1. Without loss of generality we can assume that
FO also use two constants min and max denoting the first and last positions in the
input string. We also consider FOM, an extension of FO with a majority quantifier
M such that Mx ϕ(x) is true iff at least half of the positions in the input string
validate ϕ. The following results are well known:

Proposition 4.3 [Barrington et al. 1990]. FO = AC0 and FOM = TC0.

Let ]y ϕ(y) denote the number of positions y in the input string such that ϕ(y)
holds.

We will often make use of the following Lemma which was proved in [Barrington
et al. 1990] (Lemma 11.1). It says that addition and counting are definable in FOM.
Note that addition can be used to check equality of numbers bigger than the size
of the model. For instance one can express in FOM the fact that x + y = 2 ∗ z
where x, y, z are variables ranging over the domain of the model. This allows to
speak about numbers bigger than the size of the model as expected for a logic
characterizing TC0 over strings.

Proposition 4.4 [Barrington et al. 1990]. The expressions x+ y = z and
x = ]y ϕ(y) are expressible in FOM.

A function f : Σ∗ → Γ∗ for which there exists a constant k such that |f(w)| ≤ k|w|
is a FOM reduction iff there exist FOM formulas ϕ(x) and ϕa(x) for each symbol a ∈
Γ such that, for each first-order structure of a word w and each i ∈ {1, . . . , k · |w|},
w |= ϕ(i) iff i = |f(w)| and w |= ϕa(i) iff the i-th position of f(w) is an a.

The following is straightforward.

Proposition 4.5 [Lohrey 2001]. TC0 and NC1 are closed under FOM-re-
ductions.

4.3 Encodings and Complexity

When dealing with trees we often need to consider subtrees. When they are coded
as strings this means that we need to consider well balanced substrings. If w is a
word coding a tree t and i, j are positions in this word then we denote by ϑ(i, j)
(resp. ϑ∗(i, j)) the fact that the substring of w starting at position i and ending at
position j is the coding of a (non-empty) tree (resp. a (possibly empty) sequence
of trees).

Checking whether ϑ or ϑ∗ holds amounts to check whether the corresponding sub-
string is well-balanced or not. Therefore from Proposition 2.6 and Proposition 4.3
we immediately have:

Corollary 4.6. ϑ and ϑ∗ are expressible in FOM.

The following lemma gives the complexities of switching between the two repre-
sentations for trees.

Lemma 4.7. (1) Given a tree t as a pointer structure, [t] can be computed in
LogSpace from t. (2) Given t as a string, the pointer encoding can be computed
in TC0 from [t].
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Proof. (1) Given a tree t as a pointer structure, [t] correspond to a depth-first
left-first traversal of t. This traversal is easily doable in LogSpace from t.

(2) In order to switch from the string representation to the pointer representation
we need to compute for each node (i) its first child, (ii) its left and right siblings,
and (iii) its parent.

Using Proposition 4.3, we show that this can be done in TC0 from the string
representation of t by exhibiting the corresponding FOM formulas. In the following
we identify a node of t with the position of the corresponding opening parenthesis
in its word encoding. Recall the definitions of ϑ and ϑ∗ as FOM formulas in
Corollary 4.6. Let Open(i) be the FOM formula that checks that the position i is
in Σ (as opposed to Σ̄).

Next-Sibling(i, j) ≡ Open(i) ∧ Open(j) ∧ i ≤ j ∧ ϑ(i, j − 1)
Previous-Sibling(i, j) ≡ Open(i) ∧ Open(j) ∧ j ≤ i ∧ ϑ(j, i− 1)
First-Child(i, j) ≡ Open(i) ∧ Open(j) ∧ j = i+ 1
Parent(i, j) ≡ Open(i) ∧ Open(j) ∧ j ≤ i ∧ (i = j + 1 ∨ ϑ∗(j + 1, i− 1)) 2

Remark 4.8. The complexity of (1) of Lemma 4.7 is optimal as it was shown
in [Cook and McKenzie 1987] that computing the depth-first, left-to-right traversal
of a tree is FLogSpace-hard under NC1 reductions, where FLogSpace is the
functional variant of LogSpace. 2

We are now ready to prove Theorem 3.24, in which we claimed that if the data
trees are given as strings, Core XPath is in TC0 w.r.t. data complexity.

Proof of Theorem 3.24. Let e be the Core XPath expression and let the data
tree t be coded as a string. We show that the query evaluation problem (with the
query fixed) can be expressed by a FOM formula ϕe(root, y) such that t |= ϕe(i, j)
iff the node pointed to by j in t satisfies e(t) when evaluated starting at node i.
Then Theorem 3.24 follows from Proposition 4.3 and Lemma 4.7.

The proof is by induction on e. We only give a few examples. If e is e′/χ :: a, then
ϕe(x, y) is ∃z ϕe′(x, z) ∧ stepχ(z, y)∧Qa(y), where stepχ(x, y) is the FOM formula
checking that the node y can be reached from y via the χ-axis. We gave examples
of such formulas in Lemma 4.7. The others steps can be obtained similarly. If e is
e1[e2], then ϕe(x, y) is ϕe1

(x, y) ∧ ∃zϕe2
(y, z). The remaining cases are left to the

reader. 2

Remark 4.9. Full XPath also has the ability of counting the number of nodes
that satisfy a given expression and of performing tests on the result. Because FOM
also has this capability, extending the above core fragment with such tests, assuming
that the arithmetic stays within TC0 (recall that TC0 can perform comparisons,
addition and multiplication), does not affect the result of Theorem 3.24. 2

4.4 Data Complexity

We consider first the most general case and consider membership of a tree in a
regular tree language. This will give upper-bounds (depending on the coding chosen
for the input tree) for all of the considered typing systems. In the last part of this
section we will see that these upper-bounds are actually matched by all of them.
Therefore the data complexity of the validation problem does not depend on the
typing system used.
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Let T be a regular tree language. Consider the following decision problem:

[ValT ] INPUT: a labeled tree t
OUTPUT: true iff t ∈ T .

The complexity of VALT depends on the coding used for t. We denote by VALdom
T

and VALsax
T , the decision problems associated respectively to the DOM-like and

the SAX-like encoding. We start with the case where t is coded as a pointer (tree)
structure as it better illustrates the difference between ranked and unranked trees.

4.4.1 Trees as pointer structures. In this section, t is given as a pointer struc-
ture. We want to check whether t ∈ SAT(A) for some unranked tree automaton A.
We proceed as follows: first we consider the case where all trees have a fixed rank
and then we reduce the unranked case to the ranked case.

Assume first that all trees have a rank bounded by k. Let T be an arbitrary
regular (rank k) tree language and let A be a DBUTA recognizing T .

A naive approach would be to perform a depth-first left-first traversal of the input
tree storing partial results (the state reached by A on the corresponding subtree) in
an auxiliary memory. More precisely assume that the traversal of the tree has just
completely processed the subtree rooted at n. In other words we have computed
the state q that A reaches at n. Let m be the parent of n. We distinguish three
cases. If n is the first and not only child of m then we create a new array Hm of
size O(k) in auxiliary memory that will be used to store partial computations of
A on the siblings of n. We initiate Hm by storing q in it and proceed to the next
sibling of n. If n has still a sibling which has not been processed yet, we update
Hm by adding q and proceed with the next sibling. Finally if n is the last child of
m then we compute the state of m using q and Hm, free the memory used by Hm

and proceed upward with m.
Let’s consider the memory used by this algorithm. Assume the traversal is cur-

rently at node n in the input tree. Consider the path from the root to n. The
memory used at this moment is exactly an array Hs of size O(k) for all nodes s in
this path having a sibling which subtree is already completely processed. Thus the
total size used in the worst case is O(d · k) where d is the depth of the input tree.
As the depth of the input tree can be linear in the size of t. Thus the overall space
used is O(k · |t|).

In order to lower the complexity we order the siblings of each node n according
to the size (number of nodes) of their corresponding subtrees, taking the largest
first and the left-most sibling first in case of equal size (this strategy of considering
largest subtrees first is common for trees, see [Lindell 1992] for instance). We denote
by < this order. Let next-sibling<(i), first-child<(i) and last-child<(i) be
the functions returning the pointers to the nodes of t corresponding to the next-
sibling (first-child, last-child) of the node pointed by i where first last and next
are relative to <. Notice that the size of a subtree can be computed in LogSpace
and therefore the functions next-sibling<, first-child<, last-child< can be
computed in LogSpace. We now revisit the algorithm above with a depth-first
<-first (instead of depth-first left-first) traversal. That is we use the functions next-
sibling<, first-child<, last-child< in place of the predicates next sibling, first
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Fig. 10. From unranked to ranked trees.

child and last child. Notice that this traversal remains computable in LogSpace.
We can thus show the following lemma:

Lemma 4.10. If T is a regular ranked tree language then VALdom
T is in Log-

Space.

Proof. Let’s consider the memory used by the new algorithm described above.
Assume the traversal is currently at node n it the input tree. Consider the path
from the root to n. As before the memory used at this moment is exactly an array
Hs of size O(k) for all nodes s in this path having a sibling which subtree is already
completely processed. Let s1 · · · si be the sequence (from root to n) of such nodes
s. The memory space used at node n is O(k · i). For simplicity set s0 to be the root
of t. For 0 ≤ j ≤ i let αj be the size of the subtree rooted at sj . Fix j, 1 ≤ j ≤ i.
We know that sj has a sibling which has been processed earlier than sj , therefore,
by the choice of < the size of the subtree rooted at sj is at most half the size of
the subtree rooted at the parent of sj . That is we have αj ≤ αj−1/2. By induction
we infer that αi ≤ α0/2

i. As αi ≥ 1 we must have i ≤ log |t| and the space used at
node n is O(k · log |t|). The overall space complexity is thus O(k · log |t|) which is
LogSpace when k is fixed. 2

This algorithm does not generalize to unranked trees because it is linear in the
rank of the tree which, in general, could be linear in |t|. For that reason, when the
trees are unranked, any depth-first evaluation is doomed to fail. However the Log-
Space complexity can be obtained by preprocessing the unranked tree in order to
encode it as a ranked tree. This reduction is fairly standard in the literature [Suciu
2001; Papakonstantinou and Vianu 2003; Neven 2002]. Let ] be a new symbol and
Σ] be Σ ∪ {]}. The transformation takes an unranked labeled tree t over Σ and
returns a binary labeled tree t′ over Σ]. The transformation is denoted by rank
and is defined inductively as follows (see Figure 10): If t is the empty tree then
rank(t) is a single node labeled ]. Let T̄ and T̄ ′ be possibly empty forests and
t be a tree whose root is labeled by a ∈ Σ and whose children form the forest T̄ ,
then rank(tT̄ ′) is the binary tree rooted at a node labeled by a whose left child is
rank(T̄ ) and whose right child is rank(T̄ ′).
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Notice that rank is 1-1 and, importantly, that it preserves regularity.

Lemma 4.11 (Folklore, see also Lemma 4.24). Given a regular tree lan-
guage T , the set T ′ = {t′ | t′ = rank(t) and t ∈ T} is a regular tree language.

Moreover it can be checked that this encoding can be done in LogSpace. The
algorithm just copies the input nodes, sets the links appropriately (this can be done
in LogSpace because this concerns only finitely many local nodes), and finally adds
as many ] nodes as required.

Lemma 4.12. Let t be a tree coded by its pointer structure. Then the pointer
structure coding rank(t) can be computed in LogSpace from t.

Lemma 4.10, Lemma 4.11, Lemma 4.12 and the closure of LogSpace under
composition immediately entail the main result of this section:

Theorem 4.13. For any regular tree language T , VALdom
T is in LogSpace.

The complexity of the above theorem is optimal as shown below.

Theorem 4.14. There exists T such that VALdom
T is complete for LogSpace

under AC0 reductions.

Proof. We prove the hardness of VALdom
T by reducing ORD to it, which is

LogSpace-complete under AC0 reductions (cf. Proposition 2.1, [Etessami 1997]).
Let T be the regular family of trees consisting of a single branch forming a string

in the regular language a∗ba∗ca∗.
Let G be a directed graph that is a line and vi, vj two nodes of G. G can be seen

as a tree t and a pointer structure for t can be constructed from G in the obvious
way. The labels of the nodes of t are set such that vi is labeled b, vj is labeled c
and all other nodes are labeled a. This reduction is First-Order definable and thus
computable in AC0 [Barrington et al. 1990].
It can be checked that ORD is true for G, vi, vj iff t ∈ T . This concludes the
proof. 2

4.4.2 Trees as strings. In this section we assume that trees are encoded as a
string and study the problem VALsax

T . Recall that if t is a tree, [t] denotes its
string encoding. The main result of this section is:

Theorem 4.15. For all regular T , VALsax
T is in NC1.

The proof of the theorem follows the strategy of the previous section: it first re-
duces the unranked case to the ranked one. The reduction is based on the following
Lemma:

Lemma 4.16. Let t be a tree. Then [rank(t)] is computable in TC0 from [t].

Proof. By Proposition 4.3 it suffices to give a logical FOM formula correspond-
ing to the reduction. We assume the notation used in Corollary 4.6 where ϑ(i, j),
ϑ∗(i, j) and open(i) are FOM-formulas denoting respectively that the substring
from i to j is the coding of a tree, a forest, and that the label at position i is in Σ.
We will also use a formula close(i) denoting that the label at position i is in Σ̄.
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In the following we identify a node of the tree by the position of the corresponding
opening parenthesis in its word encoding. The following FOM formula thus checks
that a node i is a leaf of t (its matching closing parenthesis is the next symbol):

Leaf(i) ≡ open(i) ∧ ϑ(i, i+ 1)

The following FOM formula checks that a node i has no right sibling (its matching
closing parenthesis is either the last one of the string or is followed by a closing
symbol, ending the subtree of its parent):

NoRightSibling(i) ≡ ∃j (ϑ(i, j) ∧ (close(j + 1) ∨ j = max))

The following FOM formula checks that two nodes i and j are siblings (there is a
well-defined forest between i and j):

Sibling(i, j) ≡ open(i) ∧ open(j)

∧ [(i = j) ∨ ((i < j → ϑ∗(i, j − 1)) ∧ (j < i→ ϑ∗(j, i− 1)))]

Finally the following FOM formula checks that j is an ancestor of i (the closing
parenthesis of j occurs after i):

Ancestor(i, j) ≡ ∃u (j ≤ i ≤ u ∧ ϑ(j, u))

Let t′ =rank(t). By definition, t′ contains at most two extra nodes per node of t,
thus |t′| ≤ 3 · |t|. More precisely t′ contains the same nodes as t plus nodes labeled
], one for each leaf of t and one for each node of t having no right sibling. Because
each node of the tree corresponds to 2 characters in its string representation the size
z of [t′] can be expressed by the following FOM formula (recall Proposition 4.4):

∃x, y ([z = max + 2x+ 2y] ∧ [x = ]i Leaf(i)] ∧ [y = ]i NoRightSibling(i)])

Let n be a node labeled by a ∈ Σ in t. Let i be the position in w′ = [t′] of the
opening tag of n and j be its position in w = [t]. We are looking for a FOM formula
defining i from j and w. i is computed by counting the number of tags of each type
occurring before i in w′. The depth-first left-to-right traversal of t and t′ will go
through the same nodes in the same order (assuming we skip the nodes labeled by
] in t′). Thus there are exactly as many opening tags before i in w′ as before j in
w and the latter can easily be computed from j and w and is denoted by x in the
formula below. In order to derive the number of symbols ] occurring before i, it
suffices to count the number of nodes that are leaves and the number of nodes that
do not have a right sibling and occur before j in w. This number is denoted by
y in the formula below. Note that each such node accounts for two symbols: one
] and one ]̄. Therefore in order to get i from j and w it remains to compute the
number (denoted by z below) of closing tags that must occur before i. From the
definition of rank this number is exactly the number (x) of nodes visited before
n minus the number of left siblings of all the ancestors of n. Indeed the subtrees
below those nodes are not yet completely computed by rank. In conclusion, the
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following FOM formula ϕa(i) gives the positions in t′ labeled by a:

∃j (Qa(j) ∧ ∃x, y, z
x = ]u u ≤ j ∧ open(u) ∧
y = ]u ∃v (u ≤ v ≤ j ∧ ϑ(u, v)) ∧ Leaf(u)+

]u ∃v (u ≤ v ≤ j ∧ ϑ(u, v)) ∧ NoRightSibling(u) ∧
z = x− ]u [u ≤ j ∧ ∃v (Sibling(u, v) ∧ Ancestor(v, j))] ∧
i = x+ 2y + z)

Next we let i be the position in w′ of the closing tag of n and j be its position in
w. Notice from the definition of rank that in w′ the closing tag of n occurs when
the entire forest of the siblings of n is processed. Let m be the rightmost sibling of
n and let k be the position of its closing tag in w. We can proceed as above but
considering all nodes before m and its subtree, instead of all the nodes occurring
before n, while computing x, y and z: We thus consider all positions prior to k. In
the formula below, j′ is the position of the opening tag of n.

∃j, j′, k, x, y, z (Qā(j) ∧ ϑ(j′, j) ∧ ϑ∗(j′, k) ∧ (∀k′ k < k′ → ¬ϑ∗(j′, k′))∧
x = ]u u ≤ k ∧ open(u)∧
y = ]u ∃v (u ≤ v ≤ j ∧ ϑ(u, v)) ∧ Leaf(u)+

]u ∃v (u ≤ v ≤ j ∧ ϑ(u, v)) ∧ NoRightSibling(u) ∧
z = x− ]u [u ≤ k ∧ ∃v (Sibling(u, v) ∧ Ancestor(v, j ′))] ∧
i = x+ 2y + z)

The formulas for ] and ]̄ are obtained similarly.
This concludes the proof of the lemma. 2

The ranked case is proved by adapting techniques of [Lohrey 2001] for the cod-
ing used here for trees. Intuitively it reduces, in TC0, the problem to checking
membership in a parenthesis CFL which is known to be in NC1 [Buss 1987].

Proof of Theorem 4.15. Let T be a regular tree language and let T ′ be its
image under rank (see Lemma 4.11). Let A = (Σ], Q, δ, F ) be a BUTA recognizing
T ′. Let G = (Q,Σ], R, F ) be the CFG where R contains q → aq′q′′ā iff δ(a, q′, q′′) =
q. It is easy to see that t ∈ T iff [rank(t)] ∈ L(G) and that G is computed in linear
time from A. Therefore by Lemma 4.16 and Proposition 4.5, it suffices to show
that [rank(t)] ∈ L(G) can be checked in NC1. This can be achieved by adapting
the proof of Theorem 1 [Lohrey 2001] to our coding of a tree. Let t′ = rank(t).
Let β be the string operation defined inductively on string representations of trees
as follows (note that the trees are now binary and complete (each node either have
0 or 2 children)):

• β(ε) = ε

• β(auvā) = 〈aβ(u)β(v)〉 where u and v are well-balanced strings.

Consider now the CFG G′ = (Q,Σ]∪{〈, 〉}, R′, q0) where R′ contains q → 〈aq′q′′〉
iff q → aq′q′′ā is in R. It is easy to check that [t] ∈ L(G) iff β([t]) ∈ L(G′). We
show that β is a FOM reduction.

Let w = [t] for a complete binary tree t. The FOM formula giving the size i of
w′ = β(w) is given by i = 3.]j open(j). The FOM formula giving the positions i of
w′ containing the symbol a ∈ Σ] is given by the formula below. In this formula, j
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is the position in w of the node whose image by β is i, x computes the number of
nodes which have already been completely processed by β before reaching j (notice
that each such node is encoded with 3 characters in w′ and all of them are before
i) and y computes the nodes that are not yet completely processed by β before
reaching j, namely the ancestors of j (notice that each such node has exactly 2
characters that occurs before i and one after the closing bracket).
ϕa(i) ≡ ∃j Qa(j)∧

x = ]u ∃v open(u) ∧ u ≤ v ≤ j ∧ ϑ(u, v)∧
y = ]u Ancestor(u, j)∧
i = 3x+ 2y

The formulas for 〈 and 〉 are obtained similarly.
Therefore, by Proposition 4.5, it suffices to show that w ∈ L(G′) can be checked

in NC1. In general, checking that a word belongs to a CFL is in LogCFL which
is believed to be much more powerful than NC1. But G′ is a special CFG, it is a
parenthesis CFG as defined in [McNaughton 1967]. It turns out that membership
in a parenthesis CFL can be done in NC1 [Buss 1987]. This concludes the proof of
the theorem. 2

Theorem 4.17. There exists T such that VALsax
T is complete for NC1 under

DLogTime reductions.

Proof. The upper-bound of Theorem 4.15 is optimal because there exist regular
string languages L such that the problem of checking whether a word w is in L is
complete for NC1 under DLogTime reductions. Such a language can be found in
[Barrington et al. 1990]. This regular language can easily be turned into a regular
tree language. 2

4.4.3 Other typing systems. All the typing systems mentioned in the introduc-
tion, TA, TWA, DTD, and EDTD, define regular tree languages. Moreover, all of
them can encode any string regular language and there exist regular languages for
which testing membership is NC1-complete (see [Vollmer 1999]) when the input
is given as a string, and LogSpace-complete (see Theorem 4.14) when the input
is given as a pointer structure. From this, Theorem 4.13, and Theorem 4.15, we
obtain the following corollary:

Corollary 4.18. Let τ be a DTD, EDTD, TWA, or a TA. VALdom
τ is in

LogSpace and VALsax
T is in NC1. Both upper bounds are optimal for each of the

typing systems.

4.5 Combined Complexity

In the previous section, the input was simply the encoding of a tree. In this section,
we consider the problem of validation when the type is also part of the input. Let
C be a class of tree types. For instance, C could be the class of all DTDs, or
all EDTDs or all tree automata etc. More formally we will study the following
problems:

[TreeM(C)] INPUT: a tree t, a type τ ∈ C
OUTPUT: true iff t ∈ SAT(τ)
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As all types considered in this article are a generalization of string regular languages,
we recall the complexities for strings.

[StringM(C)] INPUT: a string w, a type τ ∈ C
OUTPUT: true iff w ∈ L(τ)

Lemma 4.19. [Jiang and Ravikumar 1991; Jones 1975]

(1 ) StringM(DSA) is LogSpace-complete under AC0 reductions.

(2 ) StringM(NSA) is NLogSpace-complete under AC0 reductions10.

(3 ) StringM(Regular-expression) is NLogSpace-complete under AC0 reductions11.

All families of automata that we study are extensions of finite automata over
strings thus Lemma 4.19 implies that all the complexities are going to be above
LogSpace. This Lemma together with Lemma 4.7 implies that the encoding of
the input tree is now irrelevant and we will arbitrarily use the string encoding or the
pointer encoding depending on what we need. On the other hand the complexity
of TreeM(C) will now depend on C.

4.5.1 DTDs. Recall that a DTD associates a (unique) regular expression to each
symbol of Σ. We have:

Theorem 4.20. TreeM(DTD) is NLogSpace-complete under AC0 reductions.

Proof. The upper bound is shown as follows. We will use a pointer p1 in order
to do a depth-first, left-to-right traversal of the input tree. Another pointer p2 will
be used to parse the DTD. An extra pointer p3 on the tree will be used for local
computations. For each node pointed by p1 the word formed by the labels of the
list of its children can be parsed in LogSpace using p3. The pointer p2 is set to the
regular expression of the DTD corresponding to the label pointed by p1. It is now
possible to check that the word pointed by p3 is indeed in the regular expression
pointed by p2 in NLogSpace (this is Lemma 4.19).

The lower bound comes from the fact that the problem is obviously as hard as
StringM(Regular-expression) which is NLogSpace-complete by Lemma 4.19. 2

4.5.2 TWA. For TWA, the complexity depends on whether the automaton is
deterministic or not. The following extends the result for two-way string automata:

Theorem 4.21. TreeM(DTWA) is LogSpace-complete under AC0 reductions.
TreeM(NTWA) is NLogSpace-complete under AC0 reductions.

Proof. We assume the tree is given by its string encoding. The lower bound
follows directly from Lemma 4.19. For the upper bound, a Turing machine needs
only two pointers, one to record the current position of the head on the input string
w, and one to point to the current state. This can be done in LogSpace. To get
to the next step, it browses deterministically (resp. nondeterministically) the list

10[Jones 1975] actually proved completeness under so called Rudimentary-Log reductions which
are equivalent to AC0 as mentioned in [Vollmer 1999]
11This can be derived from (2) because there is a LogSpace reduction from regular expressions
to ε-free NSA [Jiang and Ravikumar 1991]
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of transitions of the automaton until it gets one corresponding to the current label
and state, and then moves the head pointer and the state pointer accordingly.

The remaining difficulty is that a DTWA may loop when it rejects a tree. Recall
that such an automata accepts when it reaches an accepting state. It way very
well loop when it rejects its inputs. To cope with this situation, together with the
simulation of the automata as described above, we also simulates the automata two
steps by two steps. That is we also record its configuration every other step. This
can also be done in LogSpace as above.

Now if the DTWA reaches an accepting configuration this is detected by the
above algorithm. Otherwise it loops. In this case, there is a time t such that the
configuration reached by the DTWA is exactly the same as the one reached at time
2t and this is detected by the algorithm above.

Altogether this gives the required complexities. 2

4.5.3 Tree Automata. For tree automata over a ranked alphabet, TreeM was
considered in [Lohrey 2001]: TreeM(Ranked-NBUTA) and TreeM(Ranked-NTDTA)
are LogCFL-complete, TreeM(Ranked-DBUTA) is in LogDCFL and
TreeM(Ranked-DTDTA) is LogSpace-complete. For TreeM(Ranked-NBUTA),
the hardness proof of [Lohrey 2001] uses a reduction from membership in a context-
free language. The data tree then roughly corresponds to the skeleton of a derivation
tree of the input word and, from the CFG, a tree automaton is constructed that
checks that a derivation tree of the input word can be superimposed on the data
tree. The difficulty is to achieve this within a bounded rank because there is a
priori no reason for the derivation tree of the input word to have a bounded rank.
A combinatorial result of Ruzzo [Ruzzo 1980] is used to show that this is indeed
always possible.

We give a very elementary short new proof of this result based on the SAC1

characterization of LogCFL due to Venkateswaran [Venkateswaran 1991]. Recall
that SAC1 is the class of languages recognizable by LogSpace-uniform families of
semi-unbounded (∧ gates with bounded fan-in but ∨ gates with unbounded fan-in)
circuits of depth O(log n) (SAC1 circuits).

A SAC1 family of Boolean circuits is in normal form (NF), if the following
conditions are satisfied: (i) the fan-in of all ∧ gates is 2, (ii) a level can be assigned
to the nodes of each circuit such that all inputs are at level 0 and each gate of
level i receives all its inputs from nodes of level i− 1, (iii) the circuits are strictly
alternating between ∨ gates and ∧ gates (odd-level gates are ∨ gates and even-level
gates are ∧ gates), and, (iv) each circuit has an odd number of levels, thus the
output gates are ∧ gates. Lemma 4.6 of [Gottlob et al. 2001] shows that we can
assume without loss of generality, that SAC1 circuits are in NF. Indeed we have:

Lemma 4.22. [Gottlob et al. 2001] It is LogCFL-complete to test membership
in a SAC1 family of circuits in NF.

Let w be a word of length n. A proof tree Tw for the circuit Cn of a SAC1 family
in NF on input word w is a rooted tree tw together with a labeling function λw

from nodes Nw of tw to gates of Cn such that: (i) the root of tw is labeled with
the output gate of Cn, (ii) if λw(u) = g and g is an ∧ gate then u has exactly 2
children u1 and u2 such that λw(u1) and λw(u2) are the input gates of g, (iii) if
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λw(u) = g and g is an ∨ gate then u has a unique child u1 such that λw(u1) is one
of the input gates of g, and, (iv) each leaf u of tw is labeled with an input gate of
Cn such that the corresponding bit in w is 1. Intuitively a proof tree can be seen
as a certificate that the circuit evaluates to 1 on input w.

Notice that for each NF family of SAC1 circuits and each w of length n the tree
tw of the proof tree Tw only depends on n (the labeling function λw depends on w
and Cn). We note by tn this tree, denoted as the skeleton of the proof trees for
inputs of size n in [Gottlob et al. 2001].

Examples of circuits in NF, together with their corresponding proof trees and
skeletons can be found in [Gottlob et al. 2001]

The reduction now works as follows: given an input word w of size n and a SAC1

family C in NF, the data tree will be the skeleton of all proof trees for inputs of
size n, and the tree automaton will be isomorphic to the circuit Cn. Thus, any
accepting run of this automaton corresponds to a function λw which is, together
with tn, a proof tree of w for C.

Lemma 4.23 [Lohrey 2001]. Both TreeM(Ranked-NBUTA) and TreeM(Ran-
ked-NTDTA) are LogCFL-complete.

Proof. The upper-bound is immediate as a NTDTA over ranked trees can be
seen as a CFL whith states as non-terminals. We consider now the lower bound. We
show that membership in a SAC1 language in NF can be reduced in LogSpace to
TreeM(Ranked-NTDTA) (TreeM(Ranked-NBUTA) is treated similarly). We then
conclude using Lemma 4.22.

Let (Cn)n∈N be a family of NF circuits in SAC1 and w ∈ {0, 1}∗. Let n be
the length of w. We have to compute in LogSpace a ranked tree t and a ranked
NTDTA A such that t ∈ SAT(A) iff w is accepted by Gn.

Let t be tn, the skeleton of the proof trees for inputs of size n as defined above,
where each node is assigned the same label a. Let A = ({a}, Q, q0, δ) where Q =
V , the set of gates of Cn, q0 is the output gate of Cn. δ is defined as follows.
δ(a, q) = {q1q2} if q is an ∧ gate with input gates q1 and q2. If q is an ∨ gate, then
δ(a, q) = {q′ | q′ is an input gate of q}. If q is an input gate of Cn, then δ(a, q) = {ε}
if the corresponding bit of w is 1, and δ(a, q) = ∅ otherwise.

It is now straightforward to verify that t ∈ SAT(A) iff t, together with the labeling
that assigns to each node of t the state of A corresponding to an accepting run,
forms a proof tree of Cn on input w. It remains to show that the reduction is in
LogSpace: the fact that tn can be computed in LogSpace from n is shown in
[Gottlob et al. 2001], and the LogSpace computation of A is immediate from the
LogSpace uniformity of SAC1 circuits. 2

The general result for unranked trees is obtained by reduction to the ranked case.
Recall Lemma 4.11. Given a regular tree language T , the tree language rank(T )
is regular. In what follows, we overload the notation of rank, and denote by
rank(A) a tree automaton recognizing the regular tree language rank(SAT(A)).
The following shows that the reduction can be computed in LogSpace.

Lemma 4.24. Given an NTDTA or NBUTA A, rank(A) can be computed in
LogSpace.
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Proof. We first prove the NTDTA case by giving the LogSpace construction of
A′ =rank(A). Let A = (Σ, Q, q0, δ) be an NTDTA. For each letter a ∈ Σ and each
state q ∈ Q let Aa,q = (Q,∆a,q , pa,q

0 , F a,q, δa,q) be a nondeterministic automaton
recognizing the regular string language δ(a, q). The alphabet is Q and the set of
states ∆a,q . Let ∆ be

⋃

a,q ∆a,q.
To check whether a tree is accepted by A, A′ has to verify that both vertical and

horizontal transitions of A are satisfied. The vertical ones correspond to transition
of A, the horizontal ones to the regular expressions occurring in the transition
table of A. This is manageable by an automata because in the coding, a vertical
transition is a move to the left child while an horizontal transition is a move to the
right child. The automaton A′ just have to propagate to its left and right child the
corresponding transition.

In order to do so, a state of A′ will be a quadruple of Σ × Q × ∆ × Q. The
meaning of a state 〈a, q, p, q′〉 is that the automaton is currently simulating Aa,q ,
has reached p in this simulation and is guessing that the next letter Aa,q will read
is q′. There is also a state q] which is expected to read a node labeled ] and an
initial state q′0.
Let A′ = (Σ], Q′, q′0, δ

′) be the NTDTA defined by :

• Q′ = {〈a, q, p, q′〉 | a ∈ Σ, q ∈ Q, q′ ∈ Q, p ∈ ∆} ∪ {q], q′0}.

• δ′(], q]) = ε.
q] accepts iff it is on a leaf labeled by ].

• δ′(a, q′0) = {〈a, q0, p
a,q0

0 , q〉q] | q ∈ Q}.
If the root is labeled a, A′ starts a simulation of Aa,q0 on the left child of the
root and checks that the right child of the root is labeled by ].

• 〈a, q′, pa,q′

0 , q′′〉〈b, q, p′, q′′′〉 ∈ δ′(a, 〈b, q, p, q′〉) if p′ ∈ δb,q(q′, p).

On a node labeled a, A′ can start a simulation of Aa,q′

on its left son and continue
the simulation of Ab,q on its right son.

• 〈a, q′, pa,q′

0 , q′′〉q] ∈ δ′(a, 〈b, q, p, q′〉) if p ∈ F b,q .
On a node labeled a, if the simulation of Ab,q reached an accepting state, A′

can also start a simulation of Aa,q′

on its left son and check that its right son is
labeled by ].

• q]〈b, q, p′, q′′〉 ∈ δ′(a, 〈b, q, p, q′〉) if p′ ∈ δb,q(q′, p) and pa,q′

0 ∈ F a,q′

.

On a node labeled a, if a can be a leaf (that is ε is in Aa,q′

or equivalently

pa,q′

0 ∈ F a,q′

), then A′ can check that its left son is labeled by ] and continue the
simulation of Ab,q on its right son.

• q]q] ∈ δ′(a, 〈b, q, p, q′〉) if p ∈ F b,q and pa,q′

0 ∈ F a,q′

.
On a node labeled a, if a can be a leaf and the simulation of Ab,q reached an
accepting state, then A′ checks that both sons are labeled by ].

It is straightforward to check that the above computation is correct (A′ is indeed
rank(A)) and that it can be done within LogSpace: 4 pointers are needed in
order to construct the states of A′, and 12 pointers suffice to compute the transition
function δ′.

The proof for NBUTA is immediate as it is the dual of an NTDTA. 2
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Theorem 4.25. TreeM(NBUTA) and TreeM(NTDTA) are LogCFL-complete
under LogSpace reductions.

Proof. The theorem follows immediately from Lemma 4.23 and Lemma 4.24. 2

4.5.4 Other typing systems. Given an EDTD, the NTDTA equivalent to it is
immediately obtained in LogSpace, and vice-versa. Thus Theorem 4.25 implies:

Corollary 4.26. TreeM(EDTD) is LogCFL-complete under LogSpace re-
ductions.

For deterministic tree automata, the situation is not as simple. It is easy to see
that the rank transformation does not preserve determinism. For TreeM(DBUTA)
in the ranked case [Lohrey 2001] gives an algorithm which works in LogDCFL. By
[Sudborough 1978], LogDCFL coincides with the class of languages recognizable
by deterministic auxiliary pushdown automata in logarithmic space and polynomial
time. The algorithm used in [Lohrey 2001] is similar to the one given in Section
4.4.1 where the order < is the depth-first, left-to-right traversal of the tree. The
difference is that the set Q of states of the automaton is now part of the input
and therefore Γ is an alphabet whose letters are of size log |Q|. This is why an
auxiliary stack of logarithmic size is required. In order to compute the state of
a node from the states of its k children it uses an intermediate storage (called H
in the algorithm presented in Section 4.4.1) of size k · log |Q| and this cannot be
extended to unranked trees as k can be arbitrarily large. When the tree is unranked
we can proceed as follows. The auxiliary structure H containing k states, one for
each son, is incrementally stored in the stack as a sequence of k elements. The k
children of n are then evaluated successively and the state of the automata reached
by the automata on each child is pushed on the stack. When all k children of a
node n labeled a have been visited, the stack contains the sequence of states H .
The state of n is now computed by guessing the (unique) state q for n and then
deterministically checking that the guess is correct by simulating the automaton
δ(a, q) on the word of size k located in the top of the stack. By definition of DBUTA
there is a unique accepting run therefore the complexity is LogUCFL. The precise
complexity remains open.

For TreeM(DTDTA) the situation is also slightly more complex for unranked
trees than for ranked ones. Indeed it is LogSpace-complete under AC0 reductions
for the ranked case. The algorithm given in [Lohrey 2001] works as follows. It
scans through all the leaves of the tree and for each of them checks that the path
going from the root to that leaf does verify the transitions given by the automa-
ton. Because the automaton is deterministic, this is sufficient for validation. The
navigation in the tree is indeed in LogSpace, it remains to compute, given a node
n of label a and a state q, the state of the i-th child of n. This can easily be
done in LogSpace in the ranked case by scanning δ(a, q). When the input tree is
unranked, one has to extract from the automaton of δ(a, q), the i-th character of
the (unique) word of length k accepted by this automaton, where k is the number
of children of n. This can be done in ULogSpace by guessing, letter by letter,
the unique word of length k of δ(a, q) while simulating δ(a, q). Again the precise
complexity remains open.
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Theorem 4.27. (1) TreeM(DBUTA) is in LogUCFL.
(2) TreeM(DTDTA) is in ULogSpace.

5. CONCLUSION

In this article, we have carried out a thorough complexity analysis of the XPath
evaluation problem as well as the XML validation problem.

We considered the current standard, XPath 1.0 [World Wide Web Consortium
1999]. The now proposed XPath 2.0 language includes most of XQuery and is
Turing-complete; however, most real-world path queries will remain expressible in
XPath 1.0, which is a strict fragment of XPath 2.0.

Our analysis of the combined complexity of XPath evaluation revealed that nega-
tion in XPath is the main obstacle to constructing parallel algorithms. In contrast,
for positive Core XPath (i.e., Core XPath without negation), we were able to es-
tablish LogCFL-completeness and, thus, parallelizability. Moreover, we defined
various extensions of positive Core XPath (like pWF, pXPath, pWF plus negation
with bounded depth) for which the combined complexity remains unchanged. How-
ever, as soon as we add XPath constructs that allow one to “encode” negation (like
iterated predicates in pWF), then we are back to PTime-completeness.

Besides, we also investigated further restrictions of Core XPath, which led to
even lower complexity classes (i.e., NLogSpace in case of PF and LogSpace in
case of PF↓ and Core XPath1.

Finally, we studied the query and data complexity of XPath. In both cases, we
came up with results showing that these complexities are in the low complexity class
LogSpace (in case of query complexity, we had to exclude the XPath constructs
“concat” and multiplication, which cause the result value to grow linearly with
respect to the query).

As far as the XML validation problem is concerned, we have seen that checking
the membership of an unranked labeled tree in a regular tree language is not more
difficult than checking the membership of a string in a regular string language. Thus
the data complexity of checking whether an XML document conforms to a type is
independent of the typing system as soon as this typing system is an extension of
regular string languages and a restriction of regular tree languages. On the other
hand, we have seen that the coding used for the data tree is crucial and that two of
the most heavily used models of XML data give two different complexity bounds:
NC1 vs. LogSpace.

The combined complexity of validation does not depend on the coding of the input
data tree but on the type language. It was shown that, depending on the typing
language, complexities vary from LogSpace-complete to LogCFL-complete.
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