
Introduction
Semantics and applications to verification

Xavier Rival

École Normale Supérieure

February 6th, 2026

Xavier Rival Introduction February 6th, 2026 1 / 90

Introduction

Program of this first lecture

Introduction to the course:

1 a study of some examples of software errors
▶ what are the causes ? what kind of properties do we want to verify ?

2 a panel of the main verification methods
with a fundamental limitation: indecidability

▶ many techniques allow to compute semantic properties
▶ each comes with advantages and drawbacks

3 an introduction to the theory of ordered sets
(though some terminology probably already known...)

▶ order relations are pervasive in semantics and verification
▶ fixpoints of operators are also very common

Xavier Rival Introduction February 6th, 2026 2 / 90

Case studies Ariane 5, Flight 501 (1996)

Outline

1 Introduction

2 Case studies
Ariane 5, Flight 501 (1996)
Patriot missile (anti-missile system), Dahran (1991)
Dirty COW
Need for semantics and verification

3 Approaches to verification

4 Orderings, lattices, fixpoints

5 Conclusion

Xavier Rival Introduction February 6th, 2026 3 / 90

Case studies Ariane 5, Flight 501 (1996)

Ariane 5 – Flight 501
Ariane 5:

a satellite launcher
replacement of Ariane 4, a lot more powerful
first flight, June, 4th, 1996: failure!

Flight story:
nominal take-off, normal flight for 36 seconds
T + 36.7 s : angle of attack change,
trajectory lost
T + 39 s : disintegration of the launcher

Consequences:
loss of satellites : more than $ 370 000 000...
launcher unusable for more than a year (delay !)

Full report available online:
http://esamultimedia.esa.int/docs/esa-x-1819eng.pdf

Xavier Rival Introduction February 6th, 2026 4 / 90

http://esamultimedia.esa.int/docs/esa-x-1819eng.pdf

Case studies Ariane 5, Flight 501 (1996)

Trajectory control system design overview

Sensors: gyroscopes, inertial reference systems...

Calculators (hardware + software) :
“Inertial Reference System” (SRI) :
integrates data about the trajectory (read on sensors)
“On Board Computer” (OBC) :
computes the engine actuations that are required to follow the
pre-determined theoretical trajectory

Actuators: engines of the launcher follow orders from the OBC

Redundant systems (failure tolerant system):
keep running even in the presence of one or several system failures
traditional solution in embedded systems: duplication of systems
aircraft flight system: 2 or 3 hydraulic circuits
launcher like Ariane 5 : 2 SRI units (SRI 1 and SRI 2)
there is also a control monitor

Xavier Rival Introduction February 6th, 2026 5 / 90

Case studies Ariane 5, Flight 501 (1996)

The root cause: an unhandled arithmetic error

Processor registers
Each register has a size of 16, 32, 64 bits:

64-bits floating point: values in range [−3.6 · 10308, 3.6 · 10308]

16-bits signed integers: values in range [−32768, 32767]
upon copy of data: conversions are performed such as rounding
when the values are too large:

▶ interruption: run error handling code if any, otherwise crash
▶ or unexpected behavior: modulo arithmetic or other

Ariane 5:
the SRI hardware runs in interruption mode
it has no error handling code for arithmetic interruptions
an unhandled arithmetic conversion overflow crashes the SRI

Xavier Rival Introduction February 6th, 2026 6 / 90

Case studies Ariane 5, Flight 501 (1996)

From the root cause to the failure

A not so trivial sequence of events:

1 a conversion from 64-bits float to 16-bits signed int is performed
and causes an overflow

2 an interruption is raised
3 due to the lack of error handling code, the SRI crashes
4 the crash causes an error return (negative integer value) value be

sent to the OBC (On-Board Computer)
5 the OBC interprets this illegal value as flight data
6 this causes the computation of an absurd trajectory
7 hence the loss of control of the launcher

Let us discuss a few specific points

Xavier Rival Introduction February 6th, 2026 7 / 90

Case studies Ariane 5, Flight 501 (1996)

A crash due to an unaddressed software case

Several solutions would have prevented this mishappening:

1 Deactivate interruptions on overflows:
▶ then, an overflow may happen, and produce wrong values in the SRI
▶ but, these wrong values will not cause the computation to stop!

and most likely, the flight will not be impacted too much

2 Fix the SRI code, so that no overflow can happen:
▶ all conversions must be guarded against overflows:

double x = /* ... */;
short i = /* ... */;
if(-32768. <= x && x <= 32767.)

i = (short) x;
else

i = /* default value */;
▶ this may be costly (many tests), but redundant tests can be removed

3 Handle conversion errors (not trivial):
▶ the handling code should identify the problem and fix it at run-time
▶ the OBC should identify illegal input values

Xavier Rival Introduction February 6th, 2026 8 / 90

Case studies Ariane 5, Flight 501 (1996)

A few additional insights

The task that crashed was useless after lift off:
purpose: re-calibration of gyroscopes in case of a launch delay
obviously, no chance of this happening after ignition!
implementation: shutdown 50 seconds into the flight
failure at 36 seconds

Legacy software:
due to positive experience in Ariane 4, many defensive guards were
optimised away
but Ariane 5 is a lot more powerful than Ariane 4

Note: importance of assumptions on the running environment

Failure of the redundant design:
two versions of the SRI with distinct hardware
but with the same software

Xavier Rival Introduction February 6th, 2026 9 / 90

Case studies Ariane 5, Flight 501 (1996)

Ariane 501, a summary of the issues

A long series of design errors, all related to a lack of understanding of
what the software does:

1 Non-guarded conversion raising an interruption due to overflow
2 Removal of pre-existing guards, too high confidence in the software
3 Non revised assumptions on the inputs when moving from Ariane 4

to Ariane 5
4 Redundant systems running the same software
5 Useless task not shutdown at the right time

Current status: such issues can be found by static analysis tools

Xavier Rival Introduction February 6th, 2026 10 / 90

Case studies Patriot missile (anti-missile system), Dahran (1991)

Outline

1 Introduction

2 Case studies
Ariane 5, Flight 501 (1996)
Patriot missile (anti-missile system), Dahran (1991)
Dirty COW
Need for semantics and verification

3 Approaches to verification

4 Orderings, lattices, fixpoints

5 Conclusion

Xavier Rival Introduction February 6th, 2026 11 / 90

Case studies Patriot missile (anti-missile system), Dahran (1991)

The anti-missile “Patriot” system

Purpose: destroy foe missiles before they reach their target
Use in wars:

▶ first Gulf war (1991)
protection of towns and military facilities in Israël and Saudi Arabia
(against “Scud” missiles launched by Irak)

▶ success rate:
⋆ around 50 % of the “Scud” missiles are successfully destroyed
⋆ almost all launched Patriot missiles destroy their target
⋆ failures are due to failure to launch a Patriot missile

Constraints on the system:
▶ hit very quickly moving targets:

“Scud” missiles fly at around 1700 m/s ; travel about 1000 km in 10
minutes

▶ not to destroy a friendly target (it happened at least twice!)
▶ very high cost: about $1 000 000 per launch

Xavier Rival Introduction February 6th, 2026 12 / 90

Case studies Patriot missile (anti-missile system), Dahran (1991)

System components

Detection / trajectory identification:
detection using radar systems
trajectory confirmation (to make sure a foe missile is tracked):

1 trajectory identification using a sequence of points at various instants
2 trajectory confirmation

computation of a predictive window (from position and speed vector)
+ confirmation of the predicted trajectory

3 identification of the target (friend / foe)

Guidance system:
interception trajectory computation
launch of a Missile, and control until it hits its target
high precision required (both missiles travel at more than 1500 m/s)

Very short process: about ten minutes

Xavier Rival Introduction February 6th, 2026 13 / 90

Case studies Patriot missile (anti-missile system), Dahran (1991)

Dahran failure (1991)

1 Launch of a “Scud” missile

2 Detection by the radars of the Patriot system
but failure to confirm the trajectory:

▶ imprecision in the computation of the clock of the detection system
▶ computation of a wrong confirmation window
▶ the “Scud” cannot be found in the predicted window

failure to confirm the trajectory
▶ the detection computer concludes it is a false alert

3 The “Scud” missile hits its target:
28 fatalities and around 100 people injured

Xavier Rival Introduction February 6th, 2026 14 / 90

Case studies Patriot missile (anti-missile system), Dahran (1991)

Fixed precision arithmetic

Fixed precision numbers are of the form ϵN 2−p where:
▶ p is fixed
▶ ϵ ∈ {−1, 1} is the sign
▶ N ∈ [−2n, 2n − 1]Z is an integer (n > p)

In 32 bits fixed precision, with one sign bit, n = 31;
thus we may let p = 20

A few examples:
decimal value sign truncated value fractional portion
2 0 00000000010 00000000000000000000
−5 1 00000000101 00000000000000000000
0.5 0 00000000000 10000000000000000000
−9.125 1 00000001001 00100000000000000000

Range of values that can be represented:

± 212(1 − 2−32)

Xavier Rival Introduction February 6th, 2026 15 / 90

Case studies Patriot missile (anti-missile system), Dahran (1991)

Rounding errors in fixed precision computations

Not all real numbers in the right range can be represented
rounding is unavoidable
may happen both for basic operations and for program constants...
Example: fraction 1/10

▶ 1/10 cannot be represented exactly in fixed precision arithmetic
▶ let us decompose 1/10 as a sum of terms of the form 1

2i) :

1
10 = 1

2 · 1
5

1
5 = 1

8 + 1
16 + 1

16 · 1
5 = 1

8 + 1
16 + 1

16 · (1
8 + 1

16 + 1
16 · 1

5) = . . .

▶ infinite binary representation: 0.00011001100110011001100...
▶ if p = 24:

representation: “0.000110011001100110011001”
rounding error is 9.5 · 10−8

Floating precision numbers (more commonly used today) have the
same limitation

Xavier Rival Introduction February 6th, 2026 16 / 90

Case studies Patriot missile (anti-missile system), Dahran (1991)

The root cause: a clock drift

Trajectory confirmation algorithm (summary):
hardware clock Td ticks every tenth of a second
time Tc is computed in seconds: Tc = 1

10 × Td

in binary: Tc = 0.000110011001100110011001b ×b Td !
relative error is 10−6

after the computer has been running for 100 h :
▶ the absolute error is 0.34 s
▶ as a “Scud” travels at 1700 m/s : the predicted window is about

580 m from where it should be
this explains the trajectory confirmation failure!

Remarks:
the issue was discovered by israeli users, who noticed the clock drift
their solution: frequently restart the control computer... (daily)
this was not done in Dahran... the system had been running for 4 days

Xavier Rival Introduction February 6th, 2026 17 / 90

Case studies Patriot missile (anti-missile system), Dahran (1991)

Patriot missile failure, a summary of the issues

Precision issues in the fixed precision arithmetic:

A scalar constant used in the code was invalid
i.e., bound to be rounded to an approximate value, incurring a
significant approximation the designers were unaware of

There was no adequate study of the precision achieved by the
system, although precision is clearly critical here !

Current status: such issues can be found by static analysis tools

Xavier Rival Introduction February 6th, 2026 18 / 90

Case studies Dirty COW

Outline

1 Introduction

2 Case studies
Ariane 5, Flight 501 (1996)
Patriot missile (anti-missile system), Dahran (1991)
Dirty COW
Need for semantics and verification

3 Approaches to verification

4 Orderings, lattices, fixpoints

5 Conclusion

Xavier Rival Introduction February 6th, 2026 19 / 90

Case studies Dirty COW

An exploit for Linux-based systems

Exploit principle:
1 be on a Linux system with kernel older than 4.4.26, 4.7.9, 4.8.3
2 find a file f owned by root, that is write-protected
3 run the exploit executable (compiled from a rather short C file) with f

passed as an argument, as well as any string/sequence of bytes s
4 result: s gets written into f!
5 a bit more “work” gives root access...

More information at CVE-2016-5195

Consequences can be catastrophic, any file owned by root can be
overwritten including system executable files, so one can completely take
over the system.

Xavier Rival Introduction February 6th, 2026 20 / 90

Case studies Dirty COW

History of DirtyCOW

History of the exploit and its fix:
problem present in the kernel from version 2.x
discovered in 2016
patch provided very shortly, but wrong
fixed properly by Linus Torvalds in 2017, but some systems remained
vulnerable much later; e.g. Android impacted until 2018
tied to subtle issues in memory management and IO, that we overview
next

Comments by Linus Torvalds:

“[DirtyCOW] is an ancient bug that was actually attempted to be fixed
once (badly) by me eleven years ago [...] but that was then undone due to
problems on s390 by [another] commit”

Xavier Rival Introduction February 6th, 2026 21 / 90

Case studies Dirty COW

Memory/IO: mapping a file in memory (mmap)

Copying a file to memory:
real copy:

Memory

0x123...
abc...

Disk (abstraction)

file
abc...

virtual copy:

Memory

0x123...
abc...

Disk (abstraction)

file
abc...

▶ reading still from the disk version
▶ in case of write, the copy is made real

Copy on write: performed before writing into a virtual mmap region

Xavier Rival Introduction February 6th, 2026 22 / 90

Case studies Dirty COW

Memory: advise to the kernel (madvise)

Generic mechanism to tell the kernel information about a memory
region, e.g., created by mmap

Among possible options:

WILLNEED:
region needed soon, read some pages ahead
DONTNEED:
region not needed anytime soon, associated memory pages may be
freed
. . .

In the case of DONTNEED, further access will not fail
but simply result in reloading (major slow-down)

Xavier Rival Introduction February 6th, 2026 23 / 90

Case studies Dirty COW

IO: disk writing

Caching of writes, for speed in case of an open in R/W mode:
disk writes are not direct but through a cache buffer in memory
buffers carry a dirty bit
turns to 1 when a write happens; remains 0 before that
closing access will write back when dirty

Example, opening of a file R/W (assuming no virtual copy):

d = 0

Cache buffer

0x123...
abc...

Disk

file
abc...

Example, writing a character, e.g. at position 2:

d = 1

Cache buffer

0x123...
azc ...

Disk

file
abc...

Xavier Rival Introduction February 6th, 2026 24 / 90

Case studies Dirty COW

Exploit

A short program, repeating multiple actions:

mmap(file.txt, fptr, COPY_ON_WRITE)
fork and run two threads

repeat 1 000 000 times
madvise(fptr,DONTNEED)

open(/proc/mem,p)
repeat 1 000 000 times

seek(p,[mapped file position])
write(p,string)

Actions:
Thread 1 repeatedly tells the kernel to discard the mmaped area
Thread 2 looks up the process memory directly, and repeatedly tries to
write, causing re-synthesis of virtual copies and write; writes to disk
cache and checks that should prevent permission violation

Data-race:
quickly repeated sequence causes drop of kernel checks
would never happen for a “slow” sequence of calls

Xavier Rival Introduction February 6th, 2026 25 / 90

Case studies Need for semantics and verification

Outline

1 Introduction

2 Case studies
Ariane 5, Flight 501 (1996)
Patriot missile (anti-missile system), Dahran (1991)
Dirty COW
Need for semantics and verification

3 Approaches to verification

4 Orderings, lattices, fixpoints

5 Conclusion

Xavier Rival Introduction February 6th, 2026 26 / 90

Case studies Need for semantics and verification

Common issues causing software problems

The examples given so far are not isolated cases
See for instance:

www.cs.tau.ac.il/~nachumd/horror.html

(not up-to-date)

Typical reasons:
1 Improper specification or understanding of the environment,

conditions of execution...
2 Incorrect implementation of a specification

e.g., the code should be free of runtime errors
e.g., the software should produce a result that meets some property

3 Incorrect understanding of the execution model
e.g., generation of too imprecise results

Xavier Rival Introduction February 6th, 2026 27 / 90

www.cs.tau.ac.il/~nachumd/horror.html

Case studies Need for semantics and verification

Why do we need semantics ?

What do the C programs
below do ?
When it is unclear, it means that
we need more formal semantics...

P0.c
int x = 0
int f0(int y){

return x * y;
}
int f1(int y){

x = y;
return 0;

}
void main(){

int z = f0(10) +
f1(100);

}

P1.c
void main(){

int i;
int t[100] = { 0, 1, 2,

..., 99 };
while(i < 100){

t[i]++;
i++;

}
}

P2.c
void main(){

float f = 0.;
for(int i = 0;

i < 1000000;
i++)

f = f + 0.1;
}

Xavier Rival Introduction February 6th, 2026 28 / 90

Case studies Need for semantics and verification

Need for semantics (1/2)

P0.c
int x = 0
int f0(int y){

return x * y;
}
int f1(int y){

x = y;
return 0;

}
void main(){

int z = f0(10) + f1
(100);

}

Execution order:
not specified in C
specified in Java
if left to right, z = 0
if right to left, z = 1000

Xavier Rival Introduction February 6th, 2026 29 / 90

Case studies Need for semantics and verification

Need for semantics (2/2)

P1.c
void main(){

int i;
int t[100] = { 0, 1, 2,

..., 99 };
while(i < 100){

t[i]++;
i++;

}
}

Initialization:
runtime error in Java
read of a random value
in C (the value that was
stored before)

P2.c
void main(){

float f = 0.;
for(int i = 0;

i < 1000000;
i++)

f = f + 0.1;
}

Floating point semantics:
0.1 is not representable
exactly; what is it rounded
to by the compiler ?
rounding errors; what is
the rounding mode at
runtime ?

Xavier Rival Introduction February 6th, 2026 30 / 90

Case studies Need for semantics and verification

New challenges to ensure embedded systems do not fail

Complex software architecture: e.g. parallel softwares
single processor multi-threaded, distributed (several computers)
more and more common: multi-core architectures
very hard to reason about

▶ other kinds of issues: dead-locks, races...
▶ very complex execution model: interleavings, memory models

Loose software specification: e.g., machine learning
software may include trained neural network, loose specification

Complex properties to ensure: e.g., security
the system should resist even in the presence of an attacker

(agent with malicious intentions)
attackers may try to access sensitive data, to corrupt critical data...
security properties are often even hard to express

Xavier Rival Introduction February 6th, 2026 31 / 90

Case studies Need for semantics and verification

Techniques to ensure software safety

Software development techniques:
software engineering, with a focus on specification, and software
quality (may be more or less formal...)
programming rules for specific areas (e.g., DO 178 c in avionics)

Generally these methods are not rigorous enough to provide any guarantee
on systems!

Formal methods:
should have sound mathematical foundations
should allow to guarantee programs meet some complex properties
should be trustable (is a paper proof ok ???)
increasingly used in real life applications, but still a lot of open
problems

Xavier Rival Introduction February 6th, 2026 32 / 90

Case studies Need for semantics and verification

The two main parts of this course

1 Semantics
▶ allow to describe precisely the behavior of programs

should account for execution order, initialization, scope...
▶ allow to express the properties to verify

several important families of properties: safety, liveness, security...
▶ also important to transform and compile programs

2 Verification
▶ aim at proving semantic properties of programs
▶ a very strong limitation: indecidability
▶ several approaches, that make various compromises around

indecidability

Xavier Rival Introduction February 6th, 2026 33 / 90

Approaches to verification Indecidability and fundamental limitations

Outline

1 Introduction

2 Case studies

3 Approaches to verification
Indecidability and fundamental limitations
Approaches to verification

4 Orderings, lattices, fixpoints

5 Conclusion

Xavier Rival Introduction February 6th, 2026 34 / 90

Approaches to verification Indecidability and fundamental limitations

The termination problem

Termination
Program P terminates on input X if and only if
any execution of P, with input X eventually reaches a final state

Final state: final point in the program (i.e., not error)
We may want to ensure termination:

▶ processing of a task, such as, e.g., printing a document
▶ computation of a mathematical function

We may want to ensure non-termination:
▶ operating system
▶ device drivers

The termination problem
Can we find a program Pt that takes as argument a program P and
data X and that returns “TRUE” if P terminates on X and “FALSE”
otherwise ?

Xavier Rival Introduction February 6th, 2026 35 / 90

Approaches to verification Indecidability and fundamental limitations

The termination problem is not computable

Proof by reductio ad absurdum, using a diagonal argument
We assume there exists a program Pa such that:

▶ Pa always terminates
▶ Pa(P,X) = 1 if P terminates on input X
▶ Pa(P,X) = 0 if P does not terminate on input X

We consider the following program:

void P0(P){
if(Pa(P, P) == 1){

while(1){
// loop forever

}
} else {

return; // do nothing
}

}

What is the return value of Pa(P0, P0) ?
i.e., does P0 terminate on input P0 ?

Xavier Rival Introduction February 6th, 2026 36 / 90

Approaches to verification Indecidability and fundamental limitations

The termination problem is not computable

What is the return value of Pa(P0, P0) ?
We know Pa always terminates and returns either 0 or 1 (assumption).
Therefore, we need to consider only two cases:

▶ if Pa(P0, P0) returns 1, then P0(P0) loops forever,
thus Pa(P0, P0) should return 0, so we have reached a contradiction

▶ if Pa(P0, P0) returns 0, then P0(P0) terminates,
thus Pa(P0, P0) should 1, so we have reached a contradiction

In both cases, we reach a contradiction

Therefore we conclude no such a Pa exists

The termination problem is not decidable
There exists no program Pt that always terminates and always
recognizes whether a program P terminates on input X

Xavier Rival Introduction February 6th, 2026 37 / 90

Approaches to verification Indecidability and fundamental limitations

Absence of runtime errors

Can we find a program Pc that takes a program P and input X as
arguments, always terminates and returns

▶ 1 if and only P runs safely on input X , i.e., without a runtime error
▶ 0 if P crashes on input X

Answer: No, the same diagonal argument applies
if Pc(P,X) decides whether P will run safely on X , consider

void P1(P){
if(Pc(P, P) == 1){

0 / 0; // deliberately crash
(unsafe)

} else {
return; // do nothing

}
}

Non-computability result
The absence of runtime errors is not computable

Xavier Rival Introduction February 6th, 2026 38 / 90

Approaches to verification Indecidability and fundamental limitations

Rice theorem

Semantic specification: set of correct program executions
“Trivial” semantic specifications:

▶ empty set
▶ set of all possible executions

⇒ intuitively, the non interesting verification problems...

Rice theorem (1953)
Considering a Turing complete language,

any non trivial semantic specification is not computable

Intuition: there is no algorithm to decide non trivial specifications,
starting with only the program code
Therefore all interesting properties are not computable :

▶ termination,
▶ absence of runtime errors,
▶ absence of arithmetic errors, etc...

Xavier Rival Introduction February 6th, 2026 39 / 90

Approaches to verification Approaches to verification

Outline

1 Introduction

2 Case studies

3 Approaches to verification
Indecidability and fundamental limitations
Approaches to verification

4 Orderings, lattices, fixpoints

5 Conclusion

Xavier Rival Introduction February 6th, 2026 40 / 90

Approaches to verification Approaches to verification

Towards partial solutions

The initial verification problem is not computable

Solution: solve a weaker problem

Several compromises can be made:
simulation / testing: observe only finitely many finite executions
infinite system, but only finite exploration (no proof beyond that)
assisted theorem proving: we give up on automation
(no proof inference algorithm in general)
model checking: we consider only finite systems
(with finitely many states)
static analysis with abstraction: attempt at automatic
correctness proofs
(yet, may fail to verify some correct programs)
bug-finding: search for “patterns” indicating “likely errors”
(may miss real program errors, and report non existing issues)

Xavier Rival Introduction February 6th, 2026 41 / 90

Approaches to verification Approaches to verification

Safety verification method characteristics

Safety verification problem
Semantics JPK of program P : set of behaviors of P (e.g., states)
Property to verify S: set of admissible behaviors (e.g., safe states)

Goal: establish JPK ⊆ S

Automation: existence of an algorithm

Scalability: should allow to handle large softwares

Soundness: identify any wrong program

Completeness: accept all correct programs

Apply to program source code, i.e., not require a modelling phase

Xavier Rival Introduction February 6th, 2026 42 / 90

Approaches to verification Approaches to verification

1. Testing by simulation

Principle
Run the program on finitely many finite inputs

maximize coverage
inspect erroneous traces to fix bugs

Very widely used:
▶ unit testing: each function is tested separately
▶ integration testing: with all surrounding systems, hardware

e.g., iron bird in avionics

Automated
Complete: will never raise a false alarm
Unsound unless exhaustive: may miss program defects
Costly: needs to be re-done when software gets updated

Xavier Rival Introduction February 6th, 2026 43 / 90

Approaches to verification Approaches to verification

2. Machine assisted proof

Principle
Have a machine checked proof, that is partly human written

tactics / solvers may help in the inference
the hardest invariants have to be user-supplied

Applications
▶ software industry (rare): Line 14 in Paris Subway
▶ hardware: ACL 2
▶ academia: CompCert compiler, SEL4 verified micro-kernel
▶ also for math: four colour theorem, Feith-Thomson theorem

and vast adoption of Lean in the math community

Not fully automated
often turns out costly as complex proof arguments have to be found
Sound and quasi-complete (in practice fine...)

Xavier Rival Introduction February 6th, 2026 44 / 90

Approaches to verification Approaches to verification

3. Model-Checking

Principle
Consider finite systems only, using algorithms for

exhaustive exploration,
symmetry reduction...

Applications:
▶ hardware verification
▶ driver protocols verification (Microsoft)

Applies on a model: a model extraction phase is needed
▶ for infinite systems, this is necessarily approximate
▶ not always automated

Automated, sound, complete with respect to the model

Xavier Rival Introduction February 6th, 2026 45 / 90

Approaches to verification Approaches to verification

4. Static analysis with abstraction (1/4)

Principle
Use some approximation, but always in a conservative manner

Over-approximation of the semantics: JPK ⊆ JPKupper
We may need to under-approximation of the target property:

i.e., Sunder ⊆ S (we assume this here this is not the case)
We let an automatic static analyzer attempt to prove that:

JPKupper ⊆ S
When this proof succeeds, JPK ⊆ S
In practice, the static analyzer computes JPKupper

S

JPKupper
JPK

Xavier Rival Introduction February 6th, 2026 46 / 90

Approaches to verification Approaches to verification

4. Static analysis with abstraction (2/4)

Soundness
The abstraction will catch any incorrect program

If JPK ̸⊆ S, then JPKupper ̸⊆ S
since JPK ⊆ JPKupper

S

JPKupper
JPK

reachable dangerous configuration

Xavier Rival Introduction February 6th, 2026 47 / 90

Approaches to verification Approaches to verification

4. Static analysis with abstraction (3/4)

Incompleteness
The abstraction may fail to certify some correct programs

S

JPKupper
JPK

dangerous configurations not ruled out by the abstract semantics

Case of a false alarm:
program P is correct
but the static analysis fails

Xavier Rival Introduction February 6th, 2026 48 / 90

Approaches to verification Approaches to verification

4. Static analysis with abstraction (4/4)

Incompleteness
The abstraction may fail to certify some correct programs

In the following case, the analysis cannot conclude anything

S
JPKupper

One goal of the static analyzer designer is to avoid such cases

Static analysis using abstraction
Automatic: JPKupper, S computed automatically
Sound: reports any incorrect program
Incomplete: may reject correct programs

Xavier Rival Introduction February 6th, 2026 49 / 90

Approaches to verification Approaches to verification

5. “Bug finding”

Principle
Identify “likely” issues, i.e., patterns known to often indicate an error

use bounded symbolic execution, model exploration...
rank "defect" reports using heuristics

Intuition: model checking or static analysis made unsound
Example: Coverity
Automated
Not complete: may report false alarms
Not sound: may accept false programs
thus inadequate for safety-critical systems

Xavier Rival Introduction February 6th, 2026 50 / 90

Approaches to verification Approaches to verification

A summary of common verification techniques

Automatic Sound Complete Source level Scalable
Simulation Yes No 1 Yes Yes sometimes 2

Assisted proving No Yes Almost Partially sometimes 3

Model-checking Yes Yes Partially 4 No sometimes
Static analysis Yes Yes No Yes sometimes
Bug-finding Yes No No Yes sometimes

Obviously, no approach checks all characteristics
Scalability is a challenge for all

1unless full testing is doable
2full testing usually not possible except for small programs with finite state space
3quickly requires huge manpower
4only with respect to the finite models... but not with respect to infinite semantics

Xavier Rival Introduction February 6th, 2026 51 / 90

Orderings, lattices, fixpoints Basic definitions on orderings

Outline

1 Introduction

2 Case studies

3 Approaches to verification

4 Orderings, lattices, fixpoints
Basic definitions on orderings
Operators over a poset and fixpoints

5 Conclusion

Xavier Rival Introduction February 6th, 2026 52 / 90

Orderings, lattices, fixpoints Basic definitions on orderings

Order relations

Very useful in semantics and verification:
logical ordering, expresses implication of logical facts
computational ordering, useful to establish well-foundedness of
fixpoint definitions and for proving termination

Definition: partially ordered set (poset)
Let a set S and a binary relation (⊑) ⊆ S × S over S.
Then, ⊑ is an order relation (and (S,⊑) is called a poset) if and only if
it is

reflexive: ∀x ∈ S, x ⊑ x

transitive: ∀x , y , z ∈ S, x ⊑ y ∧ y ⊑ z =⇒ x ⊑ z

antisymmetric: ∀x , y ∈ S, x ⊑ y ∧ y ⊑ x =⇒ x = y

notation: x ⊏ y ::= (x ⊑ y ∧ x ̸= y)

Xavier Rival Introduction February 6th, 2026 53 / 90

Orderings, lattices, fixpoints Basic definitions on orderings

Graphical representation

We often use Hasse diagrams to represent posets:

Extensive definition:
S = {x0, x1, x2, x3, x4}
⊏ defined by:

x0 ⊏ x1
x1 ⊏ x2
x1 ⊏ x3
x2 ⊏ x4
x3 ⊏ x4

Diagram:

x0

x1

x2 x3

x4

By reflexivity, we have, e.g., x1 ⊑ x1

By transitivity, we have, e.g., x1 ⊑ x4

Order relations are very useful in semantics...

Xavier Rival Introduction February 6th, 2026 54 / 90

Orderings, lattices, fixpoints Basic definitions on orderings

Example: semantics of automata

In the following, we illustrate order relations and their usefulness in
semantics using word automata.

We consider the classical notion of finite word automata and let
L be a finite set of letters
Q be a finite set of states
qi, qf ∈ Q denote the initial state and final state
→ ⊆ Q × L× Q be a transition relation

Semantics of an automaton
The set of words recognized by A = (Q, qi, qf ,→) is defined by:

L[A] = {a0a1 . . . an | ∃q0 . . . qn−1 ∈ Q, qi
a0−→ q0

a1−→ q1 . . . qn−1
an−→ qf }

Xavier Rival Introduction February 6th, 2026 55 / 90

Orderings, lattices, fixpoints Basic definitions on orderings

Example: automata and semantic properties

A simple automaton:
L = {a, b} Q = {q0, q1, q2}
qi = q0 qf = q2

q0
a−→ q1 q1

b−→ q2 q2
a−→ q1

q0 q1 q2
a

b

a

A few semantic properties:
P0: no recognized word contains two consecutive b

L[A] ⊆ L∗ \ L∗bbL∗

P1: all recognized words contain at least one occurrence of a

L[A] ⊆ L∗aL∗

P2: recognized words do not contain b

L[A] ⊆ (L \ {b})∗

we could also consider under-approximation properties (of the form
P3 ⊆ L[A]), but do not in this lecture

Xavier Rival Introduction February 6th, 2026 56 / 90

Orderings, lattices, fixpoints Basic definitions on orderings

Total ordering

Definition: total order relation
Order relation ⊑ over S is a total order if and only if

∀x , y ∈ S, x ⊑ y ∨ y ⊑ x

Examples:
real numbers:
(R,≤) is a total ordering
powerset:
if set S has at least two distinct elements x , y then its powerset
(P(S),⊆) is not a total order
indeed {x}, {y} cannot be compared

Most of the order relations we will use are not be total
indeed: very often, powerset or similar

Xavier Rival Introduction February 6th, 2026 57 / 90

Orderings, lattices, fixpoints Basic definitions on orderings

Minimum and maximum elements

Definition: extremal elements
Let (S,⊑) be a poset and S ′ ⊆ S. Then x is

minimum element of S ′ if and only if x ∈ S ′ ∧ ∀y ∈ S ′, x ⊑ y

maximum element of S ′ if and only if x ∈ S ′ ∧ ∀y ∈ S ′, y ⊑ x

maximum and minimum elements may not exist
example: {{x}, {y}} in the powerset, where x ̸= y

infimum ⊥ (“bottom”): minimum element of S
supremum ⊤ (“top”): maximum element of S

Exercise:
what are the logical interpretations of infimum / supremum elements ?

Xavier Rival Introduction February 6th, 2026 58 / 90

Orderings, lattices, fixpoints Basic definitions on orderings

Upper bounds and least upper bound

Definition: bounds
Given poset (S,⊑) and S ′ ⊆ S, then x ∈ S is

an upper bound of S ′ if
∀y ∈ S ′, y ⊑ x

the least upper bound (lub) of S ′ (noted ⊔S ′) if
∀y ∈ S ′, y ⊑ x ∧ ∀z ∈ S, (∀y ∈ S ′, y ⊑ z) =⇒ x ⊑ z

if it exists, the least upper bound is unique: if x , y are least upper
bounds of S, then x ⊑ y and y ⊑ x , thus x = y by antisymmetry

notation: x ⊔ y ::= ⊔{x , y}
upper bounds and least upper bounds may not exist

dual notions: lower bound, greatest lower bound (glb, noted ⊓S ′)
Exercise: logical interpretations ?

Xavier Rival Introduction February 6th, 2026 59 / 90

Orderings, lattices, fixpoints Basic definitions on orderings

Duality principle

So far all definitions admit a symmetric counterpart
dual relation: given an order relation ⊑, R defined by

xRy ⇐⇒ y ⊑ x

is also an order relation
thus all properties that can be proved about ⊑ also have a symmetric
property that also holds

This is the duality principle:

minimum element maximum element
infimum supremum

lower bound upper bound
greatest lower bound least upper bound

... more to follow
Xavier Rival Introduction February 6th, 2026 60 / 90

Orderings, lattices, fixpoints Basic definitions on orderings

Complete lattice

Definition: complete lattice
A complete lattice is a tuple (S,⊑,⊥,⊤,⊔,⊓) where:

(S,⊑) is a poset
⊥ is the infimum of S
⊤ is the supremum of S
any subset S ′ of S has a lub ⊔S ′ and a glb ⊓S ′

Properties:
⊥ = ⊔∅ = ⊓S
⊤ = ⊓∅ = ⊔S

Example:
the powerset (P(S),⊆, ∅,S,∪,∩) of set S is a complete lattice

Xavier Rival Introduction February 6th, 2026 61 / 90

Orderings, lattices, fixpoints Basic definitions on orderings

Lattice

The existence of lubs and glbs for all subsets is often a very strong
property, that may not be met:

Definition: lattice
A lattice is a tuple (S,⊑,⊥,⊤,⊔,⊓) where:

(S,⊑) is a poset
⊥ is the infimum of S
⊤ is the supremum of S
any pair {x , y} of S has a lub x ⊔ y and a glb x ⊓ y

let Q = {q ∈ Q | 0 ≤ q ≤ 1};
then (Q,≤) is a lattice but not a complete lattice
indeed, {q ∈ Q | q ≤

√
2

2 } has no lub in Q
property: a finite lattice is also a complete lattice

Xavier Rival Introduction February 6th, 2026 62 / 90

Orderings, lattices, fixpoints Basic definitions on orderings

Chains

Definition: increasing chain
Let (S,⊑) be a poset and C ⊆ S.
It is an increasing chain if and only if

it has an infimum (thus it is not empty)
poset (C,⊑) is total (i.e., any two elements can be compared)

Example, in the powerset (P(N),⊆):

C = {ci | i ∈ N} where ci = {20, 22, . . . , 2i}

Definition: increasing chain condition
The poset (S,⊑) satisfies the increasing chain condition if and only if
any increasing chain C ⊆ S is finite.

Xavier Rival Introduction February 6th, 2026 63 / 90

Orderings, lattices, fixpoints Basic definitions on orderings

Complete partial orders

Definition: complete partial order
A complete partial order (cpo) is a poset (S,⊑) such that any increasing
chain C of S has a least upper bound. A pointed cpo is a cpo with an
infimum ⊥.

clearly, any complete lattice is a cpo
the opposite is not true:

Xavier Rival Introduction February 6th, 2026 64 / 90

Orderings, lattices, fixpoints Operators over a poset and fixpoints

Outline

1 Introduction

2 Case studies

3 Approaches to verification

4 Orderings, lattices, fixpoints
Basic definitions on orderings
Operators over a poset and fixpoints

5 Conclusion

Xavier Rival Introduction February 6th, 2026 65 / 90

Orderings, lattices, fixpoints Operators over a poset and fixpoints

How to (informally) prove semantic properties
Automaton:

q0 q1 q2
a

a

a

Target property:
recognized words do not contain b

L[A] ⊆ (L \ {b})∗

Informal proof:
1 processing of a word starts at q0, with ϵ
2 then, processing may continue at q1, with an a
3 then, processing may continue at q2, with an a (may terminate)
4 then, processing may return to q1, with an a
5 . . . repeat the previous steps

we want to do a proof by induction

Induction
it is natural to reason by induction over executions
so we would like a more suitable way to express the semantics

Xavier Rival Introduction February 6th, 2026 66 / 90

Orderings, lattices, fixpoints Operators over a poset and fixpoints

Towards a constructive definition of the automata semantics

We now look for a constructive version of the automaton semantics as
hinted by the following observations

Observation 1: L[A] = JAK(qf) where

JAK : Q −→ P(L∗)
q 7−→ {w ∈ L∗ | ∃n, w = a0a1 . . . an

∃q0 . . . qn−1 ∈ Q, qi
a0−→ q0

a1−→ . . . qn−1
an−→ q}

Observation 2: JAK =
·⋃
n∈NJAKn where

JAKn : Q −→ P(L∗)
q 7−→ {a0a1 . . . an−1 |

∃q0 . . . qn−2 ∈ Q, qi
a0−→ q0

a1−→ . . . qn−1
an−1−→ q}

Observation 3: JAKn+1 can be computed directly from JAKn

JAKn+1(q) =
⋃

q′∈Q{wa | w ∈ JAKn(q′) ∧ q′
a−→ q}

Xavier Rival Introduction February 6th, 2026 67 / 90

Orderings, lattices, fixpoints Operators over a poset and fixpoints

Towards a constructive definition of the automata semantics

Alternate approach:

1 Let JAKn denote recognized words of length at most n:

JAKn(q) ::= {w ∈ JAK(q) | length(w) ≤ n}

2 Compute JAKn+1 from JAKn
3 Define the semantics of the automaton as the union of the iterates of

this sequence:

JAK =
·⋃

n∈N
JAKn

In the following, we study such a way of defining semantics, based on
general mathematical tools, that we will use throughout the course

Xavier Rival Introduction February 6th, 2026 68 / 90

Orderings, lattices, fixpoints Operators over a poset and fixpoints

Operators over a poset

Definition: operators and orderings
Let (S,⊑) be a poset and ϕ : S → S be an operator over S. Then, ϕ is:

monotone if and only if ∀x , y ∈ S, x ⊑ y =⇒ ϕ(x) ⊑ ϕ(y)

continuous if and only if, for any chain S ′ ⊆ S then:{
if ⊔S ′ exists, so does ⊔{ϕ(x) | x ∈ S ′}
and ϕ(⊔S ′) = ⊔{ϕ(x) | x ∈ S ′}

⊔-preserving if and only if:

∀S ′ ⊆ S,
{

if ⊔S ′ exists, then ⊔{ϕ(x) | x ∈ S ′} exists
and ϕ(⊔S ′) = ⊔{ϕ(x) | x ∈ S ′}

Notes:
“monotone” in English means “croissante” in French ; “décroissante”
translates into “anti-monotone” and “monotone” into “ isotone”
the dual of “monotone” is “monotone”

Xavier Rival Introduction February 6th, 2026 69 / 90

Orderings, lattices, fixpoints Operators over a poset and fixpoints

Operators over a poset

A few interesting properties:

Continuity implies monotonicity
If ϕ is continuous, then it is also monotone

We assume ϕ is continuous, and x , y ∈ S are such that x ⊑ y :
Then {x , y} is a chain with lub y , thus ϕ(x)⊔ϕ(y) exists and is equal to
ϕ(⊔{x , y}) = ϕ(y). Therefore ϕ(x) ⊑ ϕ(y).

⊔-preserving implies monotonicity
If ϕ preserves ⊔, then it is also monotone

Same argument.

Xavier Rival Introduction February 6th, 2026 70 / 90

Orderings, lattices, fixpoints Operators over a poset and fixpoints

Fixpoints

Definition: fixpoints
Let (S,⊑) be a poset and ϕ : S → S be an operator over S.

a fixpoint of ϕ is an element x such that ϕ(x) = x

a pre-fixpoint of ϕ is an element x such that x ⊑ ϕ(x)

a post-fixpoint of ϕ is an element x such that ϕ(x) ⊑ x

the least fixpoint lfpϕ of ϕ (if it exists, it is unique) is the smallest
fixpoint of ϕ
the greatest fixpoint gfpϕ of ϕ (if it exists, it is unique) is the
greatest fixpoint of ϕ

Note: the existence of a least fixpoint, a greatest fixpoint or even a
fixpoint is not guaranteed; we will see several theorems that establish their
existence under specific assumptions...

Xavier Rival Introduction February 6th, 2026 71 / 90

Orderings, lattices, fixpoints Operators over a poset and fixpoints

Tarski’s Theorem

Theorem
Let (S,⊑,⊥,⊤,⊔,⊓) be a complete lattice and ϕ : S → S be a monotone
operator over S. Then:

1 ϕ has a least fixpoint lfpϕ and lfpϕ = ⊓{x ∈ S | ϕ(x) ⊑ x}.
2 ϕ has a greatest fixpoint gfpϕ and gfpϕ = ⊔{x ∈ S | x ⊑ ϕ(x)}.
3 the set of fixpoints of ϕ is a complete lattice.

Proof of point 1:
We let X = {x ∈ S | ϕ(x) ⊑ x} and x0 = ⊓X .
For all y ∈ X , we remark that:

x0 ⊑ y by definition of the glb;
thus, since ϕ is monotone, ϕ(x0) ⊑ ϕ(y);
thus, ϕ(x0) ⊑ y since ϕ(y) ⊑ y , by definition of X .

Therefore ϕ(x0) ⊑ x0, since x0 = ⊓X and ϕ(x0) is a lower bound.
Xavier Rival Introduction February 6th, 2026 72 / 90

Orderings, lattices, fixpoints Operators over a poset and fixpoints

Tarski’s Theorem

We proved that ϕ(x0) ⊑ x0. We derive from this that:
ϕ(ϕ(x0)) ⊑ ϕ(x0) since ϕ is monotone;
ϕ(x0) is a post-fixpoint of ϕ, thus ϕ(x0) ∈ X ;
x0 ⊑ ϕ(x0) by definition of the greatest lower bound

We have established both inclusions so ϕ(x0) = x0.
If x1 is another fixpoint, then x1 ∈ X , so x0 ⊑ x1.

Proof of point 2: similar, by duality.

Proof of point 3:
if X is a set of fixpoints of ϕ, we need to consider ϕ over
{y ∈ S | y ⊑S ⊓X} to establish the existence of a glb of X in the
poset of fixpoints
the existence of least upper bounds in the poset of fixpoints
follows by duality

Xavier Rival Introduction February 6th, 2026 73 / 90

Orderings, lattices, fixpoints Operators over a poset and fixpoints

Tarski’s theorem: example (1)

A function over the powerset:
We consider a set E , and a subset A ⊆ E
We let:

f : P(E) −→ P(E)
X 7−→ X ∪ A

.

Exercise:

apply Tarski’s theorem, characterize the least and greatest fixpoints

Xavier Rival Introduction February 6th, 2026 74 / 90

Orderings, lattices, fixpoints Operators over a poset and fixpoints

Tarski’s theorem: example (2)

Function:

f : [1, 4π − 1] −→ [1, 4π − 1]
x 7−→ x + sin x

0
0

1

1

4π − 1

4π − 1

x

y

Exercise:

apply Tarski’s theorem, and derive the fixpoints of the function

Xavier Rival Introduction February 6th, 2026 75 / 90

Orderings, lattices, fixpoints Operators over a poset and fixpoints

Automata example, fixpoint definition

Lattice:
S = Q → P(L∗)

the ordering is the pointwise extension
·
⊑ of ⊆

Operator:
we let ϕ0 : S → S be defined by
ϕ0(f) = λ(q ∈ Q) ·

⋃
q′∈Q{wa | w ∈ f (q′) ∧ q′

a−→ q}
we let ϕ : S → S by defined by

ϕ(f) = λ(q ∈ Q) ·
{

f (qi) ∪ ϕ0(f)(qi) ∪ {ϵ} if q = qi
f (q) ∪ ϕ0(f)(q) otherwise

Proof steps to complete:
the existence of lfpϕ follows from Tarski’s theorem
the equality lfpϕ = JAK can be established by induction and double
inclusion... but there is a simpler way

Xavier Rival Introduction February 6th, 2026 76 / 90

Orderings, lattices, fixpoints Operators over a poset and fixpoints

Kleene’s Theorem

Tarski’s theorem guarantees existence of an lfp, but is not constructive.

Theorem
Let (S,⊑,⊥) be a pointed cpo and ϕ : S → S be a continuous operator
over S. Then ϕ has a least fixpoint, and

lfpϕ =
⊔
n∈N

ϕn(⊥)

First, we prove the existence of the lub:
Since ϕ is continuous, it is also monotone. We can prove by induction over
n that {ϕn(⊥) | n ∈ N} is a chain:

ϕ0(⊥) = ⊥ ⊑ ϕ(⊥) by definition of the infimum;
if ϕn(⊥) ⊑ ϕn+1(⊥), then
ϕn+1(⊥) = ϕ(ϕn(⊥)) ⊑ ϕ(ϕn+1(⊥)) = ϕn+2(⊥)

By definition of the cpo structure, the lub exists. We let x0 denote it.
Xavier Rival Introduction February 6th, 2026 77 / 90

Orderings, lattices, fixpoints Operators over a poset and fixpoints

Kleene’s Theorem

Secondly, we prove that it is a fixpoint of ϕ:
Since ϕ is continuous, {ϕn+1(⊥) | n ∈ N} has a lub, and

ϕ(x0) = ϕ(⊔{ϕn(⊥) | n ∈ N})
= ⊔{ϕn+1(⊥) | n ∈ N} by continuity of ϕ
= ⊥⊔(⊔{ϕn+1(⊥) | n ∈ N}) by definition of ⊥
= x0 by simple rewrite

Last, we show that it is the least fixpoint:

Let x1 denote another fixpoint of ϕ. We show by induction over n that
ϕn(⊥) ⊑ x1:

ϕ0(⊥) = ⊥ ⊑ x1 by definition of ⊥;
if ϕn(⊥) ⊑ x1, then ϕn+1(⊥) ⊑ ϕ(x1) = x1 by monotony, and since x1
is a fixpoint.

By definition of the lub, x0 ⊑ x1
Xavier Rival Introduction February 6th, 2026 78 / 90

Orderings, lattices, fixpoints Operators over a poset and fixpoints

Kleene’s theorem: example

Function:

f : [1, 4π − 1] −→ [1, 4π − 1]
x 7−→ x + sin x

0
0

1

1

4π − 1

4π − 1

x

y

Exercise:
apply Kleene’s theorem and sketch the iterations

Xavier Rival Introduction February 6th, 2026 79 / 90

Orderings, lattices, fixpoints Operators over a poset and fixpoints

Automata: constructive semantics

We can now state a constructive definition of the automaton semantics.
Operator ϕ is defined by

ϕ(f) = λ(q ∈ Q) ·
{

f (q) ∪ ϕ0(f)(qi) ∪ {ϵ} if q = qi
f (q) ∪ ϕ0(f)(q) otherwise

Proof steps:
ϕ is continuous
thus, Kleene’s theorem applies so lfpϕ exists and
lfpϕ =

⋃
n∈N ϕn(⊥)...

... this actually saves the double inclusion proof to establish that
JAK = lfpϕ

Furthermore, JAK =
⋃

n∈N ϕn(⊥).

This fixpoint definition will be very useful to infer or verify semantic
properties.

Xavier Rival Introduction February 6th, 2026 80 / 90

Orderings, lattices, fixpoints Operators over a poset and fixpoints

Automata: constructive semantics iterates

A simple automaton:

L = {a, b} Q = {q0, q1, q2}
qi = q0 qf = q2

q0
a−→ q1 q1

b−→ q2 q2
a−→ q1

q0 q1 q2
a

b

a

Iterates of function ϕ from ⊥:

Iterate 0 1 2 3 4 5
q0 ∅ {ϵ} {ϵ} {ϵ} {ϵ} {ϵ}
q1 ∅ ∅ {a} {a} {a, aba} {a, aba}
q2 ∅ ∅ ∅ {ab} {ab} {ab, abab}

Xavier Rival Introduction February 6th, 2026 81 / 90

Orderings, lattices, fixpoints Operators over a poset and fixpoints

Duality principle

We can extend the duality notion to fixpoints:

monotone monotone
anti-monotone anti-monotone
post-fixpoint pre-fixpoint
least fixpoint greatest fixpoint

increasing chain decreasing chain

Furthermore both Tarski’s theorem and Kleene’s theorem have a dual
version (Tarski’s theorem is its own dual).

Xavier Rival Introduction February 6th, 2026 82 / 90

Orderings, lattices, fixpoints Operators over a poset and fixpoints

On the topic of inductive reasoning...

Formalizing inductive definitions:
Definition based on
inference rules:

x0 ∈ X
x ∈ X

f (x) ∈ X

Same property based on a
least-fixpoint:

lfp(Y 7−→ {x0} ∪ Y ∪ {f (x) | x ∈ Y })

Proving the inclusion of a fixpoint in a given set:
Let ϕ : S −→ S be a continuous operator
Let I ∈ S such that:

∀x ∈ S, x ⊑ I =⇒ ϕ(x) ⊑ I

We obviously have ⊥ ⊑ I
We can prove that lfpϕ ⊑ I

Xavier Rival Introduction February 6th, 2026 83 / 90

Orderings, lattices, fixpoints Operators over a poset and fixpoints

Exercise: language of a grammar

Language of a grammar as a least-fixpoint
Assumptions:

Alphabet A, finite set of nodes N
Finite set of rules R ⊆ N × (A ⊎ N)∗

Starting node S ∈ N
Questions:

1 Define the set of words recognized by the grammar with inductive rules
2 Do the same using a least-fixpoint

Hints:
start with a function that maps each node into the set of words
recognized by this node
compute such a function by induction

Xavier Rival Introduction February 6th, 2026 84 / 90

Orderings, lattices, fixpoints Operators over a poset and fixpoints

Exercise: transfinite iteration

A generalisation of Kleene’s theorem
We let (S,⊑,⊥) be a pointed cpo and ϕ : S → S be a monotone over S.

1 Propose a notion of transfinite iteration sequence of ϕ, indexed
with ordinals

2 Prove that this sequence is well-defined and is a chain
3 Prove that this sequence is stationary
4 Prove that its limit is a fixpoint of ϕ
5 Derive an extension of Kleene’s theorem

Hints:
transfinite iterations generalise iteration sequences to ordinals
(definition recalled on the next slide)
note that it provides a constructive generalisation of the theorem of
Tarski

Xavier Rival Introduction February 6th, 2026 85 / 90

Orderings, lattices, fixpoints Operators over a poset and fixpoints

Ordinal numbers

Definition
Inductive construction of ordinal numbers in set theory:

0 ::= ∅ is an ordinal;
if k is an ordinal, then so is its successor Sk ::= k ∪ {k};
if E is a set of ordinals, then so is supE =

⋃
E

Application:
0, S0 noted 1, etc
ω = {0, 1, . . . is the first limit ordinal
next limit ordinals are 2ω, 3ω, . . . , ω2

Transfinite induction
Let P a predicate over ordinal numbers. We assume that, for all ordinal k ,
if for all k ′ < k , P(k ′) holds, then so does P(k).
Then P holds for all ordinal numbers.

Xavier Rival Introduction February 6th, 2026 86 / 90

Conclusion

Outline

1 Introduction

2 Case studies

3 Approaches to verification

4 Orderings, lattices, fixpoints

5 Conclusion

Xavier Rival Introduction February 6th, 2026 87 / 90

Conclusion

Main points to remember

Foundations:
program semantics: express program behaviors
target semantic property: express proof goal
conservative approximation usually required due to undecidability

Order relations:
counterpart for logical implication (among other)
will be pervasive in this course

Fixpoints and induction:
encode general iteration
will also be pervasive in this course

Xavier Rival Introduction February 6th, 2026 88 / 90

Conclusion

In the next lectures...

Families of semantics, for a general model of programs

Families of semantic properties of programs

Verification techniques:
▶ abstract interpretation based static analysis
▶ machine assisted theorem proving
▶ model checking

Next week: transition systems and operational semantics

Xavier Rival Introduction February 6th, 2026 89 / 90

Conclusion

Practical information about the course

Course (1h30) + TD or TP (2h00)

Schedule: Friday morning 8h30–12h15

Location: Room É Noether (also known as “U ou V”)

Course teachers:
Charles De Haro: lab sessions
Jérôme Feret: semantics, typing, abstract interpretation
Xavier Rival: semantics, program properties, Rocq proof assistant,
abstract interpretation

Webpage with class material:
https://www.di.ens.fr/~rival/semverif-2026

material (e.g., video if a class is online) also on Moodle

Evaluation: 50 % project + 50 % final exam (or homework, TBC)

Xavier Rival Introduction February 6th, 2026 90 / 90

https://www.di.ens.fr/~rival/semverif-2026

	Introduction
	Case studies
	Ariane 5, Flight 501 (1996)
	Patriot missile (anti-missile system), Dahran (1991)
	Dirty COW
	Need for semantics and verification

	Approaches to verification
	Indecidability and fundamental limitations
	Approaches to verification

	Orderings, lattices, fixpoints
	Basic definitions on orderings
	Operators over a poset and fixpoints

	Conclusion

