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Program of this lecture

Towards a realistic abstract interpreter

Last class ended with a brief overview of a simplistic static analyzer

Today:
more general soundness proof:
using γ, and requiring no monotonicity in the abstract level

more general abstract domain:
signs is good for introduction only, we want to see constants,
intervals...

extended language with expressions and conditions
i.e., not only three address arithmetic

more general abstract iteration technique:
convergence guaranteed even with infinite height domain
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Another Soundness Relation

About soundness relations

Several formalisms available:
abstraction function α : C → A, returns the best approximation
concretization function γ : A→ C , returns the meaning of an
abstract element
Galois connection (C ,⊆) −−−→←−−−α

γ
(A,⊑)

Limitations of our previous abstract interpreter:
uses the best abstraction function α all the time
tries to establish equality JPK♯ ◦ α = α ◦ JPK but fails...
indeed, some operators may only compute an over-approximation
proves α ◦ JPK ⊑ JPK♯ ◦ α
at the cost of proving monotonicity of JPK♯

Alternate approach

Use γ only and prove JPK ◦ γ ⊆ γ ◦ JPK♯
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Another Soundness Relation

Comparing soundness frameworks

We have seen several ways to express soundness:
1 α(JPK) = JPK♯
2 α(JPK) ⊑ JPK♯
3 JPK ⊆ γ(JPK♯)
4 JPK ⊢ JPK♯

Some are stronger than others:
the first is the strongest (it implies the others when applicable)
the fourth is the weakest
the second and third are equivalent in a Galois connection setup

Some are more general:
the first two require an α, the third a γ

the fourth requires very little: it does not even require α or γ to exist!

The choice of the framework to use is a balance in general...
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Another Soundness Relation

A language with expressions

We now consider the denotational semantics of our imperative language:
variables X: finite, predefined set of variables
values V: Vint ∪ Vfloat ∪ . . .

expressions are allowed (not just three address instructions)
conditions are simplified compared to initial language

Syntax

e ::= v (v ∈ V) | x (x ∈ X) | e+ e | e ∗ e | . . . expressions
c ::= x < v | x = v | . . . basic conditions
P ::= x := e assignment

| input(x) non deterministic value input
| if(c) P else P condition
| while(c) P loop
| P;P block, program(P)
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Another Soundness Relation

Semantics of expressions and conditions (refresher)

We have defined a few lectures ago:

a semantics for expressions, defined by induction over the syntax:

JeK : M −→ V ⊎ {Ω}
JvK(m) = v
JxK(m) = m(x)

Je0 + e1K(m) = Je0K(m) + Je1K(m)

Je0 / e1K(m) =

{
Ω if Je1K(m) = 0
Je0K(m) / Je1K(m) otherwise

a semantics for conditions, following the same principle:

JcK : M −→ Vbool ⊎ {Ω}
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Another Soundness Relation

Semantics of satements

We have also defined:

Denotational semantics of programs
We use the denotational semantics JPKD : P(M) −→ P(M) by:

Jx := eKD(M) = {m[x← JeK(m)] | m ∈M∧JeK(m) ̸= Ω}
Jinput(x)KD(M) = {m[x← v ] | v ∈ V∧m ∈M}

Jif(c) P0 else P1KD(M) = JP0KD({m ∈M | JcK(m) = TRUE})
∪ JP1KD({m ∈M | JcK(m) = FALSE})

Jwhile(c) PKD(M) = {m ∈ lfpFD | JcK(m) = FALSE}
where FD :M′ 7−→M ∪ JPKD({m ∈M′ | JcK(m) = TRUE})

JP0;P1KD(M) = JP1KD ◦ JP0KD(M)

As before, we seek for an abstract interpretation of JPKD
We first need to set up the abstraction relation
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Another Soundness Relation

Example

Example program:
input(x);
x = 3− x;
if(x ≥ 1){

y = 8− 2 ∗ x;
}else{

y = 1;
}

Analysis with the lattice of signs: x 7→ ⊤; y 7→ ⊤

Can we use another abstract domain instead, such as intervals ?
intuitively, x ≤ 3
thus, either 1 ≤ x ≤ 3 and 2 ≤ y ≤ 6 or x < 1 and y = 1
in any case, 1 ≤ y ≤ 6
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Another Soundness Relation

Galois-connection based non-relational abstraction

We compose two abstractions:
non relational abstraction: the values a variable may take is
abstracted separately from the other variables
parameter value abstraction: an abstract value describes a set of
concrete values (not necessarily the lattice of sign anymore) defined by
(P(V),⊆) −−−−→←−−−−

αV

γV
(D♯

V ,⊑)
Definitions are quite similar:

Abstraction
concrete domain: (P(X→ V),⊆) = (P(M),⊆)
abstract domain: (D♯,⊑) (D♯ = X→ D♯

V and ⊑ is pointwise)

Galois connection (P(M),⊆) −−−→←−−−α
γ

(D♯,⊑), defined by

α : M 7−→ λ(x ∈ X) · αV({m(x) | m ∈M})
γ : M♯ 7−→ {m : X→ V | ∀x, m(x) ∈ γV(M

♯(x))}
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Another Soundness Relation

Or a more general abstraction, using only γ

As before, we compose two abstractions:
non relational abstraction: the values a variable may take is
abstracted separately from the other variables, as before, but we
consider only concretization
parameter value abstraction: an abstract value describes a set of
concrete values defined by a monotone concretization function
γV : (D♯

V ,⊑)→ (P(V),⊆)

Abstraction relation based on concretization only
concrete domain: (P(X→ V),⊆)
abstract domain: (D♯,⊑) (D♯ = X→ D♯

V and ⊑ is pointwise)
concretization function γ : (D♯,⊑) −→ (P(M),⊆), defined by
γ : M♯ 7−→ {m : X→ V | ∀x, m(x) ∈ γV(M

♯(x))}

Z⇒ likewise, our proof will use only γ though it works even when α is defined
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Another Soundness Relation

Abstract semantics of sequences (revised)

We search for an abstract semantics JPK♯ : D♯ → D♯ such that:

JPK ◦ γ ⊆ γ ◦ JPK♯

We still aim for a proof by induction over the syntax of programs
Sequences / composition forced us to require monotonicity last time:

we assume JP0K ◦ γ ⊆ γ ◦ JP0K♯

we assume JP1K ◦ γ ⊆ γ ◦ JP1K♯

since JP0;P1K = JP1K ◦ JP0K, we search for something similar in the
abstract level

JP1K ◦ JP0K ◦ γ ⊆ JP1K ◦ γ ◦ JP0K♯ (by induction)
⊆ γ ◦ JP1K♯ ◦ JP0K♯ (by induction)

No more requirement that JPK♯ be monotone (much better!)
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Another Soundness Relation

Abstract semantics of expressions

Analysis of an expression
semantics of expressions JeK : M −→ V ⊎ {Ω}
thus, the abstract semantics should evaluate it into an abstract
value:

JeK♯ : D♯ −→ D♯
V

Since we use the concrete semantics as a guide, we need:
abstraction for constants:
i.e., a function ϕV : V→ D♯

V such that ∀v ∈ V, v ∈ γV(ϕV(v))
note: if αV exists, then we may take v 7−→ αV({v}) note: if it is too
hard to compute, we may take something coarser
abstract operators:
i.e., for each binary operator ⊕, an abstract operator ⊕♯ such that:

∀v ♯0, v
♯
1 ∈ D♯

V , {v0 ⊕ v1 | ∀i , vi ∈ γV(v
♯
i )} ⊆ γV(v

♯
0 ⊕

♯ v ♯1)
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Another Soundness Relation

Abstract semantics of expressions

Analysis of expressions: definition

We define JeK♯ : D♯ −→ D♯
V by:

JvK♯(M♯) = ϕV(v)
JxK♯(M♯) = M♯(x)

Je0 ⊕ e1K♯(M♯) = Je0K♯(M♯)⊕♯ Je1K♯(M♯)

Analysis of expressions: soundness

For all expression e and for all abstract memory state M♯ ∈ D♯, we have:

∀m ∈ γ(M♯), JeK(m) returns no error =⇒ JeK(m) ∈ γV(JeK♯(M♯))

Proof:
basic induction over the syntax
relies on the soundness of each operation

Xavier Rival Abstract Interpretation: Introduction April 18th, 2024 14 / 40



Another Soundness Relation

Analysis of an assignment

We now rely on the abstract semantics of expressions:

Jx = eK♯(M♯) = M♯[x← JeK♯(M♯)]

soundness proof is very similar
but now, is given in terms of γ

Example, based on the interval abstract domain; analysis of
x = 3 ∗ y + z ∗ x .
If M♯ : x 7→ [−2, 3], y 7→ [0, 1], and z 7→ [−1, 4] then:

Jx = 3 ∗ y + z ∗ xK♯(M♯)(x) = 3 ∗ [0, 1] + [−1, 4] ∗ [−2, 3]
= [0, 3] + [−8, 12]
= [−8, 15]

Xavier Rival Abstract Interpretation: Introduction April 18th, 2024 15 / 40



Another Soundness Relation

Abstract semantics of conditions

Analysis of a condition
the semantics JcK : M −→ Vbool of a condition evaluates it into a
boolean value (or an error)
but the semantics relies on its functional inverse:
e.g., {m ∈M | JcK(m) = TRUE} or {m ∈M | JcK(m) = FALSE}
thus, the abstract semantics should tell which memories satisfy a
condition:

JcK♯ : Vbool × D♯ −→ D♯

∀b ∈ Vbool, ∀m ∈ γ(M♯), JcK(m) = b =⇒ m ∈ γ(JcK♯(b,M♯))

we assume that the abstract domain provides such a function
JcK♯ : Vbool × D♯ −→ D♯

this is also called a backward abstract semantics
intuitively: it goes from outputs to arguments
we will implement some when considering specific abstract domains
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Another Soundness Relation

Analysis of a condition statement

Abstraction of concrete union:
we assume a sound abstract union operation join♯

V over the value
abstract domain:

∀v ♯0, v
♯
1, γV(v

♯
0) ∪ γV(v

♯
1) ⊆ γV(join♯

V(v
♯
0, v

♯
1))

it may be ⊔V if it exists, but join♯
V may also over-approximate it

we let join♯ be the pointwise extension of join♯
V

it is also sound: ∀M♯
0,M

♯
1, γ(M

♯
0) ∪ γ(M♯

1) ⊆ γ(join♯(M♯
0,M

♯
1))

We derive:

Jif(c)P0 else P1K♯(M♯) =

join♯(JP0K♯(JcK♯(TRUE,M♯)), JP1K♯(JcK♯(FALSE,M♯)))

Proof of soundness:
similar as in the previous course
relies on the soundness of JcK♯, JP0K♯, JP1K♯ and join♯

Xavier Rival Abstract Interpretation: Introduction April 18th, 2024 17 / 40



Another Soundness Relation

Example condition statement analysis

We can now show the interval analysis of the example program:

input(x);
x 7→ [0,+∞[, y 7→]−∞,+∞[

x = 3− x;
x 7→]−∞, 3], y 7→]−∞,+∞[

if(x ≥ 1){
x 7→ [1, 3], y 7→]−∞,+∞[

y = 8− 2 ∗ x;
x 7→ [1, 3], y 7→ [2, 6]

}else{
x 7→]−∞, 1], y 7→]−∞,+∞[

y = 1;
x 7→]−∞, 1], y 7→ [1, 1]

}
x 7→]−∞, 3], y 7→ [1, 6]
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Another Soundness Relation

Another example

input(x);
x 7→]−∞,+∞[, y 7→]−∞,+∞[

x = y ∗ y+ 1;
x 7→ [1,+∞[, y 7→]−∞,+∞[

if(x ≤ 0){
?

x = −1;
?

}else{
?

}
?

Questions:
fill the “?”...
what is happening ? how to make the analysis precise ?
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Another Soundness Relation

Reduction in the non relational abstraction

Consider the following two abstract elements:

x ∈ ⊥, y ∈ [1, 10]

and
x ∈ ⊥, y ∈ ⊥

their concretisations are equal to ∅
in fact, applying γ ◦ α to the former returns the latter

Reduction
The optimal reduction function is defined by γ ◦ α and returns an
optimal abstract element, with the same concretisation.

While optimal reduction is not computable in general, it is in this case.
Xavier Rival Abstract Interpretation: Introduction April 18th, 2024 20 / 40



Another Soundness Relation

Fixpoint approximation

Again, quite similar to the previous course:
statement while(c)P , with abstract pre-condition M♯

we assume sound JcK♯ and JPK♯ are defined

Fixpoint approximation (instead of fixpoint transfer)
We assume (C ,⊆) and (A,⊑) are complete lattices, with a concretization
function γ : (A,⊑)→ (C ,⊆), two functions f : C → C and f ♯ : A→ A,
and two elements c0 ∈ C , a0 ∈ A such that:

f is continuous
f ◦ γ ⊆ γ ◦ f ♯

c0 ⊆ γ(a0)

We let a∞ = ⊔{(f ♯)n(a0) | n ∈ N}. Then:
f has a least-fixpoint (by Kleene’s fixpoint theorem)
lfpc0 f ⊆ γ(a∞)
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Another Soundness Relation

Fixpoint approximation: proof

Existence of the concrete fixpoint:
First, we remark that lfpc0 f exists, following Kleene’s fixpoint theorem.
Moreover:

lfp
c0
f =

⋃
n∈N

f n(c0)

Approximation of the fixpoint:
First, a∞ = ⊔{(f ♯)n(a0) | n ∈ N} exists since we assume A is a complete
lattice (note that we have not addressed how to compute it quite yet!). We
prove by induction over n that f n(c0) ⊆ γ((f ♯)n(a0)):

since we assumed c0 ⊆ γ(a0), the property holds at rank 0;
if we assume f n(c0) ⊆ γ((f ♯)n(a0)), then f (f n(c0)) ⊆ f (γ((f ♯)n(a0)))
since f is monotone, which implies f n+1(c0) ⊆ γ((f ♯)n+1(a0)) since
f ◦ γ ⊆ γ ◦ f ♯.

The fixpoint approximation property follows from property of least
upper-bounds and from the monotonicity of γ.
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Another Soundness Relation

Analysis of a loop

Again, quite similar to the previous course:
statement while(c)P , with abstract pre-condition M♯

we assume JcK♯ and JPK♯ sound abstract semantics for the condition
and the loop body
we assume the abstract domain is a finite height lattice
this ensures that we can compute a∞ = ⊔{(f ♯)n(a0) | n ∈ N}
(exercise), but intervals do not satisfy this condition

Computation of abstract iterates:

Jwhile(c)PK♯(M♯) = JcK♯(FALSE,M♯
n)

where

{
I ♯0 = M♯ M♯

0 = M♯

I ♯k+1 = JPK♯(JcK♯(TRUE, I ♯k)) M♯
k+1 = join♯(M♯

k , I
♯
k+1)

and M♯
n+1 = M♯

n
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Another Soundness Relation

Static analysis

We can now summarize the definition of our static analysis:

Definition

JP0;P1K♯(M♯) = JP1K♯ ◦ JP0K♯(M♯)
Jx = eK♯(M♯) = M♯[x← JeK♯(M♯)]

Jinput()K♯(M♯) = M♯[x← ⊤]
Jif(c)P0 else P1K♯(M♯) = join♯(JP0K♯(JcK♯(TRUE,M♯)),

JP1K♯(JcK♯(FALSE,M♯)))

Jwhile(c)PK♯(M♯) = limn M
♯
n

where I ♯0 = M♯
0 = M♯, I ♯k+1 = JPK♯(JcK♯(TRUE, I ♯k))

and M♯
k+1 = join♯(M♯

k , I
♯
k+1)

And, by induction over the syntax, we can prove:

Soundness
For all program P , ∀M♯ ∈ D♯, JPK ◦ γ(M♯) ⊆ γ ◦ JPK♯(M♯)
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Revisiting Abstract Iteration

Outline

1 Another Soundness Relation

2 Revisiting Abstract Iteration

3 Conclusion
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Revisiting Abstract Iteration

Limitations related to abstract iteration

We need a finite height lattice:
otherwise the computation of lfpF ♯ may not converge
as was the case when we discussed WLP calculus
consequence 1: so far, the abstract domain of intervals is out...
consequence 2: if the number of variables is not fixed or bounded,
we cannot prove convergence at this point

Even when the abstract domain D♯
V is of finite height, this height

may be huge: then abstract computations are very costly!

We now need a more general abstract iteration technique

Intuition from search for an unknown inductive property:
1 look at the base case and following cases
2 try to generalize them
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Revisiting Abstract Iteration

Widening iteration: search for inductive abstract properties

Computing invariants about infinite executions with widening ▽

Widening ▽ over-approximates ∪: soundness guarantee
Widening ▽ guarantees the termination of the analyses
Typical choice of ▽: remove unstable constraints

Example: iteration of the translation (2, 1), with octagonal polyhedra
(i.e., convex polyhedra the axes of which are either at a 0◦ or 45◦ angle)

initial

x

y

X0

iteration 1

x

y

X0

F (X0)

X1 = X0▽F (X0)

iteration 2: stable !

x

y

X1

F (X1)

Initially: 3 constraints
After one iteration: 2 constraints, then stable
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Revisiting Abstract Iteration

Widening operator

Widening operator: Definition

A widening operator over an abstract domain D♯ is a binary operator ▽
such that:

∀M♯
0,M

♯
1, γ(M

♯
0) ∪ γ(M♯

1) ⊆ γ(M♯
0▽M

♯
1)

if (N♯
k)k∈N is a sequence of elements of D♯ the sequence (M♯

k)k∈N
defined below is stationary:

M♯
0 = N♯

0
M♯

k+1 = M♯
k▽N

♯
k+1

Intuition:
point 1 expresses over-approximation of concrete union
point 2 enforces termination
Alternate definitions exist:
e.g., using ⊑ instead of ⊆ over concretizations
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Revisiting Abstract Iteration

Widening operator in a finite height domain

Theorem
We assume that (D♯,⊑) is a finite height domain and that ⊔ is the
least upper bound over D♯.
Then ⊔ defines a widening over D♯.

Proof:
1 since M♯

0 ⊑ M♯
0 ⊔M♯

1, we have γ(M♯
0) ⊑ γ(M♯

0 ⊔M♯
1)

2 a sequence of iterates (M♯
k)k∈N is an increasing chain, so if every

increasing chain is finite, it will eventually stabilize

Applications:
obvious widening operators for the lattices of constants, signs...
abstract iteration algorithms are also the same
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Revisiting Abstract Iteration

A widening operator in an infinite height domain

We consider the value lattice of semi intervals with left bound 0:
D♯
V = {⊥} ⊎ Z+ ⊎ {+∞}; γV(v) = {0, 1, . . . , v}
∀v ♯, ⊥ ⊑ v ♯ and if v ♯0 ≤ v ♯1, then v ♯0 ⊑ v ♯1

We define the widening operator below:

Widening operator

⊥▽v ♯ = v ♯

v ♯▽⊥ = v ♯

v ♯0▽v
♯
1 =

{
v ♯0 if v ♯0 ≥ v ♯1
+∞ if v ♯0 < v ♯1

Examples: [0, 8]▽[0, 6] = [0, 8] [0, 8]▽[0, 9] = [0,+∞[

Widening for intervals
Exercise: generalize this definition for both bounds
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Revisiting Abstract Iteration

Fixpoint approximation using a widening operator

Theorem: widening based fixpoint approximation
We assume (C ,⊆) is a complete lattice and that (A,⊑) is an abstract
domain with a concretization function γ : A→ C and a widening operator
▽. Moreover, we assume that:

f is continuous (so it has a least fixpoint lfp f =
⋃

n∈N f n(∅))
f ◦ γ ⊆ γ ◦ f ♯

We let the sequence (M♯
k)k∈N be defined by:

M♯
0 = ⊥

M♯
k+1 = M♯

k▽f
♯(M♯

k)

Then:
1 (M♯

k)k∈N is stationary and we write M♯
lim for its limit

2 lfp f ⊆ γ(M♯
lim)
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Revisiting Abstract Iteration

Fixpoint approximation using a widening operator, proof

We assume all the assumptions of the theorem, and prove the two points:

1 Sequence convergence: We let

{
N♯

0 = ⊥
N♯
k+1 = f ♯(M♯

k)

Then, convergence follows directly from the definition of widening.
There exists a rank K from which all iterates are stable.

2 Soundness of the limit:
We prove by induction over k that ∀l ≥ k , f k(∅) ⊆ γ(M♯

l ):
▶ the result clearly holds for k = 0;
▶ if the result holds at rank k and l ≥ k then:

f k+1(∅) = f (f k(∅))
⊆ f (γ(M♯

l )) by induction
⊆ γ(f ♯(M♯

l )) since f ◦ γ ⊆ γ ◦ f ♯
⊆ γ(M♯

l ▽f
♯(M♯

l )) by definition of ▽
= γ(M♯

l+1)

When (M♯
k)k∈N converges, ∀l ≥ K , M♯

l = M♯
K = M♯

∞, thus
∀k, f k(∅) ⊆ γ(M♯

∞) thus lfp f ⊆ γ(M♯
∞)
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Revisiting Abstract Iteration

Example widening iteration

int x = 0;

while(TRUE){

if(x < 10 000){

x = x+ 1;

} else {

x = −x;

}

}

Xavier Rival Abstract Interpretation: Introduction April 18th, 2024 33 / 40



Revisiting Abstract Iteration

Example widening iteration

int x = 0;
x ∈ [0, 0]

while(TRUE){

if(x < 10 000){

x = x+ 1;

} else {

x = −x;

}

}
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Revisiting Abstract Iteration

Example widening iteration

int x = 0;
x ∈ [0, 0]

while(TRUE){
x ∈ [0, 0]

if(x < 10 000){

x = x+ 1;

} else {

x = −x;

}

}

Entry into the loop
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Revisiting Abstract Iteration

Example widening iteration

int x = 0;
x ∈ [0, 0]

while(TRUE){
x ∈ [0, 0]

if(x < 10 000){
x ∈ [0, 0]

x = x+ 1;

} else {
x ∈ ∅

x = −x;

}

}

Only the “true” branch may be taken
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Revisiting Abstract Iteration

Example widening iteration

int x = 0;
x ∈ [0, 0]

while(TRUE){
x ∈ [0, 0]

if(x < 10 000){
x ∈ [0, 0]

x = x+ 1;
x ∈ [1, 1]

} else {
x ∈ ∅

x = −x;
x ∈ ∅

}

}

Incrementation
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Revisiting Abstract Iteration

Example widening iteration

int x = 0;
x ∈ [0, 0]

while(TRUE){
x ∈ [0, 0]

if(x < 10 000){
x ∈ [0, 0]

x = x+ 1;
x ∈ [1, 1]

} else {
x ∈ ∅

x = −x;
x ∈ ∅

}
x ∈ [1, 1]

}

Abstract union at the end of the condition
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Revisiting Abstract Iteration

Example widening iteration

int x = 0;
x ∈ [0, 0]

while(TRUE){
x ∈ [0,+∞[

if(x < 10 000){
x ∈ [0, 0]

x = x+ 1;
x ∈ [1, 1]

} else {
x ∈ ∅

x = −x;
x ∈ ∅

}
x ∈ [1, 1]

}

Widening at loop head
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Revisiting Abstract Iteration

Example widening iteration

int x = 0;
x ∈ [0, 0]

while(TRUE){
x ∈ [0,+∞[

if(x < 10 000){
x ∈ [0, 9999]

x = x+ 1;
x ∈ [1, 1]

} else {
x ∈ [10000,+∞[

x = −x;
x ∈ ∅

}
x ∈ [1, 1]

}

Now both branches may be taken
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Revisiting Abstract Iteration

Example widening iteration

int x = 0;
x ∈ [0, 0]

while(TRUE){
x ∈ [0,+∞[

if(x < 10 000){
x ∈ [0, 9999]

x = x+ 1;
x ∈ [1, 10000]

} else {
x ∈ [10000,+∞[

x = −x;
x ∈]−∞,−10000]

}
x ∈ [1, 1]

}

Numerical assignments
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Revisiting Abstract Iteration

Example widening iteration

int x = 0;
x ∈ [0, 0]

while(TRUE){
x ∈ [0,+∞[

if(x < 10 000){
x ∈ [0, 9999]

x = x+ 1;
x ∈ [1, 10000]

} else {
x ∈ [10000,+∞[

x = −x;
x ∈]−∞,−10000]

}
x ∈]−∞, 10000]

}

Abstract union at the end of the condition
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Revisiting Abstract Iteration

Example widening iteration

int x = 0;
x ∈ [0, 0]

while(TRUE){
x ∈]−∞,+∞[

if(x < 10 000){
x ∈ [0, 9999]

x = x+ 1;
x ∈ [1, 10000]

} else {
x ∈ [10000,+∞[

x = −x;
x ∈]−∞,−10000]

}
x ∈]−∞, 10000]

}

Widening at loop head
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Revisiting Abstract Iteration

Example widening iteration

int x = 0;
x ∈ [0, 0]

while(TRUE){
x ∈]−∞,+∞[

if(x < 10 000){
x ∈]−∞, 9999]

x = x+ 1;
x ∈ [1, 10000]

} else {
x ∈ [10000,+∞[

x = −x;
x ∈]−∞,−10000]

}
x ∈]−∞, 10000]

}

Both branches may be taken
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Revisiting Abstract Iteration

Example widening iteration

int x = 0;
x ∈ [0, 0]

while(TRUE){
x ∈]−∞,+∞[

if(x < 10 000){
x ∈]−∞, 9999]

x = x+ 1;
x ∈]−∞, 10000]

} else {
x ∈ [10000,+∞[

x = −x;
x ∈]−∞,−10000]

}
x ∈]−∞, 10000]

}

Numerical assignments
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Revisiting Abstract Iteration

Example widening iteration

int x = 0;
x ∈ [0, 0]

while(TRUE){
x ∈]−∞,+∞[

if(x < 10 000){
x ∈]−∞, 9999]

x = x+ 1;
x ∈]−∞, 10000]

} else {
x ∈ [10000,+∞[

x = −x;
x ∈]−∞,−10000]

}
x ∈]−∞, 10000]

}

Stable! No information at loop head,
but still, some interesting information inside the loop
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Revisiting Abstract Iteration

Loop unrolling

From the example, we observe that intervals widening is imprecise:
quickly goes to −∞ or +∞
ignores possible stable bounds

Can we do better ?
Yes, we can... many techniques improve standard widening

Loop unrolling: postpone widening
We fix an index l , and postpone widening until after l

M♯
0 = ⊥

M♯
k+1 = join♯(M♯

k , f
♯(M♯

k)) if k < l

M♯
k+1 = M♯

k▽f
♯(M♯

k) otherwise

Typically, k is set to 1 or 2...
Proof of a new fixpoint approximation theorem: very similar
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Revisiting Abstract Iteration

Widening with threshold

Now, let us improve the widening itself:
the standard ▽ operator of intervals goes straight to ∞
we can slow down the process

Threshold widening
Let T be a finite set of integers, called thresholds. We let the
threshold widening be defined by:
⊥▽v ♯ = v ♯

v ♯▽⊥ = v ♯

v ♯0▽v
♯
1 =


v ♯0 if v ♯0 ≥ v ♯1
min{v ♯ ∈ T | ∀i , v ♯i ≤ v ♯} if {v ♯ ∈ T | ∀i , v ♯i ≤ v ♯} ̸= ∅
+∞ otherwise

Proof of the widening property: exercise
Example with L = {10}:
[0, 8]▽[0, 9] = [0, 10] [0, 8]▽[0, 15] = [0,+∞[
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Revisiting Abstract Iteration

Techniques related to iterations

No widening after visiting a branch for the first time:
loop unrolling postpones widening for a finite number of times
there are finitely many branches in any block of code
branch: condition block entry or inner loop entry

Principle
Mark program branches and apply widening only when no new
branch was visited during the previous iteration

Iteration from a fixpoint approximant:
observation: if f ◦ γ ⊆ γ ◦ f ♯ and lfp f ⊆ γ(M♯), then:
lfp f = f (lfp f ) ⊆ f ◦ γ(M♯) ⊆ γ ◦ f ♯(M♯)
so f ♯(M♯) also approximates lfp f , and may be better

Principle
After an abstract invariant is found, perform additional iterations
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Revisiting Abstract Iteration

Example widening iteration, more precise

Classical techniques:
add test values and neighbors as thresholds
alternate join and widening
no widening after visiting a new branch

int x = 0;

while(TRUE){

if(x < 10 000){ 9999 will be a threshold value at loop head

x = x+ 1;

} else {

x = −x;

}

}
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Revisiting Abstract Iteration

Example widening iteration, more precise

Classical techniques:
add test values and neighbors as thresholds
alternate join and widening
no widening after visiting a new branch

int x = 0;
x ∈ [0, 0]

while(TRUE){

if(x < 10 000){ 9999 will be a threshold value at loop head

x = x+ 1;

} else {

x = −x;

}

}
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Revisiting Abstract Iteration

Example widening iteration, more precise

Classical techniques:
add test values and neighbors as thresholds
alternate join and widening
no widening after visiting a new branch

int x = 0;
x ∈ [0, 0]

while(TRUE){
x ∈ [0, 0]

if(x < 10 000){ 9999 will be a threshold value at loop head

x = x+ 1;

} else {

x = −x;

}

}

Entering the loop
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Revisiting Abstract Iteration

Example widening iteration, more precise

Classical techniques:
add test values and neighbors as thresholds
alternate join and widening
no widening after visiting a new branch

int x = 0;
x ∈ [0, 0]

while(TRUE){
x ∈ [0, 0]

if(x < 10 000){ 9999 will be a threshold value at loop head
x ∈ [0, 0]

x = x+ 1;

} else {
x ∈ ∅

x = −x;

}

}

Only true branch possible
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Revisiting Abstract Iteration

Example widening iteration, more precise

Classical techniques:
add test values and neighbors as thresholds
alternate join and widening
no widening after visiting a new branch

int x = 0;
x ∈ [0, 0]

while(TRUE){
x ∈ [0, 0]

if(x < 10 000){ 9999 will be a threshold value at loop head
x ∈ [0, 0]

x = x+ 1;
x ∈ [1, 1]

} else {
x ∈ ∅

x = −x;
x ∈ ∅

}

}

Incrementation of interval
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Revisiting Abstract Iteration

Example widening iteration, more precise

Classical techniques:
add test values and neighbors as thresholds
alternate join and widening
no widening after visiting a new branch

int x = 0;
x ∈ [0, 0]

while(TRUE){
x ∈ [0, 0]

if(x < 10 000){ 9999 will be a threshold value at loop head
x ∈ [0, 0]

x = x+ 1;
x ∈ [1, 1]

} else {
x ∈ ∅

x = −x;
x ∈ ∅

}
x ∈ [1, 1]

}

Propagation
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Revisiting Abstract Iteration

Example widening iteration, more precise

Classical techniques:
add test values and neighbors as thresholds
alternate join and widening
no widening after visiting a new branch

int x = 0;
x ∈ [0, 0]

while(TRUE){
x ∈ [0, 1]

if(x < 10 000){ 9999 will be a threshold value at loop head
x ∈ [0, 0]

x = x+ 1;
x ∈ [1, 1]

} else {
x ∈ ∅

x = −x;
x ∈ ∅

}
x ∈ [1, 1]

}

Join at loop head
Xavier Rival Abstract Interpretation: Introduction April 18th, 2024 37 / 40



Revisiting Abstract Iteration

Example widening iteration, more precise

Classical techniques:
add test values and neighbors as thresholds
alternate join and widening
no widening after visiting a new branch

int x = 0;
x ∈ [0, 0]

while(TRUE){
x ∈ [0, 1]

if(x < 10 000){ 9999 will be a threshold value at loop head
x ∈ [0, 1]

x = x+ 1;
x ∈ [1, 1]

} else {
x ∈ ∅

x = −x;
x ∈ ∅

}
x ∈ [1, 1]

}

Still only the true branch may be taken
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Revisiting Abstract Iteration

Example widening iteration, more precise

Classical techniques:
add test values and neighbors as thresholds
alternate join and widening
no widening after visiting a new branch

int x = 0;
x ∈ [0, 0]

while(TRUE){
x ∈ [0, 1]

if(x < 10 000){ 9999 will be a threshold value at loop head
x ∈ [0, 1]

x = x+ 1;
x ∈ [1, 2]

} else {
x ∈ ∅

x = −x;
x ∈ ∅

}
x ∈ [1, 1]

}

Incrementation of interval
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Revisiting Abstract Iteration

Example widening iteration, more precise

Classical techniques:
add test values and neighbors as thresholds
alternate join and widening
no widening after visiting a new branch

int x = 0;
x ∈ [0, 0]

while(TRUE){
x ∈ [0, 1]

if(x < 10 000){ 9999 will be a threshold value at loop head
x ∈ [0, 1]

x = x+ 1;
x ∈ [1, 2]

} else {
x ∈ ∅

x = −x;
x ∈ ∅

}
x ∈ [1, 2]

}

Propagation
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Revisiting Abstract Iteration

Example widening iteration, more precise

Classical techniques:
add test values and neighbors as thresholds
alternate join and widening
no widening after visiting a new branch

int x = 0;
x ∈ [0, 0]

while(TRUE){
x ∈ [0, 9999] instead of [0,+∞[

if(x < 10 000){ 9999 will be a threshold value at loop head
x ∈ [0, 1]

x = x+ 1;
x ∈ [1, 2]

} else {
x ∈ ∅

x = −x;
x ∈ ∅

}
x ∈ [1, 2]

}

Widening at the loop head, + threshold
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Revisiting Abstract Iteration

Example widening iteration, more precise

Classical techniques:
add test values and neighbors as thresholds
alternate join and widening
no widening after visiting a new branch

int x = 0;
x ∈ [0, 0]

while(TRUE){
x ∈ [0, 9999] instead of [0,+∞[

if(x < 10 000){ 9999 will be a threshold value at loop head
x ∈ [0, 9999]

x = x+ 1;
x ∈ [1, 2]

} else {
x ∈ ∅

x = −x;
x ∈ ∅

}
x ∈ [1, 2]

}

Still only the true branch may be taken
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Revisiting Abstract Iteration

Example widening iteration, more precise

Classical techniques:
add test values and neighbors as thresholds
alternate join and widening
no widening after visiting a new branch

int x = 0;
x ∈ [0, 0]

while(TRUE){
x ∈ [0, 9999] instead of [0,+∞[

if(x < 10 000){ 9999 will be a threshold value at loop head
x ∈ [0, 9999]

x = x+ 1;
x ∈ [1, 10000]

} else {
x ∈ ∅

x = −x;
x ∈ ∅

}
x ∈ [1, 2]

}

Numerical assignments
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Revisiting Abstract Iteration

Example widening iteration, more precise

Classical techniques:
add test values and neighbors as thresholds
alternate join and widening
no widening after visiting a new branch

int x = 0;
x ∈ [0, 0]

while(TRUE){
x ∈ [0, 9999] instead of [0,+∞[

if(x < 10 000){ 9999 will be a threshold value at loop head
x ∈ [0, 9999]

x = x+ 1;
x ∈ [1, 10000]

} else {
x ∈ ∅

x = −x;
x ∈ ∅

}
x ∈ [1, 10000]

}

Join at the end of the loop
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Revisiting Abstract Iteration

Example widening iteration, more precise

Classical techniques:
add test values and neighbors as thresholds
alternate join and widening
no widening after visiting a new branch

int x = 0;
x ∈ [0, 0]

while(TRUE){
x ∈ [0, 10000] instead of ]−∞,+∞[

if(x < 10 000){ 9999 will be a threshold value at loop head
x ∈ [0, 9999]

x = x+ 1;
x ∈ [1, 10000]

} else {
x ∈ ∅

x = −x;
x ∈ ∅

}
x ∈ [1, 10000]

}

Join after widening
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Revisiting Abstract Iteration

Example widening iteration, more precise

Classical techniques:
add test values and neighbors as thresholds
alternate join and widening
no widening after visiting a new branch

int x = 0;
x ∈ [0, 0]

while(TRUE){
x ∈ [0, 10000] instead of ]−∞,+∞[

if(x < 10 000){ 9999 will be a threshold value at loop head
x ∈ [0, 9999]

x = x+ 1;
x ∈ [1, 10000]

} else {
x ∈ [10000, 10000] instead of [10000,+∞[

x = −x;
x ∈ ∅

}
x ∈ [1, 10000]

}

True branch stable, false branch visited for the first time
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Revisiting Abstract Iteration

Example widening iteration, more precise

Classical techniques:
add test values and neighbors as thresholds
alternate join and widening
no widening after visiting a new branch

int x = 0;
x ∈ [0, 0]

while(TRUE){
x ∈ [0, 10000] instead of ]−∞,+∞[

if(x < 10 000){ 9999 will be a threshold value at loop head
x ∈ [0, 9999]

x = x+ 1;
x ∈ [1, 10000]

} else {
x ∈ [10000, 10000] instead of [10000,+∞[

x = −x;
x ∈ [−10000,−10000]

}
x ∈ [1, 10000]

}

True branch stable, false branch visited for the first time
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Revisiting Abstract Iteration

Example widening iteration, more precise

Classical techniques:
add test values and neighbors as thresholds
alternate join and widening
no widening after visiting a new branch

int x = 0;
x ∈ [0, 0]

while(TRUE){
x ∈ [0, 10000] instead of ]−∞,+∞[

if(x < 10 000){ 9999 will be a threshold value at loop head
x ∈ [0, 9999]

x = x+ 1;
x ∈ [1, 10000]

} else {
x ∈ [10000, 10000] instead of [10000,+∞[

x = −x;
x ∈ [−10000,−10000]

}
x ∈ [−10000, 10000]

}

Join at the end of the loop
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Revisiting Abstract Iteration

Example widening iteration, more precise

Classical techniques:
add test values and neighbors as thresholds
alternate join and widening
no widening after visiting a new branch

int x = 0;
x ∈ [0, 0]

while(TRUE){
x ∈ [−10000, 10000] instead of ]−∞,+∞[

if(x < 10 000){ 9999 will be a threshold value at loop head
x ∈ [0, 9999]

x = x+ 1;
x ∈ [1, 10000]

} else {
x ∈ [10000, 10000] instead of [10000,+∞[

x = −x;
x ∈ [−10000,−10000]

}
x ∈ [−10000, 10000]

}

Join again: no widening after visiting a new branch
Xavier Rival Abstract Interpretation: Introduction April 18th, 2024 37 / 40



Revisiting Abstract Iteration

Example widening iteration, more precise

Classical techniques:
add test values and neighbors as thresholds
alternate join and widening
no widening after visiting a new branch

int x = 0;
x ∈ [0, 0]

while(TRUE){
x ∈ [−10000, 10000] instead of ]−∞,+∞[

if(x < 10 000){ 9999 will be a threshold value at loop head
x ∈ [−10000, 9999]

x = x+ 1;
x ∈ [1, 10000]

} else {
x ∈ [10000, 10000] instead of [10000,+∞[

x = −x;
x ∈ [−10000,−10000]

}
x ∈ [−10000, 10000]

}

Branches
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Revisiting Abstract Iteration

Example widening iteration, more precise

Classical techniques:
add test values and neighbors as thresholds
alternate join and widening
no widening after visiting a new branch

int x = 0;
x ∈ [0, 0]

while(TRUE){
x ∈ [−10000, 10000] instead of ]−∞,+∞[

if(x < 10 000){ 9999 will be a threshold value at loop head
x ∈ [−10000, 9999]

x = x+ 1;
x ∈ [−9999, 10000]

} else {
x ∈ [10000, 10000] instead of [10000,+∞[

x = −x;
x ∈ [−10000,−10000]

}
x ∈ [−10000, 10000]

}

Incrementation of interval in true branch; false branch stable
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Revisiting Abstract Iteration

Example widening iteration, more precise

Classical techniques:
add test values and neighbors as thresholds
alternate join and widening
no widening after visiting a new branch

int x = 0;
x ∈ [0, 0]

while(TRUE){
x ∈ [−10000, 10000] instead of ]−∞,+∞[

if(x < 10 000){ 9999 will be a threshold value at loop head
x ∈ [−10000, 9999]

x = x+ 1;
x ∈ [−9999, 10000]

} else {
x ∈ [10000, 10000] instead of [10000,+∞[

x = −x;
x ∈ [−10000,−10000]

}
x ∈ [−10000, 10000]

}

Everything is stable; exact ranges inferred
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Revisiting Abstract Iteration

Widening and monotonicity

Remarks about the widening over intervals:
it is monotone in its second argument,
but it is not monotone in its first argument!

In fact, interesting widenings are not monotone in their first argument:

Let (D♯,⊑) be an infinite height domain, with a widening ▽ that is stable
(∀v ♯, v ♯▽v ♯ = v ♯) and such that ∀v ♯0, v

♯
1, ∀i , v

♯
i ⊑ v ♯0▽v

♯
1. Then, ▽ is not

monotone in its first argument (proof: Patrick Cousot).

Proof: we assume it is, let w ♯
0 ⊏ w ♯

1 ⊏ . . . be an infinite chain over D♯ and
define v ♯0 = w ♯

0, v
♯
k+1 = v ♯k▽w

♯
k+1; we prove by induction that v ♯k = w ♯

k :
clear at rank 0
we assume that v ♯k = w ♯

k : then v ♯k+1 = v ♯k▽w
♯
k+1, so w ♯

k+1 ⊑ v ♯k+1;
moreover, v ♯k+1 = v ♯k▽w

♯
k+1 = w ♯

k▽w
♯
k+1 ⊑ w ♯

k+1▽w
♯
k+1 = w ♯

k+1

This contradicts the widening definition: the sequence should be stationary.
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Conclusion

Summary

This lecture:
abstraction and its formalization
computation of an abstract semantics in a very simplified case

Next lectures:
construction of a few non trivial abstractions
more general ways to compute sound abstract properties
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