Abstract Interpretation

Semantics and applications to verification

Xavier RIVAL

Ecole Normale Supérieure

April 18th, 2024

Xavier R1vaL Abstract Interpretation: Introduction April 18th, 2024

1/40

Program of this lecture

Towards a realistic abstract interpreter

Last class ended with a brief overview of a simplistic static analyzer

Today:
@ more general soundness proof:

using 7, and requiring no monotonicity in the abstract level

@ more general abstract domain:
signs is good for introduction only, we want to see constants,
intervals...

o extended language with expressions and conditions
i.e., not only three address arithmetic

e more general abstract iteration technique:
convergence guaranteed even with infinite height domain

Xavier R1vaL Abstract Interpretation: Introduction April 18th, 2024

2/40

e Another Soundness Relation

© Revisiting Abstract Iteration

© Conclusion

Another Soundness Relation

About soundness relations

Several formalisms available:
@ abstraction function « : C — A, returns the best approximation

e concretization function v : A — C, returns the meaning of an
abstract element

e Galois connection (C, C) % (A ©)

Limitations of our previous abstract interpreter:
@ uses the best abstraction function « all the time
@ tries to establish equality [P]* o o = o o [P] but fails...
indeed, some operators may only compute an over-approximation
e proves a o [P] C [P]foa
at the cost of proving monotonicity of [P]’

Alternate approach
Use v only and prove [P] o~y C vo [P]* J

Xavier RIvaL Abstract Interpretation: Introduction April 18th, 2024 4/40

Another Soundness Relation

Comparing soundness frameworks

We have seen several ways to express soundness:
@ o([P]) = [PI*
@ o([P]) C [P[*
@ [P] S ~([P]%)
O [P] - [P

Some are stronger than others:

o the first is the strongest (it implies the others when applicable)
@ the fourth is the weakest
@ the second and third are equivalent in a Galois connection setup

Some are more general:
@ the first two require an «, the third a ~
@ the fourth requires very little: it does not even require a or y to exist!

The choice of the framework to use is a balance in general... J

Xavier R1vaL Abstract Interpretation: Introduction April 18th, 2024 5/40

Another Soundness Relation

A language with expressions

We now consider the denotational semantics of our imperative language:

@ variables X: finite, predefined set of variables
o values V: Vit UVgoat U ...
@ expressions are allowed (not just three address instructions)
@ conditions are simplified compared to initial language
Syntax
= v (veV)|x (xeX)|ete|exe]l... expressions
c = x<v|x=v|.. basic conditions
P = x:=e assignment
| input(x) non deterministic value input
| if(c) Pelse P condition
| while(c) P loop
| P;P block, program(IP)

Xavier RIvaL Abstract Interpretation: Introduction April 18th, 2024 6 /40

Another Soundness Relation

Semantics of expressions and conditions (refresher)

We have defined a few lectures ago:

@ a semantics for expressions, defined by induction over the syntax:

[e] : M — Vuw{Q}

[vI(m) = v

[x[(m) = m(x)
[eo +e1](m) = [[eOS]]?(m)i[[el]](m) £ Jox] (m) = 0
[eo / e1](m) { [eo](m) / [e](m) otherwise

@ a semantics for conditions, following the same principle:

[[C]] M — Voo ¥ {Q}

Xavier R1vaL Abstract Interpretation: Introduction April 18th, 2024

7 /40

Another Soundness Relation

Semantics of satements

We have also defined:

Denotational semantics of programs

We use the denotational semantics [P]p : P(M) — P(M) by:

[x:=elp(M) = {mlx < [e](m)] | m € M A[e](m) # 2}
[input(x)]p(M) {mx<+<v]|veVAme M}
[[if(c) Py else Pl]]p(./\/l) = [[Po]]p({m eM ’ [[C]](m) = TRUE})
U [Prlp({m € M| [c](m) = FALSE})
[while(c) P]p(M) = {m e lfpFp | [c](m) = FALSE}
where Fp : M' — M U [P]p({m € M" | [c](m) = TRUE})
[Po; Pilp(M) = [Pilp o [Po]p(M)

@ As before, we seek for an abstract interpretation of [P]p
@ We first need to set up the abstraction relation

Xavier RIvaL Abstract Interpretation: Introduction April 18th, 2024 8 /40

Another Soundness Relation

Example

Example program:

input(x);
x=3-—x;
if(x > 1){
y=8—-2xx;
else{
y=1

}

Analysis with the lattice of signs: x+— T;y— T

Can we use another abstract domain instead, such as intervals 7
@ intuitively, x <3
@ thus, either1 <x<3and2<y<6orx<landy=1
@ inanycase, 1 <y <6

Xavier R1vaL Abstract Interpretation: Introduction April 18th, 2024

9/40

Another Soundness Relation

Galois-connection based non-relational abstraction

We compose two abstractions:
@ non relational abstraction: the values a variable may take is
abstracted separately from the other variables
@ parameter value abstraction: an abstract value describes a set of

concrete values (not necessarily the lattice of sign anymore) defined by

(P(V), €) = (D, E)

Definitions are quite similar:

Abstraction
e concrete domain: (P(X — V), C) = (P(M), Q)
e abstract domain: (Df,C) (Df =X — D]ﬁ/ and C is pointwise)
e Galois connection (P(M), Q) % (D, C), defined by

a: M — MzxeX) ap({m(x)|me M})
v Mo {m X = V|V, m(x) € y(Mi(x))}

Xavier RIvaL Abstract Interpretation: Introduction April 18th, 2024 10/ 40

Another Soundness Relation

Or a more general abstraction, using only =

As before, we compose two abstractions:

@ non relational abstraction: the values a variable may take is
abstracted separately from the other variables, as before, but we
consider only concretization

@ parameter value abstraction: an abstract value describes a set of
concrete values defined by a monotone concretization function
w (D}, C) = (P(V),)

Abstraction relation based on concretization only
e concrete domain: (P(X — V), Q)
e abstract domain: (D¥,C) (D =X — D{“, and C is pointwise)
e concretization function v : (D#, C) — (P(M), C), defined by
yi Mo {m: X = V| Vx, m(x) € y(MH(x))}

= likewise, our proof will use only v though it works even when « is defined

Xavier RIvaL Abstract Interpretation: Introduction April 18th, 2024 11 /40

Another Soundness Relation

Abstract semantics of sequences (revised)

We search for an abstract semantics [P]! : D — D such that:
[Pl oy CyolP]!

We still aim for a proof by induction over the syntax of programs

Sequences / composition forced us to require monotonicity last time:
o we assume [Pg] oy C o [Po]?
o we assume [P1] oy C vyo [P]*

@ since [Po; P1] = [P1] o [Po], we search for something similar in the
abstract level

[Pio[Po]oy € [Pi]lovo[Po]* (by induction)
C ~yo[Pi]fo[Po]* (by induction)

No more requirement that [P]* be monotone (much better!) J

Xavier RIvaL Abstract Interpretation: Introduction April 18th, 2024 12 /40

Another Soundness Relation

Abstract semantics of expressions

Analysis of an expression
@ semantics of expressions [e] : M — V 1 {Q}

o thus, the abstract semantics should evaluate it into an abstract
value:

[e]* : D} — D)ﬁ)

Since we use the concrete semantics as a guide, we need:
@ abstraction for constants:
i.e., a function ¢p : V — D{j/ such that Vv € V, v € y(¢pp(v))
note: if vy exists, then we may take v — ayp({v}) note: if it is too
hard to compute, we may take something coarser
@ abstract operators:
i.e., for each binary operator @, an abstract operator ®* such that:

\V/V(gv ‘/1:I € D)ﬁjﬂ {VO SR%1 ‘ VI, Vi € ’YV(V?)} g A/V(Vé @ﬁ Vl:)

Xavier RIvaL Abstract Interpretation: Introduction April 18th, 2024 13 /40

Another Soundness Relation

Abstract semantics of expressions

Analysis of expressions: definition
We define [e]? : Df — Dﬁ by:
[VIF(M?) = v(v)

(MY = M)
leo ® erl*(MF) = [eolf(M?) & [ex*(M")

Analysis of expressions: soundness

For all expression e and for all abstract memory state M € D¥, we have:

Vm € v(M*), [e](m) returns no error = [e](m) € yy([e]*(M*))
Proof:

@ basic induction over the syntax

@ relies on the soundness of each operation

Xavier RIvaL Abstract Interpretation: Introduction April 18th, 2024 14 / 40

Another Soundness Relation

Analysis of an assignment

We now rely on the abstract semantics of expressions:

[x = e]*(M*) = M¥[x < [e]*(MF)])

@ soundness proof is very similar

@ but now, is given in terms of 7

Example, based on the interval abstract domain; analysis of
x=3xy+zx*x.
If M*: x> [-2,3],y — [0,1], and z + [—1, 4] then:
[x =3xy +zxx]* (M) (x) = 3%[0,1]+[-1,4] % [-2,3]
= [0,3] +[-8,12]
= [_8> 15]

Xavier R1vaL Abstract Interpretation: Introduction April 18th, 2024 15 / 40

Another Soundness Relation

Abstract semantics of conditions

Analysis of a condition

@ the semantics [[c] : M — Vy,,, of a condition evaluates it into a
boolean value (or an error)

@ but the semantics relies on its functional inverse:
e.g., {m € M| [c](m) = TRUE} or {m € M | [c]](m) = FALSE}
@ thus, the abstract semantics should tell which memories satisfy a
condition:
[[CHﬁ = Vbool X D111 — Dﬁ
Vb € Vhool, Vm € y(MF), [c](m) = b= m € y([c]*(b, MF))

@ we assume that the abstract domain provides such a function
[c]? : Viool x DF — DF
@ this is also called a backward abstract semantics
intuitively: it goes from outputs to arguments
o we will implement some when considering specific abstract domains

Xavier R1vaL Abstract Interpretation: Introduction April 18th, 2024 16 / 40

Another Soundness Relation

Analysis of a condition statement

Abstraction of concrete union:
@ we assume a sound abstract union operation joinﬁ, over the value

abstract domain:

W Vi, () U (Vi) C w(joind, (v, vi))

it may be LIy, if it exists, but joinﬁ, may also over-approximate it
o we let join® be the pointwise extension of joinsj

o it is also sound: VME, M, ~(ME) U ~(MF) C ~(joinf(MZ, M)
We derive:

[if(c) Po else Py]f(MF) =
join®([Po]*([c]*(TRUE, M?)), [P1]*([<c]*(FALSE, M*)))

Proof of soundness:
@ similar as in the previous course
o relies on the soundness of [c]?, [Po]?, [Pi]? and join®

Xavier R1vaL Abstract Interpretation: Introduction April 18th, 2024 17 / 40

Another Soundness Relation

Example condition statement analysis

We can now show the interval analysis of the example program:

input(x);
x — [0, 400,y —] — 00, +00[
x=3-—x;
x —]| —00,3],y =] — 00, +o0]
if(x > 1){
x — [1,3],y =] — 0o, +00[
y=8—-2xx;

x> [1,3],57 — [2, 6]
}else{

x =] — 00, 1],y =] — 00, +o0]
y=1

x =] — o0, 1],y — [1,1]

x =] — 00,3,y — [1,6]

Xavier R1vaL Abstract Interpretation: Introduction April 18th, 2024

18 /40

Another Soundness Relation

Another example

input(x);
x =] — 00, +o0[, y =] — oo, +o0f

x=yx*xy+1,
X [1'+OC[7yH] 7007+OO[

if(x < 0){
?
x=—1;
?

}else{ |
?

}

Questions:
o fill the "7"...
@ what is happening ? how to make the analysis precise ?
Abstract Interpretation: Introduction April 18th, 2024

Xavier RivAaL

19 /40

Another Soundness Relation

Reduction in the non relational abstraction
Consider the following two abstract elements:
x € L,y e[l1,10]

and
xel,yel

@ their concretisations are equal to ()

e in fact, applying 7y o « to the former returns the latter

Reduction

The optimal reduction function is defined by v o & and returns an
optimal abstract element, with the same concretisation.

While optimal reduction is not computable in general, it is in this case.

Xavier RIvaL Abstract Interpretation: Introduction April 18th, 2024 20 /40

Another Soundness Relation
Fixpoint approximation

Again, quite similar to the previous course:
@ statement while(c) P, with abstract pre-condition M?
o we assume sound [c]# and [P]* are defined

Fixpoint approximation (instead of fixpoint transfer)

We assume (C, C) and (A, C) are complete lattices, with a concretization
function v : (A,C) — (C, C), two functions f : C — C and f*: A = A,
and two elements ¢y € C, ag € A such that:

@ f is continuous
@ foyCnroft
® co C v(a0)
We let as, = LU{(f*)"(ag) | n € N}. Then:
e f has a least-fixpoint (by Kleene's fixpoint theorem)
o Ifpe, f € v(ax)

Xavier R1vaL Abstract Interpretation: Introduction April 18th, 2024 21/40

Another Soundness Relation

Fixpoint approximation: proof

Existence of the concrete fixpoint:
First, we remark that Ifp,, f exists, following Kleene's fixpoint theorem.
Moreover:

Ifpf = | J (o)

co neN
Approximation of the fixpoint:
First, aso = U{(f¥)"(a0) | n € N} exists since we assume A is a complete
lattice (note that we have not addressed how to compute it quite yet!). We
prove by induction over n that f"(cp) C v((f#)"(a0)):

@ since we assumed cg C 7(ap), the property holds at rank 0;

o if we assume "(co) € Y((f¥)"(a0)), then f(f"(co)) C F(v((F9)"(a0)))
since f is monotone, which implies f™1(co) C v((£#)"*1(ag)) since
foyCnyoft

The fixpoint approximation property follows from property of least
upper-bounds and from the monotonicity of ~.

Xavier R1vaL Abstract Interpretation: Introduction April 18th, 2024 22 /40

Another Soundness Relation

Analysis of a loop

Again, quite similar to the previous course:
o statement while(c) P, with abstract pre-condition M?

o we assume [c])* and [P]* sound abstract semantics for the condition
and the loop body

@ we assume the abstract domain is a finite height lattice
this ensures that we can compute a,, = U{(f*)"(ap) | n € N}
(exercise), but intervals do not satisfy this condition

Computation of abstract iterates:

[while(c) PJ#(M?) = [c]*(FALSE, M})

o= m M = M
where 4 0 I " ﬁ 0 |
et = [PI([]*(TRUE, /) M, = join* (M, I

and I\/Iﬂﬂ = M,g

Xavier RIvaL Abstract Interpretation: Introduction April 18th, 2024 23 /40

Another Soundness Relation

Static analysis

We can now summarize the definition of our static analysis:

Definition
[Po; PAF(M*) = [P1]? o [Po]*(M?)
[x =e]"(M*) = M[x [e]*(M*)]
[[lnput()ﬂﬁ(l\/lﬁ) = I\/Iﬁ[x +— T]
[if(c) Po else PL]H(ME) = join*([Po]*([c]!(TRUE, M?)),

[P1]*([c]*(FALSE, M*)))
[while(c) PJE(M?) = lim, M}
where [§ = M§ = M, I}, | = [P]*([c]*(TRUE, /}))
and MIE+1 :jOi"ﬁ(sz /£+1)

And, by induction over the syntax, we can prove:

Soundness
For all program P, VM* € D% [P] o y(M#) C ~ o [P]*(M*)
Xavier R1vaL Abstract Interpretation: Introduction April 18th, 2024 24 /40

@ Another Soundness Relation

e Revisiting Abstract lteration

© Conclusion

Revisiting Abstract Iteration

Limitations related to abstract iteration

We need a finite height lattice:

@ otherwise the computation of Ifp F# may not converge
as was the case when we discussed WLP calculus

@ consequence 1: so far, the abstract domain of intervals is out...

e consequence 2: if the number of variables is not fixed or bounded,
we cannot prove convergence at this point

Even when the abstract domain D]ﬁ/ is of finite height, this height
may be huge: then abstract computations are very costly!

We now need a more general abstract iteration technique J

Intuition from search for an unknown inductive property:
@ look at the base case and following cases
@ try to generalize them

Xavier R1vaL Abstract Interpretation: Introduction April 18th, 2024 26 /40

Revisiting Abstract Iteration

Widening iteration: search for inductive abstract properties

Computing invariants about infinite executions with widening v
e Widening V over-approximates U: soundness guarantee
@ Widening Vv guarantees the termination of the analyses

@ Typical choice of V: remove unstable constraints

Example: iteration of the translation (2,1), with octagonal polyhedra
(i.e., convex polyhedra the axes of which are either at a 0° or 45° angle)
y y y
X1 = XoVF(Xo)

) F(X

initial iteration 1 iteration 2: stable !

o Initially: 3 constraints

@ After one iteration: 2 constraints, then stable
Xavier RIvaL Abstract Interpretation: Introduction April 18th, 2024 27 /40

Revisiting Abstract Iteration

Widening operator

Widening operator: Definition
A widening operator over an abstract domain D! is a binary operator Vv
such that:
o WMj, M, Y(ME) Uy(M) € (M§v M)
o if (Nﬁ)keN is a sequence of elements of D* the sequence (Mﬁ)keN
defined below is stationary:

Mi = N
_ f i
Men = MVNg

@ Intuition:
point 1 expresses over-approximation of concrete union
point 2 enforces termination

@ Alternate definitions exist:

e.g., using C instead of C over concretizations
Xavier RIvaL Abstract Interpretation: Introduction April 18th, 2024 28 /40

Revisiting Abstract Iteration

Widening operator in a finite height domain

Theorem

We assume that (D¥,C) is a finite height domain and that LI is the
least upper bound over DF.
Then U defines a widening over D!.

Proof:
Q since I\/Ig C I\/Ig] /\/If, we have 'y(Mg) C fy(Mg u Mlﬁ)
@ a sequence of iterates (Mﬁ)keN is an increasing chain, so if every
increasing chain is finite, it will eventually stabilize
Applications:
@ obvious widening operators for the lattices of constants, signs...

@ abstract iteration algorithms are also the same

Xavier RIvaL Abstract Interpretation: Introduction April 18th, 2024 29 /40

Revisiting Abstract Iteration

A widening operator in an infinite height domain

We consider the value lattice of semi intervals with left bound 0:
o D}, = {1} WZ; W {+oo}; w(v)={0,1,...,v}
o Vvi, L C vfandif vg < vf, then vg C vf

We define the widening operator below:

Widening operator

1vvt = vt
vivl = v
P vg if vg > vf
Vovvl = n f ¢ £
o0 Im vy < vq
Examples: [0,8]V[0,6] = [0, 8] [0,8]V[0,9] = [0, +o0]
Widening for intervals
Exercise: generalize this definition for both bounds J

Xavier RIvaL Abstract Interpretation: Introduction April 18th, 2024 30/40

Revisiting Abstract Iteration

Fixpoint approximation using a widening operator

Theorem: widening based fixpoint approximation

We assume (C, C) is a complete lattice and that (A, C) is an abstract
domain with a concretization function v : A — C and a widening operator
V. Moreover, we assume that:

e f is continuous (so it has a least fixpoint Ifp f = |, f"(0))

@ foyCyoft

We let the sequence (Mﬁ)keN be defined by:

MEo= L
f _ gt t
M, = M v (M)

Then:
@ (M})ken is stationary and we write M} for its limit
Q Ifpf Sy (M)

o
Xavier RIvaL Abstract Interpretation: Introduction April 18th, 2024 31/40

Fixpoint approximation using a widening operator, proof

Revisiting Abstract Iteration

We assume all the assumptions of the theorem, and prove the two points:

© Sequence convergence: We let

Then, convergence follows directly from the definition of widening.

NG o= L

N£+1 = fﬁ(Mﬁ)

There exists a rank K from which all iterates are stable.
@ Soundness of the limit:
We prove by induction over k that VI > k, fk(()) C *y(l\/l,ﬁ):
» the result clearly holds for k = 0;
» if the result holds at rank k and / > k then:

fk+1(®)

When (Mﬂ)keN converges, V/ > K, I\/Iﬁ

101N 1N

f(fk((i)))

f(v(M)) by induction
fy(fﬁ(/\/lﬁ)) since foy C yo ft
A(MFVFEME)) by definition of v
Y(Mf,y)

M = M-, thus

Vk, F4(0) € y(ML) thus Ifp f C v(Mﬁo)

Xavier RivAaL

Abstract Interpretation: Introduction April 18th, 2024

32/40

Revisiting Abstract Iteration
Example widening iteration
intx=0;
while(TRUE){
if(x < 10000){
x=x+1;

} else {

Xavier R1vaL Abstract Interpretation: Introduction April 18th, 2024

33/40

Revisiting Abstract Iteration

Example widening iteration

intx=0;
x € [0,0]
while(TRUE){

if(x < 10000){

x=x+1;
} else {
X =—X
Xavier R1vaL Abstract Interpretation: Introduction April 18th, 2024

33/40

Revisiting Abstract Iteration

Example widening iteration

intx=0;

x € [0,0]
while(TRUE){

x € [0,0]

if(x < 10000){

x=x+1;
} else {
X =—X
Entry into the loop
Xavier R1vaL Abstract Interpretation: Introduction April 18th, 2024

33/40

Revisiting Abstract Iteration

Example widening iteration

intx=0;
x € [0,0]
while(TRUE){
x € [0,0]
if(x < 10000){
x € [0,0]
x=x+1;
} else {
xel
}
}

Only the “true” branch may be taken

Xavier R1vaL Abstract Interpretation: Introduction April 18th, 2024

33/40

Revisiting Abstract Iteration

Example widening iteration

intx=0;
x € [0,0]
while(TRUE){
x € [0,0]
if(x < 10000){
x € [0,0]
x=x+1;
x € [1,1]
} else {
xel
X = —X;
xefl
}
}
Incrementation
Xavier R1vaL Abstract Interpretation: Introduction April 18th, 2024

33/40

Revisiting Abstract Iteration
Example widening iteration

intx=0;
x € [0,0]
while(TRUE){
x € [0,0]
if(x < 10000){
x € [0,0]
x=x+1;
x € [1,1]
} else {
xel
X = —X;
xef

x € [1,1]

Abstract union at the end of the condition

Xavier R1vaL Abstract Interpretation: Introduction April 18th, 2024

33/40

Revisiting Abstract Iteration

Example widening iteration

intx=0;
x € [0,0]
while(TRUE){
x € [0, +oof
if(x < 10000){
x € [0,0]
x=x+1;
x € [1,1]
} else {
xel
X=—X;
xe

x € [1,1]

Widening at loop head

Xavier R1vaL Abstract Interpretation: Introduction April 18th, 2024

33/40

Revisiting Abstract Iteration

Example widening iteration

intx=0;
x € [0,0]
while(TRUE){
x € [0, +oo[
if(x < 10000){
x € [0,9999]
x=x+1;
x € [1,1]
} else {
x € [10000, +o0]
X=—X;
xef

x € [1,1]

Now both branches may be taken

Xavier R1vaL Abstract Interpretation: Introduction April 18th, 2024

33/40

Revisiting Abstract Iteration

Example widening iteration

intx=0;
x € [0,0]
while(TRUE){
x € [0, +oo[
if(x < 10000){
x € [0,9999]
x=x+1;
x € [1,10000]
} else {
x € [10000, +o0]
X=—X;

x €] — 0o, —10000]

x € [1,1]

Numerical assignments

Xavier R1vaL Abstract Interpretation: Introduction April 18th, 2024

33/40

Revisiting Abstract Iteration

Example widening iteration

intx=0;
x € [0,0]
while(TRUE){
x € [0, +oo[
if(x < 10000){
x € [0,9999]
x=x+1;
x € [1,10000]
} else {
x € [10000, +o0]
X=—X;

x €] — 0o, —10000]

x €] — 00, 10000]

Abstract union at the end of the condition

Xavier R1vaL Abstract Interpretation: Introduction April 18th, 2024

33/40

Revisiting Abstract Iteration

Example widening iteration

intx=0;
x € [0,0]
while(TRUE){
x €] — 00, +oof
if(x < 10000){
x € [0,9999]
x=x+1;
x € [1,10000]
} else {
x € [10000, +o0[
X = —X;

x €] — 00, —10000]

x €] — 00, 10000]

Widening at loop head

Xavier RivAaL Abstract Interpretation: Introduction April 18th, 2024

33/40

Revisiting Abstract Iteration

Example widening iteration

intx=0;
x € [0,0]
while(TRUE){
x €] — 00, +oo[
if(x < 10000){
x €] — 00,9999
x=x+1;
x € [1,10000]
} else {
x € [10000, +o0[
X=—X;

x €] — 0o, —10000]

x €] — 00, 10000]

Both branches may be taken

Xavier R1vaL Abstract Interpretation: Introduction April 18th, 2024

33/40

Revisiting Abstract Iteration

Example widening iteration

intx=0;
x € [0,0]
while(TRUE){
x €] — 00, +oo[
if(x < 10000){
x €] — 00,9999
x=x+1;
x €] — 00, 10000]
} else {
x € [10000, +o0[
X=—X;

x €] — 0o, —10000]

x €] — 00, 10000]

Numerical assignments

Xavier R1vaL Abstract Interpretation: Introduction April 18th, 2024

33/40

Revisiting Abstract Iteration

Example widening iteration

intx=0;
x € [0,0]
while(TRUE){
x €] — 00, +oof
if(x < 10000){
x €] — 00, 9999]
x=x+1;
x €] — 00, 10000]
} else {
x € [10000, +o0[
X = —X;

x €] — 00, —10000]

x €] — 00, 10000]

Stable! No information at loop head,
but still, some interesting information inside the loop

Xavier RivAaL Abstract Interpretation: Introduction April 18th, 2024

33/40

Revisiting Abstract Iteration

Loop unrolling

From the example, we observe that intervals widening is imprecise:
@ quickly goes to —oo or +oo
@ ignores possible stable bounds

Can we do better ?
Yes, we can... many techniques improve standard widening

Loop unrolling: postpone widening

We fix an index /, and postpone widening until after /

M= L
M., = join*(M},Fi(M})) ifk<I
M£+1 = Mﬁvfﬁ(l\/li) otherwise

@ Typically, k is set to 1 or 2...

@ Proof of a new fixpoint approximation theorem: very similar

Xavier RIvaL Abstract Interpretation: Introduction April 18th, 2024

34 /40

Revisiting Abstract Iteration

Widening with threshold

Now, let us improve the widening itself:
@ the standard Vv operator of intervals goes straight to oo
@ we can slow down the process

Threshold widening
Let 7 be a finite set of integers, called thresholds. We let the
threshold widening be defined by:
1wvt = vt
vivl = i
vg if vg > vf
ngvij = min{vf € T | Vi, v}j <vi} if {vieT Vi v,-ti <VEL £
+o00 otherwise

@ Proof of the widening property: exercise
e Example with £ = {10}:
[0,8]v[0,9] = [0,10] [0,8]V[0, 15] = [0, +oo]

Xavier RIvaL Abstract Interpretation: Introduction April 18th, 2024 35/40

Revisiting Abstract Iteration

Techniques related to iterations

No widening after visiting a branch for the first time:
@ loop unrolling postpones widening for a finite number of times
@ there are finitely many branches in any block of code
branch: condition block entry or inner loop entry

Principle
Mark program branches and apply widening only when no new
branch was visited during the previous iteration

Iteration from a fixpoint approximant:
e observation: if f oy C yo ff and Ifp f C v(M?#), then:
lfpf =f(lfpf) Cfo 'y(Mﬁ) CHo fﬁ(/\/lﬁ)
e so fi(M*) also approximates Ifp f, and may be better

After an abstract invariant is found, perform additional iterations

Principle J

Xavier R1vaL Abstract Interpretation: Introduction April 18th, 2024 36 /40

Revisiting Abstract Iteration

Example widening iteration, more precise

Classical techniques:
@ add test values and neighbors as thresholds
@ alternate join and widening
@ no widening after visiting a new branch
intx=0;

while(TRUE){

if(x < 10000){ 9999 will be a threshold value at loop head

x=x+1;
} else {
X = —X;
Xavier R1vaL Abstract Interpretation: Introduction April 18th, 2024

37 /40

Revisiting Abstract Iteration

Example widening iteration, more precise

Classical techniques:
@ add test values and neighbors as thresholds
@ alternate join and widening

@ no widening after visiting a new branch
intx=0;
x € [0,0]
while(TRUE){

if(x < 10000){ 9999 will be a threshold value at loop head

x=x+1;
} else {
X = —X;
Xavier R1vaL Abstract Interpretation: Introduction April 18th, 2024

37 /40

Revisiting Abstract Iteration

Example widening iteration, more precise

Classical techniques:
@ add test values and neighbors as thresholds
@ alternate join and widening
@ no widening after visiting a new branch

intx=0;

x € [0,0]
while(TRUE){

x € [0,0]

if(x < 10000){ 9999 will be a threshold value at loop head

x=x+1;
} else {
X = —X;
}
}
Entering the loop
Xavier R1vaL Abstract Interpretation: Introduction April 18th, 2024

37 /40

Revisiting Abstract Iteration

Example widening iteration, more precise

Classical techniques:
@ add test values and neighbors as thresholds
@ alternate join and widening
@ no widening after visiting a new branch
intx=0;
x € [0,0]
while(TRUE){
x € [0,0]
if(x < 10000){ 9999 will be a threshold value at loop head
x € [0,0]
x=x+1;

} else {
x€
X = —X;

}
Only true branch possible

Xavier R1vaL Abstract Interpretation: Introduction April 18th, 2024

37 /40

Revisiting Abstract Iteration

Example widening iteration, more precise

Classical techniques:
@ add test values and neighbors as thresholds
@ alternate join and widening
@ no widening after visiting a new branch

intx=0;
x € [0,0]
while(TRUE){
x € [0,0]
if(x < 10000){ 9999 will be a threshold value at loop head
x € [0,0]
x=x+1;
x € [1,1]
} else {
xel
X = —X;
xel
}
}
Incrementation of interval
Xavier R1vaL Abstract Interpretation: Introduction April 18th, 2024

37 /40

Revisiting Abstract Iteration

Example widening iteration, more precise

Classical techniques:
@ add test values and neighbors as thresholds
@ alternate join and widening
@ no widening after visiting a new branch

intx=0;
x € [0,0]
while(TRUE){
x € [0,0]
if(x < 10000){ 9999 will be a threshold value at loop head
x € [0,0]
x=x+1;
x € [1,1]
} else {
xel
X = —X;
xel
}
x e [1,1]
}
Propagation
Xavier R1vaL Abstract Interpretation: Introduction April 18th, 2024

37 /40

Revisiting Abstract Iteration

Example widening iteration, more precise

Classical techniques:
@ add test values and neighbors as thresholds
@ alternate join and widening
@ no widening after visiting a new branch

intx=0;
x € [0,0]
while(TRUE){
x € [0,1]
if(x < 10000){ 9999 will be a threshold value at loop head
x € [0,0]
x=x+1;
x € [1,1]
} else {
xel
X = —X;
xel
}
x e [1,1]
}
Join at loop head
Xavier R1vaL Abstract Interpretation: Introduction April 18th, 2024

37 /40

Revisiting Abstract Iteration

Example widening iteration, more precise

Classical techniques:
@ add test values and neighbors as thresholds
@ alternate join and widening
@ no widening after visiting a new branch

intx=0;
x € [0,0]
while(TRUE){
x € [0,1]
if(x < 10000){ 9999 will be a threshold value at loop head
x € [0,1]
x=x+1;
x € [1,1]
} else {
xel
X =—X;
xel
}
x e [1,1]
}
Still only the true branch may be taken
Xavier R1vaL Abstract Interpretation: Introduction April 18th, 2024

37 /40

Revisiting Abstract Iteration

Example widening iteration, more precise

Classical techniques:
@ add test values and neighbors as thresholds
@ alternate join and widening
@ no widening after visiting a new branch

intx=0;
x € [0,0]
while(TRUE){
x € [0,1]
if(x < 10000){ 9999 will be a threshold value at loop head
x € [0,1]
x=x+1;
x€[1,2]
} else {
xel
X = —X;
xel
}
x e [1,1]
}
Incrementation of interval
Xavier R1vaL Abstract Interpretation: Introduction April 18th, 2024

37 /40

Revisiting Abstract Iteration

Example widening iteration, more precise

Classical techniques:
@ add test values and neighbors as thresholds
@ alternate join and widening
@ no widening after visiting a new branch

intx=0;
x € [0,0]
while(TRUE){
x € [0,1]
if(x < 10000){ 9999 will be a threshold value at loop head
x € [0,1]
x=x+1;
x€[1,2]
} else {
xel
X = —X;
xel
}
x € [1,2]
}
Propagation
Xavier R1vaL Abstract Interpretation: Introduction April 18th, 2024

37 /40

Revisiting Abstract Iteration

Example widening iteration, more precise

Classical techniques:
@ add test values and neighbors as thresholds
@ alternate join and widening

@ no widening after visiting a new branch
intx=0;
x € [0,0]
while(TRUE){
x € [0,9999] instead of [0, +o0[
if(x < 10000){ 9999 will be a threshold value at loop head

x € [0,1]
x=x+1;
x€[1,2]
} else {
xel
X = —X;
xel
}
x € [1,2]
}
Widening at the loop head, + threshold
Xavier R1vaL Abstract Interpretation: Introduction April 18th, 2024

37 /40

Revisiting Abstract Iteration

Example widening iteration, more precise

Classical techniques:
@ add test values and neighbors as thresholds
@ alternate join and widening

@ no widening after visiting a new branch
intx=0;
x € [0,0]
while(TRUE){
x € [0,9999] instead of [0, +o0[
if(x < 10000){ 9999 will be a threshold value at loop head

x € [0,9999]
x=x+1;
x€[1,2]
} else {
x€
X = —X;
x€D
}
x € [1,2]
}
Still only the true branch may be taken
Xavier R1vaL Abstract Interpretation: Introduction April 18th, 2024

37 /40

Revisiting Abstract Iteration

Example widening iteration, more precise

Classical techniques:
@ add test values and neighbors as thresholds
@ alternate join and widening

@ no widening after visiting a new branch
intx=0;
x € [0,0]
while(TRUE){
x € [0,9999] instead of [0, +o0[
if(x < 10000){ 9999 will be a threshold value at loop head

x € [0,9999]
x=x+1;
x € [1,10000]
} else {
x€
X = —X;
x€D
}
x € [1,2]
}
Numerical assignments
Xavier R1vaL Abstract Interpretation: Introduction April 18th, 2024

37 /40

Revisiting Abstract Iteration

Example widening iteration, more precise

Classical techniques:
@ add test values and neighbors as thresholds
@ alternate join and widening

@ no widening after visiting a new branch
intx=0;
x € [0,0]
while(TRUE){
x € [0,9999] instead of [0, +o0[
if(x < 10000){ 9999 will be a threshold value at loop head

x € [0,9999]
x=x+1;
x € [1,10000]
} else {
x€
X = —X;
x€D
}
x € [1,10000]
}
Join at the end of the loop
Xavier R1vaL Abstract Interpretation: Introduction April 18th, 2024

37 /40

Revisiting Abstract Iteration

Example widening iteration, more precise

Classical techniques:
@ add test values and neighbors as thresholds
@ alternate join and widening

@ no widening after visiting a new branch
intx=0;
x € [0,0]
while(TRUE){
x € [0,10000] instead of | — oo, +o0[
if(x < 10000){ 9999 will be a threshold value at loop head

x € [0,9999]
x=x+41;
x € [1,10000]
} else {
x€
X = —X;
x€D
}
x € [1,10000]
}
Join after widening
Xavier R1vaL Abstract Interpretation: Introduction April 18th, 2024

37 /40

Revisiting Abstract Iteration

Example widening iteration, more precise

Classical techniques:
@ add test values and neighbors as thresholds
@ alternate join and widening

@ no widening after visiting a new branch
intx=0;
x € [0,0]
while(TRUE){
x € [0,10000] instead of | — oo, +o0[
if(x < 10000){ 9999 will be a threshold value at loop head

x € [0,9999]
x=x+1;
x € [1,10000]
} else {
x € [10000,10000] instead of [10000, +oo]
X = —X;
xel
}
x € [1,10000]
}
True branch stable, false branch visited for the first time
Xavier R1vaL Abstract Interpretation: Introduction April 18th, 2024

37 /40

Revisiting Abstract Iteration

Example widening iteration, more precise

Classical techniques:
@ add test values and neighbors as thresholds
@ alternate join and widening

@ no widening after visiting a new branch
intx=0;
x € [0,0]
while(TRUE){
x € [0,10000] instead of | — oo, +o0[
if(x < 10000){ 9999 will be a threshold value at loop head

x € [0,9999]
x=x+1;
x € [1,10000]
} else {
x € [10000,10000] instead of [10000, +oo]
X = —X;
x € [~10000, —10000]
}
x € [1,10000]
}
True branch stable, false branch visited for the first time
Xavier R1vaL Abstract Interpretation: Introduction April 18th, 2024

37 /40

Revisiting Abstract Iteration

Example widening iteration, more precise

Classical techniques:
@ add test values and neighbors as thresholds
@ alternate join and widening

@ no widening after visiting a new branch
intx=0;
x € [0,0]
while(TRUE){
x € [0,10000] instead of | — oo, +o0[
if(x < 10000){ 9999 will be a threshold value at loop head

x € [0,9999]
x=x+1;
x € [1,10000]
} else {
x € [10000,10000] instead of [10000, +oo]
X = —X;
x € [~10000, —10000]
}
x € [~10000, 10000]
}
Join at the end of the loop
Xavier R1vaL Abstract Interpretation: Introduction April 18th, 2024

37 /40

Revisiting Abstract Iteration

Example widening iteration, more precise

Classical techniques:
@ add test values and neighbors as thresholds
@ alternate join and widening

@ no widening after visiting a new branch
intx=0;
x € [0,0]
while(TRUE){
x € [-10000,10000] instead of | — oo, +o0[
if(x < 10000){ 9999 will be a threshold value at loop head

x € [0,9999]
x=x+1;
x € [1,10000]
} else {
x € [10000,10000] instead of [10000, +oo]
X = —X;
x € [~10000, —10000]
}
x € [~10000, 10000]
}
Join again: no widening after visiting a new branch
Xavier R1vaL Abstract Interpretation: Introduction April 18th, 2024

37 /40

Revisiting Abstract Iteration

Example widening iteration, more precise

Classical techniques:
@ add test values and neighbors as thresholds
@ alternate join and widening

@ no widening after visiting a new branch
intx=0;
x € [0,0]
while(TRUE){
x € [-10000,10000] instead of | — oo, +o0[
if(x < 10000){ 9999 will be a threshold value at loop head
x € [~10000, 9999]

x=x+1;
x € [1,10000]
} else {
x € [10000,10000] instead of [10000, +oo]
X = —X;
x € [~10000, —10000]
}
x € [~10000, 10000]
}
Branches
Xavier R1vaL Abstract Interpretation: Introduction April 18th, 2024

37 /40

Revisiting Abstract Iteration

Example widening iteration, more precise

Classical techniques:
@ add test values and neighbors as thresholds
@ alternate join and widening

@ no widening after visiting a new branch
intx=0;
x € [0,0]
while(TRUE){
x € [-10000,10000] instead of | — oo, +o0[
if(x < 10000){ 9999 will be a threshold value at loop head
x € [~10000, 9999]

x=x+1;
x € [~9999, 10000]
} else {
x € [10000,10000] instead of [10000, +oo]
X = —X;
x € [~10000, —10000]
}
x € [~10000, 10000]
}
Incrementation of interval in true branch; false branch stable
Xavier R1vaL Abstract Interpretation: Introduction April 18th, 2024

37 /40

Revisiting Abstract Iteration

Example widening iteration, more precise

Classical techniques:
@ add test values and neighbors as thresholds
@ alternate join and widening

@ no widening after visiting a new branch
intx=0;
x € [0,0]
while(TRUE){
x € [-10000,10000] instead of | — oo, +o0[
if(x < 10000){ 9999 will be a threshold value at loop head
x € [~10000, 9999]

x=x+1;
x € [—9999, 10000]
} else {
x € [10000,10000] instead of [10000, 4+-o0|
X = —X;
x € [-10000, —10000]
}
x € [-10000, 10000]
}
Everything is stable; exact ranges inferred
Xavier R1vaL Abstract Interpretation: Introduction April 18th, 2024

37 /40

Revisiting Abstract Iteration

Widening and monotonicity

Remarks about the widening over intervals:
@ it is monotone in its second argument,
@ but it is not monotone in its first argument!

In fact, interesting widenings are not monotone in their first argument:

Let (D, C) be an infinite height domain, with a widening V that is stable
(v, vEvvi = vf) and such that va, vf, Vi, v,.tt C ngvf. Then, V is not
monotone in its first argument (proof: Patrick Cousot).

Proof: we assume it is, let Wg C Wf C ... be an infinite chain over D¥ and
gt i f

define vj = vy, 1 = V£VWk+1; we prove by induction that vﬁ = w:

o clear at rank 0

@ we assume that vﬁ = w}i: then v£+1 = vﬁVwﬁ

gt f #
moreover, v, .y = kaW

A
ﬁ ﬁ-i-l' SO Wi & Viy1s
k1 = Wi VWi E W VWi = wy
This contradicts the widening definition: the sequence should be stationary.

Xavier RIvaL Abstract Interpretation: Introduction April 18th, 2024 38 /40

@ Another Soundness Relation

© Revisiting Abstract Iteration

© Conclusion

Conclusion

Summary

This lecture:
e abstraction and its formalization

@ computation of an abstract semantics in a very simplified case

Next lectures:
@ construction of a few non trivial abstractions

@ more general ways to compute sound abstract properties

Xavier R1vaL Abstract Interpretation: Introduction April 18th, 2024 40 /40

	Another Soundness Relation
	Revisiting Abstract Iteration
	Conclusion

