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Program of this lecture

Studied so far:
@ semantics: behaviors of programs
@ properties: safety, liveness, security...

@ approaches to verification: typing, use of proof assistants, model
checking

Today's lecture: introduction to abstract interpretation
a general framework for comparing semantics
introduced by Patrick Cousot and Radhia Cousot (1977)

@ abstraction: use of a lattice of predicates

e computing abstract over-approximations, while preserving
soundness

@ computing abstract over-approximations for loops
using fixpoints as a guide
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Abstraction Notion of abstraction

Abstraction example 1: signs

Abstraction: defined by a family of properties to use in proofs J

Example:
@ objects under study: sets of mathematical integers

@ abstract elements: signs
Lattice of signs
T
N
- 0 =
NP

Note: the order in the abstract lattice corresponds to inclusion...

L denotes only 0
+ denotes any set of positive integers
0 denotes any subset of {0}

— denotes any set of negative integers

T denotes any set of integers
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Abstraction Notion of abstraction

Abstraction example 1: signs

Definition: abstraction relation
e concrete elements: elements of the original lattice (¢ € P(Z))
e abstract elements: predicate (a: “- € {+,0,...}")
@ abstraction relation: c s a when a describes ¢

Examples:
e {1,2,3,5,7,11,13,17,19,23,.. .} ks +
e {1,2,3,5,7,11,13,17,19,23,.. .} Fs T

We use abstract elements to reason about operations:
o ifcgbs +and a ks +, then {xo+x1 | x; € ¢i} Fs +
o ifcgls + and ¢ s +, then {xo-x1 | xi € ¢i} Fs +
o ifcgks +and ¢ ks 0, then {xo-x1 | xi € ¢i} Fs 0
o ifcgbs+and abs L, then {xo-x1 | xi € ¢} Fs L
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Abstraction Notion of abstraction

Abstraction example 1: signs

We can also consider the union operation:
e ifcgks+ and ¢ ks +, then U1 Fs +
e ifqgbs+andci ks L, then qgUci ks +
But, what can we say about ¢y U ¢i, when ¢ Fs 0 and ¢ Fs + 7
@ clearly, coUci g T...
@ but no other relation holds
@ in the abstract, we do not rule out negative values

We can extend the initial lattice:

@ > 0 denotes any set of positive or null integers

/\

@ < 0 denotes any set of negative or null integers <0 >0

@ # 0 denotes any set of non null integers 7‘><0><Jr

o ifcogbs +and c1 Fs 0, then qgU i ks >0 7\]/7
L
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Abstraction Notion of abstraction

Abstraction example 2: constants

Definition: abstraction based on constants
e concrete elements: P(Z)
e abstract elements: |, T,n where n€Z
(Dt ={L,TYu{n|nez})
@ abstraction relation: ct¢ n <= ¢ C {n}

We obtain a flat lattice:
A S
[(-2] [-1] [0 [ [2]
| =

Abstract reasoning:
o if o chand c ke ny, then {k0+ ke ’ ki € C,'} Fe ng + m
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Abstraction Notion of abstraction

Abstraction example 3: Parikh vector

Definition: Parikh vector abstraction
e concrete elements: P(A*) (sets of words over alphabet A)
e abstract elements: {1, T} U (A — N)
e abstraction relation: ¢y ¢ : A — N if and only if:

VYw € c,Va € A, a appears ¢(a) times in w

Abstract reasoning:
@ concatenation:
if ¢o,¢1: A — Nand cp, c; are such that ¢; Fq ¢,

{wo - wi | wj € ci} g o+ o1

Information preserved, information deleted:
@ very precise information about the number of occurrences
@ the order of letters is totally abstracted away (lost)
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Abstraction Notion of abstraction

Abstraction example 4: interval abstraction

Definition: abstraction based on intervals
e concrete elements: P(Z)

e abstract elements: L, (a, b) where a € {—oc0}UZ, be ZU {+o0}
and a<b

@ abstraction relation:
Dbz L

Sk T
Skr(a,b) < VxeS5,a<x<b

Operations: TD
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Abstraction Notion of abstraction

Abstraction example 5: non relational abstraction

Definition: non relational abstraction
e concrete elements: P(X — Y), inclusion ordering
@ abstract elements: X — P(Y), pointwise inclusion ordering
@ abstraction relation: cFyr a <= Vo € ¢, Vx € X, ¢(x) € a(x)

Information preserved, information deleted:
@ very precise information about the image of the functions in ¢

e relations such as (for given xp, x1 € X, yo,y1 € Y) the following are

lost:
Vo € c, ¢(x0) = ¢(x1)
V¢ €c, VX,X/ € X7 ¢(X) 7é Yo V ¢(X/) 7é 1
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Abstraction Notion of abstraction

Notion of abstraction relation

Concrete order: so far, always inclusion
@ the tighter the concrete set, the fewer behaviors

@ smaller concrete sets correspond to more precise properties

Abstraction relation

Intuitively, the abstraction relation also describes implication:

c - a effectively means “the property described by ¢ implies that
described by a

Advantage on static analysis (hint about the following lectures):

@ abstract predicates are a lot easier to manipulate than sets of
concrete states or logical formulas

@ we can still derive concrete facts from abstract predicates
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Abstraction Notion of abstraction

Abstraction relation and monotonicity

Order relations, abstraction relation and monotonicity
@ both orders and the abstraction relation describe ordering

@ we derive from transitivity there monotonicity properties
i.e., chains of implications compose

Abstraction relation: ¢ - a when ¢ satisfies a
@ if cg C ¢ and ¢ satisfies a, in all our examples, ¢y also satisfies a

Abstract order: in all our examples,
@ it matches the abstraction relation as well:
if ag C a; and c satisfies ag, then ¢ also satisfies a;
@ great advantage: we can reason about implication in the
abstract, without looking back at the concrete properties

We will now formalize this in detail... )
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Abstraction  Abstraction and concretization functions
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Abstraction  Abstraction and concretization functions

Towards adjoint functions

We consider a concrete lattice (C, C) and an abstract lattice (A, C).

So far, we used abstraction relations, that are consistent with orderings:
Abstraction relation compatibility

e Vg, e C,VaeA, gcCaNata=— ¢t a

@ Vce C,Vap,a1 €A, cFagANagCa = ck a

When we have a ¢ (resp., a) and try to map it into a compatible a (resp.,
into a compatible a ¢), the abstraction relation is convenient.
Hence, we shall use adjoint functions between C and A.

@ from concrete to abstract: abstraction

e from abstract to concrete: concretization
Xavier Rival
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Abstraction  Abstraction and concretization functions

Concretization function

Our first adjoint function:

Definition: concretization function

Concretization function v : A — C (if it exists) is a monotone function
that maps abstract a into the weakest (i.e., most general) concrete ¢ that
satisfies a (i.e., c - a).

Notes:
@ in common cases, there exists a y
e ct aif and only if ¢ C v(a)

@ a concretization that is not monotone with respect to the “logical
ordering” would not make sense

@ in fact, in some cases, we will even define v before we define an
ordering, and let v define the ordering!
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Abstraction  Abstraction and concretization functions

Concretization function: a few examples

Signs abstraction: Constants abstraction:
Vi T — Z v: T +— Z
0 — {0} L — 0

L — 0

Non relational abstraction:

YNR - (X—>P(Y)) — ,P(X_>Y)
o — {d: X = Y |VxeX, ¢(x) € d(x)}

Parikh vector abstraction: exercise!
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Abstraction  Abstraction and concretization functions
Abstraction function

Our second adjoint function:

Definition: abstraction function

An abstraction function « : C — A (if it exists) is a monotone function
that maps concrete ¢ into the most precise abstract a that soundly
describes c (i.e., c I a).

Note:
@ in quite a few cases (including some in this course), there is no «

e for the same reason as v a non monotone « (with respect to logical
ordering) would not make sense

Summary on adjoint functions:
@ « (called abstraction) maps any concrete element to the most
precise abstract predicate that holds true for it
@ v (called concretisation) returns the most general concrete

meaning of its argument
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Abstraction  Abstraction and concretization functions

Abstraction: a few examples

Constants abstraction:

1 ifc=10
ac: (cCZ) — n if c={n}
T  otherwise

Non relational abstraction:

ayr: PX—=Y) — X—=P()
c — (xeX)—={o(x)| ¢ € c}

Signs abstraction and Parikh vector abstraction: exercises
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Abstraction  Galois connections
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Abstraction  Galois connections

Tying definitions of abstraction relation

So far, we have:
@ abstraction a: C — A
@ concretization y: A— C
How to tie them together ?
They should agree on a same abstraction relation + !

This means:
Vce C, VaeA,

cka
< cC~(a)
< a(c)C a

This observation is at the basis of the definition of Galois connections

Xavier Rival Abstract Interpretation: Introduction April 4th, 2025 20 /61



Abstraction  Galois connections

Galois connection

Definition: Galois connection
A Galois connection is defined by a:

@ a concrete lattice (C, Q)

@ an abstract lattice (A,C)

@ an abstraction function a: C — A

@ and a concretization function v : A — C
such that:

Vee C,Vae A, a(c) C a<= c C~(a) (<= cFa)

Notation: (C.C) == (A.C)

Note: in practice, we shall rarely use F; we use «, instead
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Abstraction  Galois connections

Example: constants abstraction and Galois connection

Constants lattice Dg, ={L, Ttw{n|neZ}

ac(c) = L ifc=0 v%(T) — Z
ac(c) = n ifc={n} re(n) — {n}
ac(c) = T otherwise Ye(L) — 0
Thus:
o ifc=10,Va cCHe(a) ie, cCyla) < ac(c)=LCa
o if c = {n},

ac({n}):gga < a=nVa=1T << CZ{H}QVC(a)
@ if ¢ has at least two distinct elements ng, n1, a¢(c) = T and
cCrela)=>a=T,ie,cCrl(a) « ac(c)=TCa

Constant abstraction: Galois connection

c Ce(a) < ac(c) C a, therefore, (P(Z), <) <—;_Z> (Dg, 0)
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Abstraction  Galois connections

Example: non relational abstraction Galois connection

We have defined:
anyr: (cC(X—=Y))
wr (P € (X —=P(Y)))

— (x€X) = {f(x)| fec}
— {f: X o Y |Vx€X, f(x) € d(x)}

Let ce P(X — Y) and ® € (X — P(Y)); then:

anr(c) E®

—
<~
—
<~
—

Vx € X, ayr(c)(x) C d(x)
Vx € X, {f(x) | f € c} C d(x)
Vf € ¢, ¥x € X, f(x) € ®(x)
Vfec, fe ’}/NR(CD)

c Cywr(®)

Non relational abstraction: Galois connection

c Cywr(a) < anr(c)C a, therefore,

(P(X = Y), Q)

e (X = P(Y).0)
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Abstraction  Galois connections

Galois connection properties

Galois connections have many useful properties.

, : . . g
In the next few slides, we consider a Galois connection (C, C) = (A, C)
and establish a few interesting properties.

Extensivity, contractivity
@ a o+ is contractive: Ya€ A, aovy(a)C a

@ yoa is extensive: Vc € C, ¢ C yo afc)

Proof:

o let a € A; then, v(a) C v(a), thus a(vy(a)) C a
o let ¢ € C; then, a(c) C a(c), thus ¢ C vy(a(c))
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Abstraction  Galois connections

Galois connection properties

Monotonicity of adjoints
@ « is monotone

@ 7y is monotone

Proof:

@ monotonicity of a: let ¢, ¢c; € C such that ¢y C cy;
by extensivity of yo«, ¢1 C y(a(c1)), so by transitivity, g C v(a(c1))
by definition of the Galois connnection, a(cp) C a(cy)

@ monotonicity of ~: same principle
Note: many proofs can be derived by duality

Duality principle applied for Galois connections

If (C,C) &= (A, L), then (A, J) == (C,2)
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Abstraction  Galois connections

Galois connection properties

Iteration of adjoints
@ O ")/ O =W

o 'y o O ")/ = ’)/
@ oy (resp., vo«) is idempotent, hence a lower (resp., upper) closure
operator
Proof:

@ aoyoa=a:
let c € C, then vy o a(c) Cyoalc)
hence, by the Galois connection property, oy o a(c) C «a(c)
moreover, y o « is extensive and o monotone, so a(c) C a oo a(c)
thus, a oo a(c) = a(c)

o the second point can be proved similarly (duality); the others follow
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Abstraction  Galois connections

Galois connection properties

Properties on iterations of adjoint functions:

concrete domain abstract domain

’
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Abstraction  Galois connections

Galois connection properties

« preserves least upper bounds
Vg, c1 € C, Oz(Co U C1) = Oé(Co) L Oé(Cl)

By duality:
Vag,a1 € A, v(coMca) = () My(a)

Proof:

First, we observe that a(cy) U a(c1) C a(co U cy), i.e. a(cpUcr) is an
upper bound of {a(cp), a(c1)}-

We now prove it is the least upper bound. For all a € A:

alcoUc) C a coUa Cvy(a)
0 Cvy(a)ANa Cr(a)
alcp) Cana(a)Ca

a(e)Ua(a)Ca

11ty

Note: when C, A are complete lattices, this extends to families of elements
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Abstraction  Galois connections

Galois connection properties

Uniqueness of adjoints
@ given v : A — C, there exists at most one o : C — A such that
(C.C) £ (A,C), and, if it exists, a(c) = M{a € A| c C y(a)}
@ similarly, given o : C — A, there exists at most one v : A — C such
that (C,C) <= (A, ), and it is defined dually

Proof of the first point (the other follows by duality):
we assume that there exists an « so that we have a Galois connection and

prove that, a(c) =M{a€ A| c C y(a)} for a given c € C.

e if a € Ais such that ¢ C ~(a), then a(c) C a
thus, a(c) is a lower bound of {a € A| c C ~v(a)}.

e since ¢ C y(a(c)), a(c) e {ac A| c Cv(a)}, so a(c) is the greatest
lower bound of {a € A| c C ~(a)}.

Thus, a(c) is the least upper bound of {a € A| c C v(a)}
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Abstraction  Galois connections

Construction of adjoint functions

The adjoint uniqueness property is actually a very strong property:
o it allows to construct an abstraction from a concretization

@ ... or to understand when no abstraction can be constructed :-)

Turning an adjoint into a Galois connection

Let (C,<C) and (A, ) be two lattices, such that any subset of A as a
greatest lower bound and let v : (A,C) — (C, C) be a monotone function.

Then, the function below defines a Galois connection:

a(c) =M{ac Al c Cr(a)}

Example of abstraction with no a: when M is not defined on all
families, e.g., lattice of convex polyedra, abstracting sets of points in R?.

Exercise: state the dual property and apply the same principle to the

concretization
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Abstraction  Galois connections

Galois connection characterization

A characterization of Galois connections

Let (C,C) and (A, C) be two lattices, and a: C — Aand v: A— C be
two monotone functions, such that:

@ « oy is contractive
@ Yo« is extensive
Then, we have a Galois connection

(C,C) &= (A,C)

(&7

Proof:

@ let c € C and a € A such that a(c) C a.
then:  ~(a(c)) € v(a) (as 7y is monotone)
¢ Cv(a(c)) (as v o « is extensive)
thus, ¢ C vy(a), by transitivity
@ the other implication can be proved by duality
Xavier Rival
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Abstract interpretation

Outline

e Abstract interpretation
@ Abstract computation
@ Fixpoint transfer
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Abstract interpretation Abstract computation
Constructing a static analysis

We have set up a notion of abstraction:

@ it describes sound approximations of concrete properties with
abstract predicates

@ there are several ways to formalize it (abstraction, concretization...)

@ we now wish to compute sound abstract predicates
In the following, we assume
@ a Galois connection

(C,C) &= (A,C)

a

@ a concrete semantics [.], with a constructive definition

i.e., [P] is defined by constructive equations ([P] = f(...)), least
fixpoint formula ([P] = Ifpy f)...

We need several lectures to cover this.
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Abstract interpretation Abstract computation

Towards a notion of abstract transformer...

The problem
We assume:

@ a monotone concrete function f : C — C, known on paper but
possibly not computable (intuitively the semantics of a program),

@ a concrete element ¢ € C (intuitively an initial state),

@ and an abstract element a € A that abstracts ¢

Question: how to derive an abstraction of f(c) ?

@ « o f(c) abstracts the image of ¢ by f aofoy

@ f(c) is abstracted by a o f o 7y(a): ? ~
c C~(a) by assumption ~ o
f(c) C f(~(a)) by monotonicity of f
a(f(c)) C a(f(y(a))) by monotonicity of « C—F—¢C
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Abstract interpretation Abstract computation

Towards a notion of abstract transformer...

We consider a variant of the previous problem:

The problem
We assume:
@ a monotone concrete function f : C — C, known on paper (but
not computable) (e.g., the semantics of a program)
@ and an abstract element a € A that abstracts initial states
Question: how to derive an abstraction of final states?

@ if c is an initial state, it is abstracted by a, thus AMA
c €7(a)
@ the same reasoning applies v «
so f(c) is abstracted by cvo f o v(a
(¢) y v(a) G
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Abstract interpretation Abstract computation

Soundness and completeness

Assumptions:
@ a Galois connection, same notation as above
@ concrete function f : C = C

Definition: Best abstract transformer

The best abstract transformer approximating f is ff = a0 f oy

In some cases, the best abstract transformer may be too expensive, hence
we also consider:

Definition: Sound abstract transformers

A sound abstract transformer approximating f is any operator
f: A — A, such that ao f oy C % (or equivalently, f oy C o ff).

@ Clearly, the best abstract transformer is sound
@ Other transformers give up completeness
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Abstract interpretation Abstract computation

Example: lattice of signs

° f:D§—>Dg,cr—>{—n\n€c}
° fﬁ:aofoy

Lattice of signs: Abstract negation operator:

~IN
<

o+ |-

|+ 1= | I—ﬂ
@,
&

=l

@ here, the best abstract transformer is very easy to compute

@ no need to use an approximate one
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Abstract interpretation Abstract computation

Abstract n-ary operators

We can generalize this to n-ary operators, such as boolean operators
and arithmetic operators

Definition: best and sound abstract operators

Let g : C" — C be an n-ary operator, monotone in each component.
Then:

@ the best abstract operator approximating g is defined by:
gh: An — A

(ag,...,an-1) —— «aog(y(ao),---,v(an-1))
@ a sound abstract transformer approximating g is any operator
gt A" — A, such that

v(‘307 ceey an—l) S Anv (ORS) g(r}/(aO)u ... 7’y(an—1)) E gﬁ(QOa

0oog a,,_l)
(i.e., equivalently, g(v(ao), - -

-.v(an-1)) S vog¥(ao, ..., an-1)
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Abstract interpretation Abstract computation

Example: lattice of signs arithmetic operators

Application:
e ©:C?>— C,(co,c1) {no+n1|ni€ci}
o ®:C*— C,(c,c1)—{no-ni|njec}

Best abstract operators:

[of [L[-JoJ+[T] [& [L][-JO[+]T]
1 1 L] L] L L iR 1 L] L] L L
- Ll =]=]T]T - L1+ 0| =T
0 [ L] -Jolx[T] [0 [L[ofafa]o
+ LT |+ +|T + L] =104+ T
T Ly T | T | T]|T T 1| T 0 T T

Example of loss in precision:

o {8} € ys(£) and {2} € 1s5(=)
o ©f(4,—) = T is a lot worse than as(®({8},{-2})) = +
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Abstract interpretation Abstract computation

Example: lattice of signs set operators

Best abstract operators approximating U and N defined over pairs of
sets (thus, as binary operators):

(U [ Ll-Jof[+[T] [oF [L][-JO[+]T]
T L[ =Tol[+xTT T T[T
- | =T | T]|T - L] =1L L=
0 o T (0| T |T 0 Ly Ljo, L]0
+ + | T | T |+ |T + L] L)L+ +
T T T | T | T T T L] =104+ |T

[ @) Ur(a1) S v(aUa)
Soundness: { v(20) N 1(a1) C (e i o)

Example of loss in precision:
° Y(D)UA(x)={neZ|n#0} CH(T)
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Abstract interpretation Fixpoint transfer

Outline

e Abstract interpretation
@ Abstract computation
@ Fixpoint transfer
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Abstract interpretation Fixpoint transfer

Fixpoint transfer
What about loops ? semantic functions defined by fixpoints ?

Theorem: exact fixpoint transfer

We assume (C, C) and (A, C) are complete lattices. We consider a Galois

connection (C, Q) % (A,C), two functions f : C — C and f#: A — A
and two elements ¢y € C, ag € A such that:

e f is continuous
e f*is monotone
e aof="floa
e a(c) = ap
Then:
e both f and f* have a least-fixpoint (by Tarski's fixpoint theorem)
o a(lfp, ) = Ifp,, *
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Abstract interpretation Fixpoint transfer

Fixpoint transfer: proof

o oflfp,, f) is a fixpoint of f* since:

fila(lfp,, £)) = a(f(ifpg, f)) sinceaof =floa
= oflfpy, f) by definition of the fixpoints

o To show that a(lfp., f) is the least-fixpoint of f¥,

we assume that X is another fixpoint of f# greater than ap and we
show that a(lfp,, f) C X, i.e., that Ifp f C v(X).
As Ifpe, f = Upen f"(co) (by Kleene's fixpoint theorem), it amounts
to proving that Vn € N, f"(cp) C v(X).
By induction over n:

» %(cp) = co, thus a(f%(cp)) = ao C X; thus, (o) C v(X).

> let us assume that 7"(cy) € v(X), and let us show that

f"1l(cy) C y(X), i.e. that a(f"(c)) C X:

a(f" () = ao f(f"(q)) = fF o a(f"(c)) C FH(X) = X

as a(f"(co)) C X and f* is monotone.
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Abstract interpretation Fixpoint transfer

Constructive analysis of loops

How to get a constructive fixpoint transfer theorem ?

Theorem: fixpoint abstraction

Under the assumptions of the previous theorem, and with the following
additional hypothesis:

o lattice A is of finite height
We compute the sequence (an)nen defined by a,11 = a, L f%(a,).

Then, (an)nen converges and its limit a is such that a(lfp, f) = acc.
v

Proof: exercise.

Note:
@ the assumptions we have made are too restrictive in practice

@ more general fixpoint abstraction methods in the next lecture
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@ Abstraction

e Abstract interpretation

e Application of abstract interpretation

@ Conclusion



Application of abstract interpretation

Comparing existing semantics

@ A concrete semantics [P] is given: e.g., big steps operational
semantics

@ An abstract semantics [P]* is given: e.g., denotational semantics
© Search for an abstraction relation between them

eg., [P]* = o([P]), or [P] € +([PI")

Examples:

o finite traces semantics as an abstraction of bi-finitary trace semantics
@ denotational semantics as an abstraction of trace semantics
@ types as an abstraction of denotational semantics
Payoff:
@ better understanding of ties across semantics
@ chance to generalize existing definitions
Example: connection between reachable states and denotational semantics
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Application of abstract interpretation

Derivation of a static analysis

© Start from a concrete semantics [P]

@ Choose an abstraction defined by a Galois connection or a
concretization function (usually)

© Derive an abstract semantics [P]* such that [P] C ~([P]*)

Examples:

@ derivation of an analysis with a numerical lattice (constants,
intervals...)

@ construction of an analysis for a complex programming language
Payoff:

@ the derivation of the abstract semantics is quite systematic

@ this process offers good opportunities for a modular analysis design

There are many ways to apply abstract interpretation.
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Application of abstract interpretation

A very simple language and its semantics

We now apply this to a very simple language, and derive a static analysis
step by step, from a concrete semantics and an abstraction. J

@ we assume a fixed set of n integer variables xgq,...,x, 1

@ we consider the language defined by the grammar below:

P = x;j=n where n € Z

| xi=%+ x4 basic, three-addresses arithmetics

| xi=x% — x4 basic, three-addresses arithmetics

| xi=%-x basic, three-addresses arithmetics

| PP concatenation

| while() P loop, non-deterministic iteration count
@ a state is a vector o = (0g,...,0n-1) € Z"
@ a single initial state gini = (0, ...,0)
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Application of abstract interpretation

Concrete semantics

Concrete semantics
We let [P] : P(Z") — P(Z") be defined by:

(M) = {oli+ n]|oe M}
(M) = {U[i<—0j+0k]|U€M}
[xi =xj —x(]J(M) = {o[i+o0j—0x]|0oe M}
(M) = {oli<ojxox]| o e M}
(M) = [Pi]o[Po](M)
[while() PJ(M) = Ifpf
f: M’HMUM’U[[P]]( N

@ given a complete program P, the reachable states are defined by

[PI({oinit})
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Application of abstract interpretation

Example

A couple of contrived examples
enough to show the behavior of the analysis...

Factorial function:

xg = 0;
x1 = 1;
x =1,

while(){

X1 = X0 * X1,
X0 = Xg + X2;

@ loops exit at some (non deterministic) point
@ at the end x; is equal to xq!

@ outputs xq, x1, x» should be positive
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Application of abstract interpretation

Abstraction

We compose two abstractions:

@ non relational abstraction: the values a variable may take is
abstracted separately from the other variables

@ sign abstraction: the set of values observed for each variable is
abstracted into the lattice of signs

Abstraction
e concrete domain: (P(Z"),C)

e abstract domain: (D* C), where D = (D‘ﬁs)” and C is the pointwise
ordering

e Galois connection (P(Z), Q) % (D%, C), defined by

a: S +— (as({oo|o€S}),...,as({on-1]0 € S}))
vi M o— {0 €Z"|Vi, 0; € ys(MF)}
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Application of abstract interpretation

Towards an abstraction for our small language

Basic intuitions for our abstraction:

o
2]

©

a memory state is a vector of scalars

the concrete semantics is a function, that maps a concrete
pre-condition to an abstract post-condition

sign lattice abstract elements abstract sets of values
an abstract state should thus consist of a vector of abstract values

moreover, the abstract semantics should consist of a function that
maps an abstract pre-condition into an abstract post-condition
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Application of abstract interpretation

Abstract semantics: sequences

We search for an abstract semantics [P]* : D — D! such that:

ao[P] C[P]foa

We aim for a proof by induction over the syntax of programs

So, let us start with sequences / composition, under the assumption
that the property holds for Py, P;:

@ o [[Po]] C [[Po]]ﬁ o«

o ao[PC [Pi]toa
Since [Po; P1] = [P1] o [Po], we expect [Po; P1]* = [P1]* o [Po]F:

aofPi]oP] T [Pi]foaoc[Py] (by induction)
C [Pi]fo[Po]f o by induction. ..
and if [P1]* monotone)!

Big additional constraint (only today): [P]* monotone )
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Application of abstract interpretation

Abstract semantics: assignment command

We now consider the analysis of assignment statements

We observe that:

a(M) = (as({oo| o e M}),..., as({op-1]0 € M}))
ao[P[M) = (as({oo|o € [PI(M)}),...,as({on-1 |0 € [P](M)})
We start with x; = n:
ao [x; = n](M)
= (as({oo| o €[P]({oli < n]|oc e M}}),...,
as({on-1 |0 € [PI({c]i < n] | o € S})}))
(as({oo o e M}),...,as({on-1 | 0 € M}))[i + as({n})]

a(M)[i + as({n})]
[xi = n[*(c(M))
where:

[xi = n]*(M®) = M*[i < as({n})] )
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Application of abstract interpretation

Computation of the abstract semantics

Other assignments are treated in a similar manner:

(MF) = M¥i«+ as({n})]
(M%) = MH[i « M}t M}
[xi =% — x(MY) = MHi « M} &F MY
(M?) ME[i + M} &F M}

@ Proofs are left as exercises

o As remarked before, we only get avo [P] C [P]* o «
i.e., equality is too hard to derive

@ On the other hand, monotonicity is good so far (exercise)
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Application of abstract interpretation

Analysis of a loop

We have seen that:

[while() P](M) Ifp F
where f(M') = MUM U[P|(M)

Thus, we look for a fixpoint transfer, but our fixpoint transfer theorem
requires equality, so it does not apply...

We will use a variant of the previous theorem:

If:
e f is continuous
o f*is monotone
e aofC floa
o o)=L
Then, a(Ifp f) C Ifp f#
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Application of abstract interpretation

Analysis of a loop

Application:
@ we consider the analysis of the loop with pre-condition M*
@ we take
F(Mg) = M* U Mg U [PTF(MG)
@ then, ao fFC floa

@ we can apply the new fixpoint transfer theorem...

[while() PJF(M?) = Ifpps £
where Fi(ME) = M* U MEU [PIH(ME)

One more thing:

@ we need to prove monotonicity of the fixpoint image
since the whole abstract semantics soundness relies on it!
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Application of abstract interpretation

Abstract semantics

Abstract semantics and soundness
We have derived the following definition of [P]*:

[xi = n*(M*) = M[i < as({n})]

[xi =% + x]f(M¥) = MEi « M} @ M

[xi =% — xf(M¥) = MEi « M} of M}

[xi = % - xe{(MF) = ME[i M} @F M]]
[while() P]JF(M#) = Ifppy: f* where

i ME = ME L PR (M®)

Furthermore, for all program P: a o [P] C [P]* o
Last, [P]* is monotone

An over-approximation of the final states is computed by [P]*(T).
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Application of abstract interpretation

Example

Factorial function:

%o = 1. (4, +,+)
x1 =1, Iterates on the loop:
Xo = 1;
while(){ iterate
X1 = X0 * X1, X0
X0 = XQ + X2; X1
} %2

Abstract state before the loop:

H+(+ [+
[+ {1+ 4|~

Abstract state after the loop: (+,+,+)
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@ Abstraction

e Abstract interpretation

e Application of abstract interpretation

@ Conclusion



Conclusion

Summary

This lecture:
@ abstraction and its formalization

@ computation of an abstract semantics in a very simplified case

Next lectures:
@ construction of a few non trivial abstractions

@ more general ways to compute sound abstract properties
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