
Abstract Interpretation
Semantics and applications to verification

Xavier Rival

École Normale Supérieure

April 4th, 2025

Xavier Rival Abstract Interpretation: Introduction April 4th, 2025 1 / 61

Program of this lecture

Studied so far:
semantics: behaviors of programs
properties: safety, liveness, security...
approaches to verification: typing, use of proof assistants, model
checking

Today’s lecture: introduction to abstract interpretation
a general framework for comparing semantics
introduced by Patrick Cousot and Radhia Cousot (1977)

abstraction: use of a lattice of predicates
computing abstract over-approximations, while preserving
soundness
computing abstract over-approximations for loops
using fixpoints as a guide

Xavier Rival Abstract Interpretation: Introduction April 4th, 2025 2 / 61

Abstraction Notion of abstraction

Outline

1 Abstraction
Notion of abstraction
Abstraction and concretization functions
Galois connections

2 Abstract interpretation

3 Application of abstract interpretation

4 Conclusion

Xavier Rival Abstract Interpretation: Introduction April 4th, 2025 3 / 61

Abstraction Notion of abstraction

Abstraction example 1: signs

Abstraction: defined by a family of properties to use in proofs

Example:
objects under study: sets of mathematical integers
abstract elements: signs

Lattice of signs

⊥

− 0 +

⊤
⊥ denotes only ∅
+ denotes any set of positive integers
0 denotes any subset of {0}
− denotes any set of negative integers
⊤ denotes any set of integers

Note: the order in the abstract lattice corresponds to inclusion...
Xavier Rival Abstract Interpretation: Introduction April 4th, 2025 4 / 61

Abstraction Notion of abstraction

Abstraction example 1: signs

Definition: abstraction relation
concrete elements: elements of the original lattice (c ∈ P(Z))
abstract elements: predicate (a: “· ∈ {+, 0, . . .}”)
abstraction relation: c ⊢S a when a describes c

Examples:
{1, 2, 3, 5, 7, 11, 13, 17, 19, 23, . . .} ⊢S +

{1, 2, 3, 5, 7, 11, 13, 17, 19, 23, . . .} ⊢S ⊤

We use abstract elements to reason about operations:
if c0 ⊢S + and c1 ⊢S +, then {x0 + x1 | xi ∈ ci} ⊢S +

if c0 ⊢S + and c1 ⊢S +, then {x0 · x1 | xi ∈ ci} ⊢S +

if c0 ⊢S + and c1 ⊢S 0, then {x0 · x1 | xi ∈ ci} ⊢S 0
if c0 ⊢S + and c1 ⊢S ⊥, then {x0 · x1 | xi ∈ ci} ⊢S ⊥

Xavier Rival Abstract Interpretation: Introduction April 4th, 2025 5 / 61

Abstraction Notion of abstraction

Abstraction example 1: signs

We can also consider the union operation:
if c0 ⊢S + and c1 ⊢S +, then c0 ∪ c1 ⊢S +
if c0 ⊢S + and c1 ⊢S ⊥, then c0 ∪ c1 ⊢S +

But, what can we say about c0 ∪ c1, when c0 ⊢S 0 and c1 ⊢S + ?
clearly, c0 ∪ c1 ⊢S ⊤...
but no other relation holds
in the abstract, we do not rule out negative values

We can extend the initial lattice:
≥ 0 denotes any set of positive or null integers
≤ 0 denotes any set of negative or null integers
̸= 0 denotes any set of non null integers
if c0 ⊢S + and c1 ⊢S 0, then c0 ∪ c1 ⊢S ≥ 0

⊥

− 0 +

≤ 0 ̸= 0 ≥ 0

⊤

Xavier Rival Abstract Interpretation: Introduction April 4th, 2025 6 / 61

Abstraction Notion of abstraction

Abstraction example 2: constants

Definition: abstraction based on constants
concrete elements: P(Z)
abstract elements: ⊥,⊤, n where n ∈ Z
(D♯

C = {⊥,⊤} ∪ {n | n ∈ Z})
abstraction relation: c ⊢C n ⇐⇒ c ⊆ {n}

We obtain a flat lattice:

⊥

. . . [−2] [−1] [0] [1] [2] . . .

⊤

Abstract reasoning:
if c0 ⊢C n0 and c1 ⊢C n1, then {k0 + k1 | ki ∈ ci} ⊢C n0 + n1

Xavier Rival Abstract Interpretation: Introduction April 4th, 2025 7 / 61

Abstraction Notion of abstraction

Abstraction example 3: Parikh vector

Definition: Parikh vector abstraction
concrete elements: P(A⋆) (sets of words over alphabet A)
abstract elements: {⊥,⊤} ∪ (A → N)
abstraction relation: c ⊢P ϕ : A → N if and only if:

∀w ∈ c ,∀a ∈ A, a appears ϕ(a) times in w

Abstract reasoning:
concatenation:
if ϕ0, ϕ1 : A → N and c0, c1 are such that ci ⊢P ϕi ,

{w0 · w1 | wi ∈ ci} ⊢P ϕ0 + ϕ1

Information preserved, information deleted:
very precise information about the number of occurrences
the order of letters is totally abstracted away (lost)

Xavier Rival Abstract Interpretation: Introduction April 4th, 2025 8 / 61

Abstraction Notion of abstraction

Abstraction example 4: interval abstraction

Definition: abstraction based on intervals
concrete elements: P(Z)
abstract elements: ⊥, (a, b) where a ∈ {−∞} ∪ Z, b ∈ Z ∪ {+∞}
and a ≤ b

abstraction relation:

∅ ⊢I ⊥
S ⊢I ⊤
S ⊢I (a, b) ⇐⇒ ∀x ∈ S , a ≤ x ≤ b

Operations: TD

Xavier Rival Abstract Interpretation: Introduction April 4th, 2025 9 / 61

Abstraction Notion of abstraction

Abstraction example 5: non relational abstraction

Definition: non relational abstraction
concrete elements: P(X → Y), inclusion ordering
abstract elements: X → P(Y), pointwise inclusion ordering
abstraction relation: c ⊢NR a ⇐⇒ ∀ϕ ∈ c , ∀x ∈ X , ϕ(x) ∈ a(x)

Information preserved, information deleted:
very precise information about the image of the functions in c

relations such as (for given x0, x1 ∈ X , y0, y1 ∈ Y) the following are
lost:

∀ϕ ∈ c , ϕ(x0) = ϕ(x1)

∀ϕ ∈ c , ∀x , x ′ ∈ X , ϕ(x) ̸= y0 ∨ ϕ(x ′) ̸= y1

Xavier Rival Abstract Interpretation: Introduction April 4th, 2025 10 / 61

Abstraction Notion of abstraction

Notion of abstraction relation

Concrete order: so far, always inclusion
the tighter the concrete set, the fewer behaviors
smaller concrete sets correspond to more precise properties

Abstraction relation
Intuitively, the abstraction relation also describes implication:
c ⊢ a effectively means “the property described by c implies that
described by a

Advantage on static analysis (hint about the following lectures):
abstract predicates are a lot easier to manipulate than sets of
concrete states or logical formulas
we can still derive concrete facts from abstract predicates

Xavier Rival Abstract Interpretation: Introduction April 4th, 2025 11 / 61

Abstraction Notion of abstraction

Abstraction relation and monotonicity

Order relations, abstraction relation and monotonicity
both orders and the abstraction relation describe ordering
we derive from transitivity there monotonicity properties
i.e., chains of implications compose

Abstraction relation: c ⊢ a when c satisfies a

if c0 ⊆ c1 and c1 satisfies a, in all our examples, c0 also satisfies a

Abstract order: in all our examples,
it matches the abstraction relation as well:
if a0 ⊑ a1 and c satisfies a0, then c also satisfies a1

great advantage: we can reason about implication in the
abstract, without looking back at the concrete properties

We will now formalize this in detail...

Xavier Rival Abstract Interpretation: Introduction April 4th, 2025 12 / 61

Abstraction Abstraction and concretization functions

Outline

1 Abstraction
Notion of abstraction
Abstraction and concretization functions
Galois connections

2 Abstract interpretation

3 Application of abstract interpretation

4 Conclusion

Xavier Rival Abstract Interpretation: Introduction April 4th, 2025 13 / 61

Abstraction Abstraction and concretization functions

Towards adjoint functions

We consider a concrete lattice (C ,⊆) and an abstract lattice (A,⊑).

So far, we used abstraction relations, that are consistent with orderings:

Abstraction relation compatibility
∀c0, c1 ∈ C , ∀a ∈ A, c0 ⊆ c1 ∧ c1 ⊢ a =⇒ c0 ⊢ a

∀c ∈ C , ∀a0, a1 ∈ A, c ⊢ a0 ∧ a0 ⊑ a1 =⇒ c ⊢ a1

When we have a c (resp., a) and try to map it into a compatible a (resp.,
into a compatible a c), the abstraction relation is convenient.

Hence, we shall use adjoint functions between C and A.
from concrete to abstract: abstraction
from abstract to concrete: concretization

Xavier Rival Abstract Interpretation: Introduction April 4th, 2025 14 / 61

Abstraction Abstraction and concretization functions

Concretization function

Our first adjoint function:

Definition: concretization function
Concretization function γ : A→ C (if it exists) is a monotone function
that maps abstract a into the weakest (i.e., most general) concrete c that
satisfies a (i.e., c ⊢ a).

Notes:
in common cases, there exists a γ

c ⊢ a if and only if c ⊆ γ(a)

a concretization that is not monotone with respect to the “logical
ordering” would not make sense
in fact, in some cases, we will even define γ before we define an
ordering, and let γ define the ordering!

Xavier Rival Abstract Interpretation: Introduction April 4th, 2025 15 / 61

Abstraction Abstraction and concretization functions

Concretization function: a few examples

Signs abstraction:

γS : ⊤ 7−→ Z
+ 7−→ Z⋆

+

0 7−→ {0}
− 7−→ Z⋆

−
⊥ 7−→ ∅

Constants abstraction:

γC : ⊤ 7−→ Z
n 7−→ {n}
⊥ 7−→ ∅

Non relational abstraction:

γNR : (X → P(Y)) −→ P(X → Y)
Φ 7−→ {ϕ : X → Y | ∀x ∈ X , ϕ(x) ∈ Φ(x)}

Parikh vector abstraction: exercise!

Xavier Rival Abstract Interpretation: Introduction April 4th, 2025 16 / 61

Abstraction Abstraction and concretization functions

Abstraction function

Our second adjoint function:

Definition: abstraction function
An abstraction function α : C → A (if it exists) is a monotone function
that maps concrete c into the most precise abstract a that soundly
describes c (i.e., c ⊢ a).

Note:
in quite a few cases (including some in this course), there is no α
for the same reason as γ a non monotone α (with respect to logical
ordering) would not make sense

Summary on adjoint functions:
α (called abstraction) maps any concrete element to the most
precise abstract predicate that holds true for it
γ (called concretisation) returns the most general concrete
meaning of its argument

Xavier Rival Abstract Interpretation: Introduction April 4th, 2025 17 / 61

Abstraction Abstraction and concretization functions

Abstraction: a few examples

Constants abstraction:

αC : (c ⊆ Z) 7−→


⊥ if c = ∅
n if c = {n}
⊤ otherwise

blank line
Non relational abstraction:

αNR : P(X → Y) −→ X → P(Y)
c 7−→ (x ∈ X) 7→ {ϕ(x) | ϕ ∈ c}

Signs abstraction and Parikh vector abstraction: exercises

Xavier Rival Abstract Interpretation: Introduction April 4th, 2025 18 / 61

Abstraction Galois connections

Outline

1 Abstraction
Notion of abstraction
Abstraction and concretization functions
Galois connections

2 Abstract interpretation

3 Application of abstract interpretation

4 Conclusion

Xavier Rival Abstract Interpretation: Introduction April 4th, 2025 19 / 61

Abstraction Galois connections

Tying definitions of abstraction relation

So far, we have:
abstraction α : C → A

concretization γ : A→ C

How to tie them together ?
They should agree on a same abstraction relation ⊢ !

This means:
∀c ∈ C , ∀a ∈ A,
c ⊢ a
⇐⇒ c ⊆ γ(a)
⇐⇒ α(c) ⊑ a

This observation is at the basis of the definition of Galois connections

Xavier Rival Abstract Interpretation: Introduction April 4th, 2025 20 / 61

Abstraction Galois connections

Galois connection

Definition: Galois connection
A Galois connection is defined by a:

a concrete lattice (C ,⊆)
an abstract lattice (A,⊑)
an abstraction function α : C → A

and a concretization function γ : A→ C

such that:

∀c ∈ C , ∀a ∈ A, α(c) ⊑ a⇐⇒ c ⊆ γ(a) (⇐⇒ c ⊢ a)

Notation: (C ,⊆) −−−→←−−−α
γ

(A,⊑)

Note: in practice, we shall rarely use ⊢; we use α, γ instead

Xavier Rival Abstract Interpretation: Introduction April 4th, 2025 21 / 61

Abstraction Galois connections

Example: constants abstraction and Galois connection

Constants lattice D♯
C = {⊥,⊤} ⊎ {n | n ∈ Z}

αC(c) = ⊥ if c = ∅
αC(c) = n if c = {n}
αC(c) = ⊤ otherwise

γC(⊤) 7−→ Z
γC(n) 7−→ {n}
γC(⊥) 7−→ ∅

Thus:
if c = ∅, ∀a, c ⊆ γC(a), i.e., c ⊆ γC(a) ⇐⇒ αC(c) = ⊥ ⊑ a

if c = {n},
αC({n}) = n ⊑ a ⇐⇒ a = n ∨ a = ⊤ ⇐⇒ c = {n} ⊆ γC(a)

if c has at least two distinct elements n0, n1, αC(c) = ⊤ and
c ⊆ γC(a)⇒ a = ⊤, i.e., c ⊆ γC(a) ⇐⇒ αC(c) = ⊤ ⊑ a

Constant abstraction: Galois connection

c ⊆ γC(a) ⇐⇒ αC(c) ⊑ a, therefore, (P(Z),⊆) −−−−→←−−−−
αC

γC
(D♯

C ,⊑)

Xavier Rival Abstract Interpretation: Introduction April 4th, 2025 22 / 61

Abstraction Galois connections

Example: non relational abstraction Galois connection

We have defined:
αNR : (c ⊆ (X → Y)) 7−→ (x ∈ X) 7→ {f (x) | f ∈ c}
γNR : (Φ ∈ (X → P(Y))) 7−→ {f : X → Y | ∀x ∈ X , f (x) ∈ Φ(x)}

Let c ∈ P(X → Y) and Φ ∈ (X → P(Y)); then:

αNR(c) ⊑ Φ ⇐⇒ ∀x ∈ X , αNR(c)(x) ⊆ Φ(x)
⇐⇒ ∀x ∈ X , {f (x) | f ∈ c} ⊆ Φ(x)
⇐⇒ ∀f ∈ c , ∀x ∈ X , f (x) ∈ Φ(x)
⇐⇒ ∀f ∈ c , f ∈ γNR(Φ)
⇐⇒ c ⊆ γNR(Φ)

Non relational abstraction: Galois connection
c ⊆ γNR(a) ⇐⇒ αNR(c) ⊑ a, therefore,

(P(X → Y),⊆) −−−−−→←−−−−−
αNR

γNR
(X → P(Y),⊑)

Xavier Rival Abstract Interpretation: Introduction April 4th, 2025 23 / 61

Abstraction Galois connections

Galois connection properties

Galois connections have many useful properties.

In the next few slides, we consider a Galois connection (C ,⊆) −−−→←−−−α
γ

(A,⊑)
and establish a few interesting properties.

Extensivity, contractivity
α ◦ γ is contractive: ∀a ∈ A, α ◦ γ(a) ⊑ a

γ ◦ α is extensive: ∀c ∈ C , c ⊆ γ ◦ α(c)

Proof:
let a ∈ A; then, γ(a) ⊆ γ(a), thus α(γ(a)) ⊑ a

let c ∈ C ; then, α(c) ⊑ α(c), thus c ⊆ γ(α(c))

Xavier Rival Abstract Interpretation: Introduction April 4th, 2025 24 / 61

Abstraction Galois connections

Galois connection properties

Monotonicity of adjoints
α is monotone
γ is monotone

Proof:
monotonicity of α: let c0, c1 ∈ C such that c0 ⊆ c1;
by extensivity of γ ◦α, c1 ⊆ γ(α(c1)), so by transitivity, c0 ⊆ γ(α(c1))
by definition of the Galois connnection, α(c0) ⊑ α(c1)

monotonicity of γ: same principle

Note: many proofs can be derived by duality

Duality principle applied for Galois connections

If (C ,⊆) −−−→←−−−α
γ

(A,⊑), then (A,⊒) −−−→←−−−γ
α

(C ,⊇)

Xavier Rival Abstract Interpretation: Introduction April 4th, 2025 25 / 61

Abstraction Galois connections

Galois connection properties

Iteration of adjoints
α ◦ γ ◦ α = α

γ ◦ α ◦ γ = γ

α ◦ γ (resp., γ ◦ α) is idempotent, hence a lower (resp., upper) closure
operator

Proof:
α ◦ γ ◦ α = α:
let c ∈ C , then γ ◦ α(c) ⊆ γ ◦ α(c)
hence, by the Galois connection property, α ◦ γ ◦ α(c) ⊑ α(c)
moreover, γ ◦ α is extensive and α monotone, so α(c) ⊑ α ◦ γ ◦ α(c)
thus, α ◦ γ ◦ α(c) = α(c)

the second point can be proved similarly (duality); the others follow

Xavier Rival Abstract Interpretation: Introduction April 4th, 2025 26 / 61

Abstraction Galois connections

Galois connection properties

Properties on iterations of adjoint functions:

concrete domain abstract domain

α

α

γ

α

γ
γ

Xavier Rival Abstract Interpretation: Introduction April 4th, 2025 27 / 61

Abstraction Galois connections

Galois connection properties

α preserves least upper bounds

∀c0, c1 ∈ C , α(c0 ∪ c1) = α(c0) ⊔ α(c1)

By duality:
∀a0, a1 ∈ A, γ(c0 ⊓ c1) = γ(c0) ⊓ γ(c1)

Proof:
First, we observe that α(c0) ⊔ α(c1) ⊑ α(c0 ∪ c1), i.e. α(c0 ∪ c1) is an
upper bound of {α(c0), α(c1)}.
We now prove it is the least upper bound. For all a ∈ A:

α(c0 ∪ c1) ⊑ a ⇐⇒ c0 ∪ c1 ⊆ γ(a)
⇐⇒ c0 ⊆ γ(a) ∧ c1 ⊆ γ(a)
⇐⇒ α(c0) ⊑ a ∧ α(c1) ⊑ a
⇐⇒ α(c0) ⊔ α(c1) ⊑ a

Note: when C ,A are complete lattices, this extends to families of elements
Xavier Rival Abstract Interpretation: Introduction April 4th, 2025 28 / 61

Abstraction Galois connections

Galois connection properties

Uniqueness of adjoints
given γ : A→ C , there exists at most one α : C → A such that
(C ,⊆) −−−→←−−−α

γ
(A,⊑), and, if it exists, α(c) = ⊓{a ∈ A | c ⊆ γ(a)}

similarly, given α : C → A, there exists at most one γ : A→ C such
that (C ,⊆) −−−→←−−−α

γ
(A,⊑), and it is defined dually

Proof of the first point (the other follows by duality):
we assume that there exists an α so that we have a Galois connection and
prove that, α(c) = ⊓{a ∈ A | c ⊆ γ(a)} for a given c ∈ C .

if a ∈ A is such that c ⊆ γ(a), then α(c) ⊑ a
thus, α(c) is a lower bound of {a ∈ A | c ⊆ γ(a)}.
since c ⊆ γ(α(c)), α(c) ∈ {a ∈ A | c ⊆ γ(a)}, so α(c) is the greatest
lower bound of {a ∈ A | c ⊆ γ(a)}.

Thus, α(c) is the least upper bound of {a ∈ A | c ⊆ γ(a)}
Xavier Rival Abstract Interpretation: Introduction April 4th, 2025 29 / 61

Abstraction Galois connections

Construction of adjoint functions

The adjoint uniqueness property is actually a very strong property:
it allows to construct an abstraction from a concretization
... or to understand when no abstraction can be constructed :-)

Turning an adjoint into a Galois connection
Let (C ,⊆) and (A,⊑) be two lattices, such that any subset of A as a
greatest lower bound and let γ : (A,⊑)→ (C ,⊆) be a monotone function.

Then, the function below defines a Galois connection:

α(c) = ⊓{a ∈ A | c ⊆ γ(a)}

Example of abstraction with no α: when ⊓ is not defined on all
families, e.g., lattice of convex polyedra, abstracting sets of points in R2.

Exercise: state the dual property and apply the same principle to the
concretization

Xavier Rival Abstract Interpretation: Introduction April 4th, 2025 30 / 61

Abstraction Galois connections

Galois connection characterization

A characterization of Galois connections
Let (C ,⊆) and (A,⊑) be two lattices, and α : C → A and γ : A→ C be
two monotone functions, such that:

α ◦ γ is contractive
γ ◦ α is extensive

Then, we have a Galois connection

(C ,⊆) −−−→←−−−α
γ

(A,⊑)

Proof:
let c ∈ C and a ∈ A such that α(c) ⊑ a.
then: γ(α(c)) ⊆ γ(a) (as γ is monotone)
c ⊆ γ(α(c)) (as γ ◦ α is extensive)

thus, c ⊆ γ(a), by transitivity
the other implication can be proved by duality

Xavier Rival Abstract Interpretation: Introduction April 4th, 2025 31 / 61

Abstract interpretation Abstract computation

Outline

1 Abstraction

2 Abstract interpretation
Abstract computation
Fixpoint transfer

3 Application of abstract interpretation

4 Conclusion

Xavier Rival Abstract Interpretation: Introduction April 4th, 2025 32 / 61

Abstract interpretation Abstract computation

Constructing a static analysis

We have set up a notion of abstraction:
it describes sound approximations of concrete properties with
abstract predicates
there are several ways to formalize it (abstraction, concretization...)
we now wish to compute sound abstract predicates

In the following, we assume
a Galois connection

(C ,⊆) −−−→←−−−α
γ

(A,⊑)

a concrete semantics J.K, with a constructive definition
i.e., JPK is defined by constructive equations (JPK = f (. . .)), least
fixpoint formula (JPK = lfp∅ f)...

We need several lectures to cover this.
Xavier Rival Abstract Interpretation: Introduction April 4th, 2025 33 / 61

Abstract interpretation Abstract computation

Towards a notion of abstract transformer...

The problem
We assume:

a monotone concrete function f : C → C , known on paper but
possibly not computable (intuitively the semantics of a program),
a concrete element c ∈ C (intuitively an initial state),
and an abstract element a ∈ A that abstracts c

Question: how to derive an abstraction of f (c) ?

1 α ◦ f (c) abstracts the image of c by f

2 f (c) is abstracted by α ◦ f ◦ γ(a):
c ⊆ γ(a) by assumption
f (c) ⊆ f (γ(a)) by monotonicity of f
α(f (c)) ⊆ α(f (γ(a))) by monotonicity of α

A A

C C
f

α ◦ f ◦ γ

γ α

Xavier Rival Abstract Interpretation: Introduction April 4th, 2025 34 / 61

Abstract interpretation Abstract computation

Towards a notion of abstract transformer...

We consider a variant of the previous problem:

The problem
We assume:

a monotone concrete function f : C → C , known on paper (but
not computable) (e.g., the semantics of a program)
and an abstract element a ∈ A that abstracts initial states

Question: how to derive an abstraction of final states?

1 if c is an initial state, it is abstracted by a, thus
c ∈ γ(a)

2 the same reasoning applies
so f (c) is abstracted by α ◦ f ◦ γ(a)

A A

C C
f

α ◦ f ◦ γ

γ α

Xavier Rival Abstract Interpretation: Introduction April 4th, 2025 35 / 61

Abstract interpretation Abstract computation

Soundness and completeness

Assumptions:
a Galois connection, same notation as above
concrete function f : C → C

Definition: Best abstract transformer
The best abstract transformer approximating f is f ♯ = α ◦ f ◦ γ

In some cases, the best abstract transformer may be too expensive, hence
we also consider:

Definition: Sound abstract transformers
A sound abstract transformer approximating f is any operator
f ♯ : A→ A, such that α ◦ f ◦ γ ⊑ f ♯ (or equivalently, f ◦ γ ⊆ γ ◦ f ♯).

Clearly, the best abstract transformer is sound
Other transformers give up completeness

Xavier Rival Abstract Interpretation: Introduction April 4th, 2025 36 / 61

Abstract interpretation Abstract computation

Example: lattice of signs

f : D♯
C → D♯

C , c 7→ {−n | n ∈ c}
f ♯ = α ◦ f ◦ γ

Lattice of signs:

⊥

− 0 +

⊤

Abstract negation operator:

a ⊖♯(a)

⊥ ⊥
− +

0 0
+ −
⊤ ⊤

here, the best abstract transformer is very easy to compute
no need to use an approximate one

Xavier Rival Abstract Interpretation: Introduction April 4th, 2025 37 / 61

Abstract interpretation Abstract computation

Abstract n-ary operators

We can generalize this to n-ary operators, such as boolean operators
and arithmetic operators

Definition: best and sound abstract operators
Let g : Cn → C be an n-ary operator, monotone in each component.
Then:

the best abstract operator approximating g is defined by:
g ♯ : An 7−→ A

(a0, . . . , an−1) 7−→ α ◦ g(γ(a0), . . . , γ(an−1))

a sound abstract transformer approximating g is any operator
g ♯ : An → A, such that
∀(a0, . . . , an−1) ∈ An, α ◦ g(γ(a0), . . . , γ(an−1)) ⊑ g ♯(a0, . . . , an−1)

(i.e., equivalently, g(γ(a0), . . . , γ(an−1)) ⊆ γ ◦ g ♯(a0, . . . , an−1)

Xavier Rival Abstract Interpretation: Introduction April 4th, 2025 38 / 61

Abstract interpretation Abstract computation

Example: lattice of signs arithmetic operators

Application:
⊕ : C 2 → C , (c0, c1) 7→ {n0 + n1 | ni ∈ ci}
⊗ : C 2 → C , (c0, c1) 7→ {n0 · n1 | ni ∈ ci}

Best abstract operators:

⊕♯ ⊥ − 0 + ⊤
⊥ ⊥ ⊥ ⊥ ⊥ ⊥
− ⊥ − − ⊤ ⊤
0 ⊥ − 0 + ⊤
+ ⊥ ⊤ + + ⊤
⊤ ⊥ ⊤ ⊤ ⊤ ⊤

⊗♯ ⊥ − 0 + ⊤
⊥ ⊥ ⊥ ⊥ ⊥ ⊥
− ⊥ + 0 − ⊤
0 ⊥ 0 0 0 0
+ ⊥ − 0 + ⊤
⊤ ⊥ ⊤ 0 ⊤ ⊤

Example of loss in precision:
{8} ∈ γS(+) and {−2} ∈ γS(−)
⊕♯(+,−) = ⊤ is a lot worse than αS(⊕({8}, {−2})) = +

Xavier Rival Abstract Interpretation: Introduction April 4th, 2025 39 / 61

Abstract interpretation Abstract computation

Example: lattice of signs set operators

Best abstract operators approximating ∪ and ∩ defined over pairs of
sets (thus, as binary operators):

∪♯ ⊥ − 0 + ⊤
⊥ ⊥ − 0 + ⊤
− − − ⊤ ⊤ ⊤
0 0 ⊤ 0 ⊤ ⊤
+ + ⊤ ⊤ + ⊤
⊤ ⊤ ⊤ ⊤ ⊤ ⊤

∩♯ ⊥ − 0 + ⊤
⊥ ⊥ ⊥ ⊥ ⊥ ⊥
− ⊥ − ⊥ ⊥ −
0 ⊥ ⊥ 0 ⊥ 0
+ ⊥ ⊥ ⊥ + +

⊤ ⊥ − 0 + ⊤

Soundness:
{

γ(a0) ∪ γ(a1) ⊆ γ(c0 ∪♯ c1)
γ(a0) ∩ γ(a1) ⊆ γ(c0 ∩♯ c1)

Example of loss in precision:
γ(−) ∪ γ(+) = {n ∈ Z | n ̸= 0} ⊂ γ(⊤)

Xavier Rival Abstract Interpretation: Introduction April 4th, 2025 40 / 61

Abstract interpretation Fixpoint transfer

Outline

1 Abstraction

2 Abstract interpretation
Abstract computation
Fixpoint transfer

3 Application of abstract interpretation

4 Conclusion

Xavier Rival Abstract Interpretation: Introduction April 4th, 2025 41 / 61

Abstract interpretation Fixpoint transfer

Fixpoint transfer

What about loops ? semantic functions defined by fixpoints ?

Theorem: exact fixpoint transfer
We assume (C ,⊆) and (A,⊑) are complete lattices. We consider a Galois
connection (C ,⊆) −−−→←−−−α

γ
(A,⊑), two functions f : C → C and f ♯ : A→ A

and two elements c0 ∈ C , a0 ∈ A such that:
f is continuous
f ♯ is monotone
α ◦ f = f ♯ ◦ α
α(c0) = a0

Then:
both f and f ♯ have a least-fixpoint (by Tarski’s fixpoint theorem)
α(lfpc0 f) = lfpa0 f

♯

Xavier Rival Abstract Interpretation: Introduction April 4th, 2025 42 / 61

Abstract interpretation Fixpoint transfer

Fixpoint transfer: proof

α(lfpc0 f) is a fixpoint of f ♯ since:

f ♯(α(lfpc0 f)) = α(f (lfpc0 f)) since α ◦ f = f ♯ ◦ α
= α(lfpc0 f) by definition of the fixpoints

To show that α(lfpc0 f) is the least-fixpoint of f ♯,
we assume that X is another fixpoint of f ♯ greater than a0 and we
show that α(lfpc0 f) ⊑ X , i.e., that lfpc0 f ⊆ γ(X).
As lfpc0 f =

⋃
n∈N f n(c0) (by Kleene’s fixpoint theorem), it amounts

to proving that ∀n ∈ N, f n(c0) ⊆ γ(X).
By induction over n:

▶ f 0(c0) = c0, thus α(f 0(c0)) = a0 ⊑ X ; thus, f 0(c0) ⊆ γ(X).
▶ let us assume that f n(c0) ⊆ γ(X), and let us show that

f n+1(c0) ⊆ γ(X), i.e. that α(f n+1(c0)) ⊑ X :

α(f n+1(c0)) = α ◦ f (f n(c0)) = f ♯ ◦ α(f n(c0)) ⊑ f ♯(X) = X

as α(f n(c0)) ⊑ X and f ♯ is monotone.
Xavier Rival Abstract Interpretation: Introduction April 4th, 2025 43 / 61

Abstract interpretation Fixpoint transfer

Constructive analysis of loops

How to get a constructive fixpoint transfer theorem ?

Theorem: fixpoint abstraction
Under the assumptions of the previous theorem, and with the following
additional hypothesis:

lattice A is of finite height
We compute the sequence (an)n∈N defined by an+1 = an ⊔ f ♯(an).
Then, (an)n∈N converges and its limit a∞ is such that α(lfpc0 f) = a∞.

Proof: exercise.

Note:
the assumptions we have made are too restrictive in practice
more general fixpoint abstraction methods in the next lecture

Xavier Rival Abstract Interpretation: Introduction April 4th, 2025 44 / 61

Application of abstract interpretation

Outline

1 Abstraction

2 Abstract interpretation

3 Application of abstract interpretation

4 Conclusion

Xavier Rival Abstract Interpretation: Introduction April 4th, 2025 45 / 61

Application of abstract interpretation

Comparing existing semantics

1 A concrete semantics JPK is given: e.g., big steps operational
semantics

2 An abstract semantics JPK♯ is given: e.g., denotational semantics

3 Search for an abstraction relation between them
e.g., JPK♯ = α(JPK), or JPK ⊆ γ(JPK♯)

Examples:
finite traces semantics as an abstraction of bi-finitary trace semantics
denotational semantics as an abstraction of trace semantics
types as an abstraction of denotational semantics

Payoff:
better understanding of ties across semantics
chance to generalize existing definitions

Example: connection between reachable states and denotational semantics
Xavier Rival Abstract Interpretation: Introduction April 4th, 2025 46 / 61

Application of abstract interpretation

Derivation of a static analysis

1 Start from a concrete semantics JPK
2 Choose an abstraction defined by a Galois connection or a

concretization function (usually)
3 Derive an abstract semantics JPK♯ such that JPK ⊆ γ(JPK♯)

Examples:
derivation of an analysis with a numerical lattice (constants,
intervals...)
construction of an analysis for a complex programming language

Payoff:
the derivation of the abstract semantics is quite systematic
this process offers good opportunities for a modular analysis design

There are many ways to apply abstract interpretation.

Xavier Rival Abstract Interpretation: Introduction April 4th, 2025 47 / 61

Application of abstract interpretation

A very simple language and its semantics

We now apply this to a very simple language, and derive a static analysis
step by step, from a concrete semantics and an abstraction.

we assume a fixed set of n integer variables x0, . . . , xn−1

we consider the language defined by the grammar below:

P ::= xi = n where n ∈ Z
| xi = xj + xk basic, three-addresses arithmetics
| xi = xj − xk basic, three-addresses arithmetics
| xi = xj · xk basic, three-addresses arithmetics
| P;P concatenation
| while()P loop, non-deterministic iteration count

a state is a vector σ = (σ0, . . . , σn−1) ∈ Zn

a single initial state σinit = (0, . . . , 0)

Xavier Rival Abstract Interpretation: Introduction April 4th, 2025 48 / 61

Application of abstract interpretation

Concrete semantics

Concrete semantics
We let JPK : P(Zn)→ P(Zn) be defined by:

Jxi = nK(M) = {σ[i ← n] | σ ∈M}
Jxi = xj + xkK(M) = {σ[i ← σj + σk] | σ ∈M}
Jxi = xj − xkK(M) = {σ[i ← σj − σk] | σ ∈M}
Jxi = xj ∗ xkK(M) = {σ[i ← σj ∗ σk] | σ ∈M}

JP0;P1K(M) = JP1K ◦ JP0K(M)
Jwhile()PK(M) = lfp f

f :M′ 7→ M ∪M′ ∪ JPK(M′)

given a complete program P , the reachable states are defined by
JPK({σinit})

Xavier Rival Abstract Interpretation: Introduction April 4th, 2025 49 / 61

Application of abstract interpretation

Example

A couple of contrived examples
enough to show the behavior of the analysis...

Factorial function:
x0 = 0;
x1 = 1;
x2 = 1;
while(){

x1 = x0 ∗ x1;
x0 = x0 + x2;

}

loops exit at some (non deterministic) point
at the end x1 is equal to x0!

outputs x0, x1, x2 should be positive

Xavier Rival Abstract Interpretation: Introduction April 4th, 2025 50 / 61

Application of abstract interpretation

Abstraction

We compose two abstractions:
non relational abstraction: the values a variable may take is
abstracted separately from the other variables
sign abstraction: the set of values observed for each variable is
abstracted into the lattice of signs

Abstraction
concrete domain: (P(Zn),⊆)
abstract domain: (D♯,⊑), where D♯ = (D♯

S)
n and ⊑ is the pointwise

ordering

Galois connection (P(Z),⊆) −−−→←−−−α
γ

(D♯,⊑), defined by

α : S 7−→ (αS({σ0 | σ ∈ S}), . . . , αS({σn−1 | σ ∈ S}))
γ : M♯ 7−→ {σ ∈ Zn | ∀i , σi ∈ γS(M

♯
i)}

Xavier Rival Abstract Interpretation: Introduction April 4th, 2025 51 / 61

Application of abstract interpretation

Towards an abstraction for our small language

Basic intuitions for our abstraction:

1 a memory state is a vector of scalars

2 the concrete semantics is a function, that maps a concrete
pre-condition to an abstract post-condition

3 sign lattice abstract elements abstract sets of values

4 an abstract state should thus consist of a vector of abstract values

5 moreover, the abstract semantics should consist of a function that
maps an abstract pre-condition into an abstract post-condition

Xavier Rival Abstract Interpretation: Introduction April 4th, 2025 52 / 61

Application of abstract interpretation

Abstract semantics: sequences

We search for an abstract semantics JPK♯ : D♯ → D♯ such that:

α ◦ JPK ⊑ JPK♯ ◦ α

We aim for a proof by induction over the syntax of programs
So, let us start with sequences / composition, under the assumption
that the property holds for P0,P1:

α ◦ JP0K ⊑ JP0K♯ ◦ α
α ◦ JP1K ⊑ JP1K♯ ◦ α

Since JP0;P1K = JP1K ◦ JP0K, we expect JP0;P1K♯ = JP1K♯ ◦ JP0K♯:

α ◦ JP1K ◦ JP0K ⊑ JP1K♯ ◦ α ◦ JP0K (by induction)
⊑ JP1K♯ ◦ JP0K♯ ◦ α by induction. . .

and if JP1K♯ monotone)!

Big additional constraint (only today): JPK♯ monotone
Xavier Rival Abstract Interpretation: Introduction April 4th, 2025 53 / 61

Application of abstract interpretation

Abstract semantics: assignment command

We now consider the analysis of assignment statements

We observe that:
α(M) = (αS({σ0 | σ ∈M}), . . . , αS({σn−1 | σ ∈M}))

α ◦ JPK(M) = (αS({σ0 | σ ∈ JPK(M)}), . . . , αS({σn−1 | σ ∈ JPK(M)}))

We start with xi = n:
α ◦ Jxi = nK(M)
= (αS({σ0 | σ ∈ JPK({σ[i ← n] | σ ∈M})}), . . . ,

αS({σn−1 | σ ∈ JPK({σ[i ← n] | σ ∈ S})}))
= (αS({σ0 | σ ∈M}), . . . , αS({σn−1 | σ ∈M}))[i ← αS({n})]
= α(M)[i ← αS({n})]
= Jxi = nK♯(α(M))

where:

Jxi = nK♯(M♯) = M♯[i ← αS({n})]

Xavier Rival Abstract Interpretation: Introduction April 4th, 2025 54 / 61

Application of abstract interpretation

Computation of the abstract semantics

Other assignments are treated in a similar manner:

Jxi = nK♯(M♯) = M♯[i ← αS({n})]
Jxi = xj + xkK♯(M♯) = M♯[i ← M♯

j ⊕♯ M♯
k]

Jxi = xj − xkK(M♯) = M♯[i ← M♯
j ⊖♯ M♯

k]

Jxi = xj ∗ xkK♯(M♯) = M♯[i ← M♯
j ⊗♯ M♯

k]

Proofs are left as exercises
As remarked before, we only get α ◦ JPK ⊑ JPK♯ ◦ α
i.e., equality is too hard to derive
On the other hand, monotonicity is good so far (exercise)

Xavier Rival Abstract Interpretation: Introduction April 4th, 2025 55 / 61

Application of abstract interpretation

Analysis of a loop

We have seen that:

Jwhile()PK(M) = lfp f
where f (M′) = M∪M′ ∪ JPK(M′)

Thus, we look for a fixpoint transfer, but our fixpoint transfer theorem
requires equality, so it does not apply...

We will use a variant of the previous theorem:

If:
f is continuous
f ♯ is monotone
α ◦ f ⊑ f ♯ ◦ α
α(∅) = ⊥

Then, α(lfp f) ⊑ lfp f ♯

Xavier Rival Abstract Interpretation: Introduction April 4th, 2025 56 / 61

Application of abstract interpretation

Analysis of a loop

Application:
we consider the analysis of the loop with pre-condition M♯

we take
f ♯(M♯

0) = M♯ ∪ M♯
0 ∪ JPK♯(M♯

0)

then, α ◦ f ⊑ f ♯ ◦ α
we can apply the new fixpoint transfer theorem...

Jwhile()PK♯(M♯) = lfpM♯ f ♯

where f ♯(M♯
0) = M♯ ∪ M♯

0 ∪ JPK♯(M♯
0)

One more thing:
we need to prove monotonicity of the fixpoint image
since the whole abstract semantics soundness relies on it!

Xavier Rival Abstract Interpretation: Introduction April 4th, 2025 57 / 61

Application of abstract interpretation

Abstract semantics

Abstract semantics and soundness
We have derived the following definition of JPK♯:

Jxi = nK♯(M♯) = M♯[i ← αS({n})]
Jxi = xj + xkK♯(M♯) = M♯[i ← M♯

j ⊕♯ M♯
k]

Jxi = xj − xkK♯(M♯) = M♯[i ← M♯
j ⊖♯ M♯

k]

Jxi = xj · xkK♯(M♯) = M♯[i ← M♯
j ⊗♯ M♯

k]

Jwhile()PK♯(M♯) = lfpM♯ f ♯ where
f ♯ : M♯ 7→ M♯ ⊔ JPK♯(M♯)

Furthermore, for all program P : α ◦ JPK ⊑ JPK♯ ◦ α
Last, JPK♯ is monotone

An over-approximation of the final states is computed by JPK♯(⊤).

Xavier Rival Abstract Interpretation: Introduction April 4th, 2025 58 / 61

Application of abstract interpretation

Example

Factorial function:

x0 = 1;
x1 = 1;
x2 = 1;
while(){

x1 = x0 ∗ x1;
x0 = x0 + x2;

}

Abstract state before the loop:
(+,+,+)

Iterates on the loop:

iterate 0 1
x0 + +

x1 + +

x2 + +

Abstract state after the loop: (+,+,+)

Xavier Rival Abstract Interpretation: Introduction April 4th, 2025 59 / 61

Conclusion

Outline

1 Abstraction

2 Abstract interpretation

3 Application of abstract interpretation

4 Conclusion

Xavier Rival Abstract Interpretation: Introduction April 4th, 2025 60 / 61

Conclusion

Summary

This lecture:
abstraction and its formalization
computation of an abstract semantics in a very simplified case

Next lectures:
construction of a few non trivial abstractions
more general ways to compute sound abstract properties

Xavier Rival Abstract Interpretation: Introduction April 4th, 2025 61 / 61

	Abstraction
	Notion of abstraction
	Abstraction and concretization functions
	Galois connections

	Abstract interpretation
	Abstract computation
	Fixpoint transfer

	Application of abstract interpretation
	Conclusion

