

Abstract Interpretation

Semantics and applications to verification

Xavier Rival

École Normale Supérieure

April 12th, 2024

Program of this lecture

Studied so far:

- **semantics:** behaviors of programs
- **properties:** safety, liveness, security...
- **approaches to verification:** typing, use of proof assistants, model checking

Today's lecture: introduction to abstract interpretation

a **general framework for comparing semantics**

introduced by Patrick Cousot and Radhia Cousot (1977)

- **abstraction:** use of a lattice of predicates
- **computing abstract over-approximations**, while preserving soundness
- **computing abstract over-approximations for loops**, using fixpoints as a basis

Outline

1 Abstraction

- Notion of abstraction
- Abstraction and concretization functions
- Galois connections

2 Abstract interpretation

3 Application of abstract interpretation

4 Conclusion

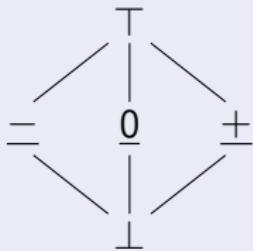
Abstraction example 1: signs

Abstraction: defined by a family of properties to use in proofs

Example:

- objects under study: sets of mathematical integers
- abstract elements: signs

Lattice of signs



- \perp denotes only \emptyset
- \pm denotes any set of positive integers
- 0 denotes any subset of $\{0\}$
- $_$ denotes any set of negative integers
- T denotes any set of integers

Note: the order in the abstract lattice corresponds to inclusion...

Abstraction example 1: signs

Definition: abstraction relation

- **concrete elements:** elements of the original lattice ($c \in \mathcal{P}(\mathbb{Z})$)
- **abstract elements:** predicate (a : “ $\cdot \in \{\pm, 0, \dots\}$ ”)
- **abstraction relation:** $c \vdash_{\mathcal{S}} a$ when a describes c

Examples:

- $\{1, 2, 3, 5, 7, 11, 13, 17, 19, 23, \dots\} \vdash_{\mathcal{S}} \pm$
- $\{1, 2, 3, 5, 7, 11, 13, 17, 19, 23, \dots\} \vdash_{\mathcal{S}} T$

We use abstract elements **to reason about operations:**

- if $c_0 \vdash_{\mathcal{S}} \pm$ and $c_1 \vdash_{\mathcal{S}} \pm$, then $\{x_0 + x_1 \mid x_i \in c_i\} \vdash_{\mathcal{S}} \pm$
- if $c_0 \vdash_{\mathcal{S}} \pm$ and $c_1 \vdash_{\mathcal{S}} \pm$, then $\{x_0 \cdot x_1 \mid x_i \in c_i\} \vdash_{\mathcal{S}} \pm$
- if $c_0 \vdash_{\mathcal{S}} \pm$ and $c_1 \vdash_{\mathcal{S}} 0$, then $\{x_0 \cdot x_1 \mid x_i \in c_i\} \vdash_{\mathcal{S}} 0$
- if $c_0 \vdash_{\mathcal{S}} \pm$ and $c_1 \vdash_{\mathcal{S}} \perp$, then $\{x_0 \cdot x_1 \mid x_i \in c_i\} \vdash_{\mathcal{S}} \perp$

Abstraction example 1: signs

We can also consider the **union operation**:

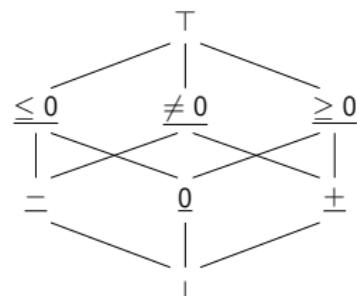
- if $c_0 \vdash_s \pm$ and $c_1 \vdash_s \pm$, then $c_0 \cup c_1 \vdash_s \pm$
- if $c_0 \vdash_s \pm$ and $c_1 \vdash_s \underline{0}$, then $c_0 \cup c_1 \vdash_s \pm$

But, what can we say about $c_0 \cup c_1$, when $c_0 \vdash_s \underline{0}$ and $c_1 \vdash_s \pm$?

- clearly, $c_0 \cup c_1 \vdash_s \top$...
- but **no other relation holds**
- in the abstract, **we do not rule out negative values**

We can **extend the initial lattice**:

- ≥ 0 denotes any set of positive or null integers
- ≤ 0 denotes any set of negative or null integers
- $\neq 0$ denotes any set of non null integers
- if $c_0 \vdash_s \pm$ and $c_1 \vdash_s \underline{0}$, then $c_0 \cup c_1 \vdash_s \geq 0$

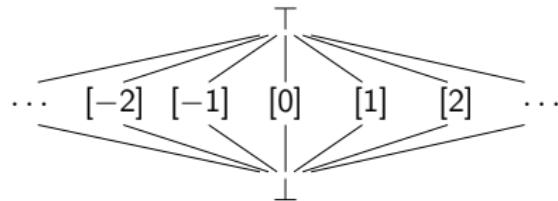


Abstraction example 2: constants

Definition: abstraction based on constants

- **concrete elements:** $\mathcal{P}(\mathbb{Z})$
- **abstract elements:** $\perp, \top, \underline{n}$ where $n \in \mathbb{Z}$
 $(D_C^\sharp = \{\perp, \top\} \cup \{\underline{n} \mid n \in \mathbb{Z}\})$
- **abstraction relation:** $c \vdash_C \underline{n} \iff c \subseteq \{n\}$

We obtain a **flat lattice**:



Abstract reasoning:

- if $c_0 \vdash_C \underline{n_0}$ and $c_1 \vdash_C \underline{n_1}$, then $\{k_0 + k_1 \mid k_i \in c_i\} \vdash_C \underline{n_0 + n_1}$

Abstraction example 3: Parikh vector

Definition: Parikh vector abstraction

- **concrete elements:** $\mathcal{P}(\mathcal{A}^*)$ (sets of words over alphabet \mathcal{A})
- **abstract elements:** $\{\perp, \top\} \cup (\mathcal{A} \rightarrow \mathbb{N})$
- **abstraction relation:** $c \vdash_{\mathfrak{P}} \phi : \mathcal{A} \rightarrow \mathbb{N}$ if and only if:

$\forall w \in c, \forall a \in \mathcal{A}, a \text{ appears } \phi(a) \text{ times in } w$

Abstract reasoning:

- **concatenation:**

if $\phi_0, \phi_1 : \mathcal{A} \rightarrow \mathbb{N}$ and c_0, c_1 are such that $c_i \vdash_{\mathfrak{P}} \phi_i$,

$$\{w_0 \cdot w_1 \mid w_i \in c_i\} \vdash_{\mathfrak{P}} \phi_0 + \phi_1$$

Information preserved, information deleted:

- **very precise** information about the **number of occurrences**
- the **order of letters** is **totally abstracted away (lost)**

Abstraction example 4: interval abstraction

Definition: abstraction based on intervals

- **concrete elements:** $\mathcal{P}(\mathbb{Z})$
- **abstract elements:** $\perp, (a, b)$ where $a \in \{-\infty\} \cup \mathbb{Z}$, $b \in \mathbb{Z} \cup \{+\infty\}$ and $a \leq b$
- **abstraction relation:**

$$\emptyset \vdash_{\mathcal{I}} \perp$$

$$S \vdash_{\mathcal{I}} \top$$

$$S \vdash_{\mathcal{I}} (a, b) \iff \forall x \in S, a \leq x \leq b$$

Operations: TD

Abstraction example 5: non relational abstraction

Definition: non relational abstraction

- **concrete elements:** $\mathcal{P}(X \rightarrow Y)$, inclusion ordering
- **abstract elements:** $X \rightarrow \mathcal{P}(Y)$, pointwise inclusion ordering
- **abstraction relation:** $c \vdash_{\mathcal{NR}} a \iff \forall \phi \in c, \forall x \in X, \phi(x) \in a(x)$

Information preserved, information deleted:

- **very precise** information about the **image** of the functions in c
- **relations** such as (for given $x_0, x_1 \in X, y_0, y_1 \in Y$) the following are lost:

$$\forall \phi \in c, \phi(x_0) = \phi(x_1)$$

$$\forall \phi \in c, \forall x, x' \in X, \phi(x) \neq y_0 \vee \phi(x') \neq y_1$$

Notion of abstraction relation

Concrete order: so far, always inclusion

- the tighter the concrete set, the fewer behaviors
- **smaller concrete** sets correspond to **more precise** properties

Abstraction relation

Intuitively, the abstraction relation also describes implication:

$c \vdash a$ effectively means “the property described by c implies that described by a ”

Advantage on static analysis (hint about the following lectures):

- abstract predicates are **a lot easier** to manipulate than sets of concrete states or logical formulas
- we can still **derive concrete facts from abstract predicates**

Abstraction relation and monotonicity

Order relations, abstraction relation and monotonicity

- both orders and the abstraction relation describe ordering
- we derive from **transitivity** there **monotonicity properties**
i.e., chains of implications compose

Abstraction relation: $c \vdash a$ when c satisfies a

- if $c_0 \subseteq c_1$ and c_1 satisfies a , in all our examples, c_0 **also satisfies a**

Abstract order: in all our examples,

- it matches the abstraction relation as well:
if $a_0 \sqsubseteq a_1$ and c satisfies a_0 , then c **also satisfies a_1**
- **great advantage: we can reason about implication in the abstract, without looking back at the concrete properties**

We will now formalize this in detail...

Outline

1 Abstraction

- Notion of abstraction
- Abstraction and concretization functions
- Galois connections

2 Abstract interpretation

3 Application of abstract interpretation

4 Conclusion

Towards adjoint functions

We consider a **concrete lattice** (C, \subseteq) and an **abstract lattice** (A, \sqsubseteq) .

So far, we used **abstraction relations**, that are consistent with orderings:

Abstraction relation compatibility

- $\forall c_0, c_1 \in C, \forall a \in A, c_0 \subseteq c_1 \wedge c_1 \vdash a \implies c_0 \vdash a$
- $\forall c \in C, \forall a_0, a_1 \in A, c \vdash a_0 \wedge a_0 \sqsubseteq a_1 \implies c \vdash a_1$

When we have a c (resp., a) and try to map it into a compatible a (resp. a c), **the abstraction relation is not a convenient tool**.

Hence, we shall use **adjoint functions** between C and A .

- from concrete to abstract: **abstraction**
- from abstract to concrete: **concretization**

Concretization function

Our first adjoint function:

Definition: concretization function

Concretization function $\gamma : A \rightarrow C$ (if it exists) is a monotone function that maps abstract a into the weakest (i.e., most general) concrete c that satisfies a (i.e., $c \vdash a$).

Notes:

- in common cases, there exists a γ
- $c \vdash a$ if and only if $c \subseteq \gamma(a)$
- a concretization that is not monotone with respect to the “logical ordering” would not make sense
- in fact, in some cases, we will even define γ before we define an ordering, and let γ define the ordering!

Concretization function: a few examples

Signs abstraction:

$$\gamma_S : \begin{array}{lcl} \top & \mapsto & \mathbb{Z} \\ \pm & \mapsto & \mathbb{Z}_+^* \\ 0 & \mapsto & \{0\} \\ \equiv & \mapsto & \mathbb{Z}_-^* \\ \perp & \mapsto & \emptyset \end{array}$$

Constants abstraction:

$$\gamma_C : \begin{array}{lcl} \top & \mapsto & \mathbb{Z} \\ n & \mapsto & \{n\} \\ \perp & \mapsto & \emptyset \end{array}$$

Non relational abstraction:

$$\gamma_{NR} : \begin{array}{lcl} (X \rightarrow \mathcal{P}(Y)) & \mapsto & \mathcal{P}(X \rightarrow Y) \\ \Phi & \mapsto & \{\phi : X \rightarrow Y \mid \forall x \in X, \phi(x) \in \Phi(x)\} \end{array}$$

Parikh vector abstraction: exercise!

Abstraction function

Our **second adjoint function**:

Definition: abstraction function

An **abstraction function** $\alpha : C \rightarrow A$ (if it exists) is a monotone function that maps concrete c into the most precise abstract a that soundly describes c (i.e., $c \vdash a$).

Note:

- in quite a few cases (including some in this course), there is no α
- for the same reason as γ a non monotone α (with respect to logical ordering) would not make sense

Summary on adjoint functions:

- α returns the **most precise abstract predicate** that holds true for its argument
this is called the **best abstraction**
- γ returns the **most general concrete meaning** of its argument

Abstraction: a few examples

Constants abstraction:

$$\alpha_C : (c \subseteq \mathbb{Z}) \mapsto \begin{cases} \perp & \text{if } c = \emptyset \\ \underline{n} & \text{if } c = \{n\} \\ \top & \text{otherwise} \end{cases}$$

Non relational abstraction:

$$\begin{aligned} \alpha_{NR} : \mathcal{P}(X \rightarrow Y) &\rightarrow X \rightarrow \mathcal{P}(Y) \\ c &\mapsto (x \in X) \mapsto \{\phi(x) \mid \phi \in c\} \end{aligned}$$

Signs abstraction and Parikh vector abstraction: exercises

Outline

1 Abstraction

- Notion of abstraction
- Abstraction and concretization functions
- Galois connections

2 Abstract interpretation

3 Application of abstract interpretation

4 Conclusion

Tying definitions of abstraction relation

So far, we have:

- **abstraction** $\alpha : C \rightarrow A$
- **concretization** $\gamma : A \rightarrow C$

How to tie them together ?

They should agree on a same abstraction relation \vdash !

This means:

$$\begin{aligned} \forall c \in C, \forall a \in A, \\ c \vdash a \\ \iff c \subseteq \gamma(a) \\ \iff \alpha(c) \sqsubseteq a \end{aligned}$$

This observation is at the basis of the definition of **Galois connections**

Galois connection

Definition: Galois connection

A **Galois connection** is defined by a:

- a **concrete lattice** (C, \subseteq) ,
- an **abstract lattice** (A, \sqsubseteq) ,
- an **abstraction function** $\alpha : C \rightarrow A$
- and a **concretization function** $\gamma : A \rightarrow C$

such that:

$$\forall c \in C, \forall a \in A, \alpha(c) \sqsubseteq a \iff c \subseteq \gamma(a) \quad (\iff c \vdash a)$$

Notation: $(C, \subseteq) \xrightleftharpoons[\alpha]{\gamma} (A, \sqsubseteq)$

Note: in practice, we shall rarely use \vdash ; we use α, γ instead

Example: constants abstraction and Galois connection

Constants lattice $D_C^\sharp = \{\perp, \top\} \uplus \{\underline{n} \mid n \in \mathbb{Z}\}$

$$\begin{array}{llll} \alpha_C(c) & = & \perp & \text{if } c = \emptyset \\ \alpha_C(c) & = & \underline{n} & \text{if } c = \{n\} \\ \alpha_C(c) & = & \top & \text{otherwise} \end{array} \quad \begin{array}{llll} \gamma_C(\top) & \mapsto & \mathbb{Z} \\ \gamma_C(\underline{n}) & \mapsto & \{n\} \\ \gamma_C(\perp) & \mapsto & \emptyset \end{array}$$

Thus:

- if $c = \emptyset$, $\forall a, c \subseteq \gamma_C(a)$, i.e., $c \subseteq \gamma_C(a) \iff \alpha_C(c) = \perp \sqsubseteq a$
- if $c = \{n\}$,
 $\alpha_C(\{n\}) = \underline{n} \sqsubseteq a \iff a = \underline{n} \vee a = \top \iff c = \{n\} \subseteq \gamma_C(a)$
- if c has at least two distinct elements n_0, n_1 , $\alpha_C(c) = \top$ and
 $c \subseteq \gamma_C(a) \Rightarrow a = \top$, i.e., $c \subseteq \gamma_C(a) \iff \alpha_C(c) = \top \sqsubseteq a$

Constant abstraction: Galois connection

$$c \subseteq \gamma_C(a) \iff \alpha_C(c) \sqsubseteq a, \text{ therefore, } (\mathcal{P}(\mathbb{Z}), \subseteq) \xrightleftharpoons[\alpha_C]{\gamma_C} (D_C^\sharp, \sqsubseteq)$$

Example: non relational abstraction Galois connection

We have defined:

$$\alpha_{\mathcal{NR}} : (c \subseteq (X \rightarrow Y)) \mapsto (x \in X) \mapsto \{f(x) \mid f \in c\}$$

$$\gamma_{\mathcal{NR}} : (\Phi \in (X \rightarrow \mathcal{P}(Y))) \mapsto \{f : X \rightarrow Y \mid \forall x \in X, f(x) \in \Phi(x)\}$$

Let $c \in \mathcal{P}(X \rightarrow Y)$ and $\Phi \in (X \rightarrow \mathcal{P}(Y))$; then:

$$\begin{aligned} \alpha_{\mathcal{NR}}(c) \sqsubseteq \Phi &\iff \forall x \in X, \alpha_{\mathcal{NR}}(c)(x) \subseteq \Phi(x) \\ &\iff \forall x \in X, \{f(x) \mid f \in c\} \subseteq \Phi(x) \\ &\iff \forall f \in c, \forall x \in X, f(x) \in \Phi(x) \\ &\iff \forall f \in c, f \in \gamma_{\mathcal{NR}}(\Phi) \\ &\iff c \subseteq \gamma_{\mathcal{NR}}(\Phi) \end{aligned}$$

Non relational abstraction: Galois connection

$c \subseteq \gamma_{\mathcal{NR}}(a) \iff \alpha_{\mathcal{NR}}(c) \sqsubseteq a$, therefore,

$$(\mathcal{P}(X \rightarrow Y), \subseteq) \xrightleftharpoons[\alpha_{\mathcal{NR}}]{\gamma_{\mathcal{NR}}} (X \rightarrow \mathcal{P}(Y), \sqsubseteq)$$

Galois connection properties

Galois connections have **many useful properties**.

In the next few slides, we consider a Galois connection $(C, \subseteq) \xrightleftharpoons[\alpha]{\gamma} (A, \sqsubseteq)$ and establish a few interesting properties.

Extensivity, contractivity

- $\alpha \circ \gamma$ is **contractive**: $\forall a \in A, \alpha \circ \gamma(a) \sqsubseteq a$
- $\gamma \circ \alpha$ is **extensive**: $\forall c \in C, c \subseteq \gamma \circ \alpha(c)$

Proof:

- let $a \in A$; then, $\gamma(a) \subseteq \gamma(a)$, thus $\alpha(\gamma(a)) \sqsubseteq a$
- let $c \in C$; then, $\alpha(c) \sqsubseteq \alpha(c)$, thus $c \subseteq \gamma(\alpha(c))$

Galois connection properties

Monotonicity of adjoints

- α is **monotone**
- γ is **monotone**

Proof:

- **monotonicity of α :** let $c_0, c_1 \in C$ such that $c_0 \subseteq c_1$;
by extensivity of $\gamma \circ \alpha$, $c_1 \subseteq \gamma(\alpha(c_1))$, so by transitivity, $c_0 \subseteq \gamma(\alpha(c_1))$
by definition of the Galois connection, $\alpha(c_0) \sqsubseteq \alpha(c_1)$
- **monotonicity of γ :** same principle

Note: many proofs can be derived by **duality**

Duality principle applied for Galois connections

$$\text{If } (C, \subseteq) \xrightleftharpoons[\alpha]{\gamma} (A, \sqsubseteq), \text{ then } (A, \sqsupseteq) \xrightleftharpoons[\gamma]{\alpha} (C, \supseteq)$$

Galois connection properties

Iteration of adjoints

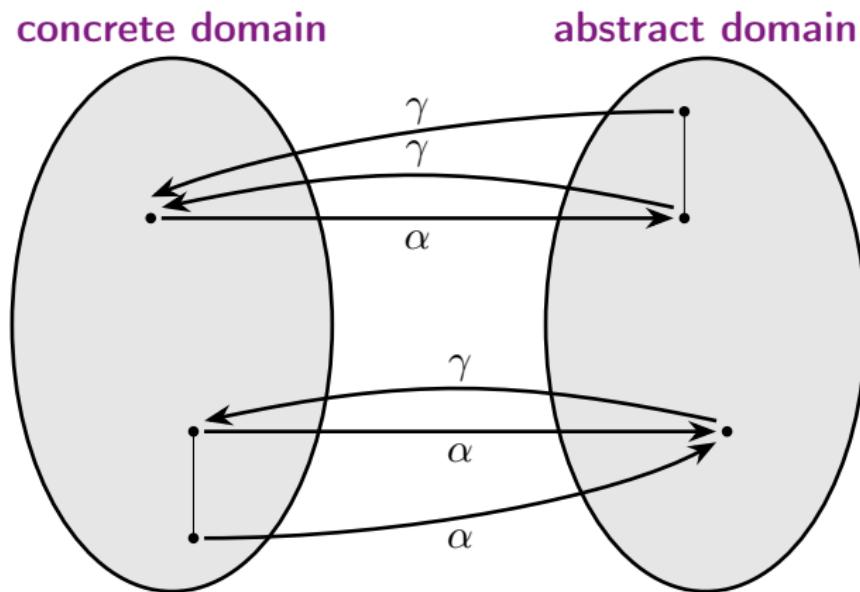
- $\alpha \circ \gamma \circ \alpha = \alpha$
- $\gamma \circ \alpha \circ \gamma = \gamma$
- $\alpha \circ \gamma$ (resp., $\gamma \circ \alpha$) is idempotent, hence a lower (resp., upper) closure operator

Proof:

- $\alpha \circ \gamma \circ \alpha = \alpha$:
let $c \in C$, then $\gamma \circ \alpha(c) \subseteq \gamma \circ \alpha(c)$
hence, by the Galois connection property, $\alpha \circ \gamma \circ \alpha(c) \sqsubseteq \alpha(c)$
moreover, $\gamma \circ \alpha$ is extensive and α monotone, so $\alpha(c) \sqsubseteq \alpha \circ \gamma \circ \alpha(c)$
thus, $\alpha \circ \gamma \circ \alpha(c) = \alpha(c)$
- the second point can be proved similarly (duality); the others follow

Galois connection properties

Properties on iterations of adjoint functions:



Galois connection properties

α preserves least upper bounds

$$\forall c_0, c_1 \in C, \alpha(c_0 \cup c_1) = \alpha(c_0) \sqcup \alpha(c_1)$$

By duality:

$$\forall a_0, a_1 \in A, \gamma(c_0 \sqcap c_1) = \gamma(c_0) \sqcap \gamma(c_1)$$

Proof:

First, we observe that $\alpha(c_0) \sqcup \alpha(c_1) \sqsubseteq \alpha(c_0 \cup c_1)$, i.e. $\alpha(c_0 \cup c_1)$ is an upper bound of $\{\alpha(c_0), \alpha(c_1)\}$.

We now prove it is the *least* upper bound. For all $a \in A$:

$$\begin{aligned} \alpha(c_0 \cup c_1) \sqsubseteq a &\iff c_0 \cup c_1 \subseteq \gamma(a) \\ &\iff c_0 \subseteq \gamma(a) \wedge c_1 \subseteq \gamma(a) \\ &\iff \alpha(c_0) \sqsubseteq a \wedge \alpha(c_1) \sqsubseteq a \\ &\iff \alpha(c_0) \sqcup \alpha(c_1) \sqsubseteq a \end{aligned}$$

Note: when C, A are complete lattices, this extends to families of elements

Galois connection properties

Uniqueness of adjoints

- given $\gamma : A \rightarrow C$, there exists **at most one** $\alpha : C \rightarrow A$ such that $(C, \subseteq) \xrightleftharpoons[\alpha]{\gamma} (A, \sqsubseteq)$, and, if it exists, $\alpha(c) = \sqcap\{a \in A \mid c \subseteq \gamma(a)\}$
- similarly, given $\alpha : C \rightarrow A$, there exists at most one $\gamma : A \rightarrow C$ such that $(C, \subseteq) \xrightleftharpoons[\alpha]{\gamma} (A, \sqsubseteq)$, and it is defined dually

Proof of the first point (the other follows by duality):

we assume that there exists an α so that we have a Galois connection and prove that, $\alpha(c) = \sqcap\{a \in A \mid c \subseteq \gamma(a)\}$ for a given $c \in C$.

- if $a \in A$ is such that $c \subseteq \gamma(a)$, then $\alpha(c) \sqsubseteq a$
thus, $\alpha(c)$ is a lower bound of $\{a \in A \mid c \subseteq \gamma(a)\}$.
- since $c \subseteq \gamma(\alpha(c))$, $\alpha(c) \in \{a \in A \mid c \subseteq \gamma(a)\}$, so $\alpha(c)$ is the greatest lower bound of $\{a \in A \mid c \subseteq \gamma(a)\}$.

Thus, $\alpha(c)$ is the least upper bound of $\{a \in A \mid c \subseteq \gamma(a)\}$

Construction of adjoint functions

The adjoint uniqueness property is actually a very strong property:

- it allows to construct an abstraction from a concretization
- ... or to understand why no abstraction can be constructed :-)

Turning an adjoint into a Galois connection (1)

Let (C, \subseteq) and (A, \sqsubseteq) be two lattices, such that any subset of A has a greatest lower bound and let $\gamma : (A, \sqsubseteq) \rightarrow (C, \subseteq)$ be a monotone function.

Then, the function below defines a Galois connection:

$$\alpha(c) = \sqcap\{a \in A \mid c \subseteq \gamma(a)\}$$

Example of abstraction with no α : when \sqcap is not defined on all families, e.g., lattice of convex polyedra, abstracting sets of points in \mathbb{R}^2 .

Exercise: state the dual property and apply the same principle to the concretization

Galois connection characterization

A characterization of Galois connections

Let (C, \subseteq) and (A, \sqsubseteq) be two lattices, and $\alpha : C \rightarrow A$ and $\gamma : A \rightarrow C$ be two monotone functions, such that:

- $\alpha \circ \gamma$ is contractive
- $\gamma \circ \alpha$ is extensive

Then, we have a Galois connection

$$(C, \subseteq) \xrightleftharpoons[\alpha]{\gamma} (A, \sqsubseteq)$$

Proof:

- let $c \in C$ and $a \in A$ such that $\alpha(c) \sqsubseteq a$.
 then: $\gamma(\alpha(c)) \subseteq \gamma(a)$ (as γ is monotone)
 $c \subseteq \gamma(\alpha(c))$ (as $\gamma \circ \alpha$ is extensive)
 thus, $c \subseteq \gamma(a)$, by transitivity
- the other implication can be proved by duality

Outline

1 Abstraction

2 Abstract interpretation

- Abstract computation
- Fixpoint transfer

3 Application of abstract interpretation

4 Conclusion

Constructing a static analysis

We have set up a notion of **abstraction**:

- it describes **sound** approximations of **concrete properties** with **abstract predicates**
- there are several ways to formalize it (abstraction, concretization...)
- we now wish to **compute sound abstract predicates**

In the following, we assume

- a **Galois connection**

$$(C, \subseteq) \xrightleftharpoons[\alpha]{\gamma} (A, \sqsubseteq)$$

- a **concrete semantics** $\llbracket \cdot \rrbracket$, with a **constructive definition**
i.e., $\llbracket P \rrbracket$ is defined by constructive equations ($\llbracket P \rrbracket = f(\dots)$), least fixpoint formula ($\llbracket P \rrbracket = \text{lfp}_\emptyset f \dots$)

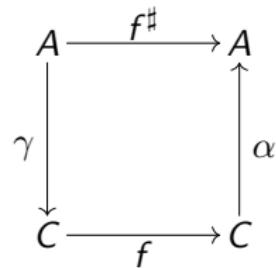
Abstract transformer

We now consider a **monotone concrete function** $f : C \rightarrow C$

Given $c \in C$, and $a \in A$ that abstracts c ,
how to derive an abstraction of $f(c)$?

- $\alpha \circ f(c)$ abstracts the image of c by f
- $f(c)$ is abstracted by $\alpha \circ f \circ \gamma(a)$:

$$\begin{array}{ll} c \subseteq \gamma(a) & \text{by assumption} \\ f(c) \subseteq f(\gamma(a)) & \text{by monotonicity of } f \\ \alpha(f(c)) \subseteq \alpha(f(\gamma(a))) & \text{by monotonicity of } \alpha \end{array}$$



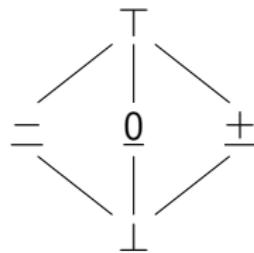
Definition: best and sound abstract transformers

- a **sound abstract transformer** approximating f is any operator $f^\# : A \rightarrow A$, such that $\alpha \circ f \circ \gamma \sqsubseteq f^\#$ (or equivalently, $f \circ \gamma \subseteq \gamma \circ f^\#$)
- the **best abstract transformer** approximating f is $f^\# = \alpha \circ f \circ \gamma$

Example: lattice of signs

- $f : D_C^\sharp \rightarrow D_C^\sharp, c \mapsto \{-n \mid n \in c\}$
- $f^\sharp = \alpha \circ f \circ \gamma$

Lattice of signs:



Abstract negation operator:

a	$\ominus^\sharp(a)$
\perp	\perp
$_$	\pm
$\underline{0}$	$\underline{0}$
\pm	$_$
\top	\top

- here, the best abstract transformer is very easy to compute
- no need to use an approximate one

Abstract n -ary operators

We can generalize this **to n -ary operators**, such as **boolean operators** and **arithmetic operators**

Definition: best and sound abstract operators

Let $g : C^n \rightarrow C$ be an n -ary operator, monotone in each component.

Then:

- the **best abstract operator** approximating g is defined by:

$$\begin{aligned} g^\sharp : A^n &\longmapsto A \\ (a_0, \dots, a_{n-1}) &\longmapsto \alpha \circ g(\gamma(a_0), \dots, \gamma(a_{n-1})) \end{aligned}$$

- a **sound abstract transformer** approximating g is any operator $g^\sharp : A^n \rightarrow A$, such that

$$\begin{aligned} \forall (a_0, \dots, a_{n-1}) \in A^n, \alpha \circ g(\gamma(a_0), \dots, \gamma(a_{n-1})) &\sqsubseteq g^\sharp(a_0, \dots, a_{n-1}) \\ \text{(i.e., equivalently, } g(\gamma(a_0), \dots, \gamma(a_{n-1})) &\subseteq \gamma \circ g^\sharp(a_0, \dots, a_{n-1}) \end{aligned}$$

Example: lattice of signs arithmetic operators

Application:

- $\oplus : C^2 \rightarrow C, (c_0, c_1) \mapsto \{n_0 + n_1 \mid n_i \in c_i\}$
- $\otimes : C^2 \rightarrow C, (c_0, c_1) \mapsto \{n_0 \cdot n_1 \mid n_i \in c_i\}$

Best abstract operators:

\oplus^\sharp	\perp	\equiv	$\underline{0}$	\pm	\top
\perp	\perp	\perp	\perp	\perp	\perp
\equiv	\perp	\equiv	\equiv	\top	\top
$\underline{0}$	\perp	\equiv	$\underline{0}$	\pm	\top
\pm	\perp	\top	\pm	\pm	\top
\top	\perp	\top	\top	\top	\top

\otimes^\sharp	\perp	\equiv	$\underline{0}$	\pm	\top
\perp	\perp	\perp	\perp	\perp	\perp
\equiv	\perp	\pm	$\underline{0}$	\equiv	\top
$\underline{0}$	\perp	$\underline{0}$	$\underline{0}$	$\underline{0}$	$\underline{0}$
\pm	\perp	\equiv	$\underline{0}$	\pm	\top
\top	\perp	\top	$\underline{0}$	\top	\top

Example of loss in precision:

- $\{8\} \in \gamma_S(\pm)$ and $\{-2\} \in \gamma_S(\equiv)$
- $\oplus^\sharp(\pm, \equiv) = \top$ is a lot worse than $\alpha_S(\oplus(\{8\}, \{-2\})) = \pm$

Example: lattice of signs set operators

Best abstract operators approximating \cup and \cap :

\cup^\sharp	\perp	\equiv	$\underline{0}$	\pm	T
\perp	\perp	\equiv	$\underline{0}$	\pm	T
\equiv	\equiv	\equiv	T	T	T
$\underline{0}$	$\underline{0}$	T	$\underline{0}$	T	T
\pm	\pm	T	T	\pm	T
T	T	T	T	T	T

\cap^\sharp	\perp	\equiv	$\underline{0}$	\pm	T
\perp	\perp	\perp	\perp	\perp	\perp
\equiv	\perp	\equiv	\perp	\perp	\equiv
$\underline{0}$	\perp	\perp	$\underline{0}$	\perp	$\underline{0}$
\pm	\perp	\perp	\perp	\pm	\pm
T	\perp	\equiv	$\underline{0}$	\pm	T

Example of loss in precision:

- $\gamma(\equiv) \cup \gamma(\pm) = \{n \in \mathbb{Z} \mid n \neq 0\} \subset \gamma(T)$

Outline

1 Abstraction

2 Abstract interpretation

- Abstract computation
- Fixpoint transfer

3 Application of abstract interpretation

4 Conclusion

Fixpoint transfer

What about **loops** ? semantic functions defined by **fixpoints** ?

Theorem: exact fixpoint transfer

We assume (C, \subseteq) and (A, \sqsubseteq) are complete lattices. We consider a Galois connection $(C, \subseteq) \xrightleftharpoons[\alpha]{\gamma} (A, \sqsubseteq)$, two functions $f : C \rightarrow C$ and $f^\sharp : A \rightarrow A$ and two elements $c_0 \in C, a_0 \in A$ such that:

- f is continuous
- f^\sharp is monotone
- $\alpha \circ f = f^\sharp \circ \alpha$
- $\alpha(c_0) = a_0$

Then:

- **both f and f^\sharp have a least-fixpoint** (by Tarski's fixpoint theorem)
- $\alpha(\text{lfp}_{c_0} f) = \text{lfp}_{a_0} f^\sharp$

Fixpoint transfer: proof

- $\alpha(\text{lfp}_{c_0} f)$ is a fixpoint of f^\sharp since:

$$\begin{aligned} f^\sharp(\alpha(\text{lfp}_{c_0} f)) &= \alpha(f(\text{lfp}_{c_0} f)) && \text{since } \alpha \circ f = f^\sharp \circ \alpha \\ &= \alpha(\text{lfp}_{c_0} f) && \text{by definition of the fixpoints} \end{aligned}$$

- To show that $\alpha(\text{lfp}_{c_0} f)$ is the least-fixpoint of f^\sharp ,

we assume that X is another fixpoint of f^\sharp greater than a_0 and we show that $\alpha(\text{lfp}_{c_0} f) \sqsubseteq X$, i.e., that $\text{lfp}_{c_0} f \subseteq \gamma(X)$.

As $\text{lfp}_{c_0} f = \bigcup_{n \in \mathbb{N}} f^n(c_0)$ (by Kleene's fixpoint theorem), it amounts to proving that $\forall n \in \mathbb{N}, f^n(c_0) \subseteq \gamma(X)$.

By induction over n :

- ▶ $f^0(c_0) = c_0$, thus $\alpha(f^0(c_0)) = a_0 \sqsubseteq X$; thus, $f^0(c_0) \subseteq \gamma(X)$.
- ▶ let us assume that $f^n(c_0) \subseteq \gamma(X)$, and let us show that $f^{n+1}(c_0) \subseteq \gamma(X)$, i.e. that $\alpha(f^{n+1}(c_0)) \sqsubseteq X$:

$$\alpha(f^{n+1}(c_0)) = \alpha \circ f(f^n(c_0)) = f^\sharp \circ \alpha(f^n(c_0)) \sqsubseteq f^\sharp(X) = X$$

as $\alpha(f^n(c_0)) \sqsubseteq X$ and f^\sharp is monotone.

Constructive analysis of loops

How to get a constructive fixpoint transfer theorem ?

Theorem: fixpoint abstraction

Under the assumptions of the previous theorem, and with the following additional hypothesis:

- lattice A is of finite height

We compute the sequence $(a_n)_{n \in \mathbb{N}}$ defined by $a_{n+1} = a_n \sqcup f^\sharp(a_n)$.

Then, $(a_n)_{n \in \mathbb{N}}$ converges and its limit a_∞ is such that $\alpha(\text{lfp}_{c_0} f) = a_\infty$.

Proof: exercise.

Note:

- the assumptions we have made are **too restrictive** in practice
- more general fixpoint abstraction methods in the next lectures

Outline

- 1 Abstraction
- 2 Abstract interpretation
- 3 Application of abstract interpretation
- 4 Conclusion

Comparing existing semantics

- ① A **concrete semantics** $\llbracket P \rrbracket$ is given: e.g., big steps operational semantics
- ② An **abstract semantics** $\llbracket P \rrbracket^\sharp$ is given: e.g., denotational semantics
- ③ **Search for an abstraction relation between them**
e.g., $\llbracket P \rrbracket^\sharp = \alpha(\llbracket P \rrbracket)$, or $\llbracket P \rrbracket \subseteq \gamma(\llbracket P \rrbracket^\sharp)$

Examples:

- finite traces semantics as an abstraction of bi-finitary trace semantics
- denotational semantics as an abstraction of trace semantics
- types as an abstraction of denotational semantics

Payoff:

- better understanding of ties across semantics
- chance to generalize existing definitions

Example: connection between reachable states and denotational semantics

Derivation of a static analysis

- ① Start from a **concrete semantics** $\llbracket P \rrbracket$
- ② **Choose an abstraction** defined by a Galois connection or a concretization function (usually)
- ③ **Derive an abstract semantics** $\llbracket P \rrbracket^\sharp$ such that $\llbracket P \rrbracket \subseteq \gamma(\llbracket P \rrbracket^\sharp)$

Examples:

- derivation of an analysis with a numerical lattice (constants, intervals...)
- construction of an analysis for a complex programming language

Payoff:

- the derivation of the abstract semantics is quite systematic
- this process offers good opportunities for a modular analysis design

There are many ways to apply abstract interpretation.

A very simple language and its semantics

We now apply this to a very simple language, and **derive a static analysis step by step**, from **a concrete semantics and an abstraction**.

- we assume **a fixed set of n integer variables** x_0, \dots, x_{n-1}
- we consider the language defined by the grammar below:

$P ::= x_i = n$	where $n \in \mathbb{Z}$
$x_i = x_j + x_k$	basic, three-addresses arithmetics
$x_i = x_j - x_k$	basic, three-addresses arithmetics
$x_i = x_j \cdot x_k$	basic, three-addresses arithmetics
$P; P$	concatenation
$\text{input}(x_i)$	reading of a positive input
$\text{if}(x_i > 0) P \text{ else } P$	
$\text{while}(x_i > 0) P$	

- a state is a vector $\sigma = (\sigma_0, \dots, \sigma_{n-1}) \in \mathbb{Z}^n$
- a single initial state $\sigma_{\text{init}} = (0, \dots, 0)$

Concrete semantics

Concrete semantics

We let $\llbracket P \rrbracket : \mathcal{P}(\mathbb{Z}^n) \rightarrow \mathcal{P}(\mathbb{Z}^n)$ be defined by:

$$\begin{aligned}
 \llbracket x_i = n \rrbracket(\mathcal{M}) &= \{\sigma[i \leftarrow n] \mid \sigma \in \mathcal{M}\} \\
 \llbracket x_i = x_j + x_k \rrbracket(\mathcal{M}) &= \{\sigma[i \leftarrow \sigma_j + \sigma_k] \mid \sigma \in \mathcal{M}\} \\
 \llbracket x_i = x_j - x_k \rrbracket(\mathcal{M}) &= \{\sigma[i \leftarrow \sigma_j - \sigma_k] \mid \sigma \in \mathcal{M}\} \\
 \llbracket x_i = x_j * x_k \rrbracket(\mathcal{M}) &= \{\sigma[i \leftarrow \sigma_j * \sigma_k] \mid \sigma \in \mathcal{M}\} \\
 \llbracket \text{input}(x_i) \rrbracket(\mathcal{M}) &= \{\sigma[i \leftarrow n] \mid \sigma \in \mathcal{M} \wedge n > 0\} \\
 \llbracket P_0; P_1 \rrbracket(\mathcal{M}) &= \llbracket P_1 \rrbracket \circ \llbracket P_0 \rrbracket(\mathcal{M}) \\
 \llbracket \text{if}(x_i > 0) P_0 \text{ else } P_1 \rrbracket(\mathcal{M}) &= \llbracket P_0 \rrbracket(\{\sigma \in \mathcal{M} \mid \sigma_i > 0\}) \\
 &\quad \cup \llbracket P_1 \rrbracket(\{\sigma \in \mathcal{M} \mid \sigma_i \leq 0\}) \\
 \llbracket \text{while}(x_i > 0) P \rrbracket(\mathcal{M}) &= \{\sigma \in \text{lfp } f \mid \sigma_i \leq 0\} \text{ where} \\
 &\quad f : \mathcal{M}' \mapsto \mathcal{M} \cup \mathcal{M}' \cup \llbracket P \rrbracket(\{\sigma \in \mathcal{M}' \mid \sigma_i > 0\})
 \end{aligned}$$

- given a complete program P , the **reachable states** are defined by $\llbracket P \rrbracket(\{\sigma_{\text{init}}\})$

Examples

A couple of contrived examples

enough to show the behavior of the analysis...

Absolute value function: Factorial function:

```
if( $x_0 > 0$ ){
     $x_1 = x_0;$ 
} else{
     $x_2 = 0;$ 
     $x_1 = x_2 - x_0;$ 
}
```

```
input( $x_0$ );
 $x_1 = 1;$ 
 $x_2 = 1;$ 
while( $x_0 > 0$ ){
     $x_1 = x_0 * x_1;$ 
     $x_0 = x_0 - x_2;$ 
}
```

- input unknown, except that it is a positive value
- output x_0 should be

- input unknown, except that it is a positive value
- output x_0 should be **null**

Abstraction

We compose two abstractions:

- **non relational abstraction:** the values a variable may take is abstracted separately from the other variables
- **sign abstraction:** the set of values observed for each variable is abstracted into the lattice of signs

Abstraction

- **concrete domain:** $(\mathcal{P}(\mathbb{Z}^n), \subseteq)$
- **abstract domain:** (D^\sharp, \sqsubseteq) , where $D^\sharp = (D_S^\sharp)^n$ and \sqsubseteq is the pointwise ordering
- **Galois connection** $(\mathcal{P}(\mathbb{Z}), \subseteq) \xrightleftharpoons[\alpha]{\gamma} (D^\sharp, \sqsubseteq)$, defined by

$$\begin{aligned}\alpha : S &\longmapsto (\alpha_S(\{\sigma_0 \mid \sigma \in S\}), \dots, \alpha_S(\{\sigma_{n-1} \mid \sigma \in S\})) \\ \gamma : M^\sharp &\longmapsto \{\sigma \in \mathbb{Z}^n \mid \forall i, \sigma_i \in \gamma_S(M_i^\sharp)\}\end{aligned}$$

Towards an abstraction for our small language

Basic intuitions for our abstraction:

- ① a memory state is a **vector of scalars**
- ② the concrete semantics is a **function**, that maps a concrete pre-condition to an abstract post-condition
- ③ sign lattice abstract elements abstract sets of values
- ④ an **abstract state** should thus consist of a vector of abstract values
- ⑤ moreover, the **abstract semantics** should consist of a **function** that maps an **abstract pre-condition** into an **abstract post-condition**

Examples

Factorial function:

Absolute value function:

```
if( $x_0 > 0$ ){
     $x_1 = x_0$ ;
} else{
     $x_2 = 0$ ;
     $x_1 = x_2 - x_0$ ;
}
```

```
input( $x_0$ );
 $x_1 = 1$ ;
 $x_2 = 1$ ;
while( $x_0 > 0$ ){
     $x_1 = x_0 * x_1$ ;
     $x_0 = x_0 - x_2$ ;
}
```

- abstract pre-condition: (\top, \top, \top)
- abstract post-condition: (\top, \pm)
- abstract pre-condition: (\top, \top, \top)
- abstract state before the loop: (\pm, \pm, \pm)
- abstract post-condition (after the loop): $(0, \pm, \pm)$

Computation of the abstract semantics

We search for an abstract semantics $\llbracket P \rrbracket^\sharp : D^\sharp \rightarrow D^\sharp$ such that:

$$\alpha \circ \llbracket P \rrbracket \sqsubseteq \llbracket P \rrbracket^\sharp \circ \alpha$$

We aim for a **proof by induction over the syntax of programs**

So, **let us start with sequences / composition**, under the assumption that the property holds for P_0, P_1 :

- $\alpha \circ \llbracket P_0 \rrbracket \sqsubseteq \llbracket P_0 \rrbracket^\sharp \circ \alpha$
- $\alpha \circ \llbracket P_1 \rrbracket \sqsubseteq \llbracket P_1 \rrbracket^\sharp \circ \alpha$

Since $\llbracket P_0; P_1 \rrbracket = \llbracket P_1 \rrbracket \circ \llbracket P_0 \rrbracket$, we expect $\llbracket P_0; P_1 \rrbracket^\sharp = \llbracket P_1 \rrbracket^\sharp \circ \llbracket P_0 \rrbracket^\sharp$:

$$\begin{aligned} \alpha \circ \llbracket P_1 \rrbracket \circ \llbracket P_0 \rrbracket &\sqsubseteq \llbracket P_1 \rrbracket^\sharp \circ \alpha \circ \llbracket P_0 \rrbracket \quad (\text{by induction}) \\ &\sqsubseteq \llbracket P_1 \rrbracket^\sharp \circ \llbracket P_0 \rrbracket^\sharp \circ \alpha \quad \text{by induction...} \\ &\quad \text{and if } \llbracket P_1 \rrbracket^\sharp \text{ monotone!} \end{aligned}$$

Big additional constraint (only today): $\llbracket P \rrbracket^\sharp$ monotone

Analysis of assignment

We now consider the analysis of **assignment statements**

We observe that:

$$\begin{aligned}\alpha(\mathcal{M}) &= (\alpha_S(\{\sigma_0 \mid \sigma \in \mathcal{M}\}), \dots, \alpha_S(\{\sigma_{n-1} \mid \sigma \in \mathcal{M}\})) \\ \alpha \circ \llbracket P \rrbracket(\mathcal{M}) &= (\alpha_S(\{\sigma_0 \mid \sigma \in \llbracket P \rrbracket(\mathcal{M})\}), \dots, \alpha_S(\{\sigma_{n-1} \mid \sigma \in \llbracket P \rrbracket(\mathcal{M})\}))\end{aligned}$$

We start with $x_i = n$:

$$\begin{aligned}\alpha \circ \llbracket x_i = n \rrbracket(\mathcal{M}) &= (\alpha_S(\{\sigma_0 \mid \sigma \in \llbracket P \rrbracket(\{\sigma[i \leftarrow n] \mid \sigma \in \mathcal{M}\})\}), \dots, \\ &\quad \alpha_S(\{\sigma_{n-1} \mid \sigma \in \llbracket P \rrbracket(\{\sigma[i \leftarrow n] \mid \sigma \in S\})\})) \\ &= (\alpha_S(\{\sigma_0 \mid \sigma \in \mathcal{M}\}), \dots, \alpha_S(\{\sigma_{n-1} \mid \sigma \in \mathcal{M}\}))[i \leftarrow \alpha_S(\{n\})] \\ &= \alpha(\mathcal{M})[i \leftarrow \alpha_S(\{n\})] \\ &= \llbracket x_i = n \rrbracket^\sharp(\alpha(\mathcal{M}))\end{aligned}$$

where:

$$\llbracket x_i = n \rrbracket^\sharp(M^\sharp) = M^\sharp[i \leftarrow \alpha_S(\{n\})]$$

Computation of the abstract semantics

Other assignments are treated in a similar manner:

$$\begin{aligned} \llbracket x_i = n \rrbracket^\sharp(M^\sharp) &= M^\sharp[i \leftarrow \alpha_S(\{n\})] \\ \llbracket x_i = x_j + x_k \rrbracket^\sharp(M^\sharp) &= M^\sharp[i \leftarrow M_j^\sharp \oplus^\sharp M_k^\sharp] \\ \llbracket x_i = x_j - x_k \rrbracket^\sharp(M^\sharp) &= M^\sharp[i \leftarrow M_j^\sharp \ominus^\sharp M_k^\sharp] \\ \llbracket x_i = x_j * x_k \rrbracket^\sharp(M^\sharp) &= M^\sharp[i \leftarrow M_j^\sharp \otimes^\sharp M_k^\sharp] \\ \llbracket \text{input}(x_i) \rrbracket^\sharp(M^\sharp) &= M^\sharp[i \leftarrow \perp] \end{aligned}$$

- Proofs are left as exercises
- As remarked before, we only get $\alpha \circ \llbracket P \rrbracket \sqsubseteq \llbracket P \rrbracket^\sharp \circ \alpha$
i.e., equality is too hard to derive
- On the other hand, monotonicity is good so far (exercise)

Computation of the abstract semantics

We now consider the case of **tests**:

$$\begin{aligned}
 & \alpha \circ [\![\text{if}(x_i > 0) P_0 \text{ else } P_1]\!](\mathcal{M}) \\
 &= \alpha([\![P_0]\!](\{\sigma \in \mathcal{M} \mid \sigma_i > 0\}) \cup [\![P_1]\!](\{\sigma \in \mathcal{M} \mid \sigma_i \leq 0\})) \\
 &= \alpha([\![P_0]\!](\{\sigma \in \mathcal{M} \mid \sigma_i > 0\})) \sqcup \alpha([\![P_1]\!](\{\sigma \in \mathcal{M} \mid \sigma_i \leq 0\})) \\
 & \quad \text{as } \alpha \text{ preserves least upper bounds} \\
 &\sqsubseteq [\![P_0]\!]^\sharp(\alpha(\{\sigma \in \mathcal{M} \mid \sigma_i > 0\})) \sqcup [\![P_1]\!]^\sharp(\alpha(\{\sigma \in \mathcal{M} \mid \sigma_i \leq 0\})) \\
 & \quad \text{by induction and as } \sqcup \text{ is monotone} \\
 &\sqsubseteq [\![P_0]\!]^\sharp(\alpha(\mathcal{M}) \sqcap \top[i \leftarrow \pm]) \sqcup [\![P_1]\!]^\sharp(\alpha(\mathcal{M}) \sqcap \top[i \leftarrow \leq 0]) \\
 &\sqsubseteq [\![\text{if}(x_i > 0) P_0 \text{ else } P_1]\!]^\sharp(\alpha(\mathcal{M}))
 \end{aligned}$$

where:

$$\begin{aligned}
 & [\![\text{if}(x_i > 0) P_0 \text{ else } P_1]\!]^\sharp(M^\sharp) = \\
 & \quad [\![P_0]\!]^\sharp(M^\sharp \sqcap \top[i \leftarrow \pm]) \sqcup [\![P_1]\!]^\sharp(M^\sharp \sqcap \top[i \leftarrow \leq 0])
 \end{aligned}$$

- Monotonicity: by induction...

An example with basic condition test

Absolute value function:

```
if( $x_0 > 0$ ){  
     $x_1 = x_0$ ;  
}else{  
     $x_2 = 0$ ;  
     $x_1 = x_2 - x_0$ ;  
}
```

Analysis steps:

- ① entry point: (\top, \top)
- ② after entry in true branch: (\pm, \top)
- ③ exit of true branch: (\pm, \pm)
- ④ after entry in false branch: $(\leq 0, \top)$
- ⑤ exit of false branch: $(\leq 0, \geq 0)$
- ⑥ exit: $(\top, \geq 0)$

Analysis of a loop

We have seen that:

$$\llbracket \text{while}(x_i > 0) P \rrbracket(\mathcal{M}) = \{\sigma \in \text{lfp } f \mid \sigma_i \leq 0\}$$

where $f(\mathcal{M}') = \mathcal{M} \cup \mathcal{M}' \cup \llbracket P \rrbracket(\{\sigma \in \mathcal{M}' \mid \sigma_i > 0\})$.

Thus, **we look for a fixpoint transfer**, but our fixpoint transfer theorem **requires equality**, so **it does not apply**...

We will use a variant of the previous theorem:

If:

- f is continuous
- f^\sharp is monotone
- $\alpha \circ f \sqsubseteq f^\sharp \circ \alpha$
- $\alpha(\emptyset) = \perp$

Then, $\alpha(\text{lfp } f) \sqsubseteq \text{lfp } f^\sharp$

Analysis of a loop

Application:

- we consider the analysis of the loop with pre-condition $M^\#$
- we take

$$f^\#(M_0^\#) = M^\# \cup M_0^\# \cup \llbracket P \rrbracket^\#(M_0^\# \sqcap \top[i \leftarrow \perp])$$

- then, $\alpha \circ f \sqsubseteq f^\# \circ \alpha$
- we can apply **the new fixpoint transfer theorem**...

$$\llbracket \text{while}(x_i > 0) P \rrbracket^\#(M^\#) = \top[i \leftarrow \leq 0] \sqcap \text{Ifp}_{M^\#} f^\#
 \text{ where } f^\#(M_0^\#) = M^\# \cup M_0^\# \cup \llbracket P \rrbracket^\#(M_0^\# \sqcap \top[i \leftarrow \perp])$$

One more thing:

- we need to prove **monotonicity** of the fixpoint image since the whole abstract semantics soundness relies on it!

Abstract semantics

Abstract semantics and soundness

We have derived the following definition of $\llbracket P \rrbracket^\sharp$:

$$\begin{aligned}
 \llbracket x_i = n \rrbracket^\sharp(M^\sharp) &= M^\sharp[i \leftarrow \alpha_S(\{n\})] \\
 \llbracket x_i = x_j + x_k \rrbracket^\sharp(M^\sharp) &= M^\sharp[i \leftarrow M_j^\sharp \oplus^\sharp M_k^\sharp] \\
 \llbracket x_i = x_j - x_k \rrbracket^\sharp(M^\sharp) &= M^\sharp[i \leftarrow M_j^\sharp \ominus^\sharp M_k^\sharp] \\
 \llbracket x_i = x_j \cdot x_k \rrbracket^\sharp(M^\sharp) &= M^\sharp[i \leftarrow M_j^\sharp \otimes^\sharp M_k^\sharp] \\
 \llbracket \text{input}(x_i) \rrbracket^\sharp(M^\sharp) &= M^\sharp[i \leftarrow \perp] \\
 \llbracket \text{if}(x_i > 0) P_0 \text{ else } P_1 \rrbracket^\sharp(M^\sharp) &= \llbracket P_0 \rrbracket^\sharp(M^\sharp \sqcap \top[i \leftarrow \perp]) \sqcup \llbracket P_1 \rrbracket^\sharp(M^\sharp) \\
 \llbracket \text{while}(x_i > 0) P \rrbracket^\sharp(M^\sharp) &= \text{Ifp}_{M^\sharp} f^\sharp \text{ where} \\
 &\quad f^\sharp : M^\sharp \mapsto M^\sharp \sqcup \llbracket P \rrbracket^\sharp(M^\sharp \sqcap \top[i \leftarrow \perp])
 \end{aligned}$$

Furthermore, for all program P : $\alpha \circ \llbracket P \rrbracket \sqsubseteq \llbracket P \rrbracket^\sharp \circ \alpha$

An **over-approximation of the final states** is computed by $\llbracket P \rrbracket^\sharp(\top)$.

Example

Factorial function:

```
input(x0);
x1 = 1;
x2 = 1;
while(x0 > 0){
    x1 = x0 · x1;
    x0 = x0 − x2;
}
```

Abstract state **before the loop**:
 (\pm, \pm, \pm)

Iterates on the loop:

iterate	0	1	2
x ₀	\pm	\top	\top
x ₁	\pm	\pm	\pm
x ₂	\pm	\pm	\pm

Abstract state **after the loop**: (\top, \pm, \pm)

Outline

- 1 Abstraction
- 2 Abstract interpretation
- 3 Application of abstract interpretation
- 4 Conclusion

Summary

This lecture:

- abstraction and its formalization
- computation of an abstract semantics in a very simplified case

Next lectures:

- construction of a few non trivial abstractions
- more general ways to compute sound abstract properties