Abstract Interpretation

Semantics and applications to verification

Xavier Rival

Ecole Normale Supérieure

April 12th, 2024

Xavier Rival Abstract Interpretation: Introduction April 12th, 2024

1/62

Program of this lecture

Studied so far:
@ semantics: behaviors of programs
@ properties: safety, liveness, security...

@ approaches to verification: typing, use of proof assistants, model
checking

Today's lecture: introduction to abstract interpretation
a general framework for comparing semantics
introduced by Patrick Cousot and Radhia Cousot (1977)

@ abstraction: use of a lattice of predicates

@ computing abstract over-approximations, while preserving
soundness

e computing abstract over-approximations for loops, using fixpoints
as a basis

Xavier Rival Abstract Interpretation: Introduction April 12th, 2024 2/62

Abstraction Notion of abstraction

Outline

@ Abstraction
@ Notion of abstraction
@ Abstraction and concretization functions
@ Galois connections

Xavier Rival Abstract Interpretation: Introduction

April 12th, 2024

3/62

Abstraction Notion of abstraction

Abstraction example 1: signs

Abstraction: defined by a family of properties to use in proofs J

Example:
@ objects under study: sets of mathematical integers

@ abstract elements: signs
Lattice of signs
T
N
- 0 =
NP

Note: the order in the abstract lattice corresponds to inclusion...

L denotes only 0
+ denotes any set of positive integers
0 denotes any subset of {0}

— denotes any set of negative integers

T denotes any set of integers

Xavier Rival Abstract Interpretation: Introduction April 12th, 2024 4/62

Abstraction Notion of abstraction

Abstraction example 1: signs

Definition: abstraction relation
e concrete elements: elements of the original lattice (¢ € P(Z))
e abstract elements: predicate (a: “- € {+,0,...}")
@ abstraction relation: c s a when a describes ¢

Examples:
e {1,2,3,5,7,11,13,17,19,23,.. .} ks +
e {1,2,3,5,7,11,13,17,19,23,.. .} Fs T

We use abstract elements to reason about operations:
o ifcgbs +and a ks +, then {xo+x1 | x; € ¢i} Fs +
o ifcgls + and ¢ s +, then {xo-x1 | xi € ¢i} Fs +
o ifcgks +and ¢ ks 0, then {xo-x1 | xi € ¢i} Fs 0
o ifcgbs+and abs L, then {xo-x1 | xi € ¢} Fs L

Xavier Rival Abstract Interpretation: Introduction April 12th, 2024 5/62

Abstraction Notion of abstraction

Abstraction example 1: signs

We can also consider the union operation:
e ifcgks+ and ¢ ks +, then U1 Fs +
e ifqgbs+andci ks L, then qgUci ks +

But, what can we say about ¢y U ¢i, when ¢ Fs 0 and ¢ Fs + 7
@ clearly, coUci g T...
@ but no other relation holds
@ in the abstract, we do not rule out negative values

We can extend the initial lattice:
@ > 0 denotes any set of positive or null integers
@ < 0 denotes any set of negative or null integers 0 0 >0

@ # 0 denotes any set of non null integers J>< <
\

o if o s + and ¢1 s 0, then U ¢t s > 0

Xavier Rival Abstract Interpretation: Introduction April 12th, 2024 6/62

Abstraction Notion of abstraction

Abstraction example 2: constants

Definition: abstraction based on constants
e concrete elements: P(Z)
e abstract elements: |, T,n where n€Z
(Dt ={L,TYu{n|nez})
@ abstraction relation: ct¢ n <= ¢ C {n}

We obtain a flat lattice:
A S
[(-2] [-1] [0 [[2]
| =

Abstract reasoning:
o if o chand c ke ny, then {k0+ ke ’ ki € C,'} Fe ng + m

Xavier Rival Abstract Interpretation: Introduction April 12th, 2024 7/62

Abstraction Notion of abstraction

Abstraction example 3: Parikh vector

Definition: Parikh vector abstraction
e concrete elements: P(A*) (sets of words over alphabet A)
e abstract elements: {1, T} U (A — N)
e abstraction relation: ¢y ¢ : A — N if and only if:

VYw € c,Va € A, a appears ¢(a) times in w

Abstract reasoning:
@ concatenation:
if ¢o,¢1: A — Nand cp, c; are such that ¢; Fq ¢,

{wo - wi | wj € ci} g o+ o1

Information preserved, information deleted:
@ very precise information about the number of occurrences

@ the order of letters is totally abstracted away (lost)
Xavier Rival Abstract Interpretation: Introduction April 12th, 2024

8/62

Abstraction Notion of abstraction

Abstraction example 4: interval abstraction

Definition: abstraction based on intervals
e concrete elements: P(Z)

e abstract elements: L, (a, b) where a € {—oc0}UZ, be ZU {+o0}
and a<b

@ abstraction relation:
Dbz L

Sk T
Skr(a,b) < VxeS5,a<x<b

Operations: TD

Xavier Rival Abstract Interpretation: Introduction April 12th, 2024 9/62

Abstraction Notion of abstraction

Abstraction example 5: non relational abstraction

Definition: non relational abstraction
e concrete elements: P(X — Y), inclusion ordering
@ abstract elements: X — P(Y), pointwise inclusion ordering
@ abstraction relation: cFyr a <= Vo € ¢, Vx € X, ¢(x) € a(x)

Information preserved, information deleted:
@ very precise information about the image of the functions in ¢

e relations such as (for given xp, x1 € X, yo,y1 € Y) the following are

lost:
Vo € c, ¢(x0) = ¢(x1)
V¢ €c, VX,X/ € X7 ¢(X) 7é Yo V ¢(X/) 7é 1

Xavier Rival Abstract Interpretation: Introduction April 12th, 2024 10 /62

Abstraction Notion of abstraction

Notion of abstraction relation

Concrete order: so far, always inclusion
@ the tighter the concrete set, the fewer behaviors

@ smaller concrete sets correspond to more precise properties

Abstraction relation

Intuitively, the abstraction relation also describes implication:

c - a effectively means “the property described by ¢ implies that
described by a

Advantage on static analysis (hint about the following lectures):

@ abstract predicates are a lot easier to manipulate than sets of
concrete states or logical formulas

@ we can still derive concrete facts from abstract predicates

Xavier Rival Abstract Interpretation: Introduction April 12th, 2024 11 /62

Abstraction Notion of abstraction

Abstraction relation and monotonicity

Order relations, abstraction relation and monotonicity
@ both orders and the abstraction relation describe ordering

@ we derive from transitivity there monotonicity properties
i.e., chains of implications compose

Abstraction relation: ¢ F a when ¢ satisfies a
@ if cg C ¢; and ¢; satisfies a, in all our examples, ¢y also satisfies a

Abstract order: in all our examples,
@ it matches the abstraction relation as well:
if ag C a1 and c satisfies ag, then c also satisfies a;
e great advantage: we can reason about implication in the
abstract, without looking back at the concrete properties

We will now formalize this in detail... }

Xavier Rival Abstract Interpretation: Introduction April 12th, 2024 12 /62

Abstraction Abstraction and concretization functions

Outline

@ Abstraction
@ Notion of abstraction
@ Abstraction and concretization functions
@ Galois connections

Xavier Rival Abstract Interpretation: Introduction April 12th, 2024 13 /62

Abstraction Abstraction and concretization functions

Towards adjoint functions

We consider a concrete lattice (C, C) and an abstract lattice (A, C).

So far, we used abstraction relations, that are consistent with orderings:
Abstraction relation compatibility

e Vg, e C,VaeA, gcCaNata=— ¢t a

@ Vce C,Vap,a1 €A, cFagANagCa = ck a

When we have a ¢ (resp., a) and try to map it into a compatible a (resp. a
c), the abstraction relation is not a convenient tool.
Hence, we shall use adjoint functions between C and A.

@ from concrete to abstract: abstraction

e from abstract to concrete: concretization
Xavier Rival

Abstract Interpretation: Introduction April 12th, 2024 14 /62

Abstraction Abstraction and concretization functions

Concretization function

Our first adjoint function:

Definition: concretization function

Concretization function v : A — C (if it exists) is a monotone function
that maps abstract a into the weakest (i.e., most general) concrete ¢ that
satisfies a (i.e., c - a).

Notes:
@ in common cases, there exists a y
e ct aif and only if ¢ C v(a)

@ a concretization that is not monotone with respect to the “logical
ordering” would not make sense

@ in fact, in some cases, we will even define v before we define an
ordering, and let v define the ordering!

Xavier Rival Abstract Interpretation: Introduction April 12th, 2024 15 /62

Abstraction Abstraction and concretization functions

Concretization function: a few examples

Signs abstraction: Constants abstraction:
Vi T — Z v: T +— Z
0 — {0} L — 0

L — 0

Non relational abstraction:

YNR - (X—>P(Y)) — ,P(X_>Y)
o — {d: X = Y |VxeX, ¢(x) € d(x)}

Parikh vector abstraction: exercise!

Xavier Rival Abstract Interpretation: Introduction April 12th, 2024 16 / 62

Abstraction Abstraction and concretization functions
Abstraction function

Our second adjoint function:

Definition: abstraction function

An abstraction function « : C — A (if it exists) is a monotone function
that maps concrete c¢ into the most precise abstract a that soundly
describes ¢ (i.e., ¢ I- a).

Note:
@ in quite a few cases (including some in this course), there is no «

e for the same reason as v a non monotone « (with respect to logical
ordering) would not make sense

Summary on adjoint functions:
@ « returns the most precise abstract predicate that holds true for its
argument
this is called the best abstraction

@ v returns the most general concrete meaning of its argument
Xavier Rival Abstract Interpretation: Introduction April 12th, 2024 17 / 62

Abstraction Abstraction and concretization functions

Abstraction: a few examples

Constants abstraction:

1 ifc=10
ac: (cCZ) — n if c={n}
T otherwise

Non relational abstraction:

ayr: PX—=Y) — X—=P()
c — (xeX)—={o(x)| ¢ € c}

Signs abstraction and Parikh vector abstraction: exercises

Xavier Rival Abstract Interpretation: Introduction April 12th, 2024

18 /62

Abstraction Galois connections

Outline

@ Abstraction
@ Notion of abstraction
@ Abstraction and concretization functions
@ Galois connections

Xavier Rival Abstract Interpretation: Introduction

April 12th, 2024

19 /62

Abstraction Galois connections

Tying definitions of abstraction relation

So far, we have:
@ abstraction a: C — A
@ concretization y: A— C
How to tie them together ?
They should agree on a same abstraction relation + !

This means:
Vce C, VaeA,

cka
< cC~(a)
< a(c)C a

This observation is at the basis of the definition of Galois connections

Xavier Rival Abstract Interpretation: Introduction April 12th, 2024 20 /62

Abstraction Galois connections

Galois connection

Definition: Galois connection
A Galois connection is defined by a:

@ a concrete lattice (C, C),

@ an abstract lattice (A, C),

@ an abstraction function a: C — A

@ and a concretization function v : A — C
such that:

Vee C,Vae A, a(c) C a<= c C~(a) (<= cFa)

Notation: (C.C) == (A.C)

Note: in practice, we shall rarely use F; we use «, instead

Xavier Rival Abstract Interpretation: Introduction April 12th, 2024

21/62

Abstraction Galois connections

Example: constants abstraction and Galois connection

Constants lattice Dg, ={L, Ttw{n|neZ}

ac(c) = L ifc=0 v%(T) — Z
ac(c) = n ifc={n} re(n) — {n}
ac(c) = T otherwise Ye(L) — 0
Thus:
o ifc=10,Va cCHe(a) ie, cCyla) < ac(c)=LCa
o if c = {n},

ac({n}):gga < a=nVa=1T << CZ{H}QVC(a)
@ if ¢ has at least two distinct elements ng, n1, a¢(c) = T and
cCrela)=>a=T,ie,cCrl(a) « ac(c)=TCa

Constant abstraction: Galois connection

c Ce(a) < ac(c) C a, therefore, (P(Z), <) <—;_Z> (Dg, 0)

Xavier Rival Abstract Interpretation: Introduction April 12th, 2024

22/62

Abstraction Galois connections

Example: non relational abstraction Galois connection

We have defined:
anyr: (cC(X—=Y))
wr (P € (X —=P(Y)))

— (x€X) = {f(x)| fec}
— {f: X o Y |Vx€X, f(x) € d(x)}

Let ce P(X — Y) and ® € (X — P(Y)); then:

anr(c) E®

—
<~
—
<~
—

Vx € X, ayr(c)(x) C d(x)
Vx € X, {f(x) | f € c} C d(x)
Vf € ¢, ¥x € X, f(x) € ®(x)
Vfec, fe ’}/NR(CD)

c Cywr(®)

Non relational abstraction: Galois connection

c Cywr(a) < anr(c)C a, therefore,

(P(X = Y), Q)

e (X = P(Y).0)

Xavier Rival Abstract Interpretation: Introduction April 12th, 2024

23 /62

Abstraction Galois connections

Galois connection properties

Galois connections have many useful properties.
: . . . 2l
In the next few slides, we consider a Galois connection (C, C) = (A, C)
and establish a few interesting properties.
Extensivity, contractivity

@ a o+ is contractive: Ya€ A, aovy(a)C a

@ yoa is extensive: Vc € C, ¢ C yo afc)

Proof:

o let a € A; then, v(a) C v(a), thus a(vy(a)) C a
o let ¢ € C; then, a(c) C a(c), thus ¢ C vy(a(c))

Xavier Rival Abstract Interpretation: Introduction April 12th, 2024 24 /62

Abstraction Galois connections

Galois connection properties

Monotonicity of adjoints
@ « is monotone

@ 7y is monotone

Proof:

@ monotonicity of a: let ¢, ¢c; € C such that ¢y C cy;
by extensivity of yo«, ¢1 C y(a(c1)), so by transitivity, g C v(a(c1))
by definition of the Galois connnection, a(cp) C a(cy)

@ monotonicity of ~: same principle
Note: many proofs can be derived by duality

Duality principle applied for Galois connections

If (C,C) &= (A, L), then (A, J) == (C,2)

Xavier Rival Abstract Interpretation: Introduction April 12th, 2024 25 /62

Abstraction Galois connections

Galois connection properties

Iteration of adjoints
@ O ")/ O =W

o 'y o O ")/ = ’)/
@ oy (resp., vo«) is idempotent, hence a lower (resp., upper) closure
operator
Proof:

@ aoyoa=a:
let c € C, then vy o a(c) Cyoalc)
hence, by the Galois connection property, oy o a(c) C «a(c)
moreover, y o « is extensive and o monotone, so a(c) C a oo a(c)
thus, a oo a(c) = a(c)

o the second point can be proved similarly (duality); the others follow

Xavier Rival Abstract Interpretation: Introduction April 12th, 2024 26 /62

Abstraction Galois connections

Galois connection properties

Properties on iterations of adjoint functions:

concrete domain abstract domain

’

Xavier Rival Abstract Interpretation: Introduction April 12th, 2024 27 /62

Abstraction Galois connections

Galois connection properties

« preserves least upper bounds
Vg, c1 € C, Oz(Co U C1) = Oé(Co) L Oé(Cl)

By duality:
Vag,a1 € A, v(coMca) = () My(a)

Proof:

First, we observe that a(cy) U a(c1) C a(co U cy), i.e. a(cpUcr) is an
upper bound of {a(cp), a(c1)}-

We now prove it is the least upper bound. For all a € A:

alcoUc) C a coUa Cvy(a)
0 Cvy(a)ANa Cr(a)
alcp) Cana(a)Ca

a(e)Ua(a)Ca

11ty

Note: when C, A are complete lattices, this extends to families of elements
Xavier Rival Abstract Interpretation: Introduction April 12th, 2024 28 /62

Abstraction Galois connections

Galois connection properties

Uniqueness of adjoints
@ given v : A — C, there exists at most one o : C — A such that
(C.C) £ (A,C), and, if it exists, a(c) = M{a € A| c C y(a)}
@ similarly, given o : C — A, there exists at most one v : A — C such
that (C,C) <= (A,), and it is defined dually

Proof of the first point (the other follows by duality):
we assume that there exists an « so that we have a Galois connection and

prove that, a(c) =M{a€ A| c C y(a)} for a given c € C.

e if a € Ais such that ¢ C ~(a), then a(c) C a
thus, a(c) is a lower bound of {a € A| c C ~v(a)}.

e since ¢ C y(a(c)), a(c) e {ac A| c Cv(a)}, so a(c) is the greatest
lower bound of {a € A| c C ~(a)}.

Thus, a(c) is the least upper bound of {a € A| c C v(a)}

Xavier Rival Abstract Interpretation: Introduction April 12th, 2024 29 /62

Abstraction Galois connections

Construction of adjoint functions

The adjoint uniqueness property is actually a very strong property:
o it allows to construct an abstraction from a concretization

@ ... or to understand why no abstraction can be constructed :-)

Turning an adjoint into a Galois connection (1)

Let (C,C) and (A,C) be two lattices, such that any subset of A as a
greatest lower bound and let v : (A,C) — (C, C) be a monotone function.

Then, the function below defines a Galois connection:

a(c)=nfac Al c C(a)}

Example of abstraction with no a: when M is not defined on all
families, e.g., lattice of convex polyedra, abstracting sets of points in R?.

Exercise: state the dual property and apply the same principle to the

concretization
Xavier Rival Abstract Interpretation: Introduction April 12th, 2024 30/62

Abstraction Galois connections

Galois connection characterization

A characterization of Galois connections

Let (C,C) and (A, C) be two lattices, and a: C — Aand v: A— C be
two monotone functions, such that:

@ « oy is contractive
@ Yo« is extensive
Then, we have a Galois connection

(C,C) &= (A,C)

(&7

Proof:

@ let c € C and a € A such that a(c) C a.
then: ~(a(c)) € v(a) (as 7y is monotone)
¢ Cv(a(c)) (as v o « is extensive)
thus, ¢ C vy(a), by transitivity
@ the other implication can be proved by duality
Xavier Rival

Abstract Interpretation: Introduction April 12th, 2024 31/62

Abstract interpretation

Outline

e Abstract interpretation
@ Abstract computation
@ Fixpoint transfer

Xavier Rival

Abstract Interpretation: Introduction

Abstract computation

April 12th, 2024

32/62

Abstract interpretation Abstract computation

Constructing a static analysis

We have set up a notion of abstraction:

e it describes sound approximations of concrete properties with
abstract predicates

@ there are several ways to formalize it (abstraction, concretization...)

@ we now wish to compute sound abstract predicates

In the following, we assume

@ a Galois connection

(C,C) &= (A,C)

[0}

@ a concrete semantics [.], with a constructive definition
i.e., [P] is defined by constructive equations ([P] = f(...)), least
fixpoint formula ([P] = Ifpy f)...

Xavier Rival Abstract Interpretation: Introduction April 12th, 2024 33/62

Abstract interpretation Abstract computation

Abstract transformer

We now consider a monotone concrete function f : C — C

Given c € C, and a € A that abstracts c,
how to derive an abstraction of f(c) 7 J
@ « o f(c) abstracts the image of ¢ by f p
. A——A
e f(c) is abstracted by a0 f o v(a):
c C~(a) by assumption o
f(c) C f(v(a)) by monotonicity of £
a(f(c)) C a(f(v(a))) by monotonicity of a C——F—C

Definition: best and sound abstract transformers

@ a sound abstract transformer approximating f is any operator
f*: A — A, such that ao f oy C % (or equivalently, f oy C o f¥)

o the best abstract transformer approximating f is ff = a o f o~y

Xavier Rival Abstract Interpretation: Introduction April 12th, 2024 34 /62

Abstract interpretation Abstract computation

Example: lattice of signs

° f:D§—>Dg,cr—>{—n\n€c}
o fl=aof oy

Lattice of signs: Abstract negation operator:

~IN
<

o+ |-

|+ 1= | I—ﬂ
@,
&

=l

@ here, the best abstract transformer is very easy to compute

@ no need to use an approximate one

Xavier Rival Abstract Interpretation: Introduction April 12th, 2024

35/ 62

Abstract interpretation Abstract computation

Abstract n-ary operators

We can generalize this to n-ary operators, such as boolean operators
and arithmetic operators

Definition: best and sound abstract operators

Let g : C" — C be an n-ary operator, monotone in each component.
Then:

@ the best abstract operator approximating g is defined by:
gh: An — A

(ag,...,an-1) —— «aog(y(ao),---,v(an-1))
@ a sound abstract transformer approximating g is any operator
gt A" — A, such that

v(‘307 ceey an—l) S Anv (ORS) g(r}/(aO)u ... 7’y(an—1)) E gﬁ(QOa

0oog a,,_l)
(i.e., equivalently, g(v(ao), - -

-.v(an-1)) S vog¥(ao, ..., an-1)

Xavier Rival Abstract Interpretation: Introduction April 12th, 2024 36 /62

Abstract interpretation Abstract computation

Example: lattice of signs arithmetic operators

Application:
e ©:C?>— C,(co,c1) {no+n1|ni€ci}
o ®:C*— C,(c,c1)—{no-ni|njec}

Best abstract operators:

[of [L[-JoJ+[T] [& [L][-JO[+]T]
1 1 L] L] L L iR 1 L] L] L L
- Ll =]=]T]T - L1+ 0| =T
0 [L] -Jolx[T] [0 [L[ofafa]o
+ LT |+ +|T + L] =104+ T
T Ly T | T | T]|T T 1| T 0 T T

Example of loss in precision:

o {8} € ys(£) and {2} € 1s5(=)
o ©f(4,—) = T is a lot worse than as(®({8},{-2})) = +

Xavier Rival Abstract Interpretation: Introduction April 12th, 2024 37/62

Abstract interpretation Abstract computation

Example: lattice of signs set operators

Best abstract operators approximating U and N:

VLl Jof[+[T] [ofF [L[-[O0]+]T]
T Ll =To[+][T N R BT R R I
— [=1=1T[7[T — L] =1Ll =
0 olT o[T[T 0 T Lol LTo
+ [+ [T [T +[T + L] L+ +=
T T[T [T [T]T T Ll =To[+]T

Example of loss in precision:
o Y(=)Un(£)={neZ|n#0} C(T)

Xavier Rival Abstract Interpretation: Introduction April 12th, 2024 38 /62

Abstract interpretation Fixpoint transfer

Outline

e Abstract interpretation
@ Abstract computation
@ Fixpoint transfer

Xavier Rival Abstract Interpretation: Introduction

April 12th, 2024

39/62

Abstract interpretation Fixpoint transfer

Fixpoint transfer
What about loops ? semantic functions defined by fixpoints ?

Theorem: exact fixpoint transfer

We assume (C, C) and (A, C) are complete lattices. We consider a Galois

connection (C, Q) % (A,C), two functions f : C — C and f#: A — A
and two elements ¢y € C, ag € A such that:

e f is continuous
e f*is monotone
e aof="floa
e a(c) = ap
Then:
e both f and f* have a least-fixpoint (by Tarski's fixpoint theorem)
o a(lfp,) = Ifp,, *

Xavier Rival Abstract Interpretation: Introduction April 12th, 2024 40 /62

Abstract interpretation Fixpoint transfer

Fixpoint transfer: proof

o oflfp,, f) is a fixpoint of f* since:

fila(lfp,, £)) = a(f(ifpg, f)) sinceaof =floa
= oflfpy, f) by definition of the fixpoints

o To show that a(lfp., f) is the least-fixpoint of f¥,

we assume that X is another fixpoint of f# greater than ap and we
show that a(lfp,, f) C X, i.e., that Ifp f C v(X).
As Ifpe, f = Upen f"(co) (by Kleene's fixpoint theorem), it amounts
to proving that Vn € N, f"(cp) C v(X).
By induction over n:

» %(cp) = co, thus a(f%(cp)) = ao C X; thus, (o) C v(X).

> let us assume that 7"(cy) € v(X), and let us show that

f"1l(cy) C y(X), i.e. that a(f"(c)) C X:

a(f" () = ao f(f"(q)) = fF o a(f"(c)) C FH(X) = X

as a(f"(co)) C X and f* is monotone.

Xavier Rival Abstract Interpretation: Introduction April 12th, 2024 41 /62

Abstract interpretation Fixpoint transfer

Constructive analysis of loops

How to get a constructive fixpoint transfer theorem ?

Theorem: fixpoint abstraction

Under the assumptions of the previous theorem, and with the following
additional hypothesis:

o lattice A is of finite height
We compute the sequence (an)nen defined by a,11 = a, L f%(a,).

Then, (an)nen converges and its limit a is such that a(lfp, f) = acc.
v

Proof: exercise.

Note:
@ the assumptions we have made are too restrictive in practice

@ more general fixpoint abstraction methods in the next lectures

Xavier Rival Abstract Interpretation: Introduction April 12th, 2024 42 /62

@ Abstraction

e Abstract interpretation

e Application of abstract interpretation

@ Conclusion

Application of abstract interpretation

Comparing existing semantics

@ A concrete semantics [P] is given: e.g., big steps operational
semantics

@ An abstract semantics [P]* is given: e.g., denotational semantics
© Search for an abstraction relation between them

eg., [P]* = o([P]), or [P] € +([PI")

Examples:

o finite traces semantics as an abstraction of bi-finitary trace semantics
@ denotational semantics as an abstraction of trace semantics
@ types as an abstraction of denotational semantics
Payoff:
@ better understanding of ties across semantics
@ chance to generalize existing definitions
Example: connection between reachable states and denotational semantics

Xavier Rival Abstract Interpretation: Introduction April 12th, 2024 44 /62

Application of abstract interpretation

Derivation of a static analysis

© Start from a concrete semantics [P]

@ Choose an abstraction defined by a Galois connection or a
concretization function (usually)

© Derive an abstract semantics [P]* such that [P] C ~([P]*)

Examples:

@ derivation of an analysis with a numerical lattice (constants,
intervals...)

@ construction of an analysis for a complex programming language
Payoff:

@ the derivation of the abstract semantics is quite systematic

@ this process offers good opportunities for a modular analysis design

There are many ways to apply abstract interpretation.

Xavier Rival Abstract Interpretation: Introduction April 12th, 2024 45 /62

Application of abstract interpretation

A very simple language and its semantics

We now apply this to a very simple language, and derive a static analysis
step by step, from a concrete semantics and an abstraction. J

@ we assume a fixed set of n integer variables xq,...,x,_1
@ we consider the language defined by the grammar below:
P = x;=n where n € Z

| xi =%+ x4 basic, three-addresses arithmetics
| xi=% — x4 basic, three-addresses arithmetics
| xi=%-x¢ basic, three-addresses arithmetics
| PP concatenation
| input(x;) reading of a positive input
| if(xi > 0) Pelse P
| while(x,- > 0) P

@ a state is a vector o = (09, ...,0n-1) € Z"

@ a single initial state oini = (0, ...,0)

Xavier Rival Abstract Interpretation: Introduction April 12th, 2024 46 / 62

Application of abstract interpretation

Concrete semantics

Concrete semantics

We let [P] : P(Z") — P(Z") be defined by:
[xi = nj(M) = {oi«+ n]|oce M}
[xi =%+ =] (M) = {olioj+0k]]|0oe M}
[xi =xj —x(](M) = {oli+0j—ox]| o e M}
[[X,':XJ'*Xk]](M) = {O’[i(—O'j*O'kHO'EM}
[input(x))[(M) = {oli+ n]|oce MAn>0}
[Po; PAJ(M) = [P1] o [Po](M)
[if(x; > 0) Py else P1J(M) = [Po]({oc € M |0o; > 0})
U[Pi]({o € M | o; < 0})
[while(x; > 0) P[(M) = {o €lfpf|o; <0} where
f M= MUMUI[P|({c e M |o;>0})

@ given a complete program P, the reachable states are defined by

[PI({oinit})

Xavier Rival Abstract Interpretation: Introduction April 12th, 2024 47 / 62

Application of abstract interpretation

Examples

A couple of contrived examples
enough to show the behavior of the analysis...

Absolute value function: Factorial function:
if(xo > 0){ input(xo);
X1 = Xo, x1 = 1;
Jelse] o 1
x2 = 0; while(xo > 0){
X1 = X2 — X0, X1 = X * X1,
¥ Xp = X0 — X2;

@ input unknown, except
that it is a positive
value

@ input unknown, except that it is a
positive value

@ output xg should be null
April 12th, 2024 48 / 62

PRI I R DX R AN
Xavier Rival Abstract Interpretation: Introduction

Application of abstract interpretation

Abstraction

We compose two abstractions:

@ non relational abstraction: the values a variable may take is
abstracted separately from the other variables

@ sign abstraction: the set of values observed for each variable is
abstracted into the lattice of signs

Abstraction
e concrete domain: (P(Z"),C)

e abstract domain: (D* C), where D = (D‘ﬁs)” and C is the pointwise
ordering

e Galois connection (P(Z), Q) % (D%, C), defined by

a: S +— (as({oo|o€S}),...,as({on-1]0 € S}))
vi M o— {0 €Z"|Vi, 0; € ys(MF)}

Xavier Rival Abstract Interpretation: Introduction April 12th, 2024 49 /62

Application of abstract interpretation

Towards an abstraction for our small language

Basic intuitions for our abstraction:

o
2]

©

a memory state is a vector of scalars

the concrete semantics is a function, that maps a concrete
pre-condition to an abstract post-condition

sign lattice abstract elements abstract sets of values
an abstract state should thus consist of a vector of abstract values

moreover, the abstract semantics should consist of a function that
maps an abstract pre-condition into an abstract post-condition

Xavier Rival Abstract Interpretation: Introduction April 12th, 2024 50 /62

Application of abstract interpretation

Examples

Factorial function:
Absolute value function:

input(xo);
f(x0 > 0){ B
X1 = X0, X2 =1;
else{ while(xg > 0){
x2 =0; X] = XQ * X1;
X1 = X2 — X0, Xg = X0 — X2;

o abstract pre-condition: @ abstract pre-condition: (T, T,T)

(T,T) @ abstract state before the loop:
@ abstract (£ 4)
post-condition: (T, +) @ abstract post-condition (after the

loop): (0, +, +)

Xavier Rival Abstract Interpretation: Introduction April 12th, 2024 51/62

Application of abstract interpretation

Computation of the abstract semantics

We search for an abstract semantics [P]* : D — D! such that:

ao[P] C[P]foa

We aim for a proof by induction over the syntax of programs

So, let us start with sequences / composition, under the assumption
that the property holds for Py, P;:
@ o [[Po]] C [[Po]]ﬁ o«
o ao[PC [Pi]toa
Since [Po; P1] = [P1] o [Po], we expect [Po; P1]* = [P1]* o [Po]F:
aoPi]ofP] T [Pifoaoc[Py] (by induction)
C [Pi]fo[Po]f o by induction. ..
and if [P1]* monotone)!

Big additional constraint (only today): [P]* monotone)

Xavier Rival Abstract Interpretation: Introduction April 12th, 2024 52 /62

Application of abstract interpretation
Analysis of assignment

We now consider the analysis of assignment statements

We observe that:
(M)
ao [P](M)

(as({oo | 0 € M}),..., as({op-1]0 € M})) |
(as({oo | o € [P)(M)}),...,as({on-1 | o € [P[(M)})
We start with x; = n:

ao [x; = n)(M)

= (as({oo| o€ [PI({oli <= n] | o€ M})}),...,

as({on-1|o € [P]({oli <= n] |0 € S})}))

(as({oo | o e M}),...,as({on-1 | 0 € M}))[i + as({n})]
a(M)[i < as({n})]
[x = n]*(a(M))

where:

[xi = n]*(M®) = M*[i < as({n})])

Xavier Rival Abstract Interpretation: Introduction April 12th, 2024 53 /62

Application of abstract interpretation

Computation of the abstract semantics

Other assignments are treated in a similar manner:

s = (M)

[xi = x; + xi (M)
[xi = % — =] (MF)
[xi = xj * x] (M*)
[input(x;)]*(M*)

MFi < as({n})]
ME[i — MF & M}]
Mi[i + M} &F M}
Mi[i + M} @ M}
M7 +]

@ Proofs are left as exercises

o As remarked before, we only get avo [P] C [P]* o «
i.e., equality is too hard to derive

@ On the other hand, monotonicity is good so far (exercise)

Xavier Rival

Abstract Interpretation: Introduction

April 12th, 2024

54 /62

Application of abstract interpretation

Computation of the abstract semantics

We now consider the case of tests:
o0 [[if(x,' > 0) Po else Pl]](M)
= a([Po)({o € M| 0;>0}) U [P]({o € M |0i <0}))
= a([Po]({o € M| >0})) U a([Pr]({o € M | 0i <0}))
as « preserves least upper bounds
[Po]*(a({o € M | o; > 0})) U [Pi]¥(a({o € M | 0; < 0}))
by induction and as LI is monotone
[Pol*(a(M) N T[i ¢ +]) U [P]*(a(M) M Ti + < 0])
[if(x; > 0) Py else P1]*(a(M))

1M

L
C

where:

[if(x; > 0) Py else P1]*(M*) =
[Pol*(M* M T[i + +]) U [PLF(ME M T[i - < 0])

@ Monotonicity: by induction...

Xavier Rival Abstract Interpretation: Introduction April 12th, 2024

55/ 62

Application of abstract interpretation

An example with basic condition test

Absolute value function:

if(Xo > 0){
X1 = X0,
}else{
Xo = 0;

X1 = X2 — X0,

Analysis steps:

@ entry point: (T, T)
@ after entry in true branch: (+,T)
@ exit of true branch: (4, —)
Q after entry in false branch: (<0, T)
@ exit of false branch: (< 0,>0)
Q exit: (T,>0)
Xavier Rival Abstract Interpretation: Introduction April 12th, 2024

56 / 62

Application of abstract interpretation

Analysis of a loop

We have seen that:
[while(x; > 0) P[(M) ={o € lfpf | o; <0}
where f(M') = MU M’ U [P]({oc € M" | o; > 0}).

Thus, we look for a fixpoint transfer, but our fixpoint transfer theorem

requires equality, so it does not apply...

We will use a variant of the previous theorem:

If:

f is continuous
f* is monotone
aofC floa
a(@) =L

Then, a(lfp f) C Ifp f#

Xavier Rival Abstract Interpretation: Introduction April 12th, 2024 57 /62

Application of abstract interpretation

Analysis of a loop

Application:
@ we consider the analysis of the loop with pre-condition M*
o we take
FE(ME) = MU ME U [PTH(ME N TTi + +])
@ then, ao fFC floa

@ we can apply the new fixpoint transfer theorem...

[while(x; > 0) P]#(M*) = T[i < < 0] M Ifpy f*
where FA(ME) = M# U M U [PIE(MEN Ti + +])

One more thing:

@ we need to prove monotonicity of the fixpoint image
since the whole abstract semantics soundness relies on it!

Xavier Rival Abstract Interpretation: Introduction April 12th, 2024

58 /62

Application of abstract interpretation

Abstract semantics

Abstract semantics and soundness
We have derived the following definition of [P]*:

[xi = nl*(M*) = M*[i ¢+ as({n})]
[xi = % + % {(MF) = ME[i M} &F Mj]
[= x; — i (MF) = ME[i « M &F M]
[= x; - xelH(MY) = ME[i « M} @F M}
[input(x))J*(M*) = MEHi « 4]
[if(x; > 0) Py else Pi]F(M®) = [Po]*(MF M T[i < +]) U [P1]*(MF)
[while(x; > 0) PJ¥(M*) = Ifpy: f* where

oMt MEUPIE(MEN T+ +])

Furthermore, for all program P: a o [P] C [P]f o a

An over-approximation of the final states is computed by [P]*(T).

Xavier Rival Abstract Interpretation: Introduction April 12th, 2024 59 /62

Application of abstract interpretation

Example

Factorial function:

input(xo);
x1 =1,
xo = 1;

while(xo > 0){
X1 = X0 - X1,
X0 = X0 — X2;

Abstract state before the loop:

(£ ++)

Iterates on the loop:

iterate

X0

X1

X2

+(+ |+

[+ 4| | =

-+~

Abstract state after the loop: (T,+,+)

Xavier Rival

Abstract Interpretation: Introduction

April 12th, 2024

60/ 62

@ Abstraction

e Abstract interpretation

e Application of abstract interpretation

@ Conclusion

Conclusion

Summary

This lecture:
@ abstraction and its formalization

@ computation of an abstract semantics in a very simplified case

Next lectures:
@ construction of a few non trivial abstractions

@ more general ways to compute sound abstract properties

Xavier Rival Abstract Interpretation: Introduction April 12th, 2024 62 /62

	Abstraction
	Notion of abstraction
	Abstraction and concretization functions
	Galois connections

	Abstract interpretation
	Abstract computation
	Fixpoint transfer

	Application of abstract interpretation
	Conclusion

