Traces Properties

Semantics and applications to verification

Xavier Rival

Ecole Normale Supérieure

March 1st, 2024

Xavier Rival Traces Properties March 1st, 2024

1/64

Program of this lecture

Goal of verification

Prove that [P] C S
(i.e., all behaviors of P satisfy specification S)

where [P] is the program semantics and S the desired specification

Last week, we studied a form of [P]...

Today's lecture: we look back at program’s properties

o families of properties:
what properties can be considered “similar’ 7 in what sense ?

e proof techniques:
how can those kinds of properties be established 7

@ specification of properties:
are there languages to describe properties ?

Xavier Rival Traces Properties March 1st, 2024

2/64

A high level overview

@ In this lecture we look at trace properties J

@ A property is a set of traces, defining the admissible executions

Safety properties:
e something (e.g., bad) will never happen

@ proof by invariance

Liveness properties:
e something (e.g., good) will eventually happen

@ proof by variance

Beyond safety and liveness: hyperproperties (e.g., security...)

Xavier Rival Traces Properties March 1st, 2024 3/64

State properties

As usual, we consider S = (S, —,Sz)
First approach: properties as sets of states
@ A property P is a set of states P C S

@ P is satisfied if and only if all reachable states belong to P, i.e.,
[Slr C P where [S]r = {sn €S| I(s0,--.,5n) € [S]*, so € Sz}

Examples:

@ Absence of runtime errors:

P =S\{Q} where Q is the error state

e Non termination (e.g., for an operating system):

P={seS|3s'eS,s— 5}

Xavier Rival Traces Properties

March 1st, 2024 4/64

Trace properties

Second approach: properties as sets of traces
@ A property T is a set of traces T C S™
@ 7T is satisfied if and only if all traces belong to 7, i.e., [S]* C T

Examples:
@ Obviously, state properties are trace properties

e Functional properties:
e.g., ‘program P takes one integer input x and returns its absolute
value”

e Termination: 7 = S* (i.e., the system should have no infinite
execution)

Xavier Rival Traces Properties March 1st, 2024 5/64

Monotonicity

Property 1 |
Let Py, P1 C S be two state properties, such that Py C P5.

Then Py is stronger than Py, i.e. if program S satisfies Py, then it also
satisfies P;.

Property 2 |
Let 7o, 71 € S be two trace properties, such that 7o C 7;.

Then 7p is stronger than 7y, i.e. if program S satisfies 7, then it also
satisfies 77.

Property 3 |
Let Sp, S1 two transition systems, such that S; has more behaviors than S
(i.e., [So] € [S1]). and P be a (trace or state) property. Then, if S
satisfies P, so does Sp.

Proofs: straightforward application of the definitions
Xavier Rival Traces Properties March 1st, 2024 6 /64

Safety properties Informal and formal definitions

Outline

© safety properties
@ Informal and formal definitions

@ Proof method

Xavier Rival Traces Properties March 1st, 2024 7/64

Safety properties Informal and formal definitions

Safety properties

Informal definition: safety properties

A safety property is a property which specifies that some (bad) behavior
defined by a finite, irrecoverable observation will never occur, at any
time

e Absence of runtime errors is a safety property (“bad thing™: error)
e State properties is a safety property (“bad thing": reaching S\ P)

e Non termination is a safety property (“bad thing": reaching a
blocking state)

@ “Not reaching state b after visiting state 3" is a safety property
(and not a state property)

e Termination is not a safety property

We now intend to provide a formal definition of safety.

Xavier Rival Traces Properties March 1st, 2024 8/64

Safety properties Informal and formal definitions

Towards a formal definition

How to refute a safety property 7

@ We assume S does not satisfy safety property P

@ Thus, there exists a counter-example trace
0=1(S0,---,Sn,---) € [S]\P;
at this point of our study, the trace may be finite or infinite...

@ The intuitive definition says this trace eventually exhibits some bad
behavior, that is irrecoverable at observed at some given time,
thus the observation corresponds to some index i

@ Therefore, trace o' = (s, ...,s;) violates P, i.e. o’ ¢ P

@ Due to the irrecoverability of the observation, the same goes for any
trace with the same prefix

e We remark o’ is finite

A safety property that does not hold
can always be refuted with a finite, irrecoverable counter-example J

Xavier Rival Traces Properties March 1st, 2024 9/64

Safety properties Informal and formal definitions

A Few Operators on Traces

Prefix: We write o; for the prefix of length i of trace o:

<507...,Sn>"0 = €
B {(so,...,s,-> if i<n

<507--->5n>(i+1 - (so,...,Sp) otherwise

<507'~>(i+1 = (s0,---,5i)
Suffix (or tail):
o) = € if o] <i
(<507-~-75i>'0)i+11 2= o otherwise

Xavier Rival Traces Properties March 1st, 2024

10 /64

Safety properties Informal and formal definitions

Upper closure operators

Definition: upper closure operator (uco)

We consider a preorder (S,C). Function ¢ : S — S is an upper closure
operator iff:

@ monotone
e extensive: Vx € S, x C ¢(x)
e idempotent: Vx € S, ¢(¢(x)) = ¢(x)

Dual: lower closure operator, monotone, reductive, idempotent
Examples:

@ on real/decimal numbers, or on fraction:

the ceiling operator, that returns the next integer is an upper-closure
operator

Xavier Rival Traces Properties March 1st, 2024 11 /64

Safety properties Informal and formal definitions

Prefix closure
Definition: prefix closure
The prefix closure operator is defined by:

PCl: P(S*) — P(S¥)
X — {oji|oeX,ieN}

Example: assuming S = {(a, b, ¢), (a, c)} then,
PCI(S) = {¢,(a), (a, b), (a, b, c), (a,c)}

Properties:

e PCl is monotone
e PCl is idempotent, i.e., PCl o PCI(X) = PCI(X)

e PCl is not extensive on P(S™) (infinite traces do not appear anymore)
its restriction to P(S*)

Xavier Rival Traces Properties March 1st, 2024 12 /64

Safety properties Informal and formal definitions
Limit
Definition: limit
The limit operator is defined by:

Lim: P(S*) — P(S%)
X — XU{oeS*|VieN, o € X}

Operator Lim is an upper-closure operator

Proof: exercisel

Example: assuming

S = { ¢ (a)
(a, b) (a, b, a)
(a,b,a,b) (a,b,a,b,a) ... }
then,
Lim(S) =S w{(a,b,a,b,a,b,...)}
Xavier Rival Traces Properties March 1st, 2024

13 /64

Safety properties Informal and formal definitions

Towards a formal definition for safety

Operator Safe
Operator Safe is defined by Safe = Lim o PCI.

Operator Safe saturates a set of traces S with
@ prefixes
e infinite traces all finite prefixes of which can be observed in S

Thus, if Safe(S) = S and o is a trace, to establish that ¢ is not in S, it is
sufficient to discover a finite prefix of o that cannot be observed in S.

e if o is finite the result is clear (consider o)

@ otherwise, if all finite prefixes of o are in S, then ¢ is in the limit, thus
inS.

Safety: definition
A trace property 7 is a safety property if and only if Safe(7) =T J

Xavier Rival Traces Properties March 1st, 2024 14 /64

Safety properties Informal and formal definitions

Safety properties: formal definition

An upper closure operator J

Operator Safe is an upper closure operator over P(S%)

Proof:
Safe is monotone since Lim and PCl are monotone

Safe is extensive:
indeed if X C S* and o € X, we can show that o € Safe(X):

o if o is a finite trace, it is one of its prefixes, so
o € PCI(X) C Lim(PCI(X))

e if o is an infinite trace, all its prefixes belong to PCI(X), so
o € Lim(PCI(X))

Xavier Rival Traces Properties March 1st, 2024 15 /64

Safety properties Informal and formal definitions

Safety properties: formal definition

Proof (continued):

Safe is idempotent:

@ as Safe is extensive and monotone Safe C Safe o Safe, so we simply
need to show that Safe o Safe C Safe

o let X C S*, o € Safe(Safe(X)); then:
o € Safe(Safe(X))

= Vi, of; € PClo Safe(X) by def. of Lim
= Vi, 30',j, o1 = o'(j Ao’ € Safe(X) by def. of PCI
= Vi, 30',j, o1 = '[j Ak, o' € PCI(X)

by def. of Lim and case analysis over finiteness of o’
= Vi, 30',j, o5 = d'jNo'r; € PC(X) if we take k =
= Vi, of; € PCI(X) by simplification
= o € Limo PCI(X) by def. of Lim
= o € Safe(X)

Xavier Rival Traces Properties March 1st, 2024 16 / 64

Safety properties Informal and formal definitions

Safety properties: formal definition

Safety: definition
A trace property T is a safety property if and only if Safe(7) =T

Theorem

If 7 is a trace property, then Safe(7) is a safety property

Proof:
Straightforward, by idempotence of Safe

Intuition:
e if T is a trace property (not necessarily a safety property), Safe(7) is
the strongest safety property, that is weaker than 7
@ at this point, this observation is not so useful...

but it will be soon!
Xavier Rival Traces Properties March 1st, 2024 17 /64

Safety properties Informal and formal definitions

Example

We assume that:

e S={a,b}

@ 7 states that a should not be visited after state b is visited,;
elements of 7 are of the general form

(a,a,a,...,a,b,b,b,b,...)or (a,a,a,...,3,a,...)
Then:

e PCI(T) elements are all finite traces which are of the above form (i.e.,
made of n occurrences of a followed by m occurrences of b, where
n, m are positive integers)

e Lim(PCI(7)) adds to this set the trace made made of infinitely many
occurrences of a and the infinite traces made of n occurrences of a
followed by infinitely many occurrences of b

e thus, Safe(7) = Lim(PCI(T)) =T

Therefore T is indeed formally a safety property.

Xavier Rival Traces Properties March 1st, 2024 18 /64

Safety properties Informal and formal definitions

State properties are safety properties

Theorem
Any state property is also a safety property.

Proof:

Let us consider state property P.
It is equivalent to trace property 7 = P>:

Safe(T) = Lim(PCI(P™))
Lim(P*)
P*U P>

PO(

T

Therefore T is indeed a safety property.

Xavier Rival Traces Properties March 1st, 2024

19 /64

Safety properties Informal and formal definitions

Intuition of the formal definition

Operator Safe saturates a set of traces S with
o prefixes

e infinite traces all finite prefixes of which can be observed in S

Thus, if Safe(S) = S and o is a trace, to establish that o is not in S, it is
sufficient to discover a finite prefix of o that cannot be observed in S.

Alternatively, if all finite prefixes of o belong to S or can observed as a
prefix of another trace in S, by definition of the limit operator, o belongs
to S (even if it is infinite).

Thus, our definition indeed captures properties that can be disproved
with a finite counter-example. J

Xavier Rival Traces Properties March 1st, 2024 20 /64

Safety properties Proof method

Outline

© safety properties
@ Informal and formal definitions

@ Proof method

Xavier Rival Traces Properties March 1st, 2024 21 /64

Safety properties Proof method

Proof by invariance

e We consider transition system S = (S, —, Sz), and safety property T.
Finite traces semantics is the least fixpoint of F,.

o We seek a way of verifying that S satisfies 7, i.e., that [S]* C T

Principle of invariance proofs

Let T be a set of finite traces; it is said to be an invariant if and only if:
e Vse Sz, (s) el
o F(I)CI

It is stronger than T if and only if I C 7.

The “by invariance” proof method is based on finding an invariant that is
stronger than 7.

Xavier Rival Traces Properties March 1st, 2024 22 /64

Safety properties Proof method

Soundness

Theorem: soundness

The invariance proof method is sound: if we can find an invariant for S,
that is stronger than safety property 7, then S satisfies 7.

Proof:

We assume that I is an invariant of S and that it is stronger than 7, and
we show that S satisfies 7

@ by induction over n, we can prove that F({(s) | s € Sz}) C F/(I) C I
o therefore [S]* C I

e thus, Safe([S]*) C Safe(I) C Safe(7T) since Safe is monotone

e we remark that [S]> = Safe([S]*)

e 7 is a safety property so Safe(7) =T

e we conclude [S]* C T, i.e., S satisfies property T

Xavier Rival Traces Properties March 1st, 2024 23 /64

Safety properties Proof method

Completeness

Theorem: completeness

The invariance proof method is complete: if S satisfies safety property T,
then we can find an invariant I for S, that is stronger than 7.

Proof:
We assume that [S]* satisfies 7, and show that we can exhibit an
invariant.

Then, I = [S]* is an invariant of S by definition of [.[*, and it is stronger
than 7.

Caveat:
@ [S]* is most likely not a very easy to express invariant
@ it is just a convenient completeness argument
@ so, completeness does not mean the proof is easy |

Xavier Rival Traces Properties March 1st, 2024 24 /64

Safety properties

Example

Proof method

We consider the proof that the program below computes the sum of the
elements of an array, i.e., when the exit is reached, s = Z;ét[k]:

h:
b :

G

i, s integer variables
t integer array of length n
(true)
s =0;
(s = o)
i=0;
(i=0As=0)
while(1 < n){
(0<i<nAs=3i_gtlkl
s=s+t[i];
(0<i<nAs=3,_gtlk])
i=i+41;
(L<i<nns=3 otk
}

(1=nAs= Y5 belk)

Principle of the proof:

e for each program point [, we
have a local invariant I,
(denoted by a logical formula
instead of a set of states in the
figure)

@ the global invariant T is
defined by:

I={{(,m0), -, (o mn)) |
Vn, m, €1}

Xavier Rival Traces Properties March 1st, 2024 25 /64

Liveness properties Informal and formal definitions

Outline

e Liveness properties
@ Informal and formal definitions
@ Proof method

Xavier Rival Traces Properties

March 1st, 2024

26 / 64

Liveness properties Informal and formal definitions

Liveness properties

Informal definition: liveness properties

A liveness property is a property which specifies that some (good) behavior
will eventually occur, and that this behavior may still occur after any

finite observation.

e Termination is a liveness property
“good behavior”: reaching a blocking state (no more transition

available)
o “State a will eventually be reached by any execution” is a

liveness property
“good behavior": reaching state a

@ The absence of runtime errors is not a liveness property

As for safety properties, we intend to provide a formal definition of

liveness.

Xavier Rival

Traces Properties March 1st, 2024

27 /64

Liveness properties Informal and formal definitions

Intuition towards a formal definition

How to refute a liveness property ?7
@ We consider liveness property 7 (think 7 is termination)
@ We assume S does not satisfy liveness property T
@ Thus, there exists a counter-example trace o € [S]\ T;
o

The informal definition says:
... may still occur after any finite observation
thus, each finite trace o’ can be extended into a good trace

@ Conclusion of this discussion: o is necessarily infinite

To prove that a liveness property does not hold
we need to look for an infinite counter-example
i.e., no finite trace is a counter-example

Xavier Rival Traces Properties March 1st, 2024

28 /64

Liveness properties Informal and formal definitions

Intuition towards a formal definition

To refute a liveness property, we need to look at infinite traces. J

Example: if we run a program, and do not see it return...
@ should we do Ctrl+C and conclude it does not terminate ?

@ should we just wait a few more seconds minutes, hours, years ?

Towards a formal definition:
we expect any finite trace be the prefix of a trace in T

. since finite executions cannot be used to disprove T

Formal definition (incomplete)
PCI(T) = S* J

Xavier Rival Traces Properties March 1st, 2024 29 /64

Liveness properties Informal and formal definitions

Definition

Formal definition

Operator Live is defined by Live(7) = 7 U (S> \ Safe(7")). Given property
T, the following three statements are equivalent:

(i) Live(T) =T

(i) PCI(T) =S*

(iii) Limo PCI(T) = S*

When they are satisfied, 7 is said to be a liveness property

Example: termination
@ The property is 7 = S*
(i.e., there should be no infinite execution)
o Clearly, it satisfies (ii): PCI(T) =S
thus termination indeed satisfies this definition

Xavier Rival Traces Properties March 1st, 2024 30 /64

Liveness properties Informal and formal definitions

Proof of equivalence
Proof of equivalence:

(1) implies (if):
We assume that Live(7) =T, i.e., T U (S*\ Safe(7)) =T
therefore, S* \ Safe(7) C T.
Let o € S*, and let us show that o € PCI(T); clearly, o € S*, thus:
o either o € Safe(7) = Lim(PCI(T)), so all its prefixes are in PCI(T)
and o € PCI(T)
@ or o € T, which implies that o € PCI(T)

(i) implies (iif):

If PCI(T") = S*, then Lim o PCI(T") = S*

(iif) implies (/):

If Lim o PCI(T) = S, then

Live(7) =T U (S*\ (Limo PCI(T))) =T U(S*\S¥) =T

Xavier Rival Traces Properties March 1st, 2024 31/64

Liveness properties Informal and formal definitions

Example

We assume that:
e S={a,b,c}

@ 7 states that b should eventually be visited, after a has been

visited; elements of T can be described by
T =PCI(S*-a-S*-b-S%)

Then T is a liveness property:
o letceS* thencg-a-beT,sooePCT)
e thus, PCI(T) = S*

Xavier Rival Traces Properties

March 1st, 2024

32/64

Liveness properties Informal and formal definitions

A property of Live

Theorem

If T is a trace property, then Live(7) is a liveness property (i.e., operator
Live is idempotent).

Proof: we show that PCl o Live(7") = S*, by considering o € S* and
proving that o € PCl o Live(T); we first note that:

PCloLive(T) = PCI(T) U PCI(S™\ Safe(T))
— PCI(T) U PCI(S™ \ Lim o PCI(T))

o if o € PCI(T), this is obvious.
e if o & PCI(T), then:
» o & Lim o PCI(T) by definition of the limit
» thus, o € S>\ Lim o PCI(T)
» o € PCI(S™\ Lim o PCI(T)) as PCl is extensive when applied to sets of
finite traces, which proves the above result

Xavier Rival Traces Properties March 1st, 2024 33/64

Liveness properties Proof method

Outline

© Liveness properties
@ Informal and formal definitions
@ Proof method

Xavier Rival Traces Properties March 1st, 2024 34 /64

Liveness properties Proof method

Termination proof with ranking function

@ We consider only termination
e We consider transition system S = (S, —, Sz), and liveness property T

e We seek a way of verifying that S satisfies termination, i.e., that

Definition: ranking function

A ranking function is a function ¢ : S — E where:
e (E,C) is a well-founded ordering
@ Vsp,s1 €S, sop — s1 = ¢(s1) = &(s0)

Theorem

If S has a ranking function ¢, it satisfies termination.

Xavier Rival Traces Properties March 1st, 2024 35 /64

Liveness properties Proof method

Example

We consider the termination of the array sum program:

Ranking function:
i, s integer variables

t integer array of length n ¢: S — N
b: s=0; (b,m) — 3-n+6
h: i=0; (4,m) — 3-n+5
b while(i < n){ (b,m) — 3-n+4
5 s = s+ t[i]; (B,m) — 3-(n—m(i))+3
l: i=i+1 (laym) +— 3-(n—m(i))+2
5 } (6,m) — 3-(n—m(i)) +4
g (,m) — O

Xavier Rival Traces Properties March 1st, 2024 36 /64

Liveness properties Proof method

Proof by variance

e We consider transition system S = (S, —,Sz), and liveness property
T; infinite traces semantics is the greatest fixpoint of F,.

o We seek a way of verifying that S satisfies 7, i.e., that [S]* C T

Principle of variance proofs

Let (In)nen, Ly be elements of S*; these are said to form a variance proof

of T if and only if:
) S“Q]IO
o forall k€ {1,2,...,w}, Vs €S, (s) € I

e forall k € {1,2,...,w}, there exists | < k such that F,(I;) C I
oI, CT

Proofs of soundness and completeness: exercise, similar to the previous
proof but using the definition of [S]* instead

Xavier Rival Traces Properties March 1st, 2024 37/64

e Safety properties

e Liveness properties

e Decomposition of trace properties

e A specification language: temporal logic
e Beyond safety and liveness

@ Conclusion

Decomposition of trace properties

The decomposition theorem

Theorem
Let 7 C S*; it can be decomposed into the conjunction of safety
property Safe(7) and liveness property Live(T):

T = Safe(T") N Live(T)

e Reading: Recognizing Safety and Liveness.
Bowen Alpern and Fred B. Schneider.
In Distributed Computing, Springer, 1987.

e Consequence of this result:
the proof of any trace property can be decomposed into

» a proof of safety
» a proof of liveness

Xavier Rival Traces Properties March 1st, 2024

39/ 64

Decomposition of trace properties

Proof

o Safety part:
Safe is idempotent, so Safe(7) is a safety property.

o Liveness part:
Live is idempotent, so Live(7) is a liveness property.

e Decomposition:

Safe(7) N Live(T) = Safe(7T) N (T US>\ Safe(T))

= Safe(T)NT
U Safe(7) N (S \ Safe(T))
= TUl
=T
Xavier Rival Traces Properties March 1st, 2024

40/ 64

Decomposition of trace properties

Example: verification of total correctness

i, s integer variables

, Property to prove:
t integer array of length n perty P

total correctness

b: s =0;

h: i=0; @ the program terminates
b while(i < n){ @ and does not crash

A s = s+ t[i];

L i 141 © and computes the sum of
E:) the elements in the array
6 :

Application of the decomposition principle
Conjunction of two proofs:
@ Proved with a ranking function

@ Proved with local invariants

© Also proved with local invariants

Xavier Rival Traces Properties March 1st, 2024 41 /64

Decomposition of trace properties

Safety and Liveness Decomposition Example

We consider a very simple greatest common divider code function:

b:
A
b :

.
g :

A

ly:
5
%.

int £(int a, int b){

while(a > 0){
intd=b/a;
intr=b—axd,
b=a;
a=r;

}

return b;

Xavier Rival

Specification

When applied to positive
integers, function f should
always return their GCD.

Traces Properties March 1st, 2024 42 /64

Decomposition of trace properties

Safety and Liveness Decomposition Example

We consider a very simple greatest common divider code function:

h: intf(int a, int b){

b : while(a > 0){

b int d = b/a; Specification

A intr=b—axd, . .
b b=a; When applied to positive
2:) a=r integers, function f should
P return b; always return their GCD.
: }

Safety part _
. , o Liveness part
For all trace starting with positive inputs, a

conjunction of two properties: Termination, on all

traces starting with

@ no runtime errors e .
positive inputs

o the value of b is the GCD

Xavier Rival Traces Properties March 1st, 2024 42 /64

Decomposition of trace properties

The Zoo of semantic properties: current status

p
Trace properties

total correctness

e N e N
Safety properties Liveness properties
never reach sy before s; termination

State properties
absence or runtime errors
partial correctness

o Safety: if wrong, can be refuted with a finite trace
proof done by invariance
@ Liveness: if wrong, has to be refuted with an infinite trace

proof done by variance

Xavier Rival Traces Properties March 1st, 2024 43 /64

e Safety properties

e Liveness properties

e Decomposition of trace properties

e A specification language: temporal logic
e Beyond safety and liveness

@ Conclusion

A specification language: temporal logic

Notion of specification language

o Ultimately, we would like to verify or compute properties
@ So far, we simply describe properties with sets of executions
or worse, with English / French / ... statements
o ldeally, we would prefer to use a mathematical language for that
» to gain in concision, avoid ambiguity
» to define sets of properties to consider, fix the form of inputs for
verification tools...

Definition: specification language

A specification language is a set of terms IL with an interpretation
function (or semantics)

[]: L — P(S™) (resp., P(S))

@ We are now going to consider specification languages for states, for

traces...
Xavier Rival Traces Properties March 1st, 2024 45 / 64

A specification language: temporal logic

A State specification language

A first example of a (simple) specification language:

A state specification language
@ Syntax: we let terms of LLg be defined by:

peEls:=0f|x<x|x<n|-p|pAp"|Q
e Semantics: [p]s C Sq is defined by

[[@[]]s = {[}XM
x<xle = {({,m)€S]|mx)<mx)}
[x<nl, = {({,;m)eS]|m(x)<n)
[[_‘p]]s = SQ\[[p]]s
lpAPTs = [pls N IPs
[= {2}

Exercise: add =, V, =...

Xavier Rival Traces Properties March 1st, 2024 46 / 64

A specification language: temporal logic

State properties: examples

Unreachability of control state f:
@ specification: V—=0f
o property: [~@h]s = Sq \ {(lo, m) | m € M}

Absence of runtime errors:
@ specification: -
e property: [-Q]s =Sq \ {Q} =S

Intermittent invariant:

@ principle: attach a local invariant to each control state
@ example:

i if(x>0){
i y =x; 0fF —x2>0
L Jelse{ AN @Lb=x>0Ay>0
B y = —X; AN O —=x<0
L: } AN Qf=x<0Ay>0
: ... AN O=y2>0
Xavier Rival Traces Properties March 1st, 2024

47 /64

A specification language: temporal logic

Propositional temporal logic: syntax

We now consider the specification of trace properties

e Temporal logic: specification of properties in terms of events that
occur at distinct times in the execution (hence, the name “temporal”)

@ There are many instances of temporal logic

@ We study a simple one: Pnueli’'s Propositional Temporal Logic

Definition: syntax of PTL (Propositional Temporal Logic)

Properties over traces are defined as terms of the form

t(e LptL) == p state property, i.e., p € Lg
| t'vt” disjunction
| -t negation
| Ot "next"
|

t's(t” "until", i.e., t’ until t”

Xavier Rival Traces Properties March 1st, 2024 48 / 64

A specification language: temporal logic

Propositional temporal logic: semantics

The semantics of a temporal property is a set of traces, and it is defined by
induction over the syntax:

Semantics of Propositional Temporal Logic formulae

[ple = {s-o|se]p]shoeS¥}
[toVti]le = [tolc U [ta]e
[-to]e = S\ [to]s
[Ot]e = {s-o|seSAce€][t]:}
[[toiltl]]t = {O’ € S* | dn e N, Vi < n, o € [[to]]t /\0,,] S [[tl]]t}

Xavier Rival Traces Properties March 1st, 2024 49 / 64

A specification language: temporal logic

Temporal logic operators as syntactic sugar

Many useful operators can be added:

@ Boolean constants:

true = (x < 0) V =(x < 0)
false ::= —true

@ Sometime:
Ot i=trueyt

intuition: there exists a rank n at which t holds

e Always:
Ot = =(0(—t))

intuition: there is no rank at which the negation of t holds

Exercise: what do [0t and [J{ t mean ?

Xavier Rival Traces Properties March 1st, 2024

50/ 64

A specification language: temporal logic
Propositional temporal logic: examples

We consider the program below:

b: x=input();
G if(x < 8){

b : x=0;
G }else{

[y : x=1;
6}

l: ...

Examples of properties:
@ “when [is reached, x is positive’
0(@4 = x > 0)

@ "if the value read at point [is negative, and when f is reached, x is
equal to 0"

O0((@4 Ax < 0) = O(C = x=0))

Xavier Rival Traces Properties March 1st, 2024 51 /64

o Safety properties

e Liveness properties

e Decomposition of trace properties

e A specification language: temporal logic
e Beyond safety and liveness

@ Conclusion

Beyond safety and liveness

Security properties

We now consider other interesting properties of programs, and show
that they do not all reduce to trace properties J

Security
@ Collects many kinds of properties
@ So we consider just one:

an unauthorized observer should not be able to guess anything
about private information by looking at public information

@ Example: another user should not be able to guess the content of an
email sent to you

@ We need to formalize this property

Xavier Rival Traces Properties March 1st, 2024 53 /64

Beyond safety and liveness

A few definitions

Assumptions:
o We let S = (S, —,Sz) be a transition system
o States are of the form (/,m) € L x M
e Memory states are of the form X — V

o We let [, [’ € L (program entry and exit)
and x,x’ € X (private and public variables)

Security property we are looking at

Observing the value of x’ at [’
gives no information on the value of x at [

Xavier Rival Traces Properties March 1st, 2024 54 /64

Beyond safety and liveness

A few examples

A secure program (no information flow, no way to guess x):

[x =84
[

An insecure program (explicit information flow, x’ gives a lot of
information about x, so that we can simply recompute it):

[X =x-2;

[
An insecure program (implicit information flow, through a test):

[if(x<0){x'=0;}
oL

How to characterize information flow in the semantic level ?

Xavier Rival Traces Properties March 1st, 2024 55 /64

Beyond safety and liveness
Non-interference

We consider the transformer ¢ defined by:
o: M — P(M)
m +—— {m eM|Jo={((l,m),....([",n)) € [S]}
Definition: non-interference

There is no interference between (/,x) and (/’,x") and we write
(I',x") 4 (I, x) if and only if the following property holds:

Vm € M,Vvg,v1 €V,
{n (X)) | m € ®(m[x + w])} = {m/ (X)) | M € ®(m[x + w1])}

Intuition:

@ if two observations at point [differ only in the value of x, there is no
difference in observation of x’ at [’

@ in other words, observing x" at [’ (even on many executions) gives no
information about the value of x at point /...

Xavier Rival Traces Properties March 1st, 2024 56 / 64

Beyond safety and liveness

Non-interference is not a trace property

@ We assume V = {0,1} and X = {x,x’} (store m is defined by the pair
(m(x), m(x")), and denoted by it)

@ We assume L = {/, [’} and consider two systems such that all
transitions are of the form (£, m) — ({', m’)
(i.e., system S is isomorphic to its transformer ®[S])

®[So] : (0,0) — M ®[Sy]: (0,0) — M
(0,1) — M (0,1) — M
(1,0) — M (1,0) — {(1,1)}
(1,1) — M (1,1) — {(1,1)}

@ S; has fewer behaviors than Sp: [S1]* C [So]*
@ Sy has the non-interference property, but S; does not
@ If non interference was a trace property, S; should have it (monotony)

Thus, the non interference property is not a trace property)

Xavier Rival Traces Properties March 1st, 2024 57 /64

Beyond safety and liveness

Dependence properties

Dependence property
@ Many notions of dependences
@ So we consider just one:
what inputs may influence on the observation of a given output

@ Applications:
» reverse engineering: understand how an input gets computed
» slicing: extract the fragment of a program that is relevant to a result

@ This corresponds to the negation of non-interference

Xavier Rival Traces Properties March 1st, 2024 58 /64

Beyond safety and liveness

Interference

Definition: interference
There is interference between (/,x) and (//,%’) and we write
(I',x") ~ (I,x) if and only if the following property holds:
dm € M, dvg,v; €V,
{m/(x') | m" € O(m[x < wo])} # {m'(x) | m" € ®(m[x < v1])}

@ This expresses that there is at least one case, where the value of x at
[has an impact on that of x” at [’

@ It may not hold even if the computation of x’ reads x:
[X =0xx;

[

Xavier Rival Traces Properties March 1st, 2024 59 /64

Beyond safety and liveness

Interference is not a trace property

@ We assume V = {0,1} and X = {x,x’} (store m is defined by the pair
(m(x), m(x")), and denoted by it)

@ We assume L = {/, [’} and consider two systems such that all
transitions are of the form (£, m) — ({', m’)
(i.e., system S is isomorphic to its transformer ®[S])

®[So]: (0,0) — M ®[S1]: (0,0) — {(1,1)}
(0,1) — M (0,1) ~— {(L1)}
(1,0) — {(L1)} (1,0) — {(L1)}
(1,1) — {(L1)} (1,1) — {(L1)}

@ S; has fewer behavior than Sp: [S1]* C [So]*
@ Sy has the interference property, but S; does not
e If interference was a trace property, S1 should have it (monotony)

Thus, the interference property is not a trace property)

Xavier Rival Traces Properties March 1st, 2024 60 / 64

Beyond safety and liveness
Hyperproperties

Conclusion:
@ The absence of interference between (/,x) and ({/,x’) is not a trace
property:
we cannot describe as the set of programs the semantics of which is
included into a given set of traces
@ It can however be described by a set of sets of traces:
we simply collect the set of program semantics that satisfy the
property
This is what we call a hyperproperty:

Hyperproperties
@ Trace hyperproperties are described by sets of sets of executions

e Trace properties are described by sets of executions

2-safety: to disprove the absence of interference (i.e., to show there exists
an interference), we simply need to exhibit two finite traces

Xavier Rival Traces Properties March 1st, 2024 61 /64

o Safety properties

e Liveness properties

e Decomposition of trace properties

e A specification language: temporal logic
e Beyond safety and liveness

@ Conclusion

Conclusion

The Zoo of semantic properties

(R
Sets of sets of executions
non-interference, dependency

(2
Trace properties

total correctness

e . N e . . N
Safety properties Liveness properties

never reach sy before s; termination

State properties

absence or runtime errors
partial correctness

Xavier Rival Traces Properties March 1st, 2024 63 /64

Conclusion

Summary

To sum-up:
o Trace properties allow to express a large range of program properties
o Safety = absence of bad behaviors
o Liveness = existence of good behaviors

@ Trace properties can be decomposed as conjunctions of safety and
liveness properties, with dedicated proof methods

@ Some interesting properties are not trace properties
security properties are sets of sets of executions

@ Notion of specification languages to describe program properties

Xavier Rival Traces Properties March 1st, 2024 64 / 64

	Safety properties
	Informal and formal definitions
	Proof method

	Liveness properties
	Informal and formal definitions
	Proof method

	Decomposition of trace properties
	A specification language: temporal logic
	Beyond safety and liveness
	Conclusion

