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Program of this first lecture

Operational semantics
Mathematical description of the executions of a program

1 A model of programs: transition systems
▶ definition, a small step semantics
▶ a few common examples

2 Trace semantics: a kind of big step semantics
▶ finite and infinite executions
▶ fixpoint-based definitions
▶ notion of compositional semantics
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Transition systems and small step semantics Definition and properties

Definition

We will characterize a program by:
states:
photography of the program status at an instant of the execution
execution steps: how do we move from one state to the next one

Definition: transition systems (TS)
A transition system is a tuple (S,→) where:

S is the set of states of the system
→ ⊆S× S is the transition relation of the system

Note:
the set of states may be infinite
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Transition systems and small step semantics Definition and properties

Transition systems: properties of the transition relation

A deterministic system is such that a state fully determines the next state

∀s0, s1, s ′1 ∈ S, (s0 → s1 ∧ s0 → s ′1) =⇒ s1 = s ′1

Otherwise, a transition system is non deterministic, i.e.:

∃s0, s1, s ′1 ∈ S, s0 → s1 ∧ s0 → s ′1 ∧ s1 ̸= s ′1

Notes:
the transition relation → defines atomic execution steps;
it is often called small-step semantics or structured operational
semantics
steps are discrete (not continuous)
to describe both discrete and continuous behaviors, we would need to
look at hybrid systems (beyond the scope of this lecture)
we do not consider non deterministic systems with probability on
transitions (probabilistic transition systems)
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Transition systems and small step semantics Definition and properties

Transition systems: initial and final states

Initial / final states:
we often consider transition systems with a set of initial and final states:

a set of initial states SI ⊆ S denotes states where the execution
should start
a set of final states SF ⊆ S denotes states where the execution
should reach the end of the program

When needed, we add these to the definition of the transition systems
(S,→,SI , SF ).

Blocking state (not the same as final state):
a state s0 ∈ S is blocking when it is the origin of no transition:
∀s1 ∈ S, ¬(s0 → s1)

example: we often introduce an error state (usually noted Ω to
denote the erroneous, blocking configuration)
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Transition systems and small step semantics Examples

Finite automata as transition systems

We can formalize the word recognition by a finite automaton using a
transition system:

We consider automaton A = (Q, qi, qf ,→)

A “state” is defined by:
▶ the remaining of the word to recognize
▶ the automaton state that has been reached so far

thus, S = Q × L∗

The transition relation → of the transition system is defined by:

(q0, aw)→ (q1,w) ⇐⇒ q0
a−→ q1

The initial and final states are defined by:

SI = {(qi,w) | w ∈ L∗} SF = {(qf , ϵ)}
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Transition systems and small step semantics Examples

Pure λ-calculus

A bare bones model of functional programing:

λ-terms
The set of λ-terms is defined by:

t, u, . . . ::= x variable
| λx · t abstraction
| t u application

β-reduction
(λx · t) u →β t[x ← u]

if u →β v then λx · u →β λx · v
if u →β v then u t →β v t

if u →β v then t u →β t v

The λ-calculus defines a transition system:
S is the set of λ-terms and →β the transition relation
→β is non-deterministic; example ?
though, ML fixes an execution order
given a lambda term t0, we may consider (S,→β,SI) where SI = {t0}
blocking states are terms with no redex (λx · u) v
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Transition systems and small step semantics Examples

A MIPS like assembly language: syntax

We now consider a (very simplified) assembly language
machine integers: sequences of 32-bits (set: B32)
instructions are encoded over 32-bits (set: IMIPS)
and stored into the same space as data (i.e., IMIPS ⊆ B32)
we assume a fixed set of addresses A

Memory configurations

Program counter pc
current instruction
General purpose registers
r0 . . . r31

Main memory (RAM)
mem : A→ B32

where A ⊆ B32

Instructions
i ::= (∈ IMIPS)
| add rd , rs , rs′ addition
| addi rd , rs , v add. v ∈ B32

| sub rd , rs , rs′ subtraction
| b t branch
| blt rs , rs′ , t cond. branch
| ld rd , o, rx relative load
| st rd , o, rx relative store

v , t, o ∈ B32, d , s, s ′, x ∈ [0, 31]
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Transition systems and small step semantics Examples

A MIPS like assembly language: states

Definition: state
A state is a tuple (π, ρ, µ) which comprises:

A program counter value π ∈ B32

A function mapping each general purpose register to its value
ρ : {0, . . . , 31} → B32

A function mapping each memory cell to its value µ : A→ B32

What would a dangerous state be ?
writing over an instruction
reading or writing outside the program’s memory
we cannot fully formalize these yet...

as we need to formalize the behavior of each instruction first
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Transition systems and small step semantics Examples

A MIPS like assembly language: transition relation

We assume a state s = (π, ρ, µ) and that µ(π) = i ; then:

if i = add rd , rs , rs′ , then:
s → (π + 4, ρ[d ← ρ(s) + ρ(s ′)], µ)

if i = addi rd , rs , v , then:
s → (π + 4, ρ[d ← ρ(s) + v ], µ)

if i = sub rd , rs , rs′ , then:
s → (π + 4, ρ[d ← ρ(s)− ρ(s ′)], µ)

if i = b t, then:
s → (t, ρ, µ)
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Transition systems and small step semantics Examples

A MIPS like assembly language: transition relation

We assume a state s = (π, ρ, µ) and that µ(π) = i ; then:

if i = blt rs , rs′ , t, then:

s →
{

(t, ρ, µ) if ρ(s) < ρ(s ′)
(π + 4, ρ, µ) otherwise

if i = ld rd , o, rx , then:

s →
{

(π + 4, ρ[d ← µ(ρ(x) + o)], µ) if ρ(x) + o ∈ A
Ω otherwise

if i = st rd , o, rx , then:

s →
{

(π + 4, ρ, µ[ρ(x) + o ← ρ(d)]) if ρ(x) + o ∈ A
Ω otherwise
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Transition systems and small step semantics Examples

A simple imperative language: syntax

We now look at a more classical imperative language (intuitively, a
bare-bone subset of C):

variables X: finite, predefined set of variables
labels L: before and after each statement
values V: Vint ∪ Vfloat ∪ . . .

Syntax

e ::= v (v ∈ V) | x (x ∈ X) | e+ e | e ∗ e | . . . expressions
c ::= TRUE | FALSE | e < e | e = e conditions
i ::= x := e; assignment
| if(c) b else b condition
| while(c) b loop

b ::= {i; . . . ; i; } block, program(P)
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Transition systems and small step semantics Examples

A simple imperative language: states

A non-error state should fully describe the configuration at one instant of
the program execution, including memory and control

The memory state defines the current contents of the memory

m ∈M = X −→ V

The control state defines where the program currently is
analoguous to the program counter
can be defined by adding labels L = {l0, l1, . . .} between each pair of
consecutive statements; then:

S = L×M ⊎ {Ω}
or by the program remaining to be executed; then:

S = P×M ⊎ {Ω}
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Transition systems and small step semantics Examples

A simple imperative language: semantics of expressions

The semantics JeK of expression e should evaluate each expression
into a value, given a memory state
Evaluation errors may occur: division by zero...
error value is also noted Ω

Thus: JeK : M −→ V ⊎ {Ω}

Definition, by induction over the syntax:

JvK(m) = v
JxK(m) = m(x)

Je0 + e1K(m) = Je0K(m) + Je1K(m)

Je0 / e1K(m) =

{
Ω if Je1K(m) = 0
Je0K(m) / Je1K(m) otherwise

where ⊕ is the machine implementation of operator ⊕, and is Ω-strict, i.e.,
∀v ∈ V, v ⊕Ω = Ω⊕ v = Ω.
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Transition systems and small step semantics Examples

A simple imperative language: semantics of conditions

The semantics JcK of condition c should return a boolean value
It follows a similar definition to that of the semantics of expressions:
JcK : M −→ Vbool ⊎ {Ω}

Definition, by induction over the syntax:

JTRUEK(m) = TRUE
JFALSEK(m) = FALSE

Je0 < e1K(m) =


TRUE if Je0K(m) < Je1K(m)
FALSE if Je0K(m) ≥ Je1K(m)
Ω if Je0K(m) = Ω or Je1K(m) = Ω

Je0 = e1K(m) =


TRUE if Je0K(m) = Je1K(m)
FALSE if Je0K(m) ̸= Je1K(m)
Ω if Je0K(m) = Ω or Je1K(m) = Ω
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Transition systems and small step semantics Examples

A simple imperative language: transitions

Transitions describe local program execution steps, thus are defined by
case analysis on the program statements

Case of assignment l0 : x = e; l1
if JeK(m) ̸= Ω, then (l0,m)→ (l1,m[x← JeK(m)])

if JeK(m) = Ω, then (l0,m)→ Ω

Case of condition l0 : if(c){l1 : bt l2} else{l3 : bf l4} l5
if JcK(m) = TRUE, then (l0,m)→ (l1,m)

if JcK(m) = FALSE, then (l0,m)→ (l3,m)

if JcK(m) = Ω, then (l0,m)→ Ω

(l2,m)→ (l5,m)

(l4,m)→ (l5,m)
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Transition systems and small step semantics Examples

A simple imperative language: transitions

Case of loop l0 : while(c){l1 : bt l2} l3

if JcK(m) = TRUE, then
{

(l0,m)→ (l1,m)
(l2,m)→ (l1,m)

if JcK(m) = FALSE, then
{

(l0,m)→ (l3,m)
(l2,m)→ (l3,m)

if JcK(m) = Ω, then
{

(l0,m)→ Ω
(l2,m)→ Ω

Case of {l0 : i0; l1 : . . . ; ln−1in−1; ln}
the transition relation is defined by the individual instructions
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Transition systems and small step semantics Examples

Extending the language with non-determinism

The language we have considered so far is a bit limited:
it is deterministic: at most one transition possible from any state
it does not support the input of values

Changes if we model non deterministic inputs...
... with an input instruction:

i ::= . . . | x := input()
l0 : x := input(); l1 generates
transitions
∀v ∈ V, (l0,m)→ (l1,m[x← v ])

one instruction induces non
determinism

... with a random function:
e ::= . . . | rand()
expressions have a
non-deterministic semantics:

JeK : M→ P(V ⊎ {Ω})
Jrand()K(m) = V
JvK(m) = {v}

JcK : M→ P(Vbool ⊎ {Ω})
all instructions induce non
determinism
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Transition systems and small step semantics Examples

Semantics of real world programming languages

C language:
several norms: ANSI C’99, ANSI C’11, K&R...
not fully specified:

▶ undefined behavior
▶ implementation dependent behavior: architecture (ABI) or

implementation (compiler...)
▶ unspecified parts: leave room for implementation of compilers and

optimizations

formalizations in HOL (C’99), in Coq (CompCert C compiler)

OCaml language:
more formal...
... but still with some unspecified parts, e.g., execution order
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Traces semantics Definitions

Execution traces

So far, we considered only states and atomic transitions
We now consider program executions as a whole

Definition: traces
A finite trace is a finite sequence of states s0, . . . , sn, noted
⟨s0, . . . , sn⟩
An infinite trace is an infinite sequence of states ⟨s0, . . .⟩

Besides, we write:
S∗ for the set of finite traces
Sω for the set of infinite traces
S∝ = S∗ ∪ Sω for the set of finite or infinite traces
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Traces semantics Definitions

Operations on traces: concatenation

Definition: concatenation
The concatenation operator · is defined by:

⟨s0, . . . , sn⟩ · ⟨s ′0, . . . , s ′n′⟩ = ⟨s0, . . . , sn, s ′0, . . . , s ′n′⟩
⟨s0, . . . , sn⟩ · ⟨s ′0, . . .⟩ = ⟨s0, . . . , sn, s ′0, . . .⟩
⟨s0, . . . , sn, . . .⟩ · σ′ = ⟨s0, . . . , sn, . . .⟩

We also define:
the empty trace ϵ, neutral element for ·
the length operator |.|:

|ϵ| = 0
|⟨s0, . . . , sn⟩| = n + 1
|⟨s0, . . .⟩| = ω
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Traces semantics Definitions

Comparing traces: the prefix order relation

Definition: prefix order relation
Relation ≺ is defined by:

⟨s0, . . . , sn⟩ ≺ ⟨s ′0, . . . , s ′n′⟩ ⇐⇒
{

n ≤ n′

∀i ∈ J0, nK, si = s ′i

⟨s0, . . .⟩ ≺ ⟨s ′0, . . .⟩ ⇐⇒ ∀i ∈ N, si = s ′i

⟨s0, . . . , sn⟩ ≺ ⟨s ′0, . . .⟩ ⇐⇒ ∀i ∈ J0, nK, si = s ′i

Proof: straightforward application of the definition of order relations
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Traces semantics Finite traces semantics
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Traces semantics Finite traces semantics

Semantics of finite traces

We consider a transition system S = (S,→)

Definition
The finite traces semantics JSK∗ is defined by:

JSK∗ = {⟨s0, . . . , sn⟩ ∈ S∗ | ∀i , si → si+1}

Example:
contrived transition system S = ({a, b, c , d}, {(a, b), (b, a), (b, c)})
finite traces semantics:

JSK∗ = { ϵ,
⟨a, b, . . . , a, b, a⟩, ⟨b, a, . . . , a, b, a⟩,
⟨a, b, . . . , a, b, a, b⟩, ⟨b, a, . . . , a, b, a, b⟩,
⟨a, b, . . . , a, b, a, b, c⟩, ⟨b, a, . . . , a, b, a, b, c⟩
⟨c⟩, ⟨d⟩ }
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Traces semantics Finite traces semantics

Interesting subsets of the finite trace semantics

We consider a transition system S = (S,→,SI ,SF )
the initial traces, i.e., starting from an initial state:

{⟨s0, . . . , sn⟩ ∈ JSK∗ | s0 ∈ SI}

the traces reaching a blocking state:

{σ ∈ JSK∗ | ∀σ′ ∈ JSK∗, σ ≺ σ′ =⇒ σ = σ′}

the traces ending in a final state:

{⟨s0, . . . , sn⟩ ∈ JSK∗ | sn ∈ SF}

the maximal traces are both initial and final

Example (same transition system, with SI = {a} and SF = {c}):
traces from an initial state ending in a final state are all of the form:
⟨a, b, . . . , a, b, a, b, c⟩
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Traces semantics Finite traces semantics

Example: finite automaton

We consider the example of the previous lecture:

L = {a, b} Q = {q0, q1, q2}
qi = q0 qf = q2

q0
a−→ q1 q1

b−→ q2 q2
a−→ q1

q0 q1 q2
a

b

a

Then, we have the following traces:

τ0 = ⟨(q0, ab), (q1, b), (q2, ϵ)⟩
τ1 = ⟨(q0, abab), (q1, bab), (q2, ab), (q1, b), (q2, ϵ)⟩
τ2 = ⟨(q0, ababab), (q1, babab), (q2, abab), (q1, bab)⟩
τ3 = ⟨(q0, abaaa), (q1, baaa), (q2, aaa), (q1, aa)⟩

Then:
τ0, τ1 are initial traces, reaching a final state
τ2 is an initial trace, and is not maximal
τ3 reaches a blocking state, but not a final state

Xavier Rival Operational Semantics February 16th, 2024 29 / 50



Traces semantics Finite traces semantics

Example: λ-term

We consider λ-term λy · ((λx · y)((λx · x x) (λx · x x))), and show two
traces generated from it (at each step the reduced lambda is shown in red):

τ0 = ⟨ λy · ((λx · y)((λx · x x) (λx · x x)))
λy · y ⟩

τ1 = ⟨ λy · ((λx · y)((λx · x x) (λx · x x))),
λy · ((λx · y)((λx · x x) (λx · x x))),
λy · ((λx · y)((λx · x x) (λx · x x))) ⟩

Then:
τ0 is a maximal trace; it reaches a blocking state (no more reduction
can be done)
τ1 can be extended for arbitrarily many steps ;
the second part of the course will study infinite traces
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Traces semantics Finite traces semantics

Example: imperative program

Similarly, we can write the traces of a simple imperative program:

l0 : x := 1;
l1 : y := 0;
l2 : while(x < 4){
l3 : y := y+ x;
l4 : x := x+ 1;
l5 : }
l6 : (final program point)

τ = ⟨ (l0, Lx = 6, y = 8M), (l1, Lx = 1, y = 8M),
(l2, Lx = 1, y = 0M), (l3, Lx = 1, y = 0M),
(l4, Lx = 1, y = 1M), (l5, Lx = 2, y = 1M),
(l3, Lx = 2, y = 1M), (l4, Lx = 2, y = 3M),
(l5, Lx = 3, y = 3M), (l3, Lx = 3, y = 3M),
(l4, Lx = 3, y = 6M), (l5, Lx = 4, y = 6M),
(l6, Lx = 4, y = 6M) ⟩

very precise description of what the program does...
... but quite cumbersome
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Traces semantics Fixpoint definition

Towards a fixpoint definition

We consider again our contrived transition system

S = ({a, b, c , d}, {(a, b), (b, a), (b, c)})

Traces by length:

i traces of length i

0 ϵ

1 ⟨a⟩, ⟨b⟩, ⟨c⟩, ⟨d⟩
2 ⟨a, b⟩, ⟨b, a⟩, ⟨b, c⟩
3 ⟨a, b, a⟩, ⟨b, a, b⟩, ⟨a, b, c⟩
4 ⟨a, b, a, b⟩, ⟨b, a, b, a⟩, ⟨b, a, b, c⟩

Like the automaton in lecture 1, this suggests a least fixpoint
definition: traces of length i + 1 can be derived from the traces of length
i , by adding a transition
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Traces semantics Fixpoint definition

Trace semantics fixpoint form

We define a semantic function, that computes the traces of length
i + 1 from the traces of length i (where i ≥ 1), and adds the traces of
length 1:

Finite traces semantics as a fixpoint
Let I = {ϵ} ∪ {⟨s⟩ | s ∈ S}. Let F∗ be the function defined by:

F∗ : P(S∗) −→ P(S∗)
X 7−→ I ∪ {⟨s0, . . . , sn, sn+1⟩ | ⟨s0, . . . , sn⟩ ∈ X ∧ sn → sn+1}

Then, F∗ is continuous over the powerset structure and thus has a
least-fixpoint and:

lfpF∗ =
⋃
n∈N

F n
∗ (∅) = JSK∗
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Traces semantics Fixpoint definition

Fixpoint definition: proof (1), fixpoint existence

First, we prove that F∗ is continuous.
Let X ⊆ P(S∗) such that X ̸= ∅ and A =

⋃
U∈X U. Then:

F∗(
⋃

X∈X X )
= I ∪ {⟨s0, . . . , sn, sn+1⟩ | (⟨s0, . . . , sn⟩ ∈

⋃
U∈X U)∧ sn → sn+1}

= I ∪ {⟨s0, . . . , sn, sn+1⟩ | ∃U ∈ X , ⟨s0, . . . , sn⟩ ∈ U ∧ sn → sn+1}
= I ∪

(⋃
U∈X {⟨s0, . . . , sn, sn+1⟩ | ⟨s0, . . . , sn⟩ ∈ U ∧ sn → sn+1}

)
=

⋃
U∈X (I ∪ {⟨s0, . . . , sn, sn+1⟩ | ⟨s0, . . . , sn⟩ ∈ U ∧ sn → sn+1})

=
⋃

U∈X F∗(U)

In particular, this is true for any increasing chain X (here, we considered
any non empty family), hence F∗ is continuous.
As (P(S∗),⊆) is a CPO, the continuity of F∗ entails the existence of a
least-fixpoint (Kleene theorem); moreover, it implies that:

lfpF∗ =
⋃
n∈N

F n
∗ (∅)
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Traces semantics Fixpoint definition

Fixpoint definition: proof (2), fixpoint equality

We now show that JSK∗ is equal to lfpF∗, by showing the property below,
by induction over n:

∀n ≥ 1, ∀k < n, ⟨s0, . . . , sk⟩ ∈ F n
∗ (∅) ⇐⇒ ⟨s0, . . . , sk⟩ ∈ JSK∗

at rank 1, only trace ϵ and the traces of length 1 need to be
considered, and this case is trivial
at rank n+ 1, we need to consider both traces of length 1 (the case of
which is trivial) and traces of length n + 1 for some integer n ≥ 1:

⟨s0, . . . , sk , sk+1⟩ ∈ JSK∗

⇐⇒ ⟨s0, . . . , sk⟩ ∈ JSK∗ ∧ sk → sk+1
⇐⇒ ⟨s0, . . . , sk⟩ ∈ F n

∗ (∅) ∧ sk → sk+1 (k < n since k + 1 < n + 1)
⇐⇒ ⟨s0, . . . , sk , sk+1⟩ ∈ F n+1

∗ (∅)
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Traces semantics Fixpoint definition

Trace semantics fixpoint form: example

Example, with the same simple transition system S = (S,→):
S = {a, b, c , d}
→ is defined by a→ b, b → a and b → c

Then, the first iterates are:

F 0
∗ (∅) = ∅

F 1
∗ (∅) = {ϵ, ⟨a⟩, ⟨b⟩, ⟨c⟩, ⟨d⟩}

F 2
∗ (∅) = F 1

∗ (∅) ∪ {⟨b, a⟩, ⟨a, b⟩, ⟨b, c⟩}
F 3
∗ (∅) = F 2

∗ (∅) ∪ {⟨a, b, a⟩, ⟨b, a, b⟩, ⟨a, b, c⟩}
F 4
∗ (∅) = F 3

∗ (∅) ∪ {⟨b, a, b, a⟩, ⟨a, b, a, b⟩, ⟨b, a, b, c⟩}
F 5
∗ (∅) = F 4

∗ (∅) ∪ {⟨a, b, a, b, a⟩, ⟨b, a, b, a, b⟩, ⟨a, b, a, b, c⟩}
F 6
∗ (∅) = . . .

The traces of JSK∗ of length n + 1 appear in F n
∗ (∅)
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Traces semantics Compositionality
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Traces semantics Compositionality

Notion of compositional semantics

The traces semantics definition we have seen is global:
the whole system defines a transition relation
we iterate this relation until we get a fixpoint

Though, a modular definition would be nicer, to allow reasoning on
program fragments, or derive properties of a program from properties of its
pieces...

Can we derive a more modular expression of the semantics ?
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Traces semantics Compositionality

Notion of compositional semantics

Observation: programs often have an inductive structure
λ-terms are defined by induction over the syntax
imperative programs are defined by induction over the syntax
there are exceptions: our MIPS language does not naturally look
that way

Definition: compositional semantics
A semantics J.K is said to be compositional when the semantics of a
program can be defined as a function of the semantics of its parts, i.e.,
When program π writes down as C [π0, . . . , πk ] where π0, . . . , πk are its
components, there exists a function FC such that
JπK = FC (Jπ0K, . . . , JπkK), where FC depends only on syntactic
construction FC .
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Traces semantics Compositionality

Case of a simplified imperative language

Case of a sequence of two instructions b ≡ l0 : i0; l1 : i1; l2:

JbK∗ = Ji0K∗ ∪ Ji1K∗

∪ {⟨s0, . . . , sm⟩ | ∃n ∈ J0,mK,
⟨s0, . . . , sn⟩ ∈ Ji0K∗ ∧ ⟨sn, . . . , sm⟩ ∈ Ji1K∗}

This amounts to concatenating traces of Ji0K∗ and Ji1K∗ that share a
state in common (necessarily at point l1).

Cases of a condition, a loop: similar
by concatenation of traces around junction points
by doing a least-fixpoint computation over loops

We can provide a compositional semantics for our simplified imperative
language
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Traces semantics Compositionality

Case of λ-calculus

Case of a λ-term t = (λx · u) v :
executions may start with a reduction in u

executions may start with a reduction in v

executions may start with the reduction of the head redex
an execution may mix reductions steps in u and v in an arbitrary order

No nice compositional trace semantics of λ-calculus...
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Traces semantics Infinite traces semantics

Non termination

Can the finite traces semantics express non termination ?

Consider the case of our contrived system:

S = {a, b, c , d} (→) = {(a, b), (b, a), (b, c)}

System behaviors:
this system clearly has non-terminating behaviors:
it can loop from a to b and back forever
the finite traces semantics does show the existence of this cycle as
there exists an infinite chain of finite traces for the prefix order ≺:

⟨a, b⟩, ⟨a, b, a⟩, ⟨a, b, a, b⟩, ⟨a, b, a, b, a⟩, . . . ∈ JSK∗

though, the existence of this chain is not very obvious

Thus, we now define a semantics made of infinite traces
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Traces semantics Infinite traces semantics

Semantics of infinite traces

We consider a transition system S = (S,→)

Definition
The infinite traces semantics JSKω is defined by:

JSKω = {⟨s0, . . .⟩ ∈ Sω | ∀i , si → si+1}

Infinite traces starting from an initial state (considering
S = (S,→,SI ,SF )):

{⟨s0, . . .⟩ ∈ JSKω | s0 ∈ SI}
Example:

contrived transition system defined by

S = {a, b, c, d} (→) = {(a, b), (b, a), (b, c)}
the infinite traces semantics contains exactly two traces

JSKω = {⟨a, b, . . . , a, b, a, b, . . .⟩, ⟨b, a, . . . , b, a, b, a, . . .⟩}
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Traces semantics Infinite traces semantics

Fixpoint form

Can we also provide a fixpoint form for JSKω ?

Intuitively, ⟨s0, s1, . . .⟩ ∈ JSKω if and only if ∀n, sn → sn+1, i.e.,

∀n ∈ N, ∀k ≤ n, sk → sk+1

Let Fω be defined by:

Fω : P(Sω) −→ P(Sω)
X 7−→ {⟨s0, s1, . . . , sn, . . .⟩ | ⟨s1, . . . , sn, . . .⟩ ∈ X ∧ s0 → s1}

Then, we can show by induction that:

σ ∈ JSKω ⇐⇒ ∀n ∈ N, σ ∈ F n
ω(Sω)

⇐⇒ σ ∈
⋂

n∈N F n
ω(Sω)
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Traces semantics Infinite traces semantics

Fixpoint form of the semantics of infinite traces

Infinite traces semantics as a fixpoint
Let Fω be the function defined by:

Fω : P(Sω) −→ P(Sω)
X 7−→ {⟨s0, s1, . . . , sn, . . .⟩ | ⟨s1, . . . , sn, . . .⟩ ∈ X ∧ s0 → s1}

Then, Fω is ∩-continuous over the powerset structure and thus has a
greatest-fixpoint; moreover:

gfpFω = JSKω =
⋂
n∈N

F n
ω(Sω)

Proof sketch:
the ∩-contiunity proof is similar as for the ∪-continuity of F∗
by the dual version of Kleene’s theorem, gfpFω exists and is equal to⋂

n∈N F n
ω(Sω), i.e. to JSKω (similar induction proof)
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Traces semantics Infinite traces semantics

Fixpoint form of the infinite traces semantics: iterates

Example, with the same simple transition system:
S = {a, b, c , d}
→ is defined by a→ b, b → a and b → c

Then, the first iterates are:

F 0
ω(Sω) = Sω

F 1
ω(Sω) = ⟨a, b⟩ · Sω ∪ ⟨b, a⟩ · Sω ∪ ⟨b, c⟩ · Sω

F 2
ω(Sω) = ⟨b, a, b⟩ · Sω ∪ ⟨a, b, a⟩ · Sω ∪ ⟨a, b, c⟩ · Sω

F 3
ω(Sω) = ⟨a, b, a, b⟩ · Sω ∪ ⟨b, a, b, a⟩ · Sω ∪ ⟨b, a, b, c⟩ · Sω

F 4
ω(Sω) = . . .

Intuition
at iterate n, prefixes of length n + 1 match the traces in the infinite
semantics
only ⟨a, b, . . . , a, b, a, b, . . .⟩ and ⟨b, a, . . . , b, a, b, a, . . .⟩ belong to all
iterates
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Summary

Summary

We have discussed today:
small-step / structural operational semantics:
individual program steps

big-step / natural semantics:
program executions as sequences of transitions

their fixpoint definitions and properties
will play a great role to design verification techniques

Next lectures:
another family of semantics, more compact and compositional
semantic program and proof methods
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