Operational Semantics

Semantics and applications to verification

Xavier Rival

Ecole Normale Supérieure

February 16th, 2024

Xavier Rival Operational Semantics February 16th, 2024

1/50

Program of this first lecture

Operational semantics

Mathematical description of the executions of a program

© A model of programs: transition systems

» definition, a small step semantics
» a few common examples

@ Trace semantics: a kind of big step semantics

» finite and infinite executions
» fixpoint-based definitions
» notion of compositional semantics

Xavier Rival Operational Semantics February 16th, 2024

2/50

Transition systems and small step semantics Definition and properties

Outline

@ Transition systems and small step semantics
@ Definition and properties
@ Examples

Xavier Rival Operational Semantics February 16th, 2024 3/50

Transition systems and small step semantics Definition and properties

Definition

We will characterize a program by:

@ states:
photography of the program status at an instant of the execution

@ execution steps: how do we move from one state to the next one

Definition: transition systems (TS)
A transition system is a tuple (S, —) where:
@ S is the set of states of the system

@ — CS x S is the transition relation of the system

Note:

@ the set of states may be infinite

Xavier Rival Operational Semantics February 16th, 2024 4 /50

Transition systems and small step semantics Definition and properties

Transition systems: properties of the transition relation

A deterministic system is such that a state fully determines the next state
Vs, 51,51 €S, (5o = s1 Asop— s1) = 51 =5
Otherwise, a transition system is non deterministic, i.e.:

Jso, 51,81 €S, 5o —> 51 Asp— s; A st # s

Notes:

@ the transition relation — defines atomic execution steps;
it is often called small-step semantics or structured operational
semantics

@ steps are discrete (not continuous)
to describe both discrete and continuous behaviors, we would need to
look at hybrid systems (beyond the scope of this lecture)

@ we do not consider non deterministic systems with probability on
transitions (probabilistic transition systems)

Xavier Rival Operational Semantics February 16th, 2024 5/50

Transition systems and small step semantics Definition and properties

Transition systems: initial and final states

Initial / final states:
we often consider transition systems with a set of initial and final states:

@ a set of initial states S; C S denotes states where the execution
should start

@ a set of final states S C S denotes states where the execution
should reach the end of the program

When needed, we add these to the definition of the transition systems
(S, —,Sz,Sx).

Blocking state (not the same as final state):

@ a state sp € S is blocking when it is the origin of no transition:
Vs) €S, —|(So — 51)

@ example: we often introduce an error state (usually noted Q to
denote the erroneous, blocking configuration)

Xavier Rival Operational Semantics February 16th, 2024 6 /50

Transition systems and small step semantics Examples

Outline

@ Transition systems and small step semantics
@ Definition and properties
@ Examples

Xavier Rival Operational Semantics

February 16th, 2024

7/50

Transition systems and small step semantics Examples

Finite automata as transition systems

We can formalize the word recognition by a finite automaton using a
transition system:

@ We consider automaton A = (Q, ai, qt, —>)

o A “state” is defined by:

» the remaining of the word to recognize
» the automaton state that has been reached so far

thus, S = Q x L*

@ The transition relation — of the transition system is defined by:
(90, aw) = (q1,w) <= qo > @1
@ The initial and final states are defined by:

Sz = {(g,w) | w e L} Sr = {(ar, €)}

Xavier Rival Operational Semantics February 16th, 2024 8 /50

Transition systems and small step semantics

Pure \-calculus

A bare bones model of functional programing:

A-terms
The set of \-terms is defined by:

tu,... = Xx variable
| Ax-t abstraction
| tu application

Examples

B-reduction

e o6 o

(Ax - t)u =g t[x < u]
if u—=pvthen Ax-u—gAx-v
if u—gvthenut —=gvt
if u—gvthentu—gtv

The A-calculus defines a transition system:

@ S is the set of A\-terms and — g the transition relation

@ — g is non-deterministic; example ?
though, ML fixes an execution order

e given a lambda term ty, we may consider (S, —3,Sz) where Sz = {tp}

e blocking states are terms with no redex (Ax - u) v

Xavier Rival Operational Semantics

February 16th, 2024

9/50

Transition systems and small step semantics Examples

A MIPS like assembly language: syntax

We now consider a (very simplified) assembly language
e machine integers: sequences of 32-bits (set: B32)

@ instructions are encoded over 32-bits (set: Iyips)
and stored into the same space as data (i.e., Inips € B3?)

@ we assume a fixed set of addresses A

Memory configurations | Instructions

(€ Inips)

add ry,rs,re addition
addirg,rs,v add. v e B®
sub rg,rs,rs subtraction

;
e Program counter pc
current instruction

o General purpose registers

ro...rs Elt brarc]iChb h
q trs,ro,t conda. branc
e Main memory (RAM e :
a Ae o 3;2() Id rg,0,ry relative load
mem : A — 1232 st rg,0,ry relative store
where A C B v,t,0 € B%, d,s s/, x €[0,31]

Xavier Rival Operational Semantics February 16th, 2024 10 /50

Transition systems and small step semantics Examples

A MIPS like assembly language: states

Definition: state
A state is a tuple (m, p,) which comprises:
e A program counter value 7 € B3?
@ A function mapping each general purpose register to its value
p:{0,...,31} — B32
o A function mapping each memory cell to its value p : A — B3?

What would a dangerous state be ?
@ writing over an instruction
@ reading or writing outside the program’s memory

@ we cannot fully formalize these yet...
as we need to formalize the behavior of each instruction first

Xavier Rival Operational Semantics February 16th, 2024

11 /50

Transition systems and small step semantics Examples

A MIPS like assembly language: transition relation

We assume a state s = (m, p, 1) and that p(7) = i; then:

e if i=addry,rg, ry, then:
s = (7 +4,p[d < p(s) + p(s)], 1)

e if i = addiry,rs, v, then:
s — (m+4,pld < p(s) + v], p)
o if i=subry, rs,ry, then:
s = (m+4,pld < p(s) — p(s")], 1)
o if i =b t, then:
s = (t,p, 1)

Xavier Rival Operational Semantics February 16th, 2024

12 /50

Transition systems and small step semantics Examples

A MIPS like assembly language: transition relation

We assume a state s = (m, p,) and that u(7) = i; then:

o if i =bltrs, ry, t, then:

L e p(s) < pl(s)
(m+4,p,u) otherwise

o if i=Idry,0,r,, then:

{ (7 +4,pld < p(p(x) +0)l, 1) if p(x) +o0€A
Q otherwise

e if i=stry,o,r,, then:

. { ng 4, p, plp(x) + 0 < p(d)]) gtﬁifv)vilo cA

Xavier Rival Operational Semantics February 16th, 2024

13 /50

Transition systems and small step semantics Examples

A simple imperative language: syntax

We now look at a more classical imperative language (intuitively, a
bare-bone subset of C):

@ variables X: finite, predefined set of variables
o labels IL: before and after each statement
o values V: Vit UVgoat U . ..

Syntax
= v(veV)|x (xeX)|e+e|exe|... expressions
n= TRUE | FALSE | e<e | e=e conditions
= x:i=e¢; assignment
| if(c)belseb condition
| while(c) b loop
b = {i;...;i;} block, program(IP)

Xavier Rival Operational Semantics February 16th, 2024 14 /50

Transition systems and small step semantics Examples

A simple imperative language: states

A non-error state should fully describe the configuration at one instant of
the program execution, including memory and control J

The memory state defines the current contents of the memory

meM=X—V

The control state defines where the program currently is
@ analoguous to the program counter

@ can be defined by adding labels L = {f, 4, ...} between each pair of
consecutive statements; then:

S=LxMuw{Q}
@ or by the program remaining to be executed; then:

S=PxMu{Q}

Xavier Rival Operational Semantics February 16th, 2024 15 /50

Transition systems and small step semantics Examples

A simple imperative language: semantics of expressions

@ The semantics [e] of expression e should evaluate each expression

into a value, given a memory state

o Evaluation errors may occur: division by zero...
error value is also noted Q

Thus: [e] : M — Vuw {Q}

Definition, by induction over the syntax:
[v(m) = v
[x](m) = m(x)
[eo+e1](m) = [[eoglg(m)i[[elﬂ(m) o) 0
oo /e1](m) { leol(n) / [ex](m) otherwise

where @ is the machine implementation of operator @, and is Q-strict, i.e.,

YVveV, vaQ=Qav==~Q

Xavier Rival Operational Semantics February 16th, 2024

16 /50

Transition systems and small step semantics Examples

A simple imperative language: semantics of conditions

@ The semantics [c] of condition c should return a boolean value

@ It follows a similar definition to that of the semantics of expressions:
[[C]] M — Voo W {Q}

Definition, by induction over the syntax:

[TRUE](m) = TRUE
[FALSE](m) = FALSE
{ TRUE if [eo](m) < [e1](m)
FALSE if [eq](m) > [e1](m)
Q if [eo](m) = Q or [e1](m) =

[eo < e1](m) =

) =
TRUE if [eo](m) = [e1](m)
[eo = ex](m) = { FALSE if[[eo]](mg;é[[el]](m)

Q if [eo](m) = Q or [e1](m) =

Xavier Rival Operational Semantics February 16th, 2024 17 /50

Transition systems and small step semantics Examples

A simple imperative language: transitions

Transitions describe local program execution steps, thus are defined by
case analysis on the program statements J

Case of assignment h:x=¢e; f
o if [e](m) # Q, then (lh, m) — (4, m[x < [e](m)])
o if [e](m) =Q, then (fh, m) — Q
Case of condition f : if(c){f : bs L} else{5 : br 4} 5
o if [c](m) = TRUE, then (f,m) — (4, m)
o if [c]|(m) = FALSE, then (f,m) — (5,m)
o if [c](m) =Q, then (f,m) = Q
o (,m)— (&,m)
o (l4,m) — (&,m)

Xavier Rival Operational Semantics February 16th, 2024 18 /50

Transition systems and small step semantics Examples

A simple imperative language: transitions

Case of loop o : while(c){4 : b L} B

o if [¢](m) = TRUE, then { (& m) = (&, m)
([O,m) — ([3,111)
([2,111) — ([37111)

(o, m) = Q

(h,m) —Q

o if [c]](m) = FALSE, then {
o if [c](m) = Q, then {

Caseof {lp:i0;h .- ;lh—1in-1;ln}

@ the transition relation is defined by the individual instructions

Xavier Rival Operational Semantics February 16th, 2024

19 /50

Transition systems and small step semantics Examples
Extending the language with non-determinism

The language we have considered so far is a bit limited:
@ it is deterministic: at most one transition possible from any state

@ it does not support the input of values

Changes if we model non deterministic inputs...

. with an input instruction: ... with a random function:

e in=...| x:=input() @ ex=...|rand()

@ o :x :=input(); 4 generates @ expressions have a
transitions non-deterministic semantics:

Vv eV, (lo,m) — (4, m[x < v]) [e] : M = P(Vw {Q})
: . [rand()](m) = V

@ one instruction induces non [V](m) = {v}

determinism [c] : M = P(Vioo W {Q1})

@ all instructions induce non
determinism

Xavier Rival Operational Semantics February 16th, 2024 20 /50

Transition systems and small step semantics Examples

Semantics of real world programming languages

C language:
@ several norms: ANSI C'99, ANSI C'11, K&R...
@ not fully specified:

» undefined behavior

» implementation dependent behavior: architecture (ABI) or
implementation (compiler...)

» unspecified parts: leave room for implementation of compilers and
optimizations

e formalizations in HOL (C'99), in Coq (CompCert C compiler)

OCaml language:
@ more formal...

@ ... but still with some unspecified parts, e.g., execution order

Xavier Rival Operational Semantics February 16th, 2024

21/50

Traces semantics Definitions

Outline

e Traces semantics
Definitions

@ Finite traces semantics
@ Fixpoint definition

@ Compositionality

@ Infinite traces semantics

©

Xavier Rival Operational Semantics February 16th, 2024 22 /50

Traces semantics Definitions

Execution traces

@ So far, we considered only states and atomic transitions

@ We now consider program executions as a whole

Definition: traces
o A finite trace is a finite sequence of states s, ..., s,, noted
(S0, ---5Sn)
@ An infinite trace is an infinite sequence of states (sp,...)
Besides, we write:
@ S* for the set of finite traces
@ S¥ for the set of infinite traces

o S* =S*USY for the set of finite or infinite traces

Xavier Rival Operational Semantics February 16th, 2024

23/50

Traces semantics Definitions

Operations on traces: concatenation

Definition: concatenation
The concatenation operator - is defined by:

(505 -3Sn) - (Sgy- vy Sy = (05350 S0s---»Shy)
(S0y---s8n) * (Shs--) = (S0s---+Sn,Shs---)
(S0y-vySny-ee) 0 = (S0yeeySpye.n)
We also define:

@ the empty trace ¢, neutral element for -

e the length operator |.|:
€] =0
|(s0,...,sn)] = n+1
[(s0, - -)| = w

Xavier Rival Operational Semantics

February 16th, 2024

24 /50

Traces semantics Definitions

Comparing traces: the prefix order relation

Definition: prefix order relation
Relation < is defined by:

< /
(50,---,5n) < (Shy---,Sy) <= n=n p
Vi e [0,n], si=s;

(s0,...) < (S4,.-.) <= VieN, si=s!

(S0,---sSn) < (Sp,-..) <= Viel0,n], si=s]

Proof: straightforward application of the definition of order relations

Xavier Rival Operational Semantics February 16th, 2024

25 /50

Traces semantics Finite traces semantics

Outline

e Traces semantics
Definitions

@ Finite traces semantics
@ Fixpoint definition

@ Compositionality

@ Infinite traces semantics

©

Xavier Rival Operational Semantics February 16th, 2024 26 /50

Traces semantics Finite traces semantics

Semantics of finite traces

We consider a transition system S = (S, —)
Definition

The finite traces semantics [S]* is defined by:

[ST* = {{s0,---,5n) €S"| Vi, 5i = siy1}

Example:

@ contrived transition system S = ({a, b, ¢, d}, {(a, b), (b, a), (b, c)})

o finite traces semantics:

ST = {

67

(a,b,...,a,b,a), (b,a,...,a,b,a),
(a,b,...,a,b,a,b), (b,a,...,a, b,a,b),
(a,b,...,a,b,a,b,c), (b,a,...,a,b,a,b,c)
{c), (d) }

Xavier Rival Operational Semantics February 16th, 2024 27 /50

Traces semantics Finite traces semantics

Interesting subsets of the finite trace semantics

We consider a transition system S = (S, —,Sz,Sx)
e the initial traces, i.e., starting from an initial state:

{(s0,---,5n) € [S]" | 0 € Sz}
@ the traces reaching a blocking state:
{o € [S]* | Vo' €[S]*,0 <0’ = 0 =0}
@ the traces ending in a final state:
{(s0,---,5n) € [S]" | sn € S£}
e the maximal traces are both initial and final

Example (same transition system, with Sz = {a} and Sr = {c}):

@ traces from an initial state ending in a final state are all of the form:
(a,b,...,a,b,a,b,c)

Xavier Rival Operational Semantics February 16th, 2024 28 /50

Traces semantics Finite traces semantics

Example: finite automaton

We consider the example of the previous lecture:
L:{av b} Q:{CIO7Q1>q2}

a
qi—aqO quq2 . @ a e@

do — q1 g1 — q2 g2 — q1

Then, we have the following traces:

70 = ((qo,ab),(q1,b),(q2,¢))

o = <(q07abab) (qhbab)?(qQ?ab)ﬂ(qlﬂb)v(q2’€)>
7 = {((qo, ababab), (q1, babab), (g2, abab), (g1, bab))
73 = {(qo,abaaa), (q1, baaa), (g2, aaa), (g1, aa))

Then:
@ 79,71 are initial traces, reaching a final state
@ 7 is an initial trace, and is not maximal
@ 73 reaches a blocking state, but not a final state

Xavier Rival Operational Semantics February 16th, 2024 29 /50

Traces semantics Finite traces semantics

Example: A-term

We consider A\-term Ay - ((Ax - y)((Ax - x x) (Ax - x x))), and show two
traces generated from it (at each step the reduced lambda is shown in red):

0 = (Ay ((Ax-y)((Ax-xx) (Ax - xx)))
Ay-y)

1 = { Ay-((Ax-y)((Ax - xx) (Ax - xx))),
Ay - (O - Y)(Oox - xx) (o - xx),
Ay (A y)((Ax - xx) (Ax - xx))))
Then:

@ 79 is a maximal trace; it reaches a blocking state (no more reduction
can be done)

@ 71 can be extended for arbitrarily many steps ;
the second part of the course will study infinite traces

Xavier Rival Operational Semantics February 16th, 2024 30/50

Traces semantics

Finite traces semantics

Example: imperative program

Similarly, we can write the traces of a simple imperative program:

S osaes

x:=1;

y :=0;

while(x < 4){
y=y+x
x:=x+1;

}

(final program point)

@ very precise description of what the program does...

@ ... but quite cumbersome

Xavier Rival

T = < (QJaqXZQY:SD)a([laQXZ lay:8D)7
([27 (x=Ly= OD)a ([37 (x=Ly= OD)7
(Lh (x=Ly=]-D)a ([5a (x=2,y= 1[))7
([3a QX =2,y = 1[))7 (Lh QX =2,y = 3[))7
([5a (x=3,y= 3D)a ([3a (x=3,y= 3[))’
(Lh (x=3,y= 6D)a ([5a (x=4y= 6[))’
(b, (x=4,y=6)))

Operational Semantics February 16th, 2024 31/50

Traces semantics Fixpoint definition

Outline

e Traces semantics
Definitions

@ Finite traces semantics
@ Fixpoint definition

@ Compositionality

@ Infinite traces semantics

©

Xavier Rival Operational Semantics February 16th, 2024 32/50

Traces semantics Fixpoint definition

Towards a fixpoint definition

We consider again our contrived transition system

= ({a, b, c, d}, {(a, b)v (b7 a)v (b7 C)})
Traces by length:

traces of length /

(a), (b), (), (d)
(a,b), (b, a), (b, c)
(a,b,a),(b,a,b) (a,b,c)

< b?‘a > <b7aabva>7<baa7b7c>

Bl Wl RO~

a,

Like the automaton in lecture 1, this suggests a least fixpoint

definition: traces of length / 4+ 1 can be derived from the traces of length
i, by adding a transition

Xavier Rival Operational Semantics February 16th, 2024 33 /50

Traces semantics Fixpoint definition

Trace semantics fixpoint form

We define a semantic function, that computes the traces of length

i+ 1 from the traces of length i (where i > 1), and adds the traces of
length 1:

Finite traces semantics as a fixpoint
Let Z = {e} U {(s) | s € S}. Let F, be the function defined by:
Fio: P(S*) — P(S*)
X — ZU{(s0,---,Sn,Sn+1) | (S0s---+5n) € X ASp = Spt1}

Then, F, is continuous over the powerset structure and thus has a
least-fixpoint and:

ifp £ = () F2(0) = [S]"

neN

Xavier Rival Operational Semantics February 16th, 2024 34 /50

Traces semantics Fixpoint definition
Fixpoint definition: proof (1), fixpoint existence

First, we prove that F, is continuous.
Let X C P(S*) such that X # () and A = Jycp U. Then:

Fe(Uxex X)
= ZU{(s0,---15n5n+1) | ({50,---+5n) € Uyexr U)ASn = sny1}
= ZU{(s0,---,Sn,Sn+1) | U € X, (s0,...,5,) € UANS, —> Spy1}
= ZU (Uyex{(s0,---+Sn5nt1) | (s0s---,5n) € UNSp = sp11})
= Uvex @ U{(s0,---,5n,5041) | (50,.-.,5n) € UANSy = Spy1})
= UUeX F.(V)
In particular, this is true for any increasing chain X’ (here, we considered
any non empty family), hence F. is continuous.
As (P(S*), C) is a CPO, the continuity of F. entails the existence of a
least-fixpoint (Kleene theorem); moreover, it implies that:

Ifp . = | FP(0)
neN

Xavier Rival Operational Semantics February 16th, 2024 35 /50

Traces semantics Fixpoint definition
Fixpoint definition: proof (2), fixpoint equality

We now show that [S]* is equal to Ifp F., by showing the property below,
by induction over n:

Vn>1, Vk < n, <50,...,Sk> EF:(@) <~ <$0,...,Sk>€ [[S]]*

@ at rank 1, only trace € and the traces of length 1 need to be
considered, and this case is trivial

@ at rank n+ 1, we need to consider both traces of length 1 (the case of
which is trivial) and traces of length n+ 1 for some integer n > 1:

<507 vy Sk Sk+1> € [[S]]*

< <So,...,Sk> S [[S]]*/\sk—>sk+1
< (So,...,5k) € F'(0) Ask = skr1 (k< nsince k+1<n+1)
= (50,5 Skr1) € FTH(0)

Xavier Rival Operational Semantics February 16th, 2024 36 /50

Traces semantics Fixpoint definition

Trace semantics fixpoint form: example

Example, with the same simple transition system S = (S, —):
e S={a,b,c,d}
@ — isdefined by a— b, b—aand b— ¢

Then, the first iterates are:

FO(0)y = 0

FH0) = {e(a),(b),(c),(d)}

F2(0) = FXO)U{(b,a),(a,b),(b,c)}

F30) = F2(0)u{{a,b,a),(b,a,b),(ab,c)}

Fﬁ(@) = Ff((i))U{(b,a,b,a>,<a,b,a,b>,(b,a,b,c)}

F2(0) = FX0)u{{a,b,a,b,a),(b,a,b,a,b),(ab,a,b,c)}
FS(0) = ...

The traces of [S]* of length n+ 1 appear in F](0)

*

Xavier Rival Operational Semantics February 16th, 2024

37/50

Traces semantics Compositionality

Outline

e Traces semantics
Definitions

@ Finite traces semantics
@ Fixpoint definition

@ Compositionality

@ Infinite traces semantics

©

Xavier Rival Operational Semantics February 16th, 2024 38 /50

Traces semantics Compositionality

Notion of compositional semantics

The traces semantics definition we have seen is global:
@ the whole system defines a transition relation
@ we iterate this relation until we get a fixpoint

Though, a modular definition would be nicer, to allow reasoning on

program fragments, or derive properties of a program from properties of its
pieces...

Can we derive a more modular expression of the semantics ? J

Xavier Rival Operational Semantics February 16th, 2024 39 /50

Traces semantics Compositionality

Notion of compositional semantics

Observation: programs often have an inductive structure
@)\-terms are defined by induction over the syntax
@ imperative programs are defined by induction over the syntax

e there are exceptions: our MIPS language does not naturally look
that way

Definition: compositional semantics

A semantics [.] is said to be compositional when the semantics of a
program can be defined as a function of the semantics of its parts, i.e.,

When program 7 writes down as C|my, ..., 7] where g, ..., 7, are its
components, there exists a function F¢ such that

[7] = Fc([mol, - - -, [7k]), where Fc depends only on syntactic
construction Fc.

Xavier Rival Operational Semantics February 16th, 2024

40/ 50

Traces semantics Compositionality

Case of a simplified imperative language

Case of a sequence of two instructions b = [: ig; 4 : i1; b:
[e]* = [io]* U [41]"
U {(so,.--,5m) | 3n € [0, m],
(S0, ---,5n) € [1o]* A (Sns---,5m) € [11]*}

This amounts to concatenating traces of [ig]* and [i1]* that share a
state in common (necessarily at point 4).
Cases of a condition, a loop: similar

@ by concatenation of traces around junction points

@ by doing a least-fixpoint computation over loops

We can provide a compositional semantics for our simplified imperative
language J

Xavier Rival Operational Semantics February 16th, 2024 41 /50

Traces semantics Compositionality

Case of A\-calculus

Case of a A\-term t = (Ax - u) v:
@ executions may start with a reduction in u
@ executions may start with a reduction in v
@ executions may start with the reduction of the head redex
°

an execution may mix reductions steps in v and v in an arbitrary order

No nice compositional trace semantics of A-calculus... J

Xavier Rival Operational Semantics February 16th, 2024 42 /50

Traces semantics Infinite traces semantics

Outline

e Traces semantics
Definitions

@ Finite traces semantics
@ Fixpoint definition

@ Compositionality

@ Infinite traces semantics

©

Xavier Rival Operational Semantics February 16th, 2024 43 /50

Traces semantics Infinite traces semantics

Non termination

Can the finite traces semantics express non termination ? J

Consider the case of our contrived system:

S= {37 b, c, d} (_>) = {(a’ b)?(bv a)?(bv C)}
System behaviors:

@ this system clearly has non-terminating behaviors:
it can loop from a to b and back forever

@ the finite traces semantics does show the existence of this cycle as
there exists an infinite chain of finite traces for the prefix order <:

(a,b),(a, b,a),(a,b,a,b),(ab,ab,a),...c[S]*
@ though, the existence of this chain is not very obvious

Thus, we now define a semantics made of infinite traces

Xavier Rival Operational Semantics February 16th, 2024 44 /50

Traces semantics Infinite traces semantics

Semantics of infinite traces

We consider a transition system S = (S, —)
Definition

The infinite traces semantics [S]“ is defined by:

[S]¥ = {(s0,...) € S¥ | Vi, si = sis1}

Infinite traces starting from an initial state (considering
S = (S, —, Sz, S]:))Z

{<So, .. > S [[S]]w | So € SI}
Example:

@ contrived transition system defined by

S={a,b,c,d} (=) ={(a,b),(b,a),(b,c)}
@ the infinite traces semantics contains exactly two traces

[S]¥ = {(a,b,...,a,b,a,b,...),(b,a,...,b,a,b,a,..0}

Xavier Rival Operational Semantics February 16th, 2024

45 /50

Traces semantics Infinite traces semantics

Fixpoint form

Can we also provide a fixpoint form for [S]“ ?

Intuitively, (sp,s1,...) € [S] if and only if Vn, s, — spi1, i.e.,
VneN, Vk < n, sy — Sk41
Let F., be defined by:
Fo: P(S¥) — P(S¥)
X —> {(s0,S1,---ySny--.) | (S1,...,Sn,...) EX ANsp— s}
Then, we can show by induction that:

oce[S]¥ <= VneN, o€ FJ(S¥)
> 0 €[Nen FI(SY)
Xavier Rival

Operational Semantics February 16th, 2024 46 /50

Traces semantics Infinite traces semantics
Fixpoint form of the semantics of infinite traces
Infinite traces semantics as a fixpoint
Let F, be the function defined by:

F,: P(S¥) — P(SV)
X —> {(s0,S1,---ySny---) | (S1,...,Sn,...) EX ANsy— s}

Then, F, is N-continuous over the powerset structure and thus has a
greatest-fixpoint; moreover:

gfp F = [S]¥ = () F3(S¥)
neN

Proof sketch:

@ the N-contiunity proof is similar as for the U-continuity of F,
@ by the dual version of Kleene's theorem, gfp F,, exists and is equal to
Npen FO(SY), ie. to [S]* (similar induction proof)

Xavier Rival Operational Semantics February 16th, 2024 47 /50

Traces semantics

Infinite traces semantics

Fixpoint form of the infinite traces semantics: iterates

Example, with the same simple transition system:
e S={a,b,c,d}
@ —isdefinedbya— b, b—aand b— ¢
Then, the first iterates are:

FI(s¥)
F1(S¥)
F2(Sw)
F2(8%)
Fa(8¥)

[ntuition

SUJ
(a,b) -S“ U (b,a)-S¥U
(b,a,b)-S*U

(a, b,a,b)-S¥ U (b,a, b,

(b,c)-S¥

(a,b,a) -S¥ U (a, b, c)-S¥
a)-SYuU(b,a,b,c)-S¥

@ at iterate n, prefixes of length n + 1 match the traces in the infinite

semantics

e only (a,b,...

iterates

’a7b7a’b7‘

..) and (b, a,

.,b,a,b,a,...) belong to all

Xavier Rival

Operational Semantics

February 16th, 2024

48 /50

@ Transition systems and small step semantics

e Traces semantics

© Summary

Summary

Summary

We have discussed today:
e small-step / structural operational semantics:
individual program steps

e big-step / natural semantics:
program executions as sequences of transitions

@ their fixpoint definitions and properties
will play a great role to design verification techniques

Next lectures:
@ another family of semantics, more compact and compositional

@ semantic program and proof methods

Xavier Rival Operational Semantics February 16th, 2024

50/50

	Transition systems and small step semantics
	Definition and properties
	Examples

	Traces semantics
	Definitions
	Finite traces semantics
	Fixpoint definition
	Compositionality
	Infinite traces semantics

	Summary

