Abstract Interpretation
Semantics and applications to verification

Xavier Rival

École Normale Supérieure

April 14th, 2023
Program of this lecture

Studied so far:

- **semantics**: behaviors of programs
- **properties**: safety, liveness, security...
- **approaches to verification**: typing, use of proof assistants, model checking

Today’s lecture: introduction to abstract interpretation

A **general framework for comparing semantics** introduced by Patrick Cousot and Radhia Cousot (1977)

- **abstraction**: use of a lattice of predicates
- **computing abstract over-approximations**, while preserving soundness
- **computing abstract over-approximations for loops**, using fixpoints as a basis
Outline

1. Abstraction
 - Notion of abstraction
 - Abstraction and concretization functions
 - Galois connections

2. Abstract interpretation

3. Application of abstract interpretation

4. Conclusion
Abstraction example 1: signs

Abstraction: defined by a family of properties to use in proofs

Example:
- objects under study: sets of mathematical integers
- abstract elements: signs

Lattice of signs

- \(\bot \) denotes only \(\emptyset \)
- \(\pm \) denotes any set of positive integers
- \(0 \) denotes any subset of \(\{0\} \)
- \(- \) denotes any set of negative integers
- \(\top \) denotes any set of integers

Note: the order in the abstract lattice corresponds to inclusion...
Abstraction example 1: signs

Definition: abstraction relation

- **concrete elements**: elements of the original lattice ($c \in \mathcal{P}(\mathbb{Z})$)
- **abstract elements**: predicate ($a: "\cdot \in \{\pm, 0, \ldots\}"$)
- **abstraction relation**: $c \vdash_s a$ when a describes c

Examples:

- $\{1, 2, 3, 5, 7, 11, 13, 17, 19, 23, \ldots\} \vdash_s \pm$
- $\{1, 2, 3, 5, 7, 11, 13, 17, 19, 23, \ldots\} \vdash_s \top$

We use abstract elements **to reason about operations**:

- if $c_0 \vdash_s \pm$ and $c_1 \vdash_s \pm$, then $\{x_0 + x_1 \mid x_i \in c_i\} \vdash_s \pm$
- if $c_0 \vdash_s \pm$ and $c_1 \vdash_s \pm$, then $\{x_0 \cdot x_1 \mid x_i \in c_i\} \vdash_s \pm$
- if $c_0 \vdash_s \pm$ and $c_1 \vdash_s 0$, then $\{x_0 \cdot x_1 \mid x_i \in c_i\} \vdash_s 0$
- if $c_0 \vdash_s \pm$ and $c_1 \vdash_s \bot$, then $\{x_0 \cdot x_1 \mid x_i \in c_i\} \vdash_s \bot$
Abstraction example 1: signs

We can also consider the **union operation**:
- if $c_0 \vdash S \pm$ and $c_1 \vdash S \pm$, then $c_0 \cup c_1 \vdash S \pm$
- if $c_0 \vdash S \pm$ and $c_1 \vdash S \perp$, then $c_0 \cup c_1 \vdash S \pm$

But, what can we say about $c_0 \cup c_1$, when $c_0 \vdash S 0$ and $c_1 \vdash S \pm$?
- clearly, $c_0 \cup c_1 \vdash S \top$...
- but **no other relation holds**
- in the abstract, **we do not rule out negative values**

We can **extend the initial lattice**:
- ≥ 0 denotes any set of positive or null integers
- ≤ 0 denotes any set of negative or null integers
- $\neq 0$ denotes any set of non null integers
- if $c_0 \vdash S \pm$ and $c_1 \vdash S 0$, then $c_0 \cup c_1 \vdash S \geq 0$
Abstraction example 2: constants

Definition: abstraction based on constants

- **concrete elements:** \(\mathcal{P}(\mathbb{Z}) \)
- **abstract elements:** \(\perp, \top, n \) where \(n \in \mathbb{Z} \)

 \[
 (D^\#_C = \{ \perp, \top \} \cup \{ n \mid n \in \mathbb{Z} \})
 \]
- **abstraction relation:** \(c \vdash_C n \iff c \subseteq \{ n \} \)

We obtain a **flat lattice**:

\[
\begin{array}{ccccccc}
\perp & \quad & \quad & \quad & \quad & \quad & \top \\
& \downarrow & \quad & \downarrow & \quad & \downarrow & \\
\cdots & \quad & \quad & \quad & \quad & \quad & \cdots \\
& \downarrow & \quad & \downarrow & \quad & \downarrow & \\
-2 & \quad & -1 & \quad & 0 & \quad & 1 & \quad & 2 & \quad & \cdots \\
\end{array}
\]

Abstract reasoning:

- if \(c_0 \vdash_C n_0 \) and \(c_1 \vdash_C n_1 \), then \(\{ k_0 + k_1 \mid k_i \in c_i \} \vdash_C n_0 + n_1 \)
Abstraction example 3: Parikh vector

Definition: Parikh vector abstraction

- **Concrete elements:** $\mathcal{P}(\mathcal{A}^*)$ (sets of words over alphabet \mathcal{A})
- **Abstract elements:** $\{\bot, \top\} \cup (\mathcal{A} \rightarrow \mathbb{N})$
- **Abstraction relation:** $c \vdash_\mathcal{P} \phi : \mathcal{A} \rightarrow \mathbb{N}$ if and only if:

$$\forall w \in c, \forall a \in \mathcal{A}, \ a \text{ appears } \phi(a) \text{ times in } w$$

Abstract reasoning:

- **Concatenation:**

 if $\phi_0, \phi_1 : \mathcal{A} \rightarrow \mathbb{N}$ and c_0, c_1 are such that $c_i \vdash_\mathcal{P} \phi_i$,

 $$\{ w_0 \cdot w_1 \mid w_i \in c_i \} \vdash_\mathcal{P} \phi_0 + \phi_1$$

Information preserved, information deleted:

- **Very precise** information about the number of occurrences
- **The order of letters** is totally abstracted away (lost)
Abstraction example 4: interval abstraction

Definition: abstraction based on intervals

- **Concrete elements:** $\mathcal{P}(\mathbb{Z})$
- **Abstract elements:** $\bot, (a, b)$ where $a \in \{-\infty\} \cup \mathbb{Z}$, $b \in \mathbb{Z} \cup \{+\infty\}$ and $a \leq b$
- **Abstraction relation:**

$$
\begin{align*}
\emptyset & \vdash \mathcal{I} \bot \\
S & \vdash \mathcal{I} \top \\
S & \vdash \mathcal{I} (a, b) \iff \forall x \in S, \ a \leq x \leq b
\end{align*}
$$

Operations: TD
Abstraction example 5: non relational abstraction

Definition: non relational abstraction

- **concrete elements:** $\mathcal{P}(X \rightarrow Y)$, inclusion ordering
- **abstract elements:** $X \rightarrow \mathcal{P}(Y)$, pointwise inclusion ordering
- **abstraction relation:** $c \vdash_{\mathcal{N}} a \iff \forall \phi \in c, \forall x \in X, \phi(x) \in a(x)$

Information preserved, information deleted:

- **very precise** information about the image of the functions in c
- **relations** such as (for given $x_0, x_1 \in X, y_0, y_1 \in Y$) the following are lost:

 $\forall \phi \in c, \phi(x_0) = \phi(x_1)$

 $\forall \phi \in c, \forall x, x' \in X, \phi(x) \neq y_0 \lor \phi(x') \neq y_1$
Notion of abstraction relation

Concrete order: so far, always inclusion
- the tighter the concrete set, the fewer behaviors
- smaller concrete sets correspond to more precise properties

Abstraction relation
Intuitively, the abstraction relation also describes implication:
\(c \vdash a \) effectively means “the property described by \(c \) implies that described by \(a \)

Advantage on static analysis (hint about the following lectures):
- abstract predicates are a lot easier to manipulate than sets of concrete states or logical formulas
- we can still derive concrete facts from abstract predicates
Abstraction relation and monotonicity

Order relations, abstraction relation and monotonicity

- both orders and the abstraction relation describe ordering
- we derive from transitivity there monotonicity properties
 i.e., chains of implications compose

Abstraction relation: $c \vdash a$ when c satisfies a
- if $c_0 \subseteq c_1$ and c_1 satisfies a, in all our examples, c_0 also satisfies a

Abstract order: in all our examples,
- it matches the abstraction relation as well:
 if $a_0 \sqsubseteq a_1$ and c satisfies a_0, then c also satisfies a_1
- great advantage: we can reason about implication in the abstract, without looking back at the concrete properties

We will now formalize this in detail...

Outline

1 Abstraction
 - Notion of abstraction
 - Abstraction and concretization functions
 - Galois connections

2 Abstract interpretation

3 Application of abstract interpretation

4 Conclusion
Towards adjoint functions

We consider a concrete lattice \((C, \subseteq)\) and an abstract lattice \((A, \sqsubseteq)\).

So far, we used abstraction relations, that are consistent with orderings:

Abstraction relation compatibility

\[
\forall c_0, c_1 \in C, \forall a \in A, \quad c_0 \subseteq c_1 \land c_1 \vdash a \implies c_0 \vdash a
\]

\[
\forall c \in C, \forall a_0, a_1 \in A, \quad c \vdash a_0 \land a_0 \sqsubseteq a_1 \implies c \vdash a_1
\]

When we have a \(c\) (resp., \(a\)) and try to map it into a compatible \(a\) (resp. \(c\)), the abstraction relation is not a convenient tool.

Hence, we shall use adjoint functions between \(C\) and \(A\).

- from concrete to abstract: **abstraction**
- from abstract to concrete: **concretization**
Concretization function

Our first adjoint function:

Definition: concretization function

Concretization function $\gamma : A \rightarrow C$ (if it exists) is a monotone function that maps abstract a into the weakest (i.e., most general) concrete c that satisfies a (i.e., $c \vdash a$).

Notes:

- in common cases, there exists a γ
- $c \vdash a$ if and only if $c \subseteq \gamma(a)$
- a concretization that is not monotone with respect to the “logical ordering” would not make sense
- in fact, in some cases, we will even define γ before we define an ordering, and let γ define the ordering!
Concretization function: a few examples

Signs abstraction:

\[
\gamma_S : \begin{array}{c}
\top & \mapsto & \mathbb{Z} \\
\pm & \mapsto & \mathbb{Z}^* \\
0 & \mapsto & \{0\} \\
\bar{-} & \mapsto & \mathbb{Z}^* \\
\bot & \mapsto & \emptyset \\
\end{array}
\]

Constants abstraction:

\[
\gamma_C : \begin{array}{c}
\top & \mapsto & \mathbb{Z} \\
\n & \mapsto & \{n\} \\
\bot & \mapsto & \emptyset \\
\end{array}
\]

Non relational abstraction:

\[
\gamma_{NR} : (X \rightarrow \mathcal{P}(Y)) \rightarrow \mathcal{P}(X \rightarrow Y) \\
\Phi \rightarrow \{\phi : X \rightarrow Y \mid \forall x \in X, \phi(x) \in \Phi(x)\}
\]

Parikh vector abstraction: exercise!
Abstraction function

Our second adjoint function:

Definition: abstraction function

An abstraction function \(\alpha : C \rightarrow A \) (if it exists) is a monotone function that maps concrete \(c \) into the most precise abstract \(a \) that soundly describes \(c \) (i.e., \(c \vdash a \)).

Note:
- in quite a few cases (including some in this course), there is no \(\alpha \)
- for the same reason as \(\gamma \) a non monotone \(\alpha \) (with respect to logical ordering) would not make sense

Summary on adjoint functions:
- \(\alpha \) returns the **most precise abstract predicate** that holds true for its argument
 this is called the **best abstraction**
- \(\gamma \) returns the **most general concrete meaning** of its argument
Abstraction: a few examples

Constants abstraction:

$$\alpha_C : (c \subseteq \mathbb{Z}) \quad \mapsto \quad \begin{cases} \bot & \text{if } c = \emptyset \\ n & \text{if } c = \{n\} \\ \top & \text{otherwise} \end{cases}$$

Non relational abstraction:

$$\alpha_{NR} : \mathcal{P}(X \rightarrow Y) \quad \mapsto \quad X \rightarrow \mathcal{P}(Y)$$

$$c \quad \mapsto \quad (x \in X) \mapsto \{\phi(x) \mid \phi \in c\}$$

Signs abstraction and **Parikh vector abstraction**: exercises
Outline

1 Abstraction
 - Notion of abstraction
 - Abstraction and concretization functions
 - Galois connections

2 Abstract interpretation

3 Application of abstract interpretation

4 Conclusion
Tying definitions of abstraction relation

So far, we have:

- **abstraction** $\alpha : C \rightarrow A$
- **concretization** $\gamma : A \rightarrow C$

How to tie them together?

They should agree on a same abstraction relation \vdash !

This means:

$$\forall c \in C, \forall a \in A, \quad c \vdash a \iff c \subseteq \gamma(a) \iff \alpha(c) \subseteq a$$

This observation is at the basis of the definition of **Galois connections**
Galois connection

Definition: Galois connection

A **Galois connection** is defined by a:

- a **concrete lattice** \((C, \subseteq)\),
- an **abstract lattice** \((A, \sqsubseteq)\),
- an **abstraction function** \(\alpha : C \rightarrow A\)
- and a **concretization function** \(\gamma : A \rightarrow C\)

such that:

\[
\forall c \in C, \forall a \in A, \; \alpha(c) \sqsubseteq a \iff c \subseteq \gamma(a) \quad (\iff c \vdash a)
\]

Notation:

\[\begin{array}{c}
(C, \subseteq) & \xleftarrow{\alpha} & \gamma & \rightarrow (A, \sqsubseteq)
\end{array}\]

Note: In practice, we shall rarely use \(\vdash\); we use \(\alpha, \gamma\) instead.
Example: constants abstraction and Galois connection

Constants lattice $D_C^\# = \{\bot, \top\} \uplus \{n \mid n \in \mathbb{Z}\}$

\[
\begin{align*}
\alpha_C(c) &= \bot \quad \text{if } c = \emptyset & \gamma_C(\top) &\rightarrow \mathbb{Z} \\
\alpha_C(c) &= n \quad \text{if } c = \{n\} & \gamma_C(n) &\rightarrow \{n\} \\
\alpha_C(c) &= \top \quad \text{otherwise} & \gamma_C(\bot) &\rightarrow \emptyset
\end{align*}
\]

Thus:

- if $c = \emptyset$, $\forall a$, $c \subseteq \gamma_C(a)$, i.e., $c \subseteq \gamma_C(a) \iff \alpha_C(c) = \bot \subseteq a$
- if $c = \{n\}$, $\alpha_C(\{n\}) = n \subseteq c \iff c = n \lor c = \top \iff c = \{n\} \subseteq \gamma_C(a)$
- if c has at least two distinct elements n_0, n_1, $\alpha_C(c) = \top$ and $c \subseteq \gamma_C(a) \Rightarrow a = \top$, i.e., $c \subseteq \gamma_C(a) \iff \alpha_C(c) = \bot \subseteq a$

Constant abstraction: Galois connection

$c \subseteq \gamma_C(a) \iff \alpha_C(c) \subseteq a$, therefore, $(\mathcal{P}(\mathbb{Z}), \subseteq) \xrightarrow{\alpha_C} (D_C^\#, \subseteq)$
Example: non relational abstraction Galois connection

We have defined:

\[\alpha_{NR} : (c \subseteq (X \rightarrow Y)) \rightarrow (x \in X) \rightarrow \{f(x) \mid f \in c\} \]

\[\gamma_{NR} : (\Phi \in (X \rightarrow \mathcal{P}(Y))) \rightarrow \{f : X \rightarrow Y \mid \forall x \in X, f(x) \in \Phi(x)\} \]

Let \(c \in \mathcal{P}(X \rightarrow Y) \) and \(\Phi \in (X \rightarrow \mathcal{P}(Y)) \); then:

\[\alpha_{NR}(c) \subseteq \Phi \iff \forall x \in X, \alpha_{NR}(c)(x) \subseteq \Phi(x) \]

\[\iff \forall x \in X, \{f(x) \mid f \in c\} \subseteq \Phi(x) \]

\[\iff \forall f \in c, \forall x \in X, f(x) \in \Phi(x) \]

\[\iff \forall f \in c, f \in \gamma_{NR}(\Phi) \]

\[\iff c \subseteq \gamma_{NR}(\Phi) \]

Non relational abstraction: Galois connection

\[c \subseteq \gamma_{NR}(a) \iff \alpha_{NR}(c) \subseteq a, \text{ therefore,} \]

\[(\mathcal{P}(X \rightarrow Y), \subseteq) \xrightarrow[\alpha_{NR}]{\gamma_{NR}} (X \rightarrow \mathcal{P}(Y), \subseteq) \]
Galois connection properties

Galois connections have **many useful properties**.

In the next few slides, we consider a Galois connection \((C, \subseteq) \xleftrightarrow{\gamma}{\alpha} (A, \subseteq)\) and establish a few interesting properties.

Extensivity, contractivity

- **\(\alpha \circ \gamma\) is contractive**: \(\forall a \in A, \alpha \circ \gamma(a) \subseteq a\)
- **\(\gamma \circ \alpha\) is extensive**: \(\forall c \in C, c \subseteq \gamma \circ \alpha(c)\)

Proof:

- let \(a \in A\); then, \(\gamma(a) \subseteq \gamma(a)\), thus \(\alpha(\gamma(a)) \subseteq a\)
- let \(c \in C\); then, \(\alpha(c) \subseteq \alpha(c)\), thus \(c \subseteq \gamma(\alpha(c))\)
Galois connection properties

Monotonicity of adjoints

- α is monotone
- γ is monotone

Proof:

- **monotonicity of α:** let $c_0, c_1 \in C$ such that $c_0 \subseteq c_1$; by extensivity of $\gamma \circ \alpha$, $c_1 \subseteq \gamma(\alpha(c_1))$, so by transitivity, $c_0 \subseteq \gamma(\alpha(c_1))$

 by definition of the Galois conneckation, $\alpha(c_0) \subseteq \alpha(c_1)$

- **monotonicity of γ:** same principle

Note: many proofs can be derived by **duality**

Duality principle applied for Galois connections

If $(C, \subseteq) \xleftrightarrow{\gamma \circ \alpha} (A, \sqsubseteq)$, then $(A, \sqsupseteq) \xleftrightarrow{\alpha \circ \gamma} (C, \supseteq)$
Galois connection properties

Iteration of adjoints

- $\alpha \circ \gamma \circ \alpha = \alpha$
- $\gamma \circ \alpha \circ \gamma = \gamma$
- $\alpha \circ \gamma$ (resp., $\gamma \circ \alpha$) is idempotent, hence a lower (resp., upper) closure operator

Proof:

- $\alpha \circ \gamma \circ \alpha = \alpha$:

 let $c \in C$, then $\gamma \circ \alpha(c) \subseteq \gamma \circ \alpha(c)$

 hence, by the Galois connection property, $\alpha \circ \gamma \circ \alpha(c) \subseteq \alpha(c)$

 moreover, $\gamma \circ \alpha$ is extensive and α monotone, so $\alpha(c) \subseteq \alpha \circ \gamma \circ \alpha(c)$

 thus, $\alpha \circ \gamma \circ \alpha(c) = \alpha(c)$

- the second point can be proved similarly (duality); the others follow
Galois connection properties

Properties on iterations of adjoint functions:

Concrete domain

Abstract domain

\[\alpha \]

\[\gamma \]

\[\alpha \]

\[\gamma \]
Galois connection properties

\(\alpha \) preserves least upper bounds

\[\forall c_0, c_1 \in C, \quad \alpha(c_0 \cup c_1) = \alpha(c_0) \sqcup \alpha(c_1) \]

By duality:

\[\forall a_0, a_1 \in A, \quad \gamma(c_0 \cap c_1) = \gamma(c_0) \sqcap \gamma(c_1) \]

Proof:

First, we observe that \(\alpha(c_0) \sqcup \alpha(c_1) \subseteq \alpha(c_0 \cup c_1) \), i.e. \(\alpha(c_0 \cup c_1) \) is an upper bound of \(\{\alpha(c_0), \alpha(c_1)\} \).

We now prove it is the least upper bound. For all \(a \in A \):

\[\alpha(c_0 \cup c_1) \subseteq a \iff c_0 \cup c_1 \subseteq \gamma(a) \]
\[\iff c_0 \subseteq \gamma(a) \land c_1 \subseteq \gamma(a) \]
\[\iff \alpha(c_0) \subseteq a \land \alpha(c_1) \subseteq a \]
\[\iff \alpha(c_0) \sqcup \alpha(c_1) \subseteq a \]

Note: when \(C, A \) are complete lattices, this extends to families of elements
Galois connection properties

Uniqueness of adjoints

- given $\gamma : A \to C$, there exists at most one $\alpha : C \to A$ such that $(C, \subseteq) \xleftarrow{\alpha} (A, \subseteq)$, and, if it exists, $\alpha(c) = \cap \{ a \in A \mid c \subseteq \gamma(a) \}$
- similarly, given $\alpha : C \to A$, there exists at most one $\gamma : A \to C$ such that $(C, \subseteq) \xleftarrow{\alpha} (A, \subseteq)$, and it is defined dually

Proof of the first point (the other follows by duality):
we assume that there exists an α so that we have a Galois connection and prove that, $\alpha(c) = \cap \{ a \in A \mid c \subseteq \gamma(a) \}$ for a given $c \in C$.

- if $a \in A$ is such that $c \subseteq \gamma(a)$, then $\alpha(c) \subseteq a$
 thus, $\alpha(c)$ is a lower bound of $\{ a \in A \mid c \subseteq \gamma(a) \}$.
- since $c \subseteq \gamma(\alpha(c))$, $\alpha(c) \in \{ a \in A \mid c \subseteq \gamma(a) \}$, so $\alpha(c)$ is the greatest lower bound of $\{ a \in A \mid c \subseteq \gamma(a) \}$.

Thus, $\alpha(c)$ is the least upper bound of $\{ a \in A \mid c \subseteq \gamma(a) \}$
Construction of adjoint functions

The adjoint uniqueness property is actually a very strong property:

- it allows to construct an abstraction from a concretization
- ... or to understand why no abstraction can be constructed :-)

Turning an adjoint into a Galois connection (1)

Let \((C, \subseteq)\) and \((A, \sqsubseteq)\) be two lattices, such that any subset of \(A\) as a greatest lower bound and let \(\gamma : (A, \sqsubseteq) \to (C, \subseteq)\) be a monotone function.

Then, the function below defines a Galois connection:

\[
\alpha(c) = \bigcap \{a \in A \mid c \subseteq \gamma(a)\}
\]

Example of abstraction with no \(\alpha\): when \(\bigcap\) is not defined on all families, e.g., lattice of convex polyhedra, abstracting sets of points in \(\mathbb{R}^2\).

Exercise: state the dual property and apply the same principle to the concretization.
A characterization of Galois connections

Let \((C, \subseteq)\) and \((A, \sqsubseteq)\) be two lattices, and \(\alpha : C \rightarrow A\) and \(\gamma : A \rightarrow C\) be two monotone functions, such that:

- \(\alpha \circ \gamma\) is contractive
- \(\gamma \circ \alpha\) is extensive

Then, we have a Galois connection

\[
(C, \subseteq) \leftrightarrow (A, \sqsubseteq)
\]

Proof:

- let \(c \in C\) and \(a \in A\) such that \(\alpha(c) \sqsubseteq a\).

 then:
 \[
 \gamma(\alpha(c)) \subseteq \gamma(a) \quad \text{(as \(\gamma\) is monotone)}
 \]
 \[
 c \subseteq \gamma(\alpha(c)) \quad \text{(as \(\gamma \circ \alpha\) is extensive)}
 \]
 thus, \(c \subseteq \gamma(a)\), by transitivity

- the other implication can be proved by duality
Outline

1. Abstraction
2. Abstract interpretation
 - Abstract computation
 - Fixpoint transfer
3. Application of abstract interpretation
4. Conclusion
Constructing a static analysis

We have set up a notion of abstraction:

- it describes sound approximations of concrete properties with abstract predicates
- there are several ways to formalize it (abstraction, concretization...)
- we now wish to compute sound abstract predicates

In the following, we assume

- a Galois connection

\[(C, \subseteq) \xrightleftharpoons[\gamma]{\alpha} (A, \sqsubseteq)\]

- a concrete semantics \([.]\), with a constructive definition
 i.e., \([P]\) is defined by constructive equations (\([P] = f(\ldots)\)), least fixpoint formula (\([P] = \text{lfp}_\emptyset f\)...)
Abstract transformer

A fixed concrete element c_0 can be abstracted by $\alpha(c_0)$.

We now consider a monotone concrete function $f : C \rightarrow C$ and discuss how to abstract $f(c_0)$

- given $c \in C$, $\alpha \circ f(c)$ abstracts the image of c by f
- if $c \in C$ is abstracted by $a \in A$, then $f(c)$ is abstracted by $\alpha \circ f \circ \gamma(a)$:

 \[
 \begin{align*}
 c &\subseteq \gamma(a) \quad \text{by assumption} \\
 f(c) &\subseteq f(\gamma(a)) \quad \text{by monotonicity of } f \\
 \alpha(f(c)) &\subseteq \alpha(f(\gamma(a))) \quad \text{by monotonicity of } \alpha
 \end{align*}
 \]

Definition: best and sound abstract transformers

- a sound abstract transformer approximating f is any operator $f^\# : A \rightarrow A$, such that $\alpha \circ f \circ \gamma \subseteq f^\#$ (or equivalently, $f \circ \gamma \subseteq \gamma \circ f^\#$)
- the best abstract transformer approximating f is $f^\# = \alpha \circ f \circ \gamma$
Example: lattice of signs

- $f : D_C^\# \rightarrow D_C^\#, c \mapsto \{-n \mid n \in c\}$
- $f^\# = \alpha \circ f \circ \gamma$

Lattice of signs:

- \bot, 0, \top, $-$, $+$

Abstract negation operator:

<table>
<thead>
<tr>
<th>a</th>
<th>$\oplus^#(a)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>\bot</td>
<td>\bot</td>
</tr>
<tr>
<td>$-$</td>
<td>\top</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>$+$</td>
<td>$-$</td>
</tr>
<tr>
<td>\top</td>
<td>\top</td>
</tr>
</tbody>
</table>

- here, the best abstract transformer is very easy to compute
- no need to use an approximate one
Abstract \(n\)-ary operators

We can generalize this to \(n\)-ary operators, such as boolean operators and arithmetic operators.

Definition: sound and exact abstract operators

Let \(g : C^n \to C\) be an \(n\)-ary operator, monotone in each component. Then:

- the **best abstract operator** approximating \(g\) is defined by:
 \[
g^\#: A^n \to A \quad (a_0, \ldots, a_{n-1}) \mapsto \alpha \circ g(\gamma(a_0), \ldots, \gamma(a_{n-1}))
 \]
- a **sound abstract transformer** approximating \(g\) is any operator \(g^\#: A^n \to A\), such that
 \[
 \forall (a_0, \ldots, a_{n-1}) \in A^n, \quad \alpha \circ g(\gamma(a_0), \ldots, \gamma(a_{n-1})) \subseteq g^\#(a_0, \ldots, a_{n-1})
 \]
 (i.e., equivalently, \(g(\gamma(a_0), \ldots, \gamma(a_{n-1})) \subseteq \gamma \circ g^\#(a_0, \ldots, a_{n-1})\)
Example: lattice of signs arithmetic operators

Application:

- $\oplus: C^2 \rightarrow C, (c_0, c_1) \mapsto \{n_0 + n_1 | n_i \in c_i\}$
- $\otimes: C^2 \rightarrow C, (c_0, c_1) \mapsto \{n_0 \cdot n_1 | n_i \in c_i\}$

Best abstract operators:

\[
\begin{array}{c|cccccc}
\oplus\# & & & & & & \\
\hline
\bot & \bot & \bot & \bot & \bot & \bot & \\
\bot & \bot & \bot & \bot & \bot & \bot & \\
\bot & \bot & \bot & \bot & \bot & \bot & \\
0 & 0 & 0 & 0 & 0 & 0 & \\
0 & 0 & 0 & 0 & 0 & 0 & \\
0 & 0 & 0 & 0 & 0 & 0 & \\
T & T & T & T & T & T & \\
\end{array}
\]

\[
\begin{array}{c|cccccc}
\otimes\# & & & & & & \\
\hline
\bot & \bot & \bot & \bot & \bot & \bot & \\
\bot & \bot & \bot & \bot & \bot & \bot & \\
\bot & \bot & \bot & \bot & \bot & \bot & \\
0 & 0 & 0 & 0 & 0 & 0 & \\
0 & 0 & 0 & 0 & 0 & 0 & \\
0 & 0 & 0 & 0 & 0 & 0 & \\
T & T & T & T & T & T & \\
\end{array}
\]

Example of loss in precision:

- $\{8\} \in \gamma_S(\oplus)$ and $\{-2\} \in \gamma_S(\ominus)$
- $\ominus^\#(\oplus, \ominus) = T$ is a lot worse than $\alpha_S(\oplus(\{8\}, \{-2\})) = \pm$
Example: lattice of signs set operators

Best abstract operators approximating \cup and \cap:

<table>
<thead>
<tr>
<th>$\cup^#$</th>
<th>\bot</th>
<th>$-$</th>
<th>0</th>
<th>\pm</th>
<th>T</th>
</tr>
</thead>
<tbody>
<tr>
<td>\bot</td>
<td>\bot</td>
<td>$-$</td>
<td>0</td>
<td>\pm</td>
<td>T</td>
</tr>
<tr>
<td>$-$</td>
<td>$-$</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>T</td>
<td>0</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>\pm</td>
<td>\pm</td>
<td>T</td>
<td>T</td>
<td>\pm</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>$\cap^#$</th>
<th>\bot</th>
<th>$-$</th>
<th>0</th>
<th>\pm</th>
<th>T</th>
</tr>
</thead>
<tbody>
<tr>
<td>\bot</td>
<td>\bot</td>
<td>$-$</td>
<td>\bot</td>
<td>\bot</td>
<td>\bot</td>
</tr>
<tr>
<td>$-$</td>
<td>\bot</td>
<td>$-$</td>
<td>\bot</td>
<td>\bot</td>
<td>\bot</td>
</tr>
<tr>
<td>0</td>
<td>\bot</td>
<td>$-$</td>
<td>0</td>
<td>\bot</td>
<td>\bot</td>
</tr>
<tr>
<td>\pm</td>
<td>\bot</td>
<td>$-$</td>
<td>\bot</td>
<td>\bot</td>
<td>\bot</td>
</tr>
<tr>
<td>T</td>
<td>\bot</td>
<td>$-$</td>
<td>\bot</td>
<td>\bot</td>
<td>\bot</td>
</tr>
<tr>
<td>T</td>
<td>\bot</td>
<td>$-$</td>
<td>0</td>
<td>\bot</td>
<td>\bot</td>
</tr>
</tbody>
</table>

Example of loss in precision:

- $\gamma(-) \cup \gamma(\pm) = \{ n \in \mathbb{Z} \mid n \neq 0 \} \subset \gamma(T)$
Outline

1. Abstraction

2. Abstract interpretation
 - Abstract computation
 - Fixpoint transfer

3. Application of abstract interpretation

4. Conclusion
Fixpoint transfer

What about loops? Semantic functions defined by fixpoints?

Theorem: exact fixpoint transfer

We assume \((C, \subseteq)\) and \((A, \sqsubseteq)\) are complete lattices. We consider a Galois connection \((C, \subseteq) \xleftarrow{\gamma} (A, \sqsubseteq)\), two functions \(f : C \to C\) and \(f^\# : A \to A\) and two elements \(c_0 \in C, a_0 \in A\) such that:

- \(f\) is continuous
- \(f^\#\) is monotone
- \(\alpha \circ f = f^\# \circ \alpha\)
- \(\alpha(c_0) = a_0\)

Then:

- **both \(f\) and \(f^\#\) have a least-fixpoint** (by Tarski’s fixpoint theorem)
- \(\alpha(\text{lfp}_{c_0} f) = \text{lfp}_{a_0} f^\#\)
Fixpoint transfer: proof

- **α(lfp\textsubscript{c\textsubscript{0}} f)** is a fixpoint of \(f^\# \) since:

\[
f^\#(\alpha(lfp\textsubscript{c\textsubscript{0}} f)) = \alpha(f(lfp\textsubscript{c\textsubscript{0}} f)) = \alpha(lfp\textsubscript{c\textsubscript{0}} f)
\]

since \(\alpha \circ f = f^\# \circ \alpha \) by definition of the fixpoints

- **To show that** \(\alpha(lfp\textsubscript{c\textsubscript{0}} f) \) **is the least-fixpoint of** \(f^\# \),

we assume that \(X \) is another fixpoint of \(f^\# \) greater than \(a_0 \) and we show that \(\alpha(lfp\textsubscript{c\textsubscript{0}} f) \subseteq X \), i.e., that \(lfp\textsubscript{c\textsubscript{0}} f \subseteq \gamma(X) \).

As \(lfp\textsubscript{c\textsubscript{0}} f = \bigcup_{n\in\mathbb{N}} f^n(c_0) \) (by Kleene’s fixpoint theorem), it amounts to proving that \(\forall n \in \mathbb{N}, f^n(c_0) \subseteq \gamma(X) \).

By induction over \(n \):
- \(f^0(c_0) = c_0 \), thus \(\alpha(f^0(c_0)) = a_0 \subseteq X \); thus, \(f^0(c_0) \subseteq \gamma(X) \).
- let us assume that \(f^n(c_0) \subseteq \gamma(X) \), and let us show that \(f^{n+1}(c_0) \subseteq \gamma(X) \), i.e. that \(\alpha(f^{n+1}(c_0)) \subseteq X \):

\[
\alpha(f^{n+1}(c_0)) = \alpha \circ f(f^n(c_0)) = f^\# \circ \alpha(f^n(c_0)) \subseteq f^\#(X) = X
\]

as \(\alpha(f^n(c_0)) \subseteq X \) and \(f^\# \) is monotone.
Constructive analysis of loops

How to get a constructive fixpoint transfer theorem?

Theorem: fixpoint abstraction

Under the assumptions of the previous theorem, and with the following additional hypothesis:

- lattice A is of finite height

We compute the sequence $(a_n)_{n \in \mathbb{N}}$ defined by $a_{n+1} = a_n \sqcup f^\#(a_n)$.

Then, $(a_n)_{n \in \mathbb{N}}$ converges and its limit a_∞ is such that $\alpha(\text{lfp}_{c_0} f) = a_\infty$.

Proof: exercise.

Note:

- the assumptions we have made are too restrictive in practice
- more general fixpoint abstraction methods in the next lectures
Outline

1. Abstraction
2. Abstract interpretation
3. Application of abstract interpretation
4. Conclusion
Comparing existing semantics

1. A **concrete semantics** \([P]\) is given: e.g., big steps operational semantics
2. An **abstract semantics** \([P]^\#\) is given: e.g., denotational semantics
3. **Search for an abstraction relation between them**
 e.g., \([P]^\# = \alpha([P])\), or \([P] \subseteq \gamma([P]^\#)\)

Examples:
- finite traces semantics as an abstraction of bi-finitary trace semantics
- denotational semantics as an abstraction of trace semantics
- types as an abstraction of denotational semantics

Payoff:
- better understanding of ties across semantics
- chance to generalize existing definitions

Example: connection between reachable states and denotational semantics
Application of abstract interpretation

Derivation of a static analysis

1. **Start from a concrete semantics** $[P]$

2. **Choose an abstraction** defined by a Galois connection or a concretization function (usually)

3. **Derive an abstract semantics** $[P]^\#$ such that $[P] \subseteq \gamma([P]^\#)$

Examples:
- derivation of an analysis with a numerical lattice (constants, intervals...)
- construction of an analysis for a complex programming language

Payoff:
- the derivation of the abstract semantics is quite systematic
- this process offers good opportunities for a modular analysis design

There are many ways to apply abstract interpretation.
We now apply this to a very simple language, and derive a static analysis step by step, from a concrete semantics and an abstraction.

- we assume a fixed set of n integer variables x_0, \ldots, x_{n-1}
- we consider the language defined by the grammar below:

$$P ::= \begin{align*}
 x_i &= n & \text{where } n \in \mathbb{Z} \\
 x_i &= x_j + x_k & \text{basic, three-addresses arithmetics} \\
 x_i &= x_j - x_k & \text{basic, three-addresses arithmetics} \\
 x_i &= x_j \cdot x_k & \text{basic, three-addresses arithmetics} \\
 P; P & & \text{concatenation} \\
 \text{input}(x_i) & & \text{reading of a positive input} \\
 \text{if}(x_i > 0) \ P \ \text{else} \ P & & \text{if} \\
 \text{while}(x_i > 0) \ P & & \text{while} \\
\end{align*}$$

- a state is a vector $\sigma = (\sigma_0, \ldots, \sigma_{n-1}) \in \mathbb{Z}^n$
- a single initial state $\sigma_{\text{init}} = (0, \ldots, 0)$
We let $[P] : \mathcal{P}(\mathbb{Z}^n) \to \mathcal{P}(\mathbb{Z}^n)$ be defined by:

\[
\begin{align*}
[x_i = n](\mathcal{M}) &= \{\sigma[i \leftarrow n] \mid \sigma \in \mathcal{M}\} \\
[x_i = x_j + x_k](\mathcal{M}) &= \{\sigma[i \leftarrow \sigma_j + \sigma_k] \mid \sigma \in \mathcal{M}\} \\
[x_i = x_j - x_k](\mathcal{M}) &= \{\sigma[i \leftarrow \sigma_j - \sigma_k] \mid \sigma \in \mathcal{M}\} \\
[x_i = x_j \times x_k](\mathcal{M}) &= \{\sigma[i \leftarrow \sigma_j \times \sigma_k] \mid \sigma \in \mathcal{M}\} \\
[\text{input}(x_i)](\mathcal{M}) &= \{\sigma[i \leftarrow n] \mid \sigma \in \mathcal{M} \land n > 0\} \\
[P_0; P_1](\mathcal{M}) &= [P_1] \circ [P_0](\mathcal{M}) \\
[\text{if}(x_i > 0) P_0 \text{ else } P_1](\mathcal{M}) &= [P_0]\left(\{\sigma \in \mathcal{M} \mid \sigma_i > 0\}\right) \cup [P_1]\left(\{\sigma \in \mathcal{M} \mid \sigma_i \leq 0\}\right) \\
[\text{while}(x_i > 0) P](\mathcal{M}) &= \{\sigma \in \text{lfp } f \mid \sigma_i \leq 0\} \text{ where } f : \mathcal{M}' \mapsto \mathcal{M} \cup \mathcal{M}' \cup [P]\left(\{\sigma \in \mathcal{M}' \mid \sigma_i > 0\}\right)
\end{align*}
\]

- given a complete program P, the **reachable states** are defined by $[P]\left(\{\sigma_{\text{init}}\}\right)$
A couple of contrived examples
enough to show the behavior of the analysis...

Absolute value function:

if($x_0 > 0$)
 \[
 x_1 = x_0;
 \]
else
 \[
 x_2 = 0;
 x_1 = x_2 - x_0;
 \]

Factorial function:

input(x_0);
\[
 x_1 = 1;
 x_2 = 1;
 \]
while($x_0 > 0$)
 \[
 x_1 = x_0 * x_1;
 x_0 = x_0 - x_2;
 \]

- input unknowns
- output x_1 should be positive
- input unknowns
- output x_0 should be **null**
- outputs x_1, x_2 should be **positive**
Abstraction

We compose two abstractions:

- **non relational abstraction**: the values a variable may take is abstracted separately from the other variables
- **sign abstraction**: the set of values observed for each variable is abstracted into the lattice of signs

Abstraction

- **concrete domain**: \((\mathcal{P}(\mathbb{Z}^n), \subseteq)\)
- **abstract domain**: \((D^\#, \subseteq)\), where \(D^\# = (D^\#_S)^n\) and \(\subseteq\) is the pointwise ordering
- **Galois connection** \((\mathcal{P}(\mathbb{Z}), \subseteq) \xleftarrow{\alpha} (D^\#, \subseteq), \xrightarrow{\gamma}\), defined by

\[
\alpha : S \quad \mapsto \quad (\alpha_S(\{\sigma_0 \mid \sigma \in S\}), \ldots, \alpha_S(\{\sigma_{n-1} \mid \sigma \in S\}))
\]

\[
\gamma : M^\# \quad \mapsto \quad \{\sigma \in \mathbb{Z}^n \mid \forall i, \sigma_i \in \gamma_S(M^\#_i)\}\]
Towards an abstraction for our small language

Basic intuitions for our abstraction:

1. a memory state is a vector of scalars

2. the concrete semantics is a function, that maps a concrete pre-condition to an abstract post-condition

3. sign lattice abstract elements abstract sets of values

4. an abstract state should thus consist of a vector of abstract values

5. moreover, the abstract semantics should consist of a function that maps an abstract pre-condition into an abstract post-condition
Examples

Absolute value function:

```plaintext
if (x_0 > 0) {
    x_1 = x_0;
} else {
    x_2 = 0;
    x_1 = x_2 - x_0;
}
```

- abstract pre-condition: (\top, \top)
- abstract post-condition: (\top, \pm)

Factorial function:

```plaintext
input(x_0);
    x_1 = 1;
    x_2 = 1;
    while (x_0 > 0) {
        x_1 = x_0 * x_1;
        x_0 = x_0 - x_2;
    }
```

- abstract pre-condition: (\top, \top, \top)
- abstract state before the loop: (\pm, \pm, \pm)
- abstract post-condition (after the loop): $(0, \pm, \pm)$
Computation of the abstract semantics

We search **for an abstract semantics** $\llbracket P \rrbracket^\# : D^\# \rightarrow D^\#$ such that:

$$\alpha \circ \llbracket P \rrbracket \sqsubseteq \llbracket P \rrbracket^\# \circ \alpha$$

We aim for a **proof by induction** over the syntax of programs

So, **let us start with sequences / composition**, under the assumption that the property holds for P_0, P_1:

- $\alpha \circ \llbracket P_0 \rrbracket \sqsubseteq \llbracket P_0 \rrbracket^\# \circ \alpha$
- $\alpha \circ \llbracket P_1 \rrbracket \sqsubseteq \llbracket P_1 \rrbracket^\# \circ \alpha$

Since $\llbracket P_0 ; P_1 \rrbracket = \llbracket P_1 \rrbracket \circ \llbracket P_0 \rrbracket$, we expect $\llbracket P_0 ; P_1 \rrbracket^\# = \llbracket P_1 \rrbracket^\# \circ \llbracket P_0 \rrbracket^\#$:

$$\alpha \circ \llbracket P_1 \rrbracket \circ \llbracket P_0 \rrbracket \sqsubseteq \llbracket P_1 \rrbracket^\# \circ \alpha \circ \llbracket P_0 \rrbracket \quad \text{(by induction)}$$

$$\quad \sqsubseteq \llbracket P_1 \rrbracket^\# \circ \llbracket P_0 \rrbracket^\# \circ \alpha \quad \text{by induction...}$$

$$\quad \text{and if } \llbracket P_1 \rrbracket^\# \text{ monotone)!}$$

Big additional constraint (only today): $\llbracket P \rrbracket^\#$ monotone
Analysis of assignment

We now consider the analysis of assignment statements.

We observe that:

\[
\alpha(M) = (\alpha_S(\{\sigma_0 \mid \sigma \in M\}), \ldots, \alpha_S(\{\sigma_{n-1} \mid \sigma \in M\}))
\]

\[
\alpha \circ \llbracket P \rrbracket(M) = (\alpha_S(\{\sigma_0 \mid \sigma \in \llbracket P \rrbracket(M)\}), \ldots, \alpha_S(\{\sigma_{n-1} \mid \sigma \in \llbracket P \rrbracket(M)\}))
\]

We start with \(x_i = n \):

\[
\alpha \circ [x_i = n](M) = (\alpha_S(\{\sigma_0 \mid \sigma \in \llbracket P \rrbracket(\{\sigma[i \leftarrow n] \mid \sigma \in M\})\}), \ldots, \alpha_S(\{\sigma_{n-1} \mid \sigma \in \llbracket P \rrbracket(\{\sigma[i \leftarrow n] \mid \sigma \in S\})\}))
\]

\[
= (\alpha_S(\{\sigma_0 \mid \sigma \in M\}), \ldots, \alpha_S(\{\sigma_{n-1} \mid \sigma \in M\}))[i \leftarrow \alpha_S(\{n\})]
\]

\[
= \llbracket x_i = n \rrbracket^\circ(\alpha(M))
\]

where:

\[
\llbracket x_i = n \rrbracket^\circ(M^\#) = M^\#[i \leftarrow \alpha_S(\{n\})]
\]
Computation of the abstract semantics

Other assignments are treated in a similar manner:

\[
\begin{align*}
[x_i = n](M^\#) &= M^\#[i \leftarrow \alpha_S(\{n\})] \\
[x_i = x_j + x_k](M^\#) &= M^\#[i \leftarrow M_j^\# \oplus M_k^\#] \\
[x_i = x_j - x_k](M^\#) &= M^\#[i \leftarrow M_j^\# \ominus M_k^\#] \\
[x_i = x_j \ast x_k](M^\#) &= M^\#[i \leftarrow M_j^\# \otimes M_k^\#] \\
[input(x_i)](M^\#) &= M^\#[i \leftarrow \pm]
\end{align*}
\]

- Proofs are left as exercises
- As remarked before, we only get \(\alpha \circ [P] \subseteq [P]^\# \circ \alpha \)
 i.e., equality is too hard to derive
- On the other hand, monotonicity is good so far (exercise)
Computation of the abstract semantics

We now consider the case of tests:

\[\alpha \circ \llbracket \text{if}(x_i > 0) \ P_0 \ \text{else} \ P_1 \rrbracket(M) \]

\[= \alpha(\llbracket P_0 \rrbracket(\{\sigma \in M \mid \sigma_i > 0\}) \cup \llbracket P_1 \rrbracket(\{\sigma \in M \mid \sigma_i \leq 0\})) \]

\[= \alpha(\llbracket P_0 \rrbracket(\{\sigma \in M \mid \sigma_i > 0\})) \cup \alpha(\llbracket P_1 \rrbracket(\{\sigma \in M \mid \sigma_i \leq 0\})) \]

as \(\alpha \) preserves least upper bounds

\[\subseteq \llbracket P_0 \rrbracket^\#(\alpha(\{\sigma \in M \mid \sigma_i > 0\})) \cup \llbracket P_1 \rrbracket^\#(\alpha(\{\sigma \in M \mid \sigma_i \leq 0\})) \]

by induction and as \(\sqcup \) is monotone

\[\subseteq \llbracket P_0 \rrbracket^\#(\alpha(M) \cap \top[i \leftarrow +]) \cup \llbracket P_1 \rrbracket^\#(\alpha(M) \cap \top[i \leftarrow \leq 0]) \]

\[\subseteq \llbracket \text{if}(x_i > 0) \ P_0 \ \text{else} \ P_1 \rrbracket^\#(\alpha(M)) \]

where:

\[\llbracket \text{if}(x_i > 0) \ P_0 \ \text{else} \ P_1 \rrbracket^\#(M^\#) = \]

\[\llbracket P_0 \rrbracket^\#(M^\# \cap \top[i \leftarrow +]) \cup \llbracket P_1 \rrbracket^\#(M^\# \cap \top[i \leftarrow \leq 0]) \]

- Monotonicity: by induction...
An example with basic condition test

Absolute value function:

\[
\text{if}(x_0 > 0)\
\quad \{\
\quad \quad x_1 = x_0;\
\quad \quad \}\;\text{else}\
\quad \{\
\quad \quad x_2 = 0;\
\quad \quad x_1 = x_2 - x_0;\
\quad \quad \}\n\]

Analysis steps:

1. entry point: \((\top, \top)\)
2. after entry in true branch: \((\pm, \top)\)
3. exit of true branch: \((\pm, ____)\)
4. after entry in false branch: \((\leq 0, \top)\)
5. exit of false branch: \((\leq 0, \geq 0)\)
6. exit: \((\top, \geq 0)\)
Application of abstract interpretation

Analysis of a loop

We have seen that:

\[
\llbracket \text{while}(x_i > 0) \ P \rrbracket(M) = \{ \sigma \in \text{lfp} f \mid \sigma_i \leq 0 \}
\]

where \(f(M') = M \cup M' \cup \llbracket P \rrbracket(\{ \sigma \in M' \mid \sigma_i > 0 \}) \).

Thus, we look for a fixpoint transfer, but our fixpoint transfer theorem requires equality, so it does not apply...

We will use a variant of the previous theorem:

If:

- \(f \) is continuous
- \(f^\# \) is monotone
- \(\alpha \circ f \subseteq f^\# \circ \alpha \)
- \(\alpha(\emptyset) = \bot \)

Then, \(\alpha(\text{lfp} f) \subseteq \text{lfp} f^\# \)
Analysis of a loop

Application:
- we consider the analysis of the loop with pre-condition $M^\#$
- we take
 $$f^\#(M_0^\#) = M^\# \cup M_0^\# \cup [P]^\#(M_0^\# \cap T[i \leftarrow \pm])$$
- then, $\alpha \circ f \subseteq f^\# \circ \alpha$
- we can apply the new fixpoint transfer theorem...

One more thing:
- we need to prove monotonicity of the fixpoint image
 since the whole abstract semantics soundness relies on it!
Abstract semantics

Abstract semantics and soundness

We have derived the following definition of $[P]\#$:

$$
\begin{align*}
[x_i = n](M) &= M[i \leftarrow \alpha_S(\{n\})] \\
[x_i = x_j + x_k](M) &= M[i \leftarrow M_j \oplus M_k] \\
[x_i = x_j - x_k](M) &= M[i \leftarrow M_j \ominus M_k] \\
[x_i = x_j \cdot x_k](M) &= M[i \leftarrow M_j \otimes M_k] \\
\text{input}(x_i)(M) &= M[i \leftarrow \pm] \\
[\text{if}(x_i > 0) P_0 \text{ else } P_1](M) &= [P_0](M \cap \top[i \leftarrow \pm]) \cup [P_1](M) \\
[\text{while}(x_i > 0) P](M) &= \text{lfp}_{M} f \text{ where } \\
f : M \mapsto M \cup [P](M \cap \top[i \leftarrow \pm])
\end{align*}
$$

Furthermore, for all program P: $\alpha \circ [P] \sqsubseteq [P]\# \circ \alpha$

An over-approximation of the final states is computed by $[P]\#(\top)$.
Example

Factorial function:

```plaintext
def factorial(x0):
    x1 = 1;
    x2 = 1;
    while(x0 > 0):
        x1 = x0 * x1;
        x0 = x0 - x2;
```

Abstract state before the loop:

\((\pm, \pm, \pm)\)

Iterates on the loop:

<table>
<thead>
<tr>
<th>iterate</th>
<th>0</th>
<th>1</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>x0</td>
<td>±</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>x1</td>
<td>±</td>
<td>±</td>
<td>±</td>
</tr>
<tr>
<td>x2</td>
<td>±</td>
<td>±</td>
<td>±</td>
</tr>
</tbody>
</table>

Abstract state after the loop:

\((\top, \pm, \pm)\)
Outline

1 Abstraction
2 Abstract interpretation
3 Application of abstract interpretation
4 Conclusion
Summary

This lecture:

- abstraction and its formalization
- computation of an abstract semantics in a very simplified case

Next lectures:

- construction of a few non trivial abstractions
- more general ways to compute sound abstract properties