The Coq Proof Assistant
Semantics and applications to verification

Xavier Rival
École Normale Supérieure

April 7th. 2023
What is a proof assistant?

A tool to **formalize** and **verify** proofs

The key word is assistant: it *assists* the user in

- defining the proof goals formally;
- setting up the structure of the proofs;
- making the proof steps;
- checking the overall consistency of the proof, at the end.

Some steps are more assisted than others:

- formalization is done with respect to the knowledge of the user, it is **error prone**
- key structural arguments (induction hypotheses and such) are very hard to get right in general
- checking a series of proof steps is easier to mechanize...
Coq is a programming language

- We can define data-types and write programs in Coq
- Language similar to a pure functional language
- Very expressive type system (more on this later)

- Programs can be ran inside Coq
- Programming language of the year ACM Award in 2014...

Coq is a proof assistant

- It allows to express theorems and proofs
- It can verify a proof
- It can also infer some proofs or proof steps

- Proof search is usually mostly manual and takes most of the time
Main proof assistants

Coq: the topic of this lecture

Isabelle / HOL: a higher order logic framework
- syntax is closer to the logics
- proof term underneath...

ACL2: A Computational Logic for Applicative Common Lisp
- a framework for automated reasoning
- based on functional common lisp

PVS: Prototype Verification System
- kernel extends Church types
- less emphasis on the notion of proof term, more emphasis on automation
Overall workflow

1. Define the objects properties need be proved about
 Data-structures, base types, programs written in the Coq (or vernacular) language

2. Write and prove intermediate lemmas
 ▶ a theorem is defined by a formula in the Coq language.
 ▶ a proof requires a sequence of tactics applications
 tactics are described as part of a separate language.
 ▶ at the end of the proof, a proof term is constructed and verified.

3. Write and prove the main theorems

4. If needed, extract programs

Two languages: one for definitions/theorems/proofs, one for tactics
In Coq, everything is a term

- The core of Coq is defined by a language of terms
- Commands are used in order to manipulate terms

Examples of terms:

- base values: 0, 1, true...
- types: nat, bool, but also Prop...
- functions: \(\text{fun (n: nat) => n + 1} \)
- function applications: \((\text{fun (n: nat) => n + 1}) \ 8\)
- logical formulas:
 - \(\exists p: \text{nat}, \ 8 = 2 \times p \)
 - \(\forall a \ b: \text{Prop}, \ a /\ b \rightarrow a \)
- complex functions (more on this one later):
 - \(\text{fun (a b : Prop) (H : a /\ b) => and_ind (fun (H0 : a) (_ : b) => H0) H} \)
In Coq, every term has a type

- As observed, **types are terms**
- Every term also **has a type**, denoted by `term : type`

- `0 : nat`
- `nat : Set`
- `Set : Type`
- `Type : Type (caveat: not quite the same instance)`
- `(fun (n : nat) => n + 1) : nat -> nat`

more complex types get interesting:

```coq
fun (a b : Prop) (H : a ⊔ b) =>
  and_ind (fun (H0 : a) (_ : b) => H0) H
: forall a b : Prop, a ⊔ b -> a
```
Curry-Howard correspondence

The core principle of Coq

- A proof of P can be viewed a term of type P
- A proof of $P \implies Q$ can be viewed a function transforming a proof of P into a proof of Q, hence, a function of type $P \to Q$...

Similarity between typing rules and proof rules:

\[
\frac{\Gamma, x : P \vdash u : Q}{\Gamma \vdash \lambda x \cdot u : P \to Q} \quad \text{fun} \quad \frac{\Gamma \vdash P \implies Q}{\Gamma \vdash P \implies Q} \quad \text{implic} \\
\frac{\Gamma \vdash u : P \to Q \quad \Gamma \vdash v : P}{\Gamma \vdash u \, v : Q} \quad \text{app} \quad \frac{\Gamma \vdash P \implies Q \quad \Gamma \vdash P}{\Gamma \vdash Q} \quad \text{mp}
\]

Correspondance:

<table>
<thead>
<tr>
<th>program</th>
<th>proof</th>
</tr>
</thead>
<tbody>
<tr>
<td>type</td>
<td>theorem</td>
</tr>
</tbody>
</table>

Searching a proof of P \equiv searching u of type P
Defining a term

Two ways:

1. **Define it fully**, with its type and its definition

 Definition zero: nat := 0.

2. **Provide only its type** and search for a proof of it

 Lemma lzero: nat.

 exact 0.

 Save.

 Definition lincr: forall n: nat, nat.

 intro. exact (n + 1).

 Save.

- **Definition**: Definition name u: t := def.
- **Proof**: Definition name u: t. or Lemma name u: t.
Inductive definition

- A very powerful mechanism
- In Coq, almost everything is actually an inductive definition... examples: integers, booleans, equality, conjunction...

Syntax:

Inductive tree : Set :=
 | leaf : tree
 | node : tree -> tree -> tree.

Induction principles automatically provided by Coq, and to use in induction proofs:

tree_ind: forall P : tree -> Prop,
 P leaf
 -> (forall t : tree, P t -> forall t0 : tree, P t0
 -> P (node t t0))
 -> forall t : tree, P t
Recursive functions

- Very natural to work with inductive definitions
- **Caveat**: must provably terminate
 - this is usually checked with a **strict sub-term condition**

Syntax:

```coq
Fixpoint size (t: tree) : nat :=
  match t with
  | leaf => 0
  | node t0 t1 => 1 + (size t0) + (size t1)
end.
```

Ill formed definition, rejected by the system (termination issue):

```coq
Fixpoint f (t: tree): nat :=
  match t with
  | leaf | node leaf leaf => 0
  | node _ _ => f (node leaf leaf)
end.
```
Proving a term

View in proof mode:

- above the bar: *current assumptions*
- below the bar: *current subgoal* (there may be several goals)
- **at the end:** displays No more subgoals.
- command *Save.* stores the term.

Progression towards a finished proof:

- based on commands called *tactics*
- in the background, Coq *constructs the proof term*
A few tactics, and their effect

- Each tactic performs a basic operation on the current goal
- In the background, Coq constructs the proof term
- At the end, the term is independently checked (very reliable!)

- **Introduction of an assumption** (proof tree and term):
 \[
 \begin{align*}
 \Gamma, P \vdash Q & \\
 \Gamma \vdash P \Longrightarrow Q & \\
 \Gamma, x : P \vdash u : Q & \\
 \Gamma \vdash \lambda x \cdot u : P \rightarrow Q &
 \end{align*}
 \]

- **Application of an implication**:
 \[
 \begin{align*}
 \Gamma \vdash P \Longrightarrow Q & \\
 \Gamma \vdash P & \\
 \Gamma \vdash Q & \\
 \Gamma \vdash u : P \rightarrow Q & \\
 \Gamma \vdash v : P & \\
 \Gamma \vdash u \cdot v : Q &
 \end{align*}
 \]

- **Immediate conclusion of a subgoal**:
 \[
 \begin{align*}
 \Gamma, P \vdash P & \\
 \Gamma, x : P \vdash x : P &
 \end{align*}
 \]
So far, we have considered fairly manual tactics...

There are also **automated tactics**, that typically call an external program to try to solve a goal, and then constructs a proof term:

- either verify the proof term afterwards...
- ... or call a function proved once and for all to build it

Examples:

- **Tauto**: decides propositional logic
- **Omega**: solves a class of numeric (in)-equalities (see manual)

Language of tactics:
more advanced users can combine tactics to build their own

Proof by reflection: prove decision procedures, and invoke them...
A glimpse at the tactic language

Most common tactics:

<table>
<thead>
<tr>
<th>Tactic</th>
<th>Effect</th>
</tr>
</thead>
<tbody>
<tr>
<td>intro.</td>
<td>Introduce one assumption</td>
</tr>
<tr>
<td>intros.</td>
<td>Introduce as many assumptions as possible</td>
</tr>
<tr>
<td>apply H.</td>
<td>Applies assumption (H) (should be of the form (A \imp B))</td>
</tr>
<tr>
<td>elim H.</td>
<td>Decomposes assumption (H)</td>
</tr>
<tr>
<td>exact t.</td>
<td>Provides a proof term for current sub-goal</td>
</tr>
<tr>
<td>trivial.</td>
<td>Conclude immediately very simple proofs.</td>
</tr>
<tr>
<td>induction t.</td>
<td>Perform induction proof over term (t)</td>
</tr>
<tr>
<td>rewrite H.</td>
<td>Rewrite assumption (H) (should be of the form (t_0 = t_1))</td>
</tr>
<tr>
<td>tauto.</td>
<td>Decision procedure in propositional logic</td>
</tr>
</tbody>
</table>

Do not hesitate to look at the online manual!
A glimpse at the command language

Most common tactics (should be enough for a TD):

<table>
<thead>
<tr>
<th>Command</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>Check t.</td>
<td>Prints the type of term t</td>
</tr>
<tr>
<td>Print t.</td>
<td>Prints the type and definition of term t</td>
</tr>
<tr>
<td>Definition u: t := [term].</td>
<td>Full definition of term u</td>
</tr>
<tr>
<td>Lemma t.</td>
<td>Start a proof of term t</td>
</tr>
<tr>
<td>Theorem t.</td>
<td></td>
</tr>
<tr>
<td>Definition t.</td>
<td></td>
</tr>
<tr>
<td>Save.</td>
<td>Exit proof mode and save proof term</td>
</tr>
</tbody>
</table>