Abstract Interpretation Semantics and applications to verification

Xavier Rival

École Normale Supérieure

April 15th, 2022

Program of this lecture

Studied so far:

- semantics: behaviors of programs
- properties: safety, liveness, security...
- approaches to verification: typing, use of proof assistants, model checking
- Today's lecture: introduction to abstract interpretation a general framework for comparing semantics introduced by Patrick Cousot and Radhia Cousot (1977)
 - abstraction: use of a lattice of predicates
 - computing abstract over-approximations, while preserving soundness
 - computing abstract over-approximations for loops, using fixpoints as a basis

Outline

Abstraction

- Notion of abstraction
- Abstraction and concretization functions
- Galois connections

Abstract interpretation

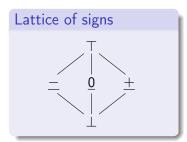
- 3 Application of abstract interpretation
- 4 Conclusion

Abstraction example 1: signs

Abstraction: defined by a family of properties to use in proofs

Example:

- objects under study: sets of mathematical integers
- abstract elements: signs



- \perp denotes only \emptyset
- \bullet \pm denotes any set of positive integers
- $\underline{0}$ denotes any subset of $\{0\}$
- \bullet <u>–</u> denotes any set of negative integers
- \bullet \top denotes any set of integers

Note: the order in the abstract lattice corresponds to inclusion...

Xavier Rival

Abstraction example 1: signs

Definition: abstraction relation

- concrete elements: elements of the original lattice $(c \in \mathcal{P}(\mathbb{Z}))$
- abstract elements: predicate (a: " $\cdot \in \{\pm, \underline{0}, \ldots\}$ ")
- abstraction relation: $c \vdash_{\mathcal{S}} a$ when a describes c

Examples:

- $\{1, 2, 3, 5, 7, 11, 13, 17, 19, 23, \ldots\} \vdash_{\mathcal{S}} +$
- $\{1, 2, 3, 5, 7, 11, 13, 17, 19, 23, \ldots\} \vdash_{\mathcal{S}} \top$

We use abstract elements to reason about operations:

- if $c_0 \vdash_{\mathcal{S}} \underline{+} \text{ and } c_1 \vdash_{\mathcal{S}} \underline{+}$, then $\{x_0 + x_1 \mid x_i \in c_i\} \vdash_{\mathcal{S}} \underline{+}$
- if $c_0 \vdash_{\mathcal{S}} \underline{+}$ and $c_1 \vdash_{\mathcal{S}} \underline{+}$, then $\{x_0 \cdot x_1 \mid x_i \in c_i\} \vdash_{\mathcal{S}} \underline{+}$
- if $c_0 \vdash_{\mathcal{S}} \underline{+}$ and $c_1 \vdash_{\mathcal{S}} \underline{0}$, then $\{x_0 \cdot x_1 \mid x_i \in c_i\} \vdash_{\mathcal{S}} \underline{0}$
- if $c_0 \vdash_{\mathcal{S}} \underline{+} \text{ and } c_1 \vdash_{\mathcal{S}} \bot$, then $\{x_0 \cdot x_1 \mid x_i \in c_i\} \vdash_{\mathcal{S}} \bot$

Abstraction example 1: signs

We can also consider the union operation:

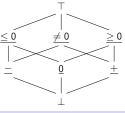
- if $c_0 \vdash_{\mathcal{S}} \underline{+} \text{ and } c_1 \vdash_{\mathcal{S}} \underline{+}$, then $c_0 \cup c_1 \vdash_{\mathcal{S}} \underline{+}$
- if $c_0 \vdash_{\mathcal{S}} \underline{+}$ and $c_1 \vdash_{\mathcal{S}} \underline{+}$, then $c_0 \cup c_1 \vdash_{\mathcal{S}} \underline{+}$

But, what can we say about $c_0 \cup c_1$, when $c_0 \vdash_S \underline{0}$ and $c_1 \vdash_S \underline{+}$?

- clearly, $c_0 \cup c_1 \vdash_S \top ...$
- but no other relation holds
- in the abstract, we do not rule out negative values

We can extend the initial lattice:

- ≥ 0 denotes any set of positive or null integers
- ≤ 0 denotes any set of negative or null integers
- $\bullet \neq 0$ denotes any set of non null integers
- if $c_0 \vdash_{\mathcal{S}} \underline{+} \text{ and } c_1 \vdash_{\mathcal{S}} \underline{0}$, then $c_0 \cup c_1 \vdash_{\mathcal{S}} \underline{\geq} 0$

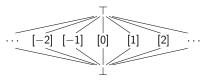


Abstraction example 2: constants

Definition: abstraction based on constants

- concrete elements: $\mathcal{P}(\mathbb{Z})$
- abstract elements: $\bot, \top, \underline{n}$ where $n \in \mathbb{Z}$ $(D_{\mathcal{C}}^{\sharp} = \{\bot, \top\} \cup \{\underline{n} \mid n \in \mathbb{Z}\})$
- abstraction relation: $c \vdash_{\mathcal{C}} \underline{n} \iff c \subseteq \{n\}$

We obtain a flat lattice:



Abstract reasoning:

• if
$$c_0 \vdash_{\mathcal{C}} \underline{n_0}$$
 and $c_1 \vdash_{\mathcal{C}} \underline{n_1}$, then $\{k_0 + k_1 \mid k_i \in c_i\} \vdash_{\mathcal{C}} \underline{n_0 + n_1}$

Abstraction example 3: Parikh vector

Definition: Parikh vector abstraction

- concrete elements: $\mathcal{P}(\mathcal{A}^*)$ (sets of words over alphabet \mathcal{A})
- abstract elements: $\{\bot, \top\} \cup (\mathcal{A} \to \mathbb{N})$
- abstraction relation: $c \vdash_{\mathfrak{P}} \phi : \mathcal{A} \to \mathbb{N}$ if and only if:

 $\forall w \in c, \forall a \in \mathcal{A}, a \text{ appears } \phi(a) \text{ times in } w$

Abstract reasoning:

oncatenation:

if $\phi_0, \phi_1 : \mathcal{A} \to \mathbb{N}$ and c_0, c_1 are such that $c_i \vdash_{\mathfrak{P}} \phi_i$,

$$\{w_0 \cdot w_1 \mid w_i \in c_i\} \vdash_{\mathfrak{P}} \phi_0 + \phi_1$$

Information preserved, information deleted:

- very precise information about the number of occurrences
- the order of letters is totally abstracted away (lost)

Xavier Rival

Abstract Interpretation: Introduction

Abstraction example 4: interval abstraction

Definition: abstraction based on intervals

- concrete elements: $\mathcal{P}(\mathbb{Z})$
- abstract elements: \bot , (a, b) where $a \in \{-\infty\} \cup \mathbb{Z}$, $b \in \mathbb{Z} \cup \{+\infty\}$ and $a \leq b$
- abstraction relation:

$$\begin{split} & \emptyset \vdash_{\mathcal{I}} \bot \\ & S \vdash_{\mathcal{I}} \top \\ & S \vdash_{\mathcal{I}} (a, b) \iff \forall x \in S, \ a \leq x \leq b \end{split}$$

Operations: TD

Abstraction example 5: non relational abstraction

Definition: non relational abstraction

- concrete elements: $\mathcal{P}(X \to Y)$, inclusion ordering
- abstract elements: $X \to \mathcal{P}(Y)$, pointwise inclusion ordering
- abstraction relation: $c \vdash_{\mathcal{NR}} a \iff \forall \phi \in c, \forall x \in X, \phi(x) \in a(x)$

Information preserved, information deleted:

- very precise information about the image of the functions in c
- relations such as (for given x₀, x₁ ∈ X, y₀, y₁ ∈ Y) the following are lost:

$$\forall \phi \in c, \ \phi(x_0) = \phi(x_1) \\ \forall \phi \in c, \ \forall x, x' \in X, \ \phi(x) \neq y_0 \lor \phi(x') \neq y_1$$

Notion of abstraction relation

Concrete order: so far, always inclusion

- the tighter the concrete set, the fewer behaviors
- smaller concrete sets correspond to more precise properties

Abstraction relation

Intuitively, the abstraction relation also describes implication: $c \vdash a$ effectively means "the property described by a implies that described by c

Advantage on static analysis (hint about the following lectures):

- abstract predicates are a lot easier to manipulate than sets of concrete states or logical formulas
- we can still derive concrete facts from abstract predicates

Abstraction relation and monotonicity

Order relations, abstraction relation and monotonicity

- both orders and the abstraction relation describe ordering
- we derive from transitivity there monotonicity properties i.e., chains of implications compose

Abstraction relation: $c \vdash a$ when c satisfies a

• if $c_0 \subseteq c_1$ and c_1 satisfies *a*, in all our examples, c_0 also satisfies *a*

Abstract order: in all our examples,

- it matches the abstraction relation as well:
 - if $a_0 \sqsubseteq a_1$ and c satisfies a_0 , then c also satisfies a_1
- great advantage: we can reason about implication in the abstract, without looking back at the concrete properties

We will now formalize this in detail...

Outline

Abstraction

- Notion of abstraction
- Abstraction and concretization functions
- Galois connections

Abstract interpretation

- 3 Application of abstract interpretation
- 4 Conclusion

Towards adjoint functions

We consider a concrete lattice (C, \subseteq) and an abstract lattice (A, \sqsubseteq) .

So far, we used abstraction relations, that are consistent with orderings:

Abstraction relation compatibility

•
$$\forall c_0, c_1 \in C, \forall a \in A, c_0 \subseteq c_1 \land c_1 \vdash a \Longrightarrow c_0 \vdash a$$

•
$$\forall c \in C, \forall a_0, a_1 \in A, c \vdash a_0 \land a_0 \sqsubseteq a_1 \Longrightarrow c \vdash a_1$$

When we have a c (resp., a) and try to map it into a compatible a (resp. a c), the abstraction relation is not a convenient tool.

Hence, we shall use adjoint functions between C and A.

- from concrete to abstract: abstraction
- from abstract to concrete: concretization

Concretization function

Our first adjoint function:

Definition: concretization function

Concretization function $\gamma : A \to C$ (if it exists) is a monotone function that maps abstract *a* into the weakest (i.e., most general) concrete *c* that satisfies *a* (i.e., $c \vdash a$).

Notes:

- ullet in common cases, there exists a γ
- $c \vdash a$ if and only if $c \subseteq \gamma(a)$
- a concretization that is not monotone with respect to the "logical ordering" would not make sense
- in fact, in some cases, we will even define γ before we define an ordering, and let γ define the ordering!

Concretization function: a few examples

Signs abstraction:

Constants abstraction:

Non relational abstraction:

$$egin{array}{rll} \gamma_{\mathcal{NR}}:&(X o \mathcal{P}(Y))&\longrightarrow&\mathcal{P}(X o Y)\ \Phi&\longmapsto&\{\phi:X o Y\mid orall x\in X,\,\phi(x)\in\Phi(x)\} \end{array}$$

Parikh vector abstraction: exercise!

Abstraction function

Our second adjoint function:

Definition: abstraction function

An abstraction function $\alpha : C \to A$ (if it exists) is a monotone function that maps concrete *c* into the most precise abstract *a* that soundly describes *c* (i.e., $c \vdash a$).

Note:

- in quite a few cases (including some in this course), there is no lpha
- for the same reason as γ a non monotone α (with respect to logical ordering) would not make sense

Summary on adjoint functions:

- α returns the most precise abstract predicate that holds true for its argument
 - this is called the **best abstraction**
- γ returns the most general concrete meaning of its argument

Abstraction: a few examples

Constants abstraction:

$$\alpha_{\mathcal{C}}: (c \subseteq \mathbb{Z}) \longmapsto \begin{cases} \perp & \text{if } c = \emptyset \\ \underline{n} & \text{if } c = \{n\} \\ \top & \text{otherwise} \end{cases}$$

Non relational abstraction:

$$\begin{array}{rcl} \alpha_{\mathcal{NR}} : & \mathcal{P}(X \to Y) & \longrightarrow & X \to \mathcal{P}(Y) \\ & c & \longmapsto & (x \in X) \mapsto \{\phi(x) \mid \phi \in c\} \end{array}$$

Signs abstraction and Parikh vector abstraction: exercises

Outline

Abstraction

- Notion of abstraction
- Abstraction and concretization functions
- Galois connections

Abstract interpretation

- 3 Application of abstract interpretation
- 4 Conclusion

Tying definitions of abstraction relation

So far, we have:

- abstraction $\alpha : C \to A$
- concretization $\gamma: A \to C$

How to tie them together ?

They should agree on a same abstraction relation \vdash !

This means:

$$\begin{array}{l} \forall c \in C, \ \forall a \in A, \\ c \vdash a \\ \Longleftrightarrow \ c \subseteq \gamma(a) \\ \Longleftrightarrow \ \alpha(c) \sqsubseteq a \end{array}$$

This observation is at the basis of the definition of Galois connections

Galois connection

Definition: Galois connection

A Galois connection is defined by a:

- a concrete lattice (C, \subseteq) ,
- an abstract lattice (A, \sqsubseteq) ,
- an abstraction function $\alpha: C \rightarrow A$
- and a concretization function $\gamma: A \rightarrow C$

such that:

$$\forall c \in C, \forall a \in A, \ \alpha(c) \sqsubseteq a \iff c \subseteq \gamma(a) \qquad (\iff c \vdash a)$$

Notation: $(C, \subseteq) \stackrel{\gamma}{\longleftrightarrow} (A, \sqsubseteq)$

Note: in practice, we shall rarely use \vdash ; we use α, γ instead

Xavier Rival

Example: constants abstraction and Galois connection

Constants lattice $D_{\mathcal{C}}^{\sharp} = \{\bot, \top\} \uplus \{\underline{n} \mid n \in \mathbb{Z}\}$

Thus:

• if
$$c = \emptyset$$
, $\forall a, c \subseteq \gamma_{\mathcal{C}}(a)$, i.e., $c \subseteq \gamma_{\mathcal{C}}(a) \iff \alpha_{\mathcal{C}}(c) = \bot \sqsubseteq a$

• if
$$c = \{n\}$$
,
 $\alpha_{\mathcal{C}}(\{n\}) = \underline{n} \sqsubseteq c \iff c = \underline{n} \lor c = \top \iff c = \{n\} \subseteq \gamma_{\mathcal{C}}(a)$

• if c has at least two distinct elements $n_0, n_1, \alpha_C(c) = \top$ and $c \subseteq \gamma_C(a) \Rightarrow a = \top$, i.e., $c \subseteq \gamma_C(a) \iff \alpha_C(c) = \bot \sqsubseteq a$

Constant abstraction: Galois connection

 $c \subseteq \gamma_{\mathcal{C}}(a) \iff \alpha_{\mathcal{C}}(c) \sqsubseteq a$, therefore, $(\mathcal{P}(\mathbb{Z}), \subseteq) \xleftarrow{\gamma_{\mathcal{C}}} (D_{\mathcal{C}}^{\sharp}, \sqsubseteq)$

Example: non relational abstraction Galois connection

We have defined:

$$\begin{array}{rcl} \alpha_{\mathcal{NR}}: & (c \subseteq (X \to Y)) & \longmapsto & (x \in X) \mapsto \{f(x) \mid f \in c\} \\ \gamma_{\mathcal{NR}}: & (\Phi \in (X \to \mathcal{P}(Y))) & \longmapsto & \{f: X \to Y \mid \forall x \in X, \ f(x) \in \Phi(x)\} \end{array}$$

Let $c \in \mathcal{P}(X \to Y)$ and $\Phi \in (X \to \mathcal{P}(Y))$; then:

$$\begin{array}{rcl} \alpha_{\mathcal{NR}}(c) \sqsubseteq \Phi & \iff & \forall x \in X, \ \alpha_{\mathcal{NR}}(c)(x) \subseteq \Phi(x) \\ & \iff & \forall x \in X, \ \{f(x) \mid f \in c\} \subseteq \Phi(x) \\ & \iff & \forall f \in c, \ \forall x \in X, \ f(x) \in \Phi(x) \\ & \iff & \forall f \in c, \ f \in \gamma_{\mathcal{NR}}(\Phi) \\ & \iff & c \subseteq \gamma_{\mathcal{NR}}(\Phi) \end{array}$$

Non relational abstraction: Galois connection $c \subseteq \gamma_{\mathcal{NR}}(a) \iff \alpha_{\mathcal{NR}}(c) \sqsubseteq a$, therefore, $(\mathcal{P}(X \to Y), \subseteq) \xleftarrow{\gamma_{\mathcal{NR}}} (X \to \mathcal{P}(Y), \sqsubseteq)$

Xavier Rival

Abstract Interpretation: Introduction

Galois connections have many useful properties.

In the next few slides, we consider a Galois connection $(C, \subseteq) \xrightarrow{\gamma} (A, \sqsubseteq)$ and establish a few interesting properties.

Extensivity, contractivity

- $\alpha \circ \gamma$ is contractive: $\forall a \in A, \ \alpha \circ \gamma(a) \sqsubseteq a$
- $\gamma \circ \alpha$ is extensive: $\forall c \in C, c \subseteq \gamma \circ \alpha(c)$

Proof:

- let $a \in A$; then, $\gamma(a) \subseteq \gamma(a)$, thus $\alpha(\gamma(a)) \sqsubseteq a$
- let $c \in C$; then, $\alpha(c) \sqsubseteq \alpha(c)$, thus $c \subseteq \gamma(\alpha(c))$

Monotonicity of adjoints

- α is monotone
- γ is monotone

Proof:

- monotonicity of α: let c₀, c₁ ∈ C such that c₀ ⊆ c₁; by extensivity of γ ∘ α, c₁ ⊆ γ(α(c₁)), so by transitivity, c₀ ⊆ γ(α(c₁)) by definition of the Galois connection, α(c₀) ⊑ α(c₁)
- monotonicity of γ : same principle

Note: many proofs can be derived by duality

Duality principle applied for Galois connections If $(C, \subseteq) \xrightarrow{\gamma} (A, \sqsubseteq)$, then $(A, \sqsupseteq) \xrightarrow{\alpha} (C, \supseteq)$

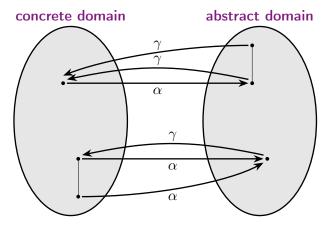
Iteration of adjoints

- $\alpha \circ \gamma \circ \alpha = \alpha$
- $\gamma \circ \alpha \circ \gamma = \gamma$
- $\alpha \circ \gamma$ (resp., $\gamma \circ \alpha)$ is idempotent, hence a lower (resp., upper) closure operator

Proof:

- $\alpha \circ \gamma \circ \alpha = \alpha$: let $c \in C$, then $\gamma \circ \alpha(c) \subseteq \gamma \circ \alpha(c)$ hence, by the Galois connection property, $\alpha \circ \gamma \circ \alpha(c) \sqsubseteq \alpha(c)$ moreover, $\gamma \circ \alpha$ is extensive and α monotone, so $\alpha(c) \sqsubseteq \alpha \circ \gamma \circ \alpha(c)$ thus, $\alpha \circ \gamma \circ \alpha(c) = \alpha(c)$
- the second point can be proved similarly (duality); the others follow

Properties on iterations of adjoint functions:



 α preserves least upper bounds

$$\forall c_0, c_1 \in C, \ \alpha(c_0 \cup c_1) = \alpha(c_0) \sqcup \alpha(c_1)$$

By duality:

$$\forall a_0, a_1 \in A, \ \gamma(c_0 \sqcap c_1) = \gamma(c_0) \sqcap \gamma(c_1)$$

Proof:

First, we observe that $\alpha(c_0) \sqcup \alpha(c_1) \sqsubseteq \alpha(c_0 \cup c_1)$, i.e. $\alpha(c_0 \cup c_1)$ is an upper bound of $\{\alpha(c_0), \alpha(c_1)\}$.

We now prove it is the *least* upper bound. For all $a \in A$:

$$\begin{array}{rcl} \alpha(c_0 \cup c_1) \sqsubseteq a & \Longleftrightarrow & c_0 \cup c_1 \subseteq \gamma(a) \\ & \Leftrightarrow & c_0 \subseteq \gamma(a) \land c_1 \subseteq \gamma(a) \\ & \Leftrightarrow & \alpha(c_0) \sqsubseteq a \land \alpha(c_1) \sqsubseteq a \\ & \Leftrightarrow & \alpha(c_0) \sqcup \alpha(c_1) \sqsubseteq a \end{array}$$

Note: when C, A are complete lattices, this extends to families of elements

Xavier Rival

Abstract Interpretation: Introduction

April 15th, 2022 28 / 62

Uniqueness of adjoints

- given $\gamma : A \to C$, there exists at most one $\alpha : C \to A$ such that $(C, \subseteq) \xleftarrow{\gamma} (A, \sqsubseteq)$, and, if it exists, $\alpha(c) = \sqcap \{a \in A \mid c \subseteq \gamma(a)\}$
- similarly, given $\alpha : C \to A$, there exists at most one $\gamma : A \to C$ such that $(C, \subseteq) \xleftarrow{\gamma}{\alpha} (A, \sqsubseteq)$, and it is defined dually

Proof of the first point (the other follows by duality): we assume that there exists an α so that we have a Galois connection and prove that, $\alpha(c) = \prod \{a \in A \mid c \subseteq \gamma(a)\}$ for a given $c \in C$.

- if a ∈ A is such that c ⊆ γ(a), then α(c) ⊑ a thus, α(c) is a lower bound of {a ∈ A | c ⊆ γ(a)}.
- since c ⊆ γ(α(c)), α(c) ∈ {a ∈ A | c ⊆ γ(a)}, so α(c) is the greatest lower bound of {a ∈ A | c ⊆ γ(a)}.

Thus, $\alpha(c)$ is the least upper bound of $\{a \in A \mid c \subseteq \gamma(a)\}$

Construction of adjoint functions

The adjoint uniqueness property is actually a very strong property:

- it allows to construct an abstraction from a concretization
- ... or to understand why no abstraction can be constructed :-)

Turning an adjoint into a Galois connection (1)

Let (C, \subseteq) and (A, \sqsubseteq) be two lattices, such that any subset of A as a greatest lower bound and let $\gamma : (A, \sqsubseteq) \to (C, \subseteq)$ be a monotone function. Then, the function below defines a Galois connection:

$$\alpha(c) = \sqcap \{ a \in A \mid c \subseteq \gamma(a) \}$$

Example of abstraction with no α : when \sqcap is not defined on all families, e.g., lattice of convex polyedra, abstracting sets of points in \mathbb{R}^2 .

Exercise: state the dual property and apply the same principle to the concretization

Xavier Rival

Galois connection characterization

A characterization of Galois connections

Let (C, \subseteq) and (A, \sqsubseteq) be two lattices, and $\alpha : C \to A$ and $\gamma : A \to C$ be two monotone functions, such that:

- $\alpha \circ \gamma$ is contractive
- $\gamma \circ \alpha$ is extensive

Then, we have a Galois connection

$$(C,\subseteq) \xleftarrow{\gamma}{\alpha} (A,\sqsubseteq)$$

Proof:

Outline

1 Abstraction

2

Abstract interpretation

- Abstract computation
- Fixpoint transfer

3 Application of abstract interpretation

4 Conclusion

Constructing a static analysis

We have set up a notion of abstraction:

- it describes sound approximations of concrete properties with abstract predicates
- there are several ways to formalize it (abstraction, concretization...)
- we now wish to compute sound abstract predicates

In the following, we assume

• a Galois connection

$$(C,\subseteq) \xleftarrow{\gamma}{\alpha} (A,\sqsubseteq)$$

a concrete semantics [[.]], with a constructive definition
 i.e., [[P]] is defined by constructive equations ([[P]] = f(...)), least fixpoint formula ([[P]] = lfp_∅ f)...

Abstract transformer

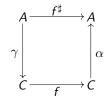
A fixed concrete element c_0 can be abstracted by $\alpha(c_0)$.

We now consider a monotone concrete function $f : C \to C$ and discuss how to abstract $f(c_0)$

• given $c \in C$, $\alpha \circ f(c)$ abstracts the image of c by f

 if c ∈ C is abstracted by a ∈ A, then f(c) is abstracted by α ∘ f ∘ γ(a):

 $c \subseteq \gamma(a)$ by assumption $f(c) \subseteq f(\gamma(a))$ by monotonicity of f $\alpha(f(c)) \subseteq \alpha(f(\gamma(a)))$ by monotonicity of α



Definition: best and sound abstract transformers

• a sound abstract transformer approximating f is any operator $f^{\sharp}: A \to A$, such that $\alpha \circ f \circ \gamma \sqsubseteq f^{\sharp}$ (or equivalently, $f \circ \gamma \subseteq \gamma \circ f^{\sharp}$)

• the best abstract transformer approximating f is $f^{\sharp} = \alpha \circ f \circ \gamma$

Abstract computation

Example: lattice of signs

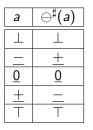
•
$$f: D_{\mathcal{C}}^{\sharp} \to D_{\mathcal{C}}^{\sharp}, c \mapsto \{-n \mid n \in c\}$$

• $f^{\sharp} = \alpha \circ f \circ \gamma$

Lattice of signs:

Abstract negation operator:





- here, the best abstract transformer is very easy to compute
- no need to use an approximate one

Abstract *n*-ary operators

We can generalize this to *n*-ary operators, such as boolean operators and arithmetic operators

Definition: sound and exact abstract operators Let $g : C^n \to C$ be an *n*-ary operator, monotone in each component. Then:

• the **best abstract operator** approximating g is defined by:

$$\begin{array}{cccc} \varphi^{\sharp}: & A^n & \longmapsto & A \\ & (a_0, \dots, a_{n-1}) & \longmapsto & \alpha \circ g(\gamma(a_0), \dots, \gamma(a_{n-1})) \end{array}$$

• a sound abstract transformer approximating g is any operator $g^{\sharp}: A^n \to A$, such that

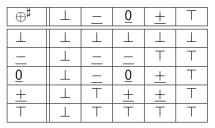
 $\forall (a_0, \ldots, a_{n-1}) \in A^n, \ \alpha \circ g(\gamma(a_0), \ldots, \gamma(a_{n-1})) \sqsubseteq g^{\sharp}(a_0, \ldots, a_{n-1})$ (i.e., equivalently, $g(\gamma(a_0), \ldots, \gamma(a_{n-1})) \subseteq \gamma \circ g^{\sharp}(a_0, \ldots, a_{n-1})$ Example: lattice of signs arithmetic operators

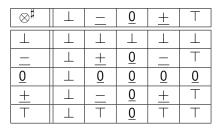
Application:

•
$$\oplus$$
 : $C^2 \rightarrow C$, $(c_0, c_1) \mapsto \{n_0 + n_1 \mid n_i \in c_i\}$

•
$$\otimes$$
 : $C^2 \rightarrow C$, $(c_0, c_1) \mapsto \{n_0 \cdot n_1 \mid n_i \in c_i\}$

Best abstract operators:



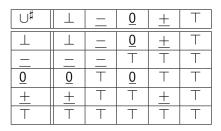


Example of loss in precision:

- $\{8\} \in \gamma_{\mathcal{S}}(\underline{+}) \text{ and } \{-2\} \in \gamma_{\mathcal{S}}(\underline{-})$
- $\oplus^{\sharp}(\underline{+},\underline{-}) = \top$ is a lot worse than $\alpha_{\mathcal{S}}(\oplus(\{8\},\{-2\})) = \underline{+}$

Example: lattice of signs set operators

Best abstract operators approximating \cup and \cap :



\cap^{\sharp}	_	<u>0</u>	<u>+</u>	Т
\perp	\perp	\perp	\perp	\perp
_	_	\perp	\perp	_
<u>0</u>	\perp	<u>0</u>	\perp	<u>0</u>
<u>+</u>	\perp	\perp	+	<u>+</u>
Т	_	<u>0</u>	<u>+</u>	Т

Example of loss in precision:

• $\gamma(\underline{-}) \cup \gamma(\underline{+}) = \{n \in \mathbb{Z} \mid n \neq 0\} \subset \gamma(\top)$

Outline

2

Abstract interpretation

- Abstract computation
- Fixpoint transfer

3 Application of abstract interpretation

4 Conclusion

Fixpoint transfer

What about loops ? semantic functions defined by fixpoints ?

Theorem: exact fixpoint transfer

We assume (C, \subseteq) and (A, \sqsubseteq) are complete lattices. We consider a Galois connection $(C, \subseteq) \xrightarrow{\gamma} (A, \sqsubseteq)$, two functions $f : C \to C$ and $f^{\sharp} : A \to A$ and two elements $c_0 \in C$, $a_0 \in A$ such that:

- f is continuous
- f^{\sharp} is monotone
- $\alpha \circ f = f^{\sharp} \circ \alpha$
- $\alpha(c_0) = a_0$

Then:

- both f and f^{\sharp} have a least-fixpoint (by Tarski's fixpoint theorem)
- $\alpha(\operatorname{lfp}_{c_0} f) = \operatorname{lfp}_{a_0} f^{\sharp}$

Fixpoint transfer: proof

• $\alpha(\mathsf{lfp}_{co} f)$ is a fixpoint of f^{\sharp} since:

$$\begin{aligned} f^{\sharp}(\alpha(\mathsf{lfp}_{c_0} f)) &= \alpha(f(\mathsf{lfp}_{c_0} f)) & \text{since } \alpha \circ f = f^{\sharp} \circ \alpha \\ &= \alpha(\mathsf{lfp}_{c_0} f) & \text{by definition of the fixpoints} \end{aligned}$$

- To show that $\alpha(\mathsf{lfp}_{c_n} f)$ is the least-fixpoint of f^{\sharp} , we assume that X is another fixpoint of f^{\sharp} greater than a_{0} and we show that $\alpha(\operatorname{lfp}_{co} f) \sqsubseteq X$, i.e., that $\operatorname{lfp}_{co} f \subseteq \gamma(X)$. As $|f_{p_{co}} f = | \int_{n \in \mathbb{N}} f^n(c_0)$ (by Kleene's fixpoint theorem), it amounts to proving that $\forall n \in \mathbb{N}, f^n(c_0) \subseteq \gamma(X)$. By induction over *n*:
 - $f^0(c_0) = c_0$, thus $\alpha(f^0(c_0)) = a_0 \sqsubset X$; thus, $f^0(c_0) \subseteq \gamma(X)$.
 - let us assume that $f^n(c_0) \subseteq \gamma(X)$, and let us show that $f^{n+1}(c_0) \subseteq \gamma(X)$, i.e. that $\alpha(f^{n+1}(c_0)) \sqsubseteq X$:

$$\alpha(f^{n+1}(c_0)) = \alpha \circ f(f^n(c_0)) = f^{\sharp} \circ \alpha(f^n(c_0)) \sqsubseteq f^{\sharp}(X) = X$$

as $\alpha(f^n(c_0)) \sqsubseteq X$ and f^{\sharp} is monotone.

 α

Constructive analysis of loops

How to get a constructive fixpoint transfer theorem ?

Theorem: fixpoint abstraction

Under the assumptions of the previous theorem, and with the following additional hypothesis:

• lattice A is of finite height

We compute the sequence $(a_n)_{n\in\mathbb{N}}$ defined by $a_{n+1} = a_n \sqcup f^{\sharp}(a_n)$.

Then, $(a_n)_{n \in \mathbb{N}}$ converges and its limit a_{∞} is such that $\alpha(\mathsf{lfp}_{c_0} f) = a_{\infty}$.

Proof: exercise.

Note:

- the assumptions we have made are too restrictive in practice
- more general fixpoint abstraction methods in the next lectures

Outline

Abstraction

- 2 Abstract interpretation
- 3 Application of abstract interpretation

4 Conclusion

Comparing existing semantics

- A concrete semantics [[P]] is given: e.g., big steps operational semantics
- **2** An abstract semantics $\llbracket P \rrbracket^{\sharp}$ is given: e.g., denotational semantics
- Search for an abstraction relation between them e.g., [[P]][♯] = α([[P]]), or [[P]] ⊆ γ([[P]][♯])

Examples:

- finite traces semantics as an abstraction of bi-finitary trace semantics
- denotational semantics as an abstraction of trace semantics
- types as an abstraction of denotational semantics

Payoff:

- better understanding of ties across semantics
- chance to generalize existing definitions

Example: connection between reachable states and denotational semantics

Application of abstract interpretation

Derivation of a static analysis

- Start from a concrete semantics [[P]]
- Choose an abstraction defined by a Galois connection or a concretization function (usually)
- **③** Derive an abstract semantics $\llbracket P \rrbracket^{\sharp}$ such that $\llbracket P \rrbracket \subseteq \gamma(\llbracket P \rrbracket^{\sharp})$

Examples:

- derivation of an analysis with a numerical lattice (constants, intervals...)
- construction of an analysis for a complex programming language

Payoff:

- the derivation of the abstract semantics is quite systematic
- this process offers good opportunities for a modular analysis design

There are many ways to apply abstract interpretation.

A very simple language and its semantics

We now apply this to a very simple language, and derive a static analysis step by step, from a concrete semantics and an abstraction.

- we assume a fixed set of *n* integer variables x_0, \ldots, x_{n-1}
- we consider the language defined by the grammar below:

$$P ::= x_i = n$$

$$| x_i = x_j + x_k$$

$$| x_i = x_j - x_k$$

$$| x_i = x_j \cdot x_k$$

$$| P; P$$

$$| input(x_i)$$

$$| if(x_i > 0) P else P$$

$$| while(x_i > 0) P$$

where $n \in \mathbb{Z}$

basic, three-addresses arithmetics basic, three-addresses arithmetics basic, three-addresses arithmetics concatenation reading of a positive input

• a state is a vector
$$\sigma = (\sigma_0, \dots, \sigma_{n-1}) \in \mathbb{Z}^n$$

• a single initial state $\sigma_{init} = (0, \dots, 0)$

Concrete semantics

Concrete semantics

[[i

We let $\llbracket P \rrbracket : \mathcal{P}(\mathbb{Z}^n) \to \mathcal{P}(\mathbb{Z}^n)$ be defined by:

$$\begin{split} & \llbracket \mathbf{x}_i = n \rrbracket(\mathcal{M}) = \{\sigma[i \leftarrow n] \mid \sigma \in \mathcal{M}\} \\ & \llbracket \mathbf{x}_i = \mathbf{x}_j + \mathbf{x}_k \rrbracket(\mathcal{M}) = \{\sigma[i \leftarrow \sigma_j + \sigma_k] \mid \sigma \in \mathcal{M}\} \\ & \llbracket \mathbf{x}_i = \mathbf{x}_j - \mathbf{x}_k \rrbracket(\mathcal{M}) = \{\sigma[i \leftarrow \sigma_j - \sigma_k] \mid \sigma \in \mathcal{M}\} \\ & \llbracket \mathbf{x}_i = \mathbf{x}_j * \mathbf{x}_k \rrbracket(\mathcal{M}) = \{\sigma[i \leftarrow \sigma_j * \sigma_k] \mid \sigma \in \mathcal{M}\} \\ & \llbracket \mathsf{input}(\mathbf{x}_i) \rrbracket(\mathcal{M}) = \{\sigma[i \leftarrow n] \mid \sigma \in \mathcal{M} \land n > 0\} \\ & \llbracket P_0; P_1 \rrbracket(\mathcal{M}) = \llbracket P_1 \rrbracket \circ \llbracket P_0 \rrbracket(\mathcal{M}) \\ & f(\mathbf{x}_i > 0) P_0 \text{ else } P_1 \rrbracket(\mathcal{M}) = \llbracket P_0 \rrbracket(\{\sigma \in \mathcal{M} \mid \sigma_i > 0\}) \\ & \cup \llbracket P_1 \rrbracket(\{\sigma \in \mathcal{M} \mid \sigma_i \leq 0\}) \\ & \llbracket \mathsf{while}(\mathbf{x}_i > 0) P \rrbracket(\mathcal{M}) = \{\sigma \in \mathsf{lfp} \ f \mid \sigma_i \leq 0\} \text{ where} \\ & f : \mathcal{M}' \mapsto \mathcal{M} \cup \mathcal{M}' \cup \llbracket P \rrbracket(\{\sigma \in \mathcal{M}' \mid \sigma_i > 0\}) \end{split}$$

• given a complete program P, the reachable states are defined by $\llbracket P \rrbracket (\{\sigma_{init}\})$ Xavier Rival Abstract Interpretation: Introduction April 15th, 2022

47 / 62

Examples

A couple of contrived examples

enough to show the behavior of the analysis...

Absolute value function:

$$\begin{aligned} & \text{if}(x_0 > 0) \{ \\ & x_1 = x_0; \\ \} \text{else} \{ \\ & x_2 = 0; \\ & x_1 = x_2 - x_0; \\ \} \end{aligned}$$

Factorial function:

$$\begin{array}{l} \mbox{input}(x_0); \\ x_1 = 1; \\ x_2 = 1; \\ \mbox{while}(x_0 > 0) \{ \\ x_1 = x_0 * x_1; \\ x_0 = x_0 - x_2 \\ \} \end{array}$$

input unknowns

Xavier Rival

 output x₁ should be positive input unknowns

- output x_0 should be null
- outputs x_1, x_2 should be **positive**

Abstract Interpretation: Introduction

April 15th, 2022 48 / 62

Abstraction

We compose two abstractions:

- non relational abstraction: the values a variable may take is abstracted separately from the other variables
- sign abstraction: the set of values observed for each variable is abstracted into the lattice of signs

Abstraction

- concrete domain: $(\mathcal{P}(\mathbb{Z}^n), \subseteq)$
- abstract domain: (D[♯], ⊑), where D[♯] = (D[♯]_S)ⁿ and ⊑ is the pointwise ordering
- Galois connection $(\mathcal{P}(\mathbb{Z}), \subseteq) \xrightarrow{\gamma} (D^{\sharp}, \sqsubseteq)$, defined by

$$\begin{array}{rcl} \alpha: & S & \longmapsto & (\alpha_{\mathcal{S}}(\{\sigma_{0} \mid \sigma \in S\}), \dots, \alpha_{\mathcal{S}}(\{\sigma_{n-1} \mid \sigma \in S\})) \\ \gamma: & M^{\sharp} & \longmapsto & \{\sigma \in \mathbb{Z}^{n} \mid \forall i, \ \sigma_{i} \in \gamma_{\mathcal{S}}(M_{i}^{\sharp})\} \end{array}$$

Towards an abstraction for our small language

Basic intuitions for our abstraction:

- a memory state is a vector of scalars
- the concrete semantics is a function, that maps a concrete pre-condition to an abstract post-condition
- **③** sign lattice abstract elements abstract sets of values
- an abstract state should thus consist of a vector of abstract values
- moreover, the abstract semantics should consist of a function that maps an abstract pre-condition into an abstract post-condition

Examples

Absolute value function:

$$\begin{array}{l} \mbox{if}(x_0>0)\{ \\ x_1=x_0; \\ \} \mbox{else}\{ \\ x_2=0; \\ x_1=x_2-x_0; \\ \} \end{array}$$

Factorial function:

$$\begin{array}{l} \text{input}(x_0); \\ x_1 = 1; \\ x_2 = 1; \\ \text{while}(x_0 > 0) \{ \\ x_1 = x_0 * x_1; \\ x_0 = x_0 - x_2; \\ \} \end{array}$$

- abstract pre-condition: (\top, \top)
- abstract post-condition: (\top, \pm)

- abstract pre-condition: (\top, \top, \top)
- abstract state before the loop: $(\underline{+}, \underline{+}, \underline{+})$
- abstract post-condition (after the loop): $(\underline{0}, \underline{+}, \underline{+})$

Computation of the abstract semantics

We search for an abstract semantics $\llbracket P \rrbracket^{\sharp} : D^{\sharp} \to D^{\sharp}$ such that:

 $\alpha \circ \llbracket P \rrbracket \sqsubseteq \llbracket P \rrbracket^{\sharp} \circ \alpha$

We aim for a proof by induction over the syntax of programs

So, let us start with sequences / composition, under the assumption that the property holds for P_0, P_1 :

•
$$\alpha \circ \llbracket P_0 \rrbracket \sqsubseteq \llbracket P_0 \rrbracket^{\sharp} \circ \alpha$$

• $\alpha \circ \llbracket P_1 \rrbracket \sqsubseteq \llbracket P_1 \rrbracket^{\sharp} \circ \alpha$
Since $\llbracket P_0; P_1 \rrbracket = \llbracket P_1 \rrbracket \circ \llbracket P_0 \rrbracket$, we expect $\llbracket P_0; P_1 \rrbracket^{\sharp} = \llbracket P_1 \rrbracket^{\sharp} \circ \llbracket P_0 \rrbracket^{\sharp}$:
 $\alpha \circ \llbracket P_1 \rrbracket \circ \llbracket P_0 \rrbracket \sqsubseteq \llbracket P_1 \rrbracket^{\sharp} \circ \alpha \circ \llbracket P_0 \rrbracket$ (by induction)
 $\sqsubseteq \llbracket P_1 \rrbracket^{\sharp} \circ \llbracket P_0 \rrbracket^{\sharp} \circ \alpha$ by induction...
and if $\llbracket P_1 \rrbracket^{\sharp}$ monotone)

Big additional constraint (only today): $\llbracket P \rrbracket^{\sharp}$ monotone

Analysis of assignment

We now consider the analysis of assignment statements

We observe that:

$$\begin{aligned} \alpha(\mathcal{M}) &= (\alpha_{\mathcal{S}}(\{\sigma_{0} \mid \sigma \in \mathcal{M}\}), \dots, \alpha_{\mathcal{S}}(\{\sigma_{n-1} \mid \sigma \in \mathcal{M}\}))\\ \alpha \circ \llbracket P \rrbracket(\mathcal{M}) &= (\alpha_{\mathcal{S}}(\{\sigma_{0} \mid \sigma \in \llbracket P \rrbracket(\mathcal{M})\}), \dots, \alpha_{\mathcal{S}}(\{\sigma_{n-1} \mid \sigma \in \llbracket P \rrbracket(\mathcal{M})\}))\end{aligned}$$

We start with
$$x_i = n$$
:

$$\begin{split} \alpha \circ \llbracket \mathbf{x}_{i} &= n \rrbracket(\mathcal{M}) \\ &= \left(\alpha_{\mathcal{S}}(\{\sigma_{0} \mid \sigma \in \llbracket P \rrbracket(\{\sigma[i \leftarrow n] \mid \sigma \in \mathcal{M}\})\}), \dots, \\ \alpha_{\mathcal{S}}(\{\sigma_{n-1} \mid \sigma \in \llbracket P \rrbracket(\{\sigma[i \leftarrow n] \mid \sigma \in S\})\})) \\ &= \left(\alpha_{\mathcal{S}}(\{\sigma_{0} \mid \sigma \in \mathcal{M}\}), \dots, \alpha_{\mathcal{S}}(\{\sigma_{n-1} \mid \sigma \in \mathcal{M}\}))[i \leftarrow \alpha_{\mathcal{S}}(\{n\})] \\ &= \alpha(\mathcal{M})[i \leftarrow \alpha_{\mathcal{S}}(\{n\})] \\ &= \llbracket \mathbf{x}_{i} &= n \rrbracket^{\sharp}(\alpha(\mathcal{M})) \end{split}$$

where:

$$\llbracket \mathbf{x}_i = n \rrbracket^{\sharp} (M^{\sharp}) = M^{\sharp} [i \leftarrow \alpha_{\mathcal{S}}(\{n\})]$$

Computation of the abstract semantics

Other assignments are treated in a similar manner:

$$\begin{split} & [\![\mathbf{x}_i = n]\!]^{\sharp}(M^{\sharp}) = M^{\sharp}[i \leftarrow \alpha_{\mathcal{S}}(\{n\})] \\ & [\![\mathbf{x}_i = \mathbf{x}_j + \mathbf{x}_k]\!]^{\sharp}(M^{\sharp}) = M^{\sharp}[i \leftarrow M_j^{\sharp} \oplus^{\sharp} M_k^{\sharp}] \\ & [\![\mathbf{x}_i = \mathbf{x}_j - \mathbf{x}_k]\!](M^{\sharp}) = M^{\sharp}[i \leftarrow M_j^{\sharp} \oplus^{\sharp} M_k^{\sharp}] \\ & [\![\mathbf{x}_i = \mathbf{x}_j * \mathbf{x}_k]\!]^{\sharp}(M^{\sharp}) = M^{\sharp}[i \leftarrow M_j^{\sharp} \otimes^{\sharp} M_k^{\sharp}] \\ & [\![\operatorname{input}(\mathbf{x}_i)]\!]^{\sharp}(M^{\sharp}) = M^{\sharp}[i \leftarrow \pm] \end{split}$$

- Proofs are left as exercises
- As remarked before, we only get α ∘ [[P]] ⊑ [[P]][♯] ∘ α i.e., equality is too hard to derive
- On the other hand, monotonicity is good so far (exercise)

Computation of the abstract semantics

We now consider the case of tests:

$$\begin{split} \alpha &\circ \llbracket \mathsf{if}(\mathsf{x}_i > 0) \ P_0 \ \mathsf{else} \ P_1 \rrbracket (\mathcal{M}) \\ &= \alpha (\llbracket P_0 \rrbracket (\{\sigma \in \mathcal{M} \mid \sigma_i > 0\}) \cup \llbracket P_1 \rrbracket (\{\sigma \in \mathcal{M} \mid \sigma_i \leq 0\})) \\ &= \alpha (\llbracket P_0 \rrbracket (\{\sigma \in \mathcal{M} \mid \sigma_i > 0\})) \sqcup \alpha (\llbracket P_1 \rrbracket (\{\sigma \in \mathcal{M} \mid \sigma_i \leq 0\})) \\ &= \alpha (\llbracket P_0 \rrbracket (\{\sigma \in \mathcal{M} \mid \sigma_i > 0\})) \sqcup \alpha (\llbracket P_1 \rrbracket (\{\sigma \in \mathcal{M} \mid \sigma_i \leq 0\})) \\ &= \alpha (\llbracket P_0 \rrbracket (\alpha (\{\sigma \in \mathcal{M} \mid \sigma_i > 0\})) \sqcup \llbracket P_1 \rrbracket (\alpha (\{\sigma \in \mathcal{M} \mid \sigma_i \leq 0\})) \\ &= [\llbracket P_0 \rrbracket (\alpha (\mathcal{M}) \sqcap \top [i \leftarrow \pm]) \sqcup \llbracket P_1 \rrbracket (\alpha (\mathcal{M}) \sqcap \top [i \leftarrow \underline{\leq} 0]) \\ &\subseteq [\llbracket (\mathsf{if}(\mathsf{x}_i > 0) \ P_0 \ \mathsf{else} \ P_1 \rrbracket (\alpha (\mathcal{M})) \end{split}$$

where:

$$\begin{bmatrix} \text{if}(\mathbf{x}_i > 0) \ P_0 \ \text{else} \ P_1 \end{bmatrix}^{\sharp} (M^{\sharp}) = \\ \begin{bmatrix} P_0 \end{bmatrix}^{\sharp} (M^{\sharp} \sqcap \top [i \leftarrow \underline{+}]) \sqcup \llbracket P_1 \rrbracket^{\sharp} (M^{\sharp} \sqcap \top [i \leftarrow \underline{\leq} 0]) \end{bmatrix}$$

Monotonicity: by induction...

Application of abstract interpretation

An example with basic condition test

Absolute value function:

$$\begin{aligned} & \text{if}(x_0 > 0) \{ \\ & x_1 = x_0; \\ \} \text{else} \{ \\ & x_2 = 0; \\ & x_1 = x_2 - x_0; \\ \} \end{aligned}$$

Analysis steps:

- entry point: (\top, \top)
- **2** after entry in true branch: $(\underline{+}, \top)$
- **3** exit of true branch: (+, -)
- after entry in false branch: $(\leq 0, \top)$
- S exit of false branch: $(\leq 0, \geq 0)$
- exit: $(\top, \underline{\geq 0})$

Analysis of a loop

We have seen that:

$$\llbracket while(\mathbf{x}_i > 0) P \rrbracket(\mathcal{M}) = \{ \sigma \in \mathsf{lfp} \ f \mid \sigma_i \leq 0 \}$$

where $f(\mathcal{M}') = \mathcal{M} \cup \mathcal{M}' \cup \llbracket P \rrbracket (\{\sigma \in \mathcal{M}' \mid \sigma_i > 0\}).$

Thus, we look for a fixpoint transfer, but our fixpoint transfer theorem requires equality, so it does not apply...

We will use a variant of the previous theorem:

If:

- f is continuous
- f^{\sharp} is monotone
- $\alpha \circ f \sqsubseteq f^{\sharp} \circ \alpha$
- $\alpha(\emptyset) = \bot$

Then, $\alpha(\operatorname{lfp} f) \sqsubseteq \operatorname{lfp} f^{\sharp}$

Analysis of a loop

Application:

- we consider the analysis of the loop with pre-condition M^{\sharp}
- we take

$$f^{\sharp}(M_{0}^{\sharp}) = M^{\sharp} \cup M_{0}^{\sharp} \cup \llbracket P \rrbracket^{\sharp}(M_{0}^{\sharp} \sqcap \top [i \leftarrow \pm])$$

• then,
$$\alpha \circ f \sqsubseteq f^{\sharp} \circ \alpha$$

• we can apply the new fixpoint transfer theorem...

 $\llbracket \text{while}(\mathbf{x}_i > 0) P \rrbracket^{\sharp}(M^{\sharp}) = \top [i \leftarrow \underline{\leq} 0] \sqcap \text{lfp}_{M^{\sharp}} f^{\sharp}$ where $f^{\sharp}(M_0^{\sharp}) = M^{\sharp} \cup M_0^{\sharp} \cup \llbracket P \rrbracket^{\sharp}(M_0^{\sharp} \sqcap \top [i \leftarrow \underline{+}])$

One more thing:

 we need to prove monotonicity of the fixpoint image since the whole abstract semantics soundness relies on it!

Abstract semantics

Abstract semantics and soundness

We have derived the following definition of $\llbracket P \rrbracket^{\sharp}$:

$$\begin{split} \llbracket \mathbf{x}_i &= n \rrbracket^{\sharp}(M^{\sharp}) &= M^{\sharp}[i \leftarrow \alpha_{\mathcal{S}}(\{n\})] \\ \llbracket \mathbf{x}_i &= \mathbf{x}_j + \mathbf{x}_k \rrbracket^{\sharp}(M^{\sharp}) &= M^{\sharp}[i \leftarrow M_j^{\sharp} \oplus^{\sharp} M_k^{\sharp}] \\ \llbracket \mathbf{x}_i &= \mathbf{x}_j - \mathbf{x}_k \rrbracket^{\sharp}(M^{\sharp}) &= M^{\sharp}[i \leftarrow M_j^{\sharp} \oplus^{\sharp} M_k^{\sharp}] \\ \llbracket \mathbf{x}_i &= \mathbf{x}_j \cdot \mathbf{x}_k \rrbracket^{\sharp}(M^{\sharp}) &= M^{\sharp}[i \leftarrow M_j^{\sharp} \otimes^{\sharp} M_k^{\sharp}] \\ \llbracket \mathrm{input}(\mathbf{x}_i) \rrbracket^{\sharp}(M^{\sharp}) &= M^{\sharp}[i \leftarrow \pm] \\ f(\mathbf{x}_i > 0) P_0 \text{ else } P_1 \rrbracket^{\sharp}(M^{\sharp}) &= \llbracket P_0 \rrbracket^{\sharp}(M^{\sharp} \sqcap \top [i \leftarrow \pm]) \sqcup \llbracket P_1 \rrbracket^{\sharp}(M^{\sharp}) \\ \llbracket \mathrm{while}(\mathbf{x}_i > 0) P \rrbracket^{\sharp}(M^{\sharp}) &= \operatorname{Ifp}_{M^{\sharp}} f^{\sharp} \text{ where} \\ f^{\sharp} : M^{\sharp} \mapsto M^{\sharp} \sqcup \llbracket P \rrbracket^{\sharp}(M^{\sharp} \sqcap \top [i \leftarrow \pm]) \end{split}$$

Furthermore, for all program $P: \alpha \circ \llbracket P \rrbracket \sqsubseteq \llbracket P \rrbracket^{\sharp} \circ \alpha$

An over-approximation of the final states is computed by $\llbracket P \rrbracket^{\sharp}(\top)$.

Xavier Rival

Example

Factorial function:

Abstract state before the loop: (\pm,\pm,\pm)

Iterates on the loop:

iterate	0	1	2
x ₀	<u>+</u>	\top	Т
x ₁	<u>+</u>	+	<u>+</u>
x2	<u>+</u>	+	<u>+</u>

Abstract state after the loop: (\top, \pm, \pm)

Conclusion

Outline

Abstraction

- 2 Abstract interpretation
- 3 Application of abstract interpretation

4 Conclusion

Summary

This lecture:

- abstraction and its formalization
- computation of an abstract semantics in a very simplified case

Next lectures:

- construction of a few non trivial abstractions
- more general ways to compute sound abstract properties

Update on projects...