Traces Properties Semantics and applications to verification

Xavier Rival

École Normale Supérieure

February 19, 2021

1/64

Program of this lecture

Goal of verification

Prove that $\llbracket P \rrbracket \subseteq \mathcal{S}$

(i.e., all behaviors of P satisfy specification S) where $[\![P]\!]$ is the program semantics and S the desired specification

Last week, we studied a form of [P]...

Today's lecture: we look back at program's properties

- families of properties:
 what properties can be considered "similar"? in what sense?
- proof techniques:how can those kinds of properties be established ?
- specification of properties:
 are there languages to describe properties?

A high level overview

- In this lecture we look at trace properties
- A property is a set of traces, defining the admissible executions

Safety properties:

- something (e.g., bad) will never happen
- proof by invariance

Liveness properties:

- something (e.g., good) will eventually happen
- proof by variance

Beyond safety and liveness: hyperproperties (e.g., security...)

Xavier Rival Traces Properties February 19, 2021 3 / 64

State properties

As usual, we consider $\mathcal{S} = (\mathbb{S}, \rightarrow, \mathbb{S}_{\mathcal{I}})$

First approach: properties as sets of states

- ullet A property ${\mathcal P}$ is a set of states ${\mathcal P}\subseteq {\mathbb S}$
- \mathcal{P} is satisfied if and only if all reachable states belong to \mathcal{P} , i.e., $[\![\mathcal{S}]\!]_{\mathcal{R}} \subseteq \mathcal{P}$ where $[\![\mathcal{S}]\!]_{\mathcal{R}} = \{s_n \in \mathbb{S} \mid \exists \langle s_0, \dots, s_n \rangle \in [\![\mathcal{S}]\!]^*, \ s_0 \in \mathbb{S}_{\mathcal{I}}\}$

Examples:

Absence of runtime errors:

$$\mathcal{P} = \mathbb{S} \setminus \{\Omega\}$$
 where Ω is the error state

• Non termination (e.g., for an operating system):

$$\mathcal{P} = \{ s \in \mathbb{S} \mid \exists s' \in \mathbb{S}, s \to s' \}$$

4 / 64

Trace properties

Second approach: properties as sets of traces

- ullet A property $\mathcal T$ is a set of traces $\mathcal T\subseteq\mathbb S^\infty$
- ullet T is satisfied if and only if all traces belong to \mathcal{T} , i.e., $[\![\mathcal{S}]\!]^{\propto} \subseteq \mathcal{T}$

Examples:

- Obviously, state properties are trace properties
- Functional properties:
 e.g., "program P takes one integer input x and returns its absolute value"
- Termination: $\mathcal{T} = \mathbb{S}^*$ (i.e., the system should have no infinite execution)

Monotonicity

Property 1

Let $\mathcal{P}_0, \mathcal{P}_1 \subseteq \mathbb{S}$ be two state properties, such that $\mathcal{P}_0 \subseteq \mathcal{P}_1$.

Then \mathcal{P}_0 is stronger than \mathcal{P}_1 , i.e. if program \mathcal{S} satisfies \mathcal{P}_0 , then it also satisfies \mathcal{P}_1 .

Property 2

Let $\mathcal{T}_0, \mathcal{T}_1 \subseteq \mathbb{S}$ be two trace properties, such that $\mathcal{T}_0 \subseteq \mathcal{T}_1$. Then \mathcal{T}_0 is stronger than \mathcal{T}_1 , i.e. if program \mathcal{S} satisfies \mathcal{T}_0 , then it also satisfies \mathcal{T}_1 .

Property 3

Let \mathcal{S}_0 , \mathcal{S}_1 two transition systems, such that \mathcal{S}_1 has more behaviors than \mathcal{S}_0 (i.e., $[\![\mathcal{S}_0]\!]\subseteq [\![\mathcal{S}_1]\!]$), and \mathcal{P} be a (trace or state) property. Then, if \mathcal{S}_1 satisfies \mathcal{P} , so does \mathcal{S}_0 .

Proofs: straightforward application of the definitions

Xavier Rival Traces Properties

Outline

- Safety properties
 - Informal and formal definitions
 - Proof method
- 2 Liveness properties
- 3 Decomposition of trace properties
- 4 A Specification Language: Temporal logic
- Beyond safety and liveness
- 6 Conclusion

Safety properties

Informal definition: safety properties

A safety property is a property which specifies that some (bad) behavior defined by a finite, irrecoverable observation will never occur, at any time

- Absence of runtime errors is a safety property ("bad thing": error)
- State properties is a safety property ("bad thing": reaching $\mathbb{S} \setminus \mathcal{P}$)
- Non termination is a safety property ("bad thing": reaching a blocking state)
- "Not reaching state b after visiting state a" is a safety property (and **not** a state property)
- Termination is not a safety property

We now intend to provide a formal definition of safety.

Xavier Rival Traces Properties February 19, 2021 8 / 64

Towards a formal definition

How to refute a safety property?

- ullet We assume ${\cal S}$ does **not** satisfy safety property ${\cal P}$
- Thus, there exists a counter-example trace $\sigma = \langle s_0, \dots, s_n, \dots \rangle \in \llbracket \mathcal{S} \rrbracket \setminus \mathcal{P};$ at this point of our study, the trace may be finite or infinite...
- The intuitive definition says this trace eventually exhibits some bad behavior, that is irrecoverable at observed at some given time, thus the observation corresponds to some index i
- Therefore, trace $\sigma' = \langle s_0, \dots, s_i \rangle$ violates \mathcal{P} , i.e. $\sigma' \notin \mathcal{P}$
- Due to the irrecoverability of the observation, the same goes for any trace with the same prefix
- We remark σ' is finite

A safety property that does not hold can always be refuted with a finite, irrecoverable counter-example

Xavier Rival Traces Properties February 19, 2021 9 / 64

A Few Operators on Traces

Prefix: We write σ_{i} for the prefix of length i of trace σ :

$$\langle s_0, \dots, s_n \rangle_{\lceil 0} = \epsilon$$

 $\langle s_0, \dots, s_n \rangle_{\lceil i+1} = \begin{cases} \langle s_0, \dots, s_i \rangle & \text{if } i < n \\ \langle s_0, \dots, s_n \rangle & \text{otherwise} \end{cases}$
 $\langle s_0, \dots \rangle_{\lceil i+1} = \langle s_0, \dots, s_i \rangle$

Suffix (or tail):

$$\begin{array}{rcl} \sigma_{i\rceil} & = & \epsilon & \text{if } |\sigma| < i \\ \left(\langle s_0, \ldots, s_i \rangle \cdot \sigma \right)_{i+1\rceil} & ::= & \sigma & \text{otherwise} \end{array}$$

Xavier Rival Traces Properties February 19, 2021 10 / 64

Upper closure operators

Definition: upper closure operator (uco)

We consider a preorder (S, \sqsubseteq) . Function $\phi : S \to S$ is an **upper closure** operator iff:

- monotone
- extensive: $\forall x \in \mathcal{S}, \ x \sqsubseteq \phi(x)$
- idempotent: $\forall x \in \mathcal{S}, \ \phi(\phi(x)) = \phi(x)$

Dual: lower closure operator, monotone, reductive, idempotent

Examples:

 on real/decimal numbers, or on fraction: the ceiling operator, that returns the next integer is an upper-closure operator

Xavier Rival Traces Properties February 19, 2021 11 / 64

Prefix closure

Definition: prefix closure

The prefix closure operator is defined by:

$$\begin{array}{cccc} \mathsf{PCI}: & \mathcal{P}(\mathbb{S}^{\infty}) & \longrightarrow & \mathcal{P}(\mathbb{S}^*) \\ & X & \longmapsto & \{\sigma_{\lceil i \mid} \mid \sigma \in X, \ i \in \mathbb{N}\} \end{array}$$

Example: assuming $S = \{\langle a, b, c \rangle, \langle a, c \rangle\}$ then,

$$\mathsf{PCI}(\mathcal{S}) = \{\epsilon, \langle a \rangle, \langle a, b \rangle, \langle a, b, c \rangle, \langle a, c \rangle\}$$

Properties:

- PCl is monotone
- PCI is idempotent, i.e., $PCI \circ PCI(X) = PCI(X)$
- PCI is not extensive on $\mathcal{P}(\mathbb{S}^{\infty})$ (infinite traces do not appear anymore) its restriction to $\mathcal{P}(\mathbb{S}^*)$

Xavier Rival Traces Properties February 19, 2021

12 / 64

Limit

Definition: limit

The **limit operator** is defined by:

$$\begin{array}{ccc} \mathsf{Lim}: & \mathcal{P}(\mathbb{S}^{\infty}) & \longrightarrow & \mathcal{P}(\mathbb{S}^{\infty}) \\ & X & \longmapsto & X \cup \{\sigma \in \mathbb{S}^{\infty} \mid \forall i \in \mathbb{N}, \ \sigma_{\lceil i} \in X\} \end{array}$$

Operator Lim is an upper-closure operator

Proof: exercise!

Example: assuming

$$\mathcal{S} = \left\{ \begin{array}{ccc} \epsilon, & \langle a \rangle \\ \langle a, b \rangle & \langle a, b, a \rangle \\ \langle a, b, a, b \rangle & \langle a, b, a, b, a \rangle & \dots \end{array} \right\}$$

then.

$$\mathsf{Lim}(\mathcal{S}) = \mathcal{S} \uplus \{\langle a, b, a, b, a, b, \ldots \rangle\}$$

Xavier Rival

Towards a formal definition for safety

Operator Safe

Operator Safe is defined by Safe = $\lim \circ PCI$.

Operator Safe saturates a set of traces S with

- prefixes
- ullet infinite traces all finite prefixes of which can be observed in S

Thus, if Safe(S) = S and σ is a trace, to establish that σ is not in S, it is sufficient to discover a **finite prefix of** σ that cannot be observed in S.

- if σ is finite the result is clear (consider σ)
- otherwise, if all finite prefixes of σ are in S, then σ is in the limit, thus in S.

Safety: definition

A trace property $\mathcal T$ is a safety property if and only if Safe($\mathcal T$) = $\mathcal T$

Safety properties: formal definition

An upper closure operator

Operator Safe is an upper closure operator over $\mathcal{P}(\mathbb{S}^{\infty})$

Proof:

Safe is monotone since Lim and PCI are monotone

Safe is extensive:

indeed if $X \subseteq \mathbb{S}^{\infty}$ and $\sigma \in X$, we can show that $\sigma \in \mathsf{Safe}(X)$:

- if σ is a finite trace, it is one of its prefixes, so $\sigma \in PCI(X) \subseteq Lim(PCI(X))$
- if σ is an infinite trace, all its prefixes belong to PCI(X), so $\sigma \in Lim(PCI(X))$

Xavier Rival Traces Properties February 19, 2021 15 / 64

Safety properties: formal definition

Proof (continued):

Safe is idempotent:

- as Safe is extensive and monotone Safe ⊆ Safe ∘ Safe, so we simply need to show that Safe ∘ Safe ⊆ Safe
- let $X \subseteq \mathbb{S}^{\infty}$, $\sigma \in \mathsf{Safe}(\mathsf{Safe}(X))$; then:

```
\sigma \in \mathsf{Safe}(\mathsf{Safe}(X))
\Rightarrow \forall i, \ \sigma_{\lceil i} \in \mathsf{PCI} \circ \mathsf{Safe}(X) \qquad \text{by def. of Lim}
\Rightarrow \forall i, \ \exists \sigma', j, \ \sigma_{\lceil i} = \sigma'_{\lceil j} \land \sigma' \in \mathsf{Safe}(X) \qquad \text{by def. of PCI}
\Rightarrow \forall i, \ \exists \sigma', j, \ \sigma_{\lceil i} = \sigma'_{\lceil j} \land \forall k, \ \sigma'_{\lceil k} \in \mathsf{PCI}(X) \qquad \text{by def. of Lim and case analysis over finiteness of } \sigma'
\Rightarrow \ \forall i, \ \exists \sigma', j, \ \sigma_{\lceil i} = \sigma'_{\lceil j} \land \sigma'_{\lceil j} \in \mathsf{PCI}(X) \qquad \text{if we take } k = j
\Rightarrow \ \forall i, \ \sigma_{\lceil i} \in \mathsf{PCI}(X) \qquad \text{by simplification}
\Rightarrow \ \sigma \in \mathsf{Lim} \circ \mathsf{PCI}(X) \qquad \text{by def. of Lim}
\Rightarrow \ \sigma \in \mathsf{Safe}(X)
```

Xavier Rival Traces Properties February 19, 2021 16 / 64

Safety properties: formal definition

Safety: definition

A trace property $\mathcal T$ is a safety property if and only if $\mathsf{Safe}(\mathcal T)=\mathcal T$

Theorem

If T is a trace property, then Safe(T) is a safety property

Proof:

Straightforward, by idempotence of Safe

Intuition:

- if \mathcal{T} is a trace property (not necessarily a safety property), Safe(\mathcal{T}) is the strongest safety property, that is weaker than \mathcal{T}
- at this point, this observation is not so useful...
 but it will be soon!

Xavier Rival

Example

We assume that:

- $\bullet \ \mathbb{S} = \{a, b\}$
- T states that a should not be visited after state b is visited;
 elements of T are of the general form

$$\langle a, a, a, \ldots, a, b, b, b, b, b, \ldots \rangle$$
 or $\langle a, a, a, \ldots, a, a, \ldots \rangle$

Then:

- $PCI(\mathcal{T})$ elements are all finite traces which are of the above form (i.e., made of n occurrences of a followed by m occurrences of b, where n, m are positive integers)
- $Lim(PCI(\mathcal{T}))$ adds to this set the trace made made of infinitely many occurrences of a and the infinite traces made of n occurrences of a followed by infinitely many occurrences of b
- thus, $\mathsf{Safe}(\mathcal{T}) = \mathsf{Lim}(\mathsf{PCI}(\mathcal{T})) = \mathcal{T}$

Therefore \mathcal{T} is indeed formally a safety property.

Xavier Rival Traces Properties February 19, 2021 18 / 64

State properties are safety properties

Theorem

Any state property is also a safety property.

Proof:

Let us consider state property \mathcal{P} .

It is equivalent to trace property $\mathcal{T} = \mathcal{P}^{\infty}$:

$$\begin{array}{lll} \mathsf{Safe}(\mathcal{T}) & = & \mathsf{Lim}(\mathsf{PCI}(\mathcal{P}^{\times})) \\ & = & \mathsf{Lim}(\mathcal{P}^{*}) \\ & = & \mathcal{P}^{*} \cup \mathcal{P}^{\omega} \\ & = & \mathcal{P}^{\times} \\ & - & \mathcal{T} \end{array}$$

Therefore \mathcal{T} is indeed a safety property.

Intuition of the formal definition

Operator Safe saturates a set of traces S with

- prefixes
- infinite traces all finite prefixes of which can be observed in S

Thus, if Safe(S) = S and σ is a trace, to establish that σ is not in S, it is sufficient to discover a finite prefix of σ that cannot be observed in S.

Alternatively, if all finite prefixes of σ belong to S or can observed as a prefix of another trace in S, by definition of the limit operator, σ belongs **to** *S* (even if it is infinite).

Thus, our definition indeed captures properties that can be disproved with a finite counter-example.

Xavier Rival Traces Properties February 19, 2021 20 / 64

Outline

- Safety properties
 - Informal and formal definitions
 - Proof method

Proof by invariance

- We consider transition system $S = (S, \rightarrow, S_{\mathcal{I}})$, and safety property \mathcal{T} . Finite traces semantics is the least fixpoint of F_* .
- We seek a way of verifying that S satisfies T, i.e., that $[S]^{\infty} \subseteq T$

Principle of invariance proofs

Let I be a set of finite traces; it is said to be an invariant if and only if:

- $\forall s \in \mathbb{S}_{\mathcal{I}}, \ \langle s \rangle \in \mathbb{I}$
- $F_*(\mathbb{I}) \subseteq \mathbb{I}$

It is stronger than \mathcal{T} if and only if $\mathbb{I} \subset \mathcal{T}$.

The "by invariance" proof method is based on finding an invariant that is stronger than \mathcal{T} .

Xavier Rival Traces Properties February 19, 2021 22 / 64

Soundness

Theorem: soundness

The invariance proof method is **sound**: if we can find an invariant for S. that is stronger than safety property \mathcal{T} , then \mathcal{S} satisfies \mathcal{T} .

Proof:

We assume that \mathbb{I} is an invariant of \mathcal{S} and that it is stronger than \mathcal{T} , and we show that S satisfies T:

- by induction over n, we can prove that $F_*^n(\{\langle s \rangle \mid s \in \mathbb{S}_{\mathcal{I}}\}) \subseteq F_*^n(\mathbb{I}) \subseteq \mathbb{I}$
- therefore $[S]^* \subseteq I$
- thus, $\mathsf{Safe}(\llbracket \mathcal{S} \rrbracket^*) \subseteq \mathsf{Safe}(\mathbb{I}) \subseteq \mathsf{Safe}(\mathcal{T})$ since Safe is monotone
- we remark that $[S]^{\infty} = \mathsf{Safe}([S]^*)$
- \mathcal{T} is a safety property so Safe(\mathcal{T}) = \mathcal{T}
- we conclude $[S]^{\infty} \subseteq \mathcal{T}$, i.e., S satisfies property \mathcal{T}

Xavier Rival Traces Properties February 19, 2021 23 / 64

Completeness

Theorem: completeness

The invariance proof method is **complete**: if S satisfies safety property T, then we can find an invariant I for S, that is stronger than T.

Proof:

We assume that $[S]^*$ satisfies T, and show that we can exhibit an invariant.

Then, $\mathbb{I} = [\![\mathcal{S}]\!]^*$ is an invariant of \mathcal{S} by definition of $[\![.]\!]^*$, and it is stronger than \mathcal{T} .

Caveat:

- $[S]^{\infty}$ is most likely **not** a very easy to express invariant
- it is just a convenient completeness argument
- so, completeness does not mean the proof is easy !

Xavier Rival Traces Properties February 19, 2021 24 / 64

Example

We consider the proof that the program below computes the sum of the elements of an array, i.e., when the exit is reached, $s = \sum_{k=0}^{n-1} t[k]$:

```
i, s integer variables
         t integer array of length n
l_0: (true)
         s = 0:
l_1: (|s=0|)
         i = 0:
\ell_2: (i = 0 \land s = 0)
         while(i < n){
f_3: (0 \le i < n \land s = \sum_{k=0}^{i-1} t[k])
               s = s + t[i];
\ell_4: (0 \le i < n \land s = \sum_{k=0}^{i} t[k])
               i = i + 1:
l_5: (1 \le i \le n \land s = \sum_{k=0}^{i-1} t[k])
f_6: (i = n \land s = \sum_{k=0}^{n-1} t[k])
```

Principle of the proof:

- for each program point \(\ell, \) we have a local invariant \(\mathbb{I}_{\ell} \) (denoted by a logical formula instead of a set of states in the figure)
- the global invariant I is defined by:

$$\mathbb{I} = \{ \langle (\ell_0, m_0), \dots, (\ell_n, m_n) \rangle \mid \\ \forall n, m_n \in \mathbb{I}_{\ell_n} \}$$

Xavier Rival Traces Properties February 19, 2021 25 / 64

Outline

- Safety properties
- 2 Liveness properties
 - Informal and formal definitions
 - Proof method
- 3 Decomposition of trace properties
- 4 A Specification Language: Temporal logic
- Beyond safety and liveness
- 6 Conclusion

Liveness properties

Informal definition: liveness properties

A liveness property is a property which specifies that some (good) behavior will eventually occur, and that this behavior may still occur after any finite observation.

- Termination is a liveness property
 "good behavior": reaching a blocking state (no more transition
 available)
- "State a will eventually be reached by all execution" is a liveness property
 "good behavior": reaching state a
- The absence of runtime errors is not a liveness property

As for safety properties, we intend to provide a **formal definition** of liveness.

Intuition towards a formal definition

How to refute a liveness property?

- We consider liveness property \mathcal{T} (think \mathcal{T} is termination)
- ullet We assume ${\mathcal S}$ does **not** satisfy liveness property ${\mathcal T}$
- Thus, there exists a counter-example trace $\sigma \in [S] \setminus T$;
- The informal definition says:
 - ... may still occur after any finite observation thus, each finite trace σ' can be extended into a good trace
- Conclusion of this discussion: σ is necessarily infinite

To prove that a liveness property does not hold we need to look for an infinite counter-example i.e., no finite trace is a counter-example

Xavier Rival Traces Properties February 19, 2021 28 / 64

Intuition towards a formal definition

To refute a liveness property, we need to look at infinite traces.

Example: if we run a program, and do not see it return...

- should we do Ctrl+C and conclude it does not terminate?
- should we just wait a few more seconds minutes, hours, years?

Towards a formal definition:

we expect any finite trace be the prefix of a trace in \mathcal{T}

... since finite executions cannot be used to disprove \mathcal{T}

Formal definition (incomplete)

$$\mathsf{PCI}(\mathcal{T}) = \mathbb{S}^*$$

Xavier Rival Traces Properties February 19, 2021 29 / 64

Definition

Formal definition

Operator Live is defined by $\mathsf{Live}(\mathcal{T}) = \mathcal{T} \cup (\mathbb{S}^{\infty} \setminus \mathsf{Safe}(\mathcal{T}))$. Given property \mathcal{T} , the following three statements are equivalent:

- (i) Live(\mathcal{T}) = \mathcal{T}
- (ii) $PCI(\mathcal{T}) = \mathbb{S}^*$
- (iii) $\operatorname{\mathsf{Lim}} \circ \operatorname{\mathsf{PCI}}(\mathcal{T}) = \mathbb{S}^{\infty}$

When they are satisfied, \mathcal{T} is said to be a **liveness property**

Example: termination

- The property is $\mathcal{T} = \mathbb{S}^*$ (i.e., there should be no infinite execution)
- Clearly, it satisfies (ii): $PCI(T) = S^*$ thus termination indeed satisfies this definition

Xavier Rival Traces Properties February 19, 2021 30 / 64

Proof of equivalence

Proof of equivalence:

- (*i*) **implies** (*ii*):
- We assume that Live(\mathcal{T}) = \mathcal{T} , i.e., $\mathcal{T} \cup (\mathbb{S}^{\infty} \setminus \mathsf{Safe}(\mathcal{T})) = \mathcal{T}$ therefore, $\mathbb{S}^{\infty} \setminus \mathsf{Safe}(\mathcal{T}) \subseteq \mathcal{T}$.

Let $\sigma \in \mathbb{S}^*$, and let us show that $\sigma \in PCl(\mathcal{T})$; clearly, $\sigma \in \mathbb{S}^{\infty}$, thus:

- either $\sigma \in \mathsf{Safe}(\mathcal{T}) = \mathsf{Lim}(\mathsf{PCI}(\mathcal{T}))$, so all its prefixes are in $\mathsf{PCI}(\mathcal{T})$ and $\sigma \in \mathsf{PCI}(\mathcal{T})$
- or $\sigma \in \mathcal{T}$, which implies that $\sigma \in PCI(\mathcal{T})$
- (ii) implies (iii):

If
$$PCI(\mathcal{T}) = \mathbb{S}^*$$
, then $Lim \circ PCI(\mathcal{T}) = \mathbb{S}^{\infty}$

- (iii) implies (i):
- If $Lim \circ PCI(\mathcal{T}) = \mathbb{S}^{\infty}$, then

$$\mathsf{Live}(\mathcal{T}) = \mathcal{T} \cup (\mathbb{S}^{\infty} \setminus (\mathsf{Lim} \circ \mathsf{PCI}(\mathcal{T}))) = \mathcal{T} \cup (\mathbb{S}^{\infty} \setminus \mathbb{S}^{\infty}) = \mathcal{T}$$

Xavier Rival Traces Properties February 19, 2021

31 / 64

Example

We assume that:

- $S = \{a, b, c\}$
- \mathcal{T} states that b should eventually be visited, after a has been visited; elements of \mathcal{T} can be described by

$$\mathcal{T} = \mathsf{PCI}(\mathbb{S}^* \cdot a \cdot \mathbb{S}^* \cdot b \cdot \mathbb{S}^{\infty})$$

Then \mathcal{T} is a liveness property:

- let $\sigma \in \mathbb{S}^*$; then $\sigma \cdot a \cdot b \in \mathcal{T}$, so $\sigma \in PCI(\mathcal{T})$
- thus, $PCI(\mathcal{T}) = \mathbb{S}^*$

Xavier Rival Traces Properties February 19, 2021 32 / 64

A property of Live

Theorem

If \mathcal{T} is a trace property, then $\mathsf{Live}(\mathcal{T})$ is a liveness property (i.e., operator Live is idempotent).

Proof: we show that $PCI \circ Live(\mathcal{T}) = \mathbb{S}^*$, by considering $\sigma \in \mathbb{S}^*$ and proving that $\sigma \in PCI \circ Live(\mathcal{T})$; we first note that:

$$\begin{array}{lcl} \mathsf{PCI} \circ \mathsf{Live}(\mathcal{T}) &=& \mathsf{PCI}(\mathcal{T}) \cup \mathsf{PCI}(\mathbb{S}^{\infty} \setminus \mathsf{Safe}(\mathcal{T})) \\ &=& \mathsf{PCI}(\mathcal{T}) \cup \mathsf{PCI}(\mathbb{S}^{\infty} \setminus \mathsf{Lim} \circ \mathsf{PCI}(\mathcal{T})) \end{array}$$

- if $\sigma \in PCI(\mathcal{T})$, this is obvious.
- if $\sigma \notin PCl(\mathcal{T})$, then:
 - $\sigma \notin \text{Lim} \circ \text{PCI}(\mathcal{T})$ by definition of the limit
 - ▶ thus, $\sigma \in \mathbb{S}^{\infty} \setminus \text{Lim} \circ \text{PCI}(\mathcal{T})$
 - ▶ $\sigma \in PCl(\mathbb{S}^{\infty} \setminus Lim \circ PCl(\mathcal{T}))$ as PCl is extensive when applied to sets of finite traces, which proves the above result

Xavier Rival

Outline

- Safety properties
- 2 Liveness properties
 - Informal and formal definitions
 - Proof method
- 3 Decomposition of trace properties
- 4 A Specification Language: Temporal logic
- 5 Beyond safety and liveness
- 6 Conclusion

Termination proof with ranking function

- We consider only termination
- ullet We consider transition system $\mathcal{S}=(\mathbb{S},
 ightarrow, \mathbb{S}_{\mathcal{I}})$, and liveness property \mathcal{T}
- We seek a way of verifying that S satisfies termination, i.e., that $\|S\|^{\infty} \subseteq \mathbb{S}^*$

Definition: ranking function

A ranking function is a function $\phi : \mathbb{S} \to E$ where:

- (E, \sqsubseteq) is a well-founded ordering
- $\forall s_0, s_1 \in \mathbb{S}, \ s_0 \to s_1 \Longrightarrow \phi(s_1) \sqsubset \phi(s_0)$

Theorem

If S has a ranking function ϕ , it satisfies termination.

Xavier Rival Traces Properties February 19, 2021 35 / 64

Example

We consider the termination of the array sum program:

```
\begin{array}{ccc} & \text{i,s integer variables} \\ & \text{t integer array of length } n \\ \ell_0: & \text{s} = 0; \\ \ell_1: & \text{i} = 0; \\ \ell_2: & \text{while}(\text{i} < n) \{ \\ \ell_3: & \text{s} = \text{s} + \text{t}[\text{i}]; \\ \ell_4: & \text{i} = \text{i} + 1; \\ \ell_5: & \} \\ \ell_6: & \dots \end{array}
```

Ranking function:

```
\phi: \mathbb{S} \longrightarrow \mathbb{N}
(f_0, m) \longmapsto 3 \cdot n + 6
(f_1, m) \longmapsto 3 \cdot n + 5
(f_2, m) \longmapsto 3 \cdot n + 4
(f_3, m) \longmapsto 3 \cdot (n - m(i)) + 3
(f_4, m) \longmapsto 3 \cdot (n - m(i)) + 2
(f_5, m) \longmapsto 3 \cdot (n - m(i)) + 4
(f_6, m) \longmapsto 0
```

Xavier Rival Traces Properties February 19, 2021 36 / 64

Proof by variance

- We consider transition system $S = (S, \rightarrow, S_{\mathcal{I}})$, and liveness property \mathcal{T} ; infinite traces semantics is the greatest fixpoint of F_{ω} .
- ullet We seek a way of verifying that $\mathcal S$ satisfies $\mathcal T$, i.e., that $[\![\mathcal S]\!]^{\propto}\subseteq \mathcal T$

Principle of variance proofs

Let $(\mathbb{I}_n)_{n\in\mathbb{N}}$, \mathbb{I}_{ω} be elements of \mathbb{S}^{∞} ; these are said to form a variance proof of \mathcal{T} if and only if:

- $\mathbb{S}^{\omega} \subseteq \mathbb{I}_0$
- for all $k \in \{1, 2, \dots, \omega\}$, $\forall s \in \mathbb{S}, \ \langle s \rangle \in \mathbb{I}_k$
- for all $k \in \{1, 2, \dots, \omega\}$, there exists l < k such that $F_{\omega}(\mathbb{I}_l) \subseteq \mathbb{I}_k$
- $\mathbb{I}_{\omega} \subseteq \mathcal{T}$

Proofs of soundness and completeness: exercise, similar to the previous proof but using the definition of $[S]^{\infty}$ instead

Xavier Rival Traces Properties February 19, 2021 37 / 64

Outline

- Safety properties
- 2 Liveness properties
- 3 Decomposition of trace properties
- 4 A Specification Language: Temporal logic
- Beyond safety and liveness
- Conclusion

The decomposition theorem

Theorem

Let $\mathcal{T} \subseteq \mathbb{S}^{\infty}$; it can be decomposed into the **conjunction** of **safety property** Safe(\mathcal{T}) and **liveness property** Live(\mathcal{T}):

$$\mathcal{T} = \mathsf{Safe}(\mathcal{T}) \cap \mathsf{Live}(\mathcal{T})$$

- Reading: Recognizing Safety and Liveness.
 Bowen Alpern and Fred B. Schneider.
 In Distributed Computing, Springer, 1987.
- Consequence of this result:
 the proof of any trace property can be decomposed into
 - a proof of safety
 - a proof of liveness

Proof

- Safety part:
 Safe is idempotent, so Safe(T) is a safety property.
- Liveness part:
 Live is idempotent, so Live(T) is a liveness property.
- Decomposition:

$$\begin{array}{lll} \mathsf{Safe}(\mathcal{T}) \cap \mathsf{Live}(\mathcal{T}) &=& \mathsf{Safe}(\mathcal{T}) \cap (\mathcal{T} \cup \mathbb{S}^{\infty} \setminus \mathsf{Safe}(\mathcal{T})) \\ &=& \mathsf{Safe}(\mathcal{T}) \cap \mathcal{T} \\ && \cup \mathsf{Safe}(\mathcal{T}) \cap (\mathbb{S}^{\infty} \setminus \mathsf{Safe}(\mathcal{T})) \\ &=& \mathcal{T} \cup \emptyset \\ &=& \mathcal{T} \end{array}$$

Example: verification of total correctness

```
\begin{array}{ccc} & \text{i,s integer variables} \\ & \text{t integer array of length } n \\ \ell_0: & \text{s} = 0; \\ \ell_1: & \text{i} = 0; \\ \ell_2: & \text{while}(\text{i} < n) \{ \\ \ell_3: & \text{s} = \text{s} + \text{t}[\text{i}]; \\ \ell_4: & \text{i} = \text{i} + 1; \\ \ell_5: & \} \\ \ell_6: & \dots \end{array}
```

Property to prove: total correctness

- 1 the program terminates
- 2 and does not crash
- and computes the sum of the elements in the array

Application of the decomposition principle

Conjunction of two proofs:

- Proved with a ranking function
- 2 Proved with local invariants
- 3 Also proved with local invariants

Safety and Liveness Decomposition Example

We consider a very simple greatest common divider code function:

```
egin{array}{ll} \ell_0: & & & & & & & & & \\ \text{Int } f(& & & & & & \\ \text{Int } f(& & & & & \\ \text{Int } f(& & & \\ \text{Int
```

Specification

When applied to positive integers, function f should always return their GCD.

Safety and Liveness Decomposition Example

We consider a very simple greatest common divider code function:

```
 f_0 :  int f (int a, int b) {  f_1 :  while (a > 0) {  f_2 :  int d = b/a;  f_3 :  int r = b - a * d;  f_4 :  b = a;  f_5 :  a = r;  f_6 :  }  f_7 :  return b;  f_7 :  return b;
```

Specification

When applied to positive integers, function f should always return their GCD.

Safety part

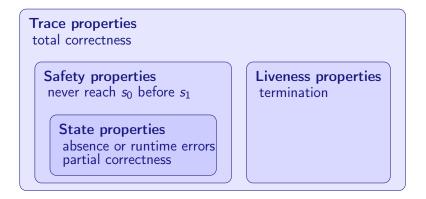
For all trace starting with positive inputs, a conjunction of two properties:

- no runtime errors
- the value of b is the GCD

Liveness part

Termination, on all traces starting with positive inputs

The Zoo of semantic properties: current status



- Safety: if wrong, can be refuted with a finite trace proof done by invariance
- Liveness: if wrong, has to be refuted with an infinite trace proof done by variance

Outline

- Safety properties
- 2 Liveness properties
- 3 Decomposition of trace properties
- 4 A Specification Language: Temporal logic
- Beyond safety and liveness
- 6 Conclusion

Notion of specification language

- Ultimately, we would like to verify or compute properties
- So far, we simply describe properties with sets of executions or worse, with English / French / ... statements
- Ideally, we would prefer to use a mathematical language for that
 - ▶ to gain in concision, avoid ambiguity
 - to define sets of properties to consider, fix the form of inputs for verification tools...

Definition: specification language

A specification language is a set of terms $\mathbb L$ with an interpretation function (or semantics)

$$\llbracket . \rrbracket : \mathbb{L} \longrightarrow \mathcal{P}(\mathbb{S}^{\infty})$$
 (resp., $\mathcal{P}(\mathbb{S})$)

 We are now going to consider specification languages for states, for traces...

A State specification language

A first example of a (simple) specification language:

A state specification language

• Syntax: we let terms of $\mathbb{L}_{\mathbb{S}}$ be defined by:

$$p \in \mathbb{L}_{\mathbb{S}} ::= \mathbf{Q} \ell \mid \mathbf{x} < \mathbf{x}' \mid \mathbf{x} < n \mid \neg p' \mid p' \land p'' \mid \Omega$$

• Semantics: $\llbracket p \rrbracket_{\mathtt{s}} \subseteq \mathbb{S}_{\Omega}$ is defined by

$$\begin{aligned}
& \left[\left[\mathbb{Q}\ell\right]_{\mathbb{S}} &= \left\{\ell\right\} \times \mathbb{M} \\
& \left[\left[\mathbb{X} \leq \mathbb{X}'\right]_{\mathbb{S}} &= \left\{\left(\ell, m\right) \in \mathbb{S} \mid m(\mathbb{X}) \leq m(\mathbb{X}')\right\} \\
& \left[\left[\mathbb{X} \leq n\right]_{\mathbb{S}} &= \left\{\left(\ell, m\right) \in \mathbb{S} \mid m(\mathbb{X}) \leq n\right\} \\
& \left[\left[\neg p\right]_{\mathbb{S}} &= \mathbb{S}_{\Omega} \setminus \left[\left[p\right]_{\mathbb{S}} \\
& \left[\left[p \wedge p'\right]_{\mathbb{S}} &= \left[\left[p\right]_{\mathbb{S}} \cap \left[\left[p'\right]\right]_{\mathbb{S}} \\
& \left[\left[\Omega\right]_{\mathbb{S}} &= \left\{\Omega\right\}
\end{aligned}$$

Exercise: add =, \vee , \Longrightarrow ...

46 / 64

State properties: examples

Unreachability of control state l_0 :

- specification: $\Omega \vee \neg @ f_0$
- property: $[\Omega \vee \neg @l_0]_s = S_0 \setminus \{(l_0, m) \mid m \in \mathbb{M}\}$

Absence of runtime errors:

- specification: ¬Ω
- property: $[\![\neg\Omega]\!]_s = \mathbb{S}_\Omega \setminus \{\Omega\} = \mathbb{S}$

Intermittent invariant:

- principle: attach a local invariant to each control state
- example:

Propositional temporal logic: syntax

We now consider the specification of trace properties

- Temporal logic: specification of properties in terms of events that occur at distinct times in the execution (hence, the name "temporal")
- There are many instances of temporal logic
- We study a simple one: Pnueli's Propositional Temporal Logic

Definition: syntax of PTL (Propositional Temporal Logic)

Properties over traces are defined as terms of the form

$$\begin{array}{lll} t(\in \mathbb{L}_{\mathsf{PTL}}) & ::= & p & \text{state property, i.e., } p \in \mathbb{L}_{\mathbb{S}} \\ & | & t' \lor t'' & \text{disjunction} \\ & | & \neg t' & \text{negation} \\ & | & \bigcirc t' & \text{"next"} \\ & | & t' \mathfrak{U} t'' & \text{"until", i.e., } t' \text{ until } t'' \end{array}$$

Propositional temporal logic: semantics

The semantics of a temporal property is a set of traces, and it is defined by induction over the syntax:

Semantics of Propositional Temporal Logic formulae

```
 \begin{split} &\llbracket \rho \rrbracket_{\mathtt{t}} &= \{s \cdot \sigma \mid s \in \llbracket \rho \rrbracket_{\mathtt{s}} \wedge \sigma \in \mathbb{S}^{\infty} \} \\ &\llbracket t_{0} \vee t_{1} \rrbracket_{\mathtt{t}} &= \llbracket t_{0} \rrbracket_{\mathtt{t}} \cup \llbracket t_{1} \rrbracket_{\mathtt{t}} \\ &\llbracket \neg t_{0} \rrbracket_{\mathtt{t}} &= \mathbb{S}^{\infty} \setminus \llbracket t_{0} \rrbracket_{\mathtt{t}} \\ &\llbracket \bigcirc t_{0} \rrbracket_{\mathtt{t}} &= \{s \cdot \sigma \mid s \in \mathbb{S} \wedge \sigma \in \llbracket t_{0} \rrbracket_{\mathtt{t}} \} \\ &\llbracket t_{0} \mathfrak{U} t_{1} \rrbracket_{\mathtt{t}} &= \{\sigma \in \mathbb{S}^{\infty} \mid \exists n \in \mathbb{N}, \ \forall i < n, \ \sigma_{i} \in \llbracket t_{0} \rrbracket_{\mathtt{t}} \wedge \sigma_{n} \in \llbracket t_{1} \rrbracket_{\mathtt{t}} \} \end{split}
```

Xavier Rival Traces Properties February 19, 2021 49 / 64

Temporal logic operators as syntactic sugar

Many useful operators can be added:

Boolean constants:

true ::=
$$(x < 0) \lor \neg(x < 0)$$
 false ::= \neg true

Sometime:

$$\Diamond t ::= \mathsf{true} \, \mathfrak{U} \, t$$

intuition: there exists a rank *n* at which *t* holds

• Always:

$$\Box t ::= \neg(\Diamond(\neg t))$$

intuition: there is no rank at which the negation of t holds

Exercise: what do $\Diamond \Box t$ and $\Box \Diamond t$ mean ?

50 / 64

Propositional temporal logic: examples

We consider the program below:

```
\begin{array}{lll} \textit{L}_0: & x = \mathsf{input}(); \\ \textit{L}_1: & \mathsf{if}(x < 8)\{ \\ \textit{L}_2: & x = 0; \\ \textit{L}_3: & \} \, \mathsf{else} \, \{ \\ \textit{L}_4: & x = 1; \\ \textit{L}_5: & \} \\ \textit{L}_6: & \dots \end{array}
```

Examples of properties:

• "when 4 is reached, x is positive"

$$\Box$$
(@ $\ell_4 \Longrightarrow x \ge 0$)

• "if the value read at point ℓ_0 is negative, and when ℓ_6 is reached, x is equal to 0"

$$\square ((@l_1 \land x < 0) \Longrightarrow \square (@l_6 \Longrightarrow x = 0))$$

Xavier Rival Traces Properties February 19, 2021 51/64

Outline

- Safety properties
- 2 Liveness properties
- 3 Decomposition of trace properties
- 4 A Specification Language: Temporal logic
- 5 Beyond safety and liveness
- 6 Conclusion

Security properties

We now consider other interesting properties of programs, and show that they do not all reduce to trace properties

Security

- Collects many kinds of properties
- So we consider just one:
 - an unauthorized observer should not be able to guess anything about private information by looking at public information
- Example: another user should not be able to guess the content of an email sent to you
- We need to formalize this property

A few definitions

Assumptions:

- We let $\mathcal{S} = (\mathbb{S}, \rightarrow, \mathbb{S}_{\mathcal{I}})$ be a transition system
- States are of the form $(l, m) \in \mathbb{L} \times \mathbb{M}$
- ullet Memory states are of the form $\mathbb{X} o \mathbb{V}$
- We let $\ell, \ell' \in \mathbb{L}$ (program entry and exit) and $x, x' \in \mathbb{X}$ (private and public variables)

Security property we are looking at

Observing the value of x' at ℓ' gives no information on the value of x at ℓ

A few examples

A secure program (no information flow, no way to guess x):

$$\ell$$
: $x' = 84$; ℓ' : ...

An insecure program (explicit information flow, x' gives a lot of information about x, so that we can simply recompute it):

$$\ell: x' = x - 2;$$

 $\ell': \ldots$

An insecure program (implicit information flow, through a test):

$$\ell : if(x < 0)\{x' = 0;\}$$

 $\ell' : \dots$

How to characterize information flow in the semantic level?

55 / 64

Non-interference

We consider the **transformer** Φ defined by:

$$\begin{array}{ccc} \Phi: & \mathbb{M} & \longrightarrow & \mathcal{P}(\mathbb{M}) \\ & m & \longmapsto & \{m' \in \mathbb{M} \mid \exists \sigma = \langle (\ell, m), \dots, (\ell', m') \rangle \in \llbracket \mathcal{S} \rrbracket \} \end{array}$$

Definition: non-interference

There is no interference between (ℓ, x) and (ℓ', x') and we write $(\ell', x') \not\rightsquigarrow (\ell, x)$ if and only if the following property holds:

$$\forall m \in \mathbb{M}, \forall v_0, v_1 \in \mathbb{V}, \\ \{m'(\mathbf{x}') \mid m' \in \Phi(m[\mathbf{x} \leftarrow v_0])\} = \{m'(\mathbf{x}') \mid m' \in \Phi(m[\mathbf{x} \leftarrow v_1])\}$$

Intuition:

- if two observations at point ℓ differ only in the value of x, there is no difference in observation of x' at ℓ'
- in other words, observing x' at ℓ' (even on many executions) gives no information about the value of x at point ℓ ...

Non-interference is not a trace property

- We assume $\mathbb{V} = \{0,1\}$ and $\mathbb{X} = \{x,x'\}$ (store m is defined by the pair (m(x),m(x')), and denoted by it)
- We assume $\mathbb{L} = \{\ell, \ell'\}$ and consider two systems such that all transitions are of the form $(\ell, m) \to (\ell', m')$ (i.e., system \mathcal{S} is isomorphic to its transformer $\Phi[\mathcal{S}]$)

- \mathcal{S}_1 has fewer behaviors than \mathcal{S}_0 : $[\![\mathcal{S}_1]\!]^* \subset [\![\mathcal{S}_0]\!]^*$
- S_0 has the non-interference property, but S_1 does not
- If non interference was a trace property, S_1 should have it (monotony)

Thus, the non interference property is not a trace property

Dependence properties

Dependence property

- Many notions of dependences
- So we consider just one:

what inputs may have an impact on the observation of a given output

- Applications:
 - ▶ reverse engineering: understand how an input gets computed
 - ▶ slicing: extract the fragment of a program that is relevant to a result
- This corresponds to the **negation** of non-interference

Interference

Definition: interference

There is **interference** between (l, x) and (l', x') and we write $(l', x') \rightsquigarrow (l, x)$ if and only if the following property holds:

$$\exists m \in \mathbb{M}, \exists v_0, v_1 \in \mathbb{V}, \\ \{m'(x') \mid m' \in \Phi(m[x \leftarrow v_0])\} \neq \{m'(x') \mid m' \in \Phi(m[x \leftarrow v_1])\}$$

- This expresses that there is at least one case, where the value of x at ℓ has an impact on that of x' at ℓ'
- It may not hold even if the computation of x' reads x:

$$\ell : \mathbf{x}' = 0 \star \mathbf{x};$$

 $\ell' : \dots$

Interference is not a trace property

- We assume $\mathbb{V} = \{0,1\}$ and $\mathbb{X} = \{x,x'\}$ (store m is defined by the pair (m(x),m(x')), and denoted by it)
- We assume $\mathbb{L} = \{\ell, \ell'\}$ and consider two systems such that all transitions are of the form $(\ell, m) \to (\ell', m')$ (i.e., system \mathcal{S} is isomorphic to its transformer $\Phi[\mathcal{S}]$)

- S_1 has fewer behavior than S_0 : $[S_1]^* \subset [S_0]^*$
- S_0 has the interference property, but S_1 does not
- If interference was a trace property, S_1 should have it (monotony)

Thus, the interference property is not a trace property

Hyperproperties

Conclusion:

- The absence of interference between (l, x) and (l', x') is not a trace property:
 - we cannot describe as the set of programs the semantics of which is included into a given set of traces
- It can however be described by a set of sets of traces:
 we simply collect the set of program semantics that satisfy the property

This is what we call a hyperproperty:

Hyperproperties

- Trace hyperproperties are described by sets of sets of executions
- Trace properties are described by sets of executions

2-safety: to disprove the absence of interference (i.e., to show there exists an interference), we simply need to exhibit two finite traces

Outline

- Safety properties
- 2 Liveness properties
- 3 Decomposition of trace properties
- 4 A Specification Language: Temporal logic
- 5 Beyond safety and liveness
- 6 Conclusion

62 / 64

The Zoo of semantic properties

Sets of sets of executions non-interference, dependency Trace properties total correctness Liveness properties Safety properties never reach s_0 before s_1 termination State properties absence or runtime errors partial correctness

Summary

To sum-up:

- Trace properties allow to express a large range of program properties
- Safety = absence of bad behaviors
- Liveness = existence of good behaviors
- Trace properties can be decomposed as conjunctions of safety and liveness properties, with dedicated proof methods
- Some interesting properties are not trace properties security properties are sets of sets of executions
- Notion of specification languages to describe program properties