Abstract Interpretation

Semantics and applications to verification

Xavier Rival

Ecole Normale Supérieure

April 3rd, 2020

Xavier Rival Abstract Interpretation: Introduction April 3rd, 2020

1/32

Program of this lecture

Towards a more realistic abstract interpreter

Today:

@ more general soundness proof:
using 7, and requiring no monotonicity in the abstract level

@ more general abstract domain:
signs is good for introduction only, we want to see constants,
intervals...

o extended language with expressions
i.e., not only three address arithmetic

@ more general abstract iteration technique:
convergence guaranteed even with infinite height domain

Xavier Rival Abstract Interpretation: Introduction April 3rd, 2020

2/32

e Another Soundness Relation

© Revisiting Abstract Iteration

© Conclusion

Another Soundness Relation

About soundness relations

Several formalisms available:

@ abstraction function « : C — A, returns the best approximation

e concretization function v : A — C, returns the meaning of an
abstract element

e Galois connection (C, C) % (A, ©)

Limitations of our previous abstract interpreter:
@ uses the best abstraction function « all the time
@ tries to establish equality [P]* o o = o o [P] but fails...
indeed, some operators may only compute an over-approximation
e proves a o [P] C [P]f o
at the cost of proving monotonicity of [P]*

Alternate approach
Use v only and prove [P] o~y C v o [P]*

Xavier Rival Abstract Interpretation: Introduction April 3rd, 2020

4/32

A

Another Soundness Relation

language with expressions

We now consider the denotational semantics of our imperative language:

@ variables X: finite, predefined set of variables
@ values V: Vi UVgoat U ..

e expressions are allowed (not just three address instructions)

@ conditions are simplified compared to initial language

Syntax

= v(veV)|x (xeX)|e+e|exe|... expressions

c 1= x<v|x=v]|.. basic conditions

P = x:=e assignment
| input(x) random value input
| if(c) Pelse P condition
| while(c) P loop
| P;P block, program(IP)
Xavier Rival Abstract Interpretation: Introduction April 3rd, 2020 5/ 32

Another Soundness Relation

Semantics of expressions and conditions (refresher)

We have defined a few lectures ago:

@ a semantics for expressions, defined by induction over the syntax:

[e] : M — VW {Q}
) = v
(m) = m(x)
[eo +el(m) = [eol(m) + [er](m)
() { Q if [e1](m) =0
leol () / [e1](m) otherwise

@ a semantics for conditions, following the same principle:

[[C]] M — Voo ¥ {Q}

Xavier Rival Abstract Interpretation: Introduction April 3rd, 2020

6/ 32

Another Soundness Relation

Semantics of satements (refresher)

We have also defined:

Denotational semantics of programs
We use the denotational semantics [P]p : P(M) — P(M) by:

[x:=e[p(M) = {m[x < [e](m)]|me M}
[input(x)][p(M) = {mx+ v]|veVAme M}
[if(c) Py else Pi]p(M) = [Po]p({m € M | [c](m) = TRUE})
U [Pi]p({m € M | [c](m) = FALSE})
[while(c) Plp(M) = {m € Ifp Fp | [c](m) = FALSE}
where Fp : M — M U [P]p({m € M’ | [c](m) = TRUE})
[Po; Pilp(M) = [Pilp o [Po]p(M)

@ As before, we seek for an abstract interpretation of [P]p
@ We first need to set up the abstraction relation

Xavier Rival Abstract Interpretation: Introduction April 3rd, 2020 7/ 32

Another Soundness Relation

Towards a more general abstraction

We compose two abstractions:
@ non relational abstraction: the values a variable may take is
abstracted separately from the other variables
e parameter value abstraction: an abstract value describes a set of
concrete values (not necessarily the lattice of sign anymore) defined by
W
(P(Z)a g) Oé—v> (D{iﬂ E)
Definitions are quite similar:
Abstraction
e concrete domain: (P(X — Z),Q)
e abstract domain: (D¥,C) (D! =X — D‘ﬁ, and C is pointwise)
. . 2l :
e Galois connection (P(Z),C) &= (D*,C), defined by

a: M — (av({oo|o e M}),...,ap({on-1]|0 € M}))
vi Mo {0 €Z"| Vi, o; € (M)}

Xavier Rival Abstract Interpretation: Introduction April 3rd, 2020 8 /32

Another Soundness Relation

Abstract semantics of sequences (revised)

We search for an abstract semantics [P]! : D — D such that:
[Pl oy CyolP]!

We still aim for a proof by induction over the syntax of programs

Sequences / composition forced us to require monotonicity last time:
o we assume [Pg] oy C o [Po]?
o we assume [P1] oy C vyo [P]*

@ since [Po; P1] = [P1] o [Po], we search for something similar in the
abstract level

[Pio[Po]oy € [Pi]lovo[Po]* (by induction)
C ~yo[Pi]fo[Po]* (by induction)

No more requirement that [P]* be monotone (much better!) J

Xavier Rival Abstract Interpretation: Introduction April 3rd, 2020 9 /32

Another Soundness Relation

Abstract semantics of expressions

Analysis of an expression

@ the semantics [e] : M — V of an expression evaluates it into a value

o thus, the abstract semantics should evaluate it into an abstract
value:

[e]® : D} — D)ﬁ)

Since we use the concrete semantics as a guide, we need:
@ abstraction for constants:
i.e., a function ¢p : V — D{j/ such that Vv € V, v € y(¢pp(v))
note: if vy exists, then we may take v — ayp({v}) note: if it is too
hard to compute, we may take something coarser
@ abstract operators:
i.e., for each binary operator @, an abstract operator ®* such that:

\V/V(gv ‘/1:I € D)ﬁjﬂ {VO S R%1 ‘ VI, vi € ’YV(V?)} g W/V(Vé @ﬁ Vl:)

Xavier Rival Abstract Interpretation: Introduction April 3rd, 2020 10 / 32

Another Soundness Relation

Abstract semantics of expressions

Analysis of expressions: definition
We define [e]? : Df — D‘ﬁ/ by:
[VIF(M?) = v(v)

(MY = M)
[eo ®eal*(M!) = [eo(M*) & [ex]*(M")

Analysis of expressions: soundness

For all expression e and for all abstract memory state M € Df, we have:

Vm € v(M*), [e](m) returns no error = [e](m) € vy ([e]*(MF))
Proof:

@ basic induction over the syntax

@ relies on the soundness of each operation

Xavier Rival Abstract Interpretation: Introduction April 3rd, 2020 11 / 32

Another Soundness Relation

Analysis of an assignment

We now rely on the abstract semantics of expressions:

[x = e[F(MF) = M¥[x < [e]*(M?)]

@ soundness proof is very similar

@ but now, is given in terms of 7

Xavier Rival Abstract Interpretation: Introduction April 3rd, 2020

12 / 32

Another Soundness Relation

Abstract semantics of conditions

Analysis of a condition

@ the semantics [[c] : M — Vy,01 of a condition evaluates it into a
boolean value (or an error)

@ but the semantics relies on its functional inverse:
e.g., {m € M| [c](m) = TRUE} or {m € M | [c]](m) = FALSE}
@ thus, the abstract semantics should tell which memories satisfy a
condition:
[c] : Vool X DF — DF
Vb € Viol, ¥ € (ME), [c](m) = b= m € ([c]F(b, M¥))

@ we assume that the abstract domain provides such a function
[[C]]ﬁ . Vbool X Dji — Dti
@ we will implement some when considering specific abstract domains

We will see more general principles soon J

Xavier Rival Abstract Interpretation: Introduction April 3rd, 2020 13 / 32

Another Soundness Relation

Analysis of a condition statement

Abstraction of concrete union:

o we assume a sound abstract union operation joinf, over the value

%
abstract domain:

Vvl () U w(vf) € v (joind, (v6, vi))

it may be Lly if it exists, but could over-approximate it

e we let join® be the pointwise extension of joinq,

o it is also sound: YME, M, ~(ME) U (M) C ~(joinf(ME, M)
We derive:

[if(c) Po else Pi]¥(M*) =
join®([Po]*([c]?(TRUE, M%), [P1]¢([c]?(FALSE, MF)))

Proof of soundness:
@ similar as in the previous course
o relies on the soundness of [c]?, [Po]?, [P1]? and join®

Xavier Rival Abstract Interpretation: Introduction April 3rd, 2020

14 / 32

Another Soundness Relation

Analysis of a loop

Again, quite similar to the previous course:
o statement while(c) P, with abstract pre-condition M?
o we assume [c]* and [P]* sound abstract semantics for the condition
and the loop body
@ we assume the abstract domain is a finite height lattice
@ we derive, using a new version of the fixpoint transfer theorem
(exercise):

[while(c) P]#(M?) = [c]*(FALSE, Ifp,,: F?)
where F! : M5 — join®(M2, [P]*([<]*(TRUE, MY)))

Computation of abstract iterates:

ME = M
M:,, = joinf(M}, [P]*([c]*(TRUE, M})))

Exit condition: when successive iterates are equal

Xavier Rival Abstract Interpretation: Introduction April 3rd, 2020 15 / 32

Another Soundness Relation

Static analysis

We can now summarize the definition of our static analysis:

Definition
[Po; PLIF(MF) = [Pu]* o [Po]*(MF)
[x =elf(M*) = M[x « [e]*(M*)]
linput(O{(M?) = Mi[x T]
[if(c) Po else PF(M?) = join([Po]([c]*(TRUE, Mt)),

[P1]*([c]*(FALSE, MF)))
[while(c) PJF(M#) = [c]*(FALSE, Ifpy: F¥)
where F? : ME —s join®(ME, [P]4([<]*(TRUE, M2)))

And, by induction over the syntax, we can prove:

Soundness
For all program P, VM! € Dt [P] o v(M*) C ~ o [P]#(M?)

Xavier Rival Abstract Interpretation: Introduction April 3rd, 2020

16 / 32

@ Another Soundness Relation

e Revisiting Abstract lteration

© Conclusion

Revisiting Abstract Iteration

Limitations related to abstract iteration

We need a finite height lattice:

e otherwise the computation of Ifp F¥ may not converge
as was the case when we discussed WLP calculus

@ consequence 1: so far, the abstract domain of intervals is out...

e consequence 2: if the number of variables is not fixed or bounded,
we cannot prove convergence at this point

Even when the abstract domain D]ﬁ/ is of finite height, this height
may be huge: then abstract computations are very costly!

We now need a more general abstract iteration technique)

Intuition from search for an unknown inductive property:
@ look at the base case and following cases
@ try to generalize them

Xavier Rival Abstract Interpretation: Introduction April 3rd, 2020 18 / 32

Revisiting Abstract Iteration

Widening iteration: search for inductive abstract properties

Computing invariants about infinite executions with widening v
e Widening V over-approximates U: soundness guarantee
@ Widening Vv guarantees the termination of the analyses

@ Typical choice of V: remove unstable constraints

Example: iteration of the translation (2,1), with octagonal polyhedra
(i.e., convex polyhedra the axes of which are either at a 0° or 45° angle)
y y y
X1 = XoVF(Xo)
) FO4
Xu
F 7 \ F

initial iteration 1 iteration 2: stable !

e Initially: 3 constraints

@ After one iteration: 2 constraints, then stable
Xavier Rival Abstract Interpretation: Introduction April 3rd, 2020 19 / 32

Revisiting Abstract Iteration

Widening operator

Widening operator: Definition
A widening operator over an abstract domain D! is a binary operator Vv
such that:
o VM, M, v(Mg) U (M) € v(MEvMS)
o if (Nﬁ)keN is a sequence of elements of D* the sequence (Mﬁ)keN
defined below is stationary:

M: = N
i _ i i
Mi, = MVN

@ Intuition:
point 1 expresses over-approximation of concrete union
point 2 enforces termination

o Alternate definitions exist:

e.g., using C instead of C over concretizations
Xavier Rival Abstract Interpretation: Introduction April 3rd, 2020 20 / 32

Revisiting Abstract Iteration

Widening operator in a finite height domain

Theorem

We assume that (D¥,C) is a finite height domain and that LI is the
least upper bound over DF.
Then U defines a widening over D!.

Proof:
Q since I\/Ig C I\/Ig U /\/If, we have 'y(/\/lg) C fy(Mg u Mf)

@ a sequence of iterates (Mﬁ)keN is an increasing chain, so if every
increasing chain is finite, it will eventually stabilize

Applications:

@ obvious widening operators for the lattices of constants, signs...

@ abstract iteration algorithms are also the same

Xavier Rival Abstract Interpretation: Introduction April 3rd, 2020 21 /32

Revisiting Abstract Iteration

A widening operator in an infinite height domain

We consider the value lattice of semi intervals with left bound 0:
o D ={1}wZ% w {+00}; w(v)={0,1,...,v}
o Wvi, L C vfandif vg < vf, then vg C vf

We define the widening operator below:

Widening operator

1vvt = vt
vivl = Wi
i T i
v if vi > v
V§va = {_S T % %1
00 it vy <vg
Examples: [0,8]V[0,6] = [0, 8] [0,8]V[0,9] = [0, +o0

Widening for intervals

Exercise: generalize this definition for both bounds

Xavier Rival Abstract Interpretation: Introduction April 3rd, 2020 22 /32

Revisiting Abstract Iteration

Fixpoint approximation using a widening operator

Theorem: widening based fixpoint approximation

We assume (C, C) is a complete lattice and that (A, C) is an abstract
domain with a concretization function v : A — C and a widening operator
V. Moreover, we assume that:

e f is continuous (so it has a least fixpoint fp f = |, f"(0))

@ foyCyoft

We let the sequence (Mﬁ)keN be defined by:

MEo= L
B _ gt f
M., = M} v F4(M;)

Then:
Q@ (M})ken is stationary and we write M} for its limit
1
Q Ifpf C (M)

Xavier Rival Abstract Interpretation: Introduction April 3rd, 2020 23 /32

Revisiting Abstract Iteration

Fixpoint approximation using a widening operator, proof

We assume all the assumptions of the theorem, and prove the two points:
NG o= 1L
N£+1 = fﬁ(Mﬁ)
Then, convergence follows directly from the definition of widening.
There exists a rank K from which all iterates are stable.
@ Soundness of the limit:
We prove by induction over k that ¥/ > k, fk(()) C *y(l\/l,ﬁ):
» the result clearly holds for k = 0;
» if the result holds at rank k and / > k then:
FEEL0) = F(F40))

© Sequence convergence: We let

C f(y(MH) by induction

C A(fY (M) since foy Cyoft
C A(MIVFY M) by definition of v
= (M)

When (Mﬂ)keN converges, VI > K, Mﬁ M,ﬁ< = Mgo, thus
Wk, F(0) € y(ML) thus Ifp £ C “/(Mio)

Xavier Rival Abstract Interpretation: Introduction April 3rd, 2020 24 / 32

Revisiting Abstract Iteration

Example widening iteration

intx=0;
while(TRUE){
if (x < 10000){
x=x+1;

} else {

Xavier Rival Abstract Interpretation: Introduction April 3rd, 2020

25 / 32

Revisiting Abstract Iteration

Example widening iteration

intx=0;
x € [0,0]
while(TRUE){

if(x < 10000){

x=x+1;
} else {
X =—X
Xavier Rival Abstract Interpretation: Introduction April 3rd, 2020

25 / 32

Revisiting Abstract Iteration

Example widening iteration

intx=0;

x € [0,0]
while(TRUE){

x € [0,0]

if(x < 10000){

x=x+1;
} else {
X =—X
Entry into the loop
Xavier Rival Abstract Interpretation: Introduction April 3rd, 2020

25 / 32

Revisiting Abstract Iteration

Example widening iteration

intx=0;
x € [0,0]
while(TRUE){
x € [0,0]
if(x < 10000){
x € [0,0]
x=x+1;
} else {
xel
}
}

Only the “true” branch may be taken

Xavier Rival Abstract Interpretation: Introduction April 3rd, 2020

25 / 32

Revisiting Abstract Iteration

Example widening iteration

intx=0;
x € [0,0]
while(TRUE){
x € [0,0]
if(x < 10000){
x € [0,0]
x=x+1;
x € [1,1]
} else {
xel
X = —X;
xefl
}
}
Incrementation
Xavier Rival Abstract Interpretation: Introduction April 3rd, 2020

25 / 32

Revisiting Abstract Iteration

Example widening iteration

intx=0;
x € [0,0]
while(TRUE){
x € [0,0]
if(x < 10000){
x € [0,0]
x=x+1;
x € [1,1]
} else {
xel
X = —X;
x€f

x € [1,1]

Abstract union at the end of the condition

Xavier Rival Abstract Interpretation: Introduction April 3rd, 2020

25 / 32

Revisiting Abstract Iteration

Example widening iteration

intx=0;
x € [0,0]
while(TRUE){
x € [0, +oof
if(x < 10000){
x € [0,0]
x=x+1;
x € [1,1]
} else {
xel
X = —X;
xel

x € [1,1]
Widening at loop head

Xavier Rival Abstract Interpretation: Introduction April 3rd, 2020

25 / 32

Revisiting Abstract Iteration

Example widening iteration

intx=0;
x € [0,0]
while(TRUE){
x € [0, +oof
if(x < 10000){
x € [0,9999]
x=x+1;
x € [1,1]
} else {
x € [10000, +o0]
X=X
x€f

x € [1,1]

Now both branches may be taken

Xavier Rival Abstract Interpretation: Introduction April 3rd, 2020

25 / 32

Revisiting Abstract Iteration

Example widening iteration

intx=0;
x € [0,0]
while(TRUE){
x € [0, +oof
if(x < 10000){
x € [0,9999]
x=x+1;
x € [1,10000]
} else {
x € [10000, +o0]
X=X

x €] — 0o, —10000]

x € [1,1]

Numerical assignments

Xavier Rival Abstract Interpretation: Introduction April 3rd, 2020

25 / 32

Revisiting Abstract Iteration

Example widening iteration

intx=0;
x € [0,0]
while(TRUE){
x € [0, +oof
if(x < 10000){
x € [0,9999]
x=x+1;
x € [1,10000]
} else {
x € [10000, +o0]
X=X

x €] — 0o, —10000]

x €] — 00, 10000]

Abstract union at the end of the condition

Xavier Rival Abstract Interpretation: Introduction April 3rd, 2020

25 / 32

Revisiting Abstract Iteration

Example widening iteration

intx=0;
x € [0,0]
while(TRUE){
x €] — 00, +oof
if(x < 10000){
x € [0,9999]
x=x+1;
x € [1,10000]
} else {
x € [10000, +o0[
X = —X;

x €] — 00, —10000]

x €] — 00, 10000]

Widening at loop head

Xavier Rival Abstract Interpretation: Introduction April 3rd, 2020

25 / 32

Revisiting Abstract Iteration

Example widening iteration

intx=0;
x € [0,0]
while(TRUE){
x €] — 00, +o0[
if(x < 10000){
x €] — 00,9999
x=x+1;
x € [1,10000]
} else {
x € [10000, +o0[
X=X

x €] — 0o, —10000]

x €] — 00, 10000]

Both branches may be taken

Xavier Rival Abstract Interpretation: Introduction April 3rd, 2020

25 / 32

Revisiting Abstract Iteration

Example widening iteration

intx=0;
x € [0,0]
while(TRUE){
x €] — 00, +o0[
if(x < 10000){
x €] — 00,9999
x=x+1;
x €] — 00, 10000]
} else {
x € [10000, +o0[
X=X

x €] — 0o, —10000]

x €] — 00, 10000]

Numerical assignments

Xavier Rival Abstract Interpretation: Introduction April 3rd, 2020

25 / 32

Revisiting Abstract Iteration

Example widening iteration

intx=0;
x € [0,0]
while(TRUE){
x €] — 00, +oof
if(x < 10000){
x €] — 00,9999]
x=x+1;
x €] — 00, 10000]
} else {
x € [10000, +o0[
X = —X;

x €] — 00, —10000]

x €] — 00, 10000]

Stable! No information at loop head,
but still, some interesting information inside the loop

Xavier Rival Abstract Interpretation: Introduction April 3rd, 2020

25 / 32

Revisiting Abstract Iteration

Loop unrolling

From the example, we observe that intervals widening is imprecise:
@ quickly goes to —co or +o0
@ ignores possible stable bounds

Can we do better ?
Yes, we can... many techniques improve standard widening

Loop unrolling: postpone widening

We fix an index /, and postpone widening until after /

Moo= L
M., = join*(M, F(M})) ifk<I
M2+1 = Mﬁvfﬁ(l\/li) otherwise

o Typically, k is set to 1 or 2...
@ Proof of a new fixpoint approximation theorem: very similar

Xavier Rival Abstract Interpretation: Introduction April 3rd, 2020

26 / 32

Revisiting Abstract Iteration

Widening with threshold

Now, let us improve the widening itself:
@ the standard Vv operator of intervals goes straight to oo
@ we can slow down the process

Threshold widening
Let 7 be a finite set of integers, called thresholds. We let the
threshold widening be defined by:
1wvt = vt
vivl = i
vg if vg > vf
Wvi = { min{vie T Vi, v <vi} i {vieT|Vi, v <vi}£0
+o00 otherwise

@ Proof of the widening property: exercise
e Example with £ = {10}:
0. 8]7[0,9] = [0,10] [0, 8]7[0,15] = [0, +oc]

Xavier Rival Abstract Interpretation: Introduction April 3rd, 2020 27 / 32

Revisiting Abstract Iteration

Techniques related to iterations

No widening after visiting a branch for the first time:

@ loop unrolling postpones widening for a finite number of times
@ there are finitely many branches in any block of code
branch: condition block entry or inner loop entry

Principle
Mark program branches and apply widening only when no new
branch was visited during the previous iteration

Post-fixpoint iteration:
e observation: if foy C yo ff and fp f C (M), then:
Ifpf = f(Ifpf) C f oy(M¥) C o FE(MP)
e so f#(M") also approximates Ifp f, and may be better
Principle J

After an abstract invariant is found, perform additional iterations

Xavier Rival Abstract Interpretation: Introduction April 3rd, 2020 28 / 32

Revisiting Abstract Iteration

Example widening iteration, more precise

Classical techniques:
@ add test values and neighbors as thresholds
@ alternate join and widening
@ no widening after visiting a new branch
intx=0;

while(TRUE){

if (x < 10000){ 9999 will be a threshold value at loop head

x=x+1;
} else {
X = —X;
Xavier Rival Abstract Interpretation: Introduction April 3rd, 2020

29 / 32

Revisiting Abstract Iteration

Example widening iteration, more precise

Classical techniques:
@ add test values and neighbors as thresholds
@ alternate join and widening

@ no widening after visiting a new branch
intx=0;
x € [0,0]
while(TRUE){

if (x < 10000){ 9999 will be a threshold value at loop head

x=x+1;
} else {
X = —X;
Xavier Rival Abstract Interpretation: Introduction April 3rd, 2020

29 / 32

Revisiting Abstract Iteration

Example widening iteration, more precise

Classical techniques:
@ add test values and neighbors as thresholds
@ alternate join and widening
@ no widening after visiting a new branch

intx=0;

x € [0,0]
while(TRUE){

x € [0,0]

if (x < 10000){ 9999 will be a threshold value at loop head

x=x+1;
} else {
X = —X;
}
}
Entering the loop
Xavier Rival Abstract Interpretation: Introduction April 3rd, 2020

29 / 32

Revisiting Abstract Iteration

Example widening iteration, more precise

Classical techniques:
@ add test values and neighbors as thresholds
@ alternate join and widening
@ no widening after visiting a new branch
intx=0;
x € [0,0]
while(TRUE){
x € [0,0]
if (x < 10000){ 9999 will be a threshold value at loop head
x € [0,0]
x=x+1;

} else {
x€D
X = —X;

}
Only true branch possible

Xavier Rival Abstract Interpretation: Introduction April 3rd, 2020

29 / 32

Revisiting Abstract Iteration

Example widening iteration, more precise

Classical techniques:
@ add test values and neighbors as thresholds
@ alternate join and widening
@ no widening after visiting a new branch

intx=0;
x € [0,0]
while(TRUE){
x € [0,0]
if (x < 10000){ 9999 will be a threshold value at loop head
x € [0,0]
x=x+1;
x e [1,1]
} else {
xel
X = —X;
xel
}
}
Incrementation of interval
Xavier Rival Abstract Interpretation: Introduction April 3rd, 2020

29 / 32

Revisiting Abstract Iteration

Example widening iteration, more precise

Classical techniques:
@ add test values and neighbors as thresholds
@ alternate join and widening

@ no widening after visiting a new branch
intx=0;
x € [0,0]
while(TRUE){
x € [0,0]
if (x < 10000){ 9999 will be a threshold value at loop head
x € [0,0]
x=x+1;
x e [1,1]
} else {
xel
x=—x;
xel

x € [1,1]
}
Propagation

Xavier Rival Abstract Interpretation: Introduction April 3rd, 2020

29 / 32

Revisiting Abstract Iteration

Example widening iteration, more precise

Classical techniques:
@ add test values and neighbors as thresholds
@ alternate join and widening
@ no widening after visiting a new branch

intx=0;
x € [0,0]
while(TRUE){
x € [0,1]
if (x < 10000){ 9999 will be a threshold value at loop head
x € [0,0]
x=x+1;
x e [1,1]
} else {
xel
X = —X;
xel
}
x € [1,1]
}
Join at loop head
Xavier Rival Abstract Interpretation: Introduction April 3rd, 2020

29 / 32

Revisiting Abstract Iteration

Example widening iteration, more precise

Classical techniques:
@ add test values and neighbors as thresholds
@ alternate join and widening

@ no widening after visiting a new branch
intx=0;
x € [0,0]
while(TRUE){
x € [0,1]
if (x < 10000){ 9999 will be a threshold value at loop head
x € [0,1]
x=x+1;
x e [1,1]
} else {
xel
x=—x;
xel

x € [1,1]
}

Still only the true branch is possible

Xavier Rival Abstract Interpretation: Introduction April 3rd, 2020

29 / 32

Revisiting Abstract Iteration

Example widening iteration, more precise

Classical techniques:
@ add test values and neighbors as thresholds
@ alternate join and widening
@ no widening after visiting a new branch

intx=0;
x € [0,0]
while(TRUE){
x € [0,1]
if (x < 10000){ 9999 will be a threshold value at loop head
x € [0,1]
x=x+1;
x€[1,2]
} else {
xel
X = —X;
xel
}
x € [1,1]
}
Incrementation of interval
Xavier Rival Abstract Interpretation: Introduction April 3rd, 2020

29 / 32

Revisiting Abstract Iteration

Example widening iteration, more precise

Classical techniques:
@ add test values and neighbors as thresholds
@ alternate join and widening

@ no widening after visiting a new branch
intx=0;
x € [0,0]
while(TRUE){
x € [0,1]
if (x < 10000){ 9999 will be a threshold value at loop head
x € [0,1]
x=x+1;
x€[1,2]
} else {
xel
x=—x;
xel

x€[1,2]
}
Propagation

Xavier Rival Abstract Interpretation: Introduction April 3rd, 2020

29 / 32

Revisiting Abstract Iteration

Example widening iteration, more precise

Classical techniques:

@ add test values and neighbors as thresholds
@ alternate join and widening

@ no widening after visiting a new branch
intx=0;
x € [0,0]
while(TRUE){
x € [0,9999] instead of [0, +o0[
if (x < 10000){ 9999 will be a threshold value at loop head

x € [0,1]
x=x+1;
x€[1,2]
} else {
xel
X = —X;
xel
}
x€[1,2]
}
Widening at the loop head, + threshold
Xavier Rival Abstract Interpretation: Introduction April 3rd, 2020

29 / 32

Revisiting Abstract Iteration

Example widening iteration, more precise

Classical techniques:
@ add test values and neighbors as thresholds
@ alternate join and widening

@ no widening after visiting a new branch
intx=0;
x € [0,0]
while(TRUE){
x €[0,9999] instead of [0, 4+o00]
if (x < 10000){ 9999 will be a threshold value at loop head

x € [0,9999]
x=x+1;
x€[1,2]
} else {
x€
X = —X;
x€D
}
x€[1,2]
}
Now both branches are possible...
Xavier Rival Abstract Interpretation: Introduction April 3rd, 2020

29 / 32

Revisiting Abstract Iteration

Example widening iteration, more precise

Classical techniques:
@ add test values and neighbors as thresholds
@ alternate join and widening

@ no widening after visiting a new branch
intx=0;
x € [0,0]
while(TRUE){
x € [0,9999] instead of [0, +o0[
if (x < 10000){ 9999 will be a threshold value at loop head

x € [0,9999]
x=x+1;
x € [1,10000]
} else {
x€
X = —X;
x€D
}
x€[1,2]
}
Numerical assignments
Xavier Rival Abstract Interpretation: Introduction April 3rd, 2020

29 / 32

Revisiting Abstract Iteration

Example widening iteration, more precise

Classical techniques:
@ add test values and neighbors as thresholds
@ alternate join and widening

@ no widening after visiting a new branch
intx=0;
x € [0,0]
while(TRUE){
x € [0,9999] instead of [0, +o0[
if (x < 10000){ 9999 will be a threshold value at loop head

x € [0,9999]
x=x+1;
x € [1,10000]
} else {
x€
X = —X;
x€D
}
x € [1,10000]
}
Join at the end of the loop
Xavier Rival Abstract Interpretation: Introduction April 3rd, 2020

29 / 32

Revisiting Abstract Iteration

Example widening iteration, more precise

Classical techniques:
@ add test values and neighbors as thresholds
@ alternate join and widening

@ no widening after visiting a new branch
intx=0;
x € [0,0]
while(TRUE){
x € [0,10000] instead of | — oo, +o0[
if (x < 10000){ 9999 will be a threshold value at loop head

x € [0,9999]
x=x+1;
x € [1,10000]
} else {
x€
X = —X;
x€D
}
x € [1,10000]
}
Join after widening
Xavier Rival Abstract Interpretation: Introduction April 3rd, 2020

29 / 32

Revisiting Abstract Iteration

Example widening iteration, more precise

Classical techniques:
@ add test values and neighbors as thresholds
@ alternate join and widening

@ no widening after visiting a new branch
intx=0;
x € [0,0]
while(TRUE){
x € [0,10000] instead of | — oo, +o0[
if (x < 10000){ 9999 will be a threshold value at loop head
x € [0,9999]
x=x+1;
x € [1,10000]
} else {
x € [10000,10000] instead of [10000, +oc]
x=—x;
xel

x € [1,10000]
}

True branch stable, false branch visited for the first time

Xavier Rival Abstract Interpretation: Introduction April 3rd, 2020

29 / 32

Revisiting Abstract Iteration

Example widening iteration, more precise

Classical techniques:
@ add test values and neighbors as thresholds
@ alternate join and widening

@ no widening after visiting a new branch
intx=0;
x € [0,0]
while(TRUE){
x € [0,10000] instead of | — oo, +o0[
if (x < 10000){ 9999 will be a threshold value at loop head
x € [0,9999]
x=x+1;
x € [1,10000]
} else {
x € [10000,10000] instead of [10000, +oc]
x=—x;

x € [~10000, —10000]

x € [1,10000]
}

True branch stable, false branch visited for the first time

Xavier Rival Abstract Interpretation: Introduction April 3rd, 2020

29 / 32

Revisiting Abstract Iteration

Example widening iteration, more precise

Classical techniques:
@ add test values and neighbors as thresholds
@ alternate join and widening

@ no widening after visiting a new branch
intx=0;
x € [0,0]
while(TRUE){
x € [0,10000] instead of | — oo, +o0[
if (x < 10000){ 9999 will be a threshold value at loop head

x € [0,9999]
x=x+1;
x € [1,10000]
} else {
x € [10000,10000] instead of [10000, +oo]
X = —X;
x € [~10000, —10000]
}
x € [~10000, 10000]
}
Join at the end of the loop
Xavier Rival Abstract Interpretation: Introduction April 3rd, 2020

29 / 32

Revisiting Abstract Iteration

Example widening iteration, more precise

Classical techniques:
@ add test values and neighbors as thresholds
@ alternate join and widening

@ no widening after visiting a new branch
intx=0;
x € [0,0]
while(TRUE){
x € [-10000,10000] instead of | — oo, +o0[
if (x < 10000){ 9999 will be a threshold value at loop head
x € [0,9999]
x=x+1;
x € [1,10000]
} else {
x € [10000,10000] instead of [10000, +oc]
x=—x;

x € [~10000, —10000]

x € [~10000, 10000]
}

Join again: no widening after visiting a new branch

Xavier Rival Abstract Interpretation: Introduction April 3rd, 2020

29 / 32

Revisiting Abstract Iteration

Example widening iteration, more precise

Classical techniques:
@ add test values and neighbors as thresholds
@ alternate join and widening

@ no widening after visiting a new branch
intx=0;
x € [0,0]
while(TRUE){
x € [-10000,10000] instead of | — oo, +o0[
if (x < 10000){ 9999 will be a threshold value at loop head
x € [~10000, 9999)]

x=x+1;
x € [1,10000]
} else {
x € [10000,10000] instead of [10000, +oo]
X = —X;
x € [~10000, —10000]
}
x € [~10000, 10000]
}
Branches
Xavier Rival Abstract Interpretation: Introduction April 3rd, 2020

29 / 32

Revisiting Abstract Iteration

Example widening iteration, more precise

Classical techniques:
@ add test values and neighbors as thresholds
@ alternate join and widening

@ no widening after visiting a new branch
intx=0;
x € [0,0]
while(TRUE){
x € [-10000,10000] instead of | — oo, +o0[
if (x < 10000){ 9999 will be a threshold value at loop head
x € [~10000, 9999)]

x=x+1;
x € [~9999, 10000]
} else {
x € [10000,10000] instead of [10000, +oo]
X = —X;
x € [~10000, —10000]
}
x € [~10000, 10000]
}
Incrementation of interval in true branch; false branch stable
Xavier Rival Abstract Interpretation: Introduction April 3rd, 2020

29 / 32

Revisiting Abstract Iteration

Example widening iteration, more precise

Classical techniques:
@ add test values and neighbors as thresholds
@ alternate join and widening

@ no widening after visiting a new branch
intx=0;
x € [0,0]
while(TRUE){
x € [-10000,10000] instead of | — oo, +o0[
if (x < 10000){ 9999 will be a threshold value at loop head
x € [~10000, 9999)]

x=x+1;
x € [—9999, 10000]
} else {
x € [10000,10000] instead of [10000, 4+o0|
X = —X;
x € [-10000, —10000]
}
x € [-10000, 10000]
}
Everything is stable; exact ranges inferred
Xavier Rival Abstract Interpretation: Introduction April 3rd, 2020

29 / 32

Revisiting Abstract Iteration

Widening and monotonicity

Remarks about the widening over intervals:
@ it is monotone in its second argument,
@ but it is not monotone in its first argument!

In fact, interesting widenings are not monotone in their first argument:

Let (D, C) be an infinite height domain, with a widening V that is stable
(v, vEvvi = vf) and such that va, vf, Vi, v,.tt C ngvf. Then, V is not
monotone in its first argument (proof: Patrick Cousot).

Proof: we assume it is, let Wg C Wf C ... be an infinite chain over D¥ and
gt i

define vj = vy, 1 = V£VWk+l; we prove by induction that vﬁ = w:

o clear at rank 0

@ we assume that vﬁ = w}i: then v£+1 = vﬁVW}i

O f #
moreover, v, .y = kaW

LA
ﬁ ti—H, SO Wi & Viy1s
k1 = Wi VWi E W YW = wy
This contradicts the widening definition: the sequence should be stationary.

Xavier Rival Abstract Interpretation: Introduction April 3rd, 2020 30 / 32

@ Another Soundness Relation

© Revisiting Abstract Iteration

© Conclusion

Conclusion

Summary

This lecture:
@ abstraction and its formalization

e computation of an abstract semantics in a very simplified case

Next lectures:
@ construction of a few non trivial abstractions

@ more general ways to compute sound abstract properties

Update on projects... J

Xavier Rival Abstract Interpretation: Introduction April 3rd, 2020 32 /32

	Another Soundness Relation
	Revisiting Abstract Iteration
	Conclusion

