
Abstract Interpretation
Semantics and applications to verification

Xavier Rival

École Normale Supérieure

April 3rd, 2020

Xavier Rival Abstract Interpretation: Introduction April 3rd, 2020 1 / 32

Program of this lecture

Towards a more realistic abstract interpreter

Today:
more general soundness proof:
using γ, and requiring no monotonicity in the abstract level

more general abstract domain:
signs is good for introduction only, we want to see constants,
intervals...

extended language with expressions
i.e., not only three address arithmetic

more general abstract iteration technique:
convergence guaranteed even with infinite height domain

Xavier Rival Abstract Interpretation: Introduction April 3rd, 2020 2 / 32

Another Soundness Relation

Outline

1 Another Soundness Relation

2 Revisiting Abstract Iteration

3 Conclusion

Xavier Rival Abstract Interpretation: Introduction April 3rd, 2020 3 / 32

Another Soundness Relation

About soundness relations

Several formalisms available:
abstraction function α : C → A, returns the best approximation
concretization function γ : A→ C , returns the meaning of an
abstract element
Galois connection (C ,⊆) −−−→←−−−α

γ
(A,v)

Limitations of our previous abstract interpreter:
uses the best abstraction function α all the time
tries to establish equality JPK] ◦ α = α ◦ JPK but fails...
indeed, some operators may only compute an over-approximation
proves α ◦ JPK v JPK] ◦ α
at the cost of proving monotonicity of JPK]

Alternate approach

Use γ only and prove JPK ◦ γ ⊆ γ ◦ JPK]

Xavier Rival Abstract Interpretation: Introduction April 3rd, 2020 4 / 32

Another Soundness Relation

A language with expressions

We now consider the denotational semantics of our imperative language:
variables X: finite, predefined set of variables
values V: Vint ∪ Vfloat ∪ . . .
expressions are allowed (not just three address instructions)
conditions are simplified compared to initial language

Syntax

e ::= v (v ∈ V) | x (x ∈ X) | e + e | e ∗ e | . . . expressions
c ::= x < v | x = v | . . . basic conditions
P ::= x := e assignment

| input(x) random value input
| if(c) P else P condition
| while(c) P loop
| P;P block, program(P)

Xavier Rival Abstract Interpretation: Introduction April 3rd, 2020 5 / 32

Another Soundness Relation

Semantics of expressions and conditions (refresher)

We have defined a few lectures ago:

a semantics for expressions, defined by induction over the syntax:

JeK : M −→ V] {Ω}
JvK(m) = v
JxK(m) = m(x)

Je0 + e1K(m) = Je0K(m) + Je1K(m)

Je0 / e1K(m) =

{
Ω if Je1K(m) = 0
Je0K(m) / Je1K(m) otherwise

a semantics for conditions, following the same principle:

JcK : M −→ Vbool] {Ω}

Xavier Rival Abstract Interpretation: Introduction April 3rd, 2020 6 / 32

Another Soundness Relation

Semantics of satements (refresher)

We have also defined:

Denotational semantics of programs
We use the denotational semantics JPKD : P(M) −→ P(M) by:

Jx := eKD(M) = {m[x← JeK(m)] | m ∈M}
Jinput(x)KD(M) = {m[x← v] | v ∈ V∧m ∈M}

Jif(c) P0 else P1KD(M) = JP0KD({m ∈M | JcK(m) = TRUE})
∪ JP1KD({m ∈M | JcK(m) = FALSE})

Jwhile(c) PKD(M) = {m ∈ lfpFD | JcK(m) = FALSE}
where FD :M′ 7−→M ∪ JPKD({m ∈M′ | JcK(m) = TRUE})

JP0;P1KD(M) = JP1KD ◦ JP0KD(M)

As before, we seek for an abstract interpretation of JPKD
We first need to set up the abstraction relation

Xavier Rival Abstract Interpretation: Introduction April 3rd, 2020 7 / 32

Another Soundness Relation

Towards a more general abstraction

We compose two abstractions:
non relational abstraction: the values a variable may take is
abstracted separately from the other variables
parameter value abstraction: an abstract value describes a set of
concrete values (not necessarily the lattice of sign anymore) defined by
(P(Z),⊆) −−−−→←−−−−

αV

γV
(D]
V ,v)

Definitions are quite similar:

Abstraction
concrete domain: (P(X→ Z),⊆)

abstract domain: (D],v) (D] = X→ D]
V and v is pointwise)

Galois connection (P(Z),⊆) −−−→←−−−α
γ

(D],v), defined by

α : M 7−→ (αV({σ0 | σ ∈M}), . . . , αV({σn−1 | σ ∈M}))

γ : M] 7−→ {σ ∈ Zn | ∀i , σi ∈ γV(M]
i)}

Xavier Rival Abstract Interpretation: Introduction April 3rd, 2020 8 / 32

Another Soundness Relation

Abstract semantics of sequences (revised)

We search for an abstract semantics JPK] : D] → D] such that:

JPK ◦ γ ⊆ γ ◦ JPK]

We still aim for a proof by induction over the syntax of programs
Sequences / composition forced us to require monotonicity last time:

we assume JP0K ◦ γ ⊆ γ ◦ JP0K]

we assume JP1K ◦ γ ⊆ γ ◦ JP1K]

since JP0;P1K = JP1K ◦ JP0K, we search for something similar in the
abstract level

JP1K ◦ JP0K ◦ γ ⊆ JP1K ◦ γ ◦ JP0K] (by induction)
⊆ γ ◦ JP1K] ◦ JP0K] (by induction)

No more requirement that JPK] be monotone (much better!)

Xavier Rival Abstract Interpretation: Introduction April 3rd, 2020 9 / 32

Another Soundness Relation

Abstract semantics of expressions

Analysis of an expression
the semantics JeK : M −→ V of an expression evaluates it into a value
thus, the abstract semantics should evaluate it into an abstract
value:

JeK] : D] −→ D]
V

Since we use the concrete semantics as a guide, we need:
abstraction for constants:
i.e., a function φV : V→ D]

V such that ∀v ∈ V, v ∈ γV(φV(v))
note: if αV exists, then we may take v 7−→ αV({v}) note: if it is too
hard to compute, we may take something coarser
abstract operators:
i.e., for each binary operator ⊕, an abstract operator ⊕] such that:

∀v]0, v
]
1 ∈ D]

V , {v0 ⊕ v1 | ∀i , vi ∈ γV(v]i)} ⊆ γV(v]0 ⊕
] v]1)

Xavier Rival Abstract Interpretation: Introduction April 3rd, 2020 10 / 32

Another Soundness Relation

Abstract semantics of expressions

Analysis of expressions: definition

We define JeK] : D] −→ D]
V by:

JvK](M]) = φV(v)
JxK](M]) = M](x)

Je0 ⊕ e1K](M]) = Je0K](M])⊕] Je1K](M])

Analysis of expressions: soundness

For all expression e and for all abstract memory state M] ∈ D], we have:

∀m ∈ γ(M]), JeK(m) returns no error =⇒ JeK(m) ∈ γV(JeK](M]))

Proof:
basic induction over the syntax
relies on the soundness of each operation

Xavier Rival Abstract Interpretation: Introduction April 3rd, 2020 11 / 32

Another Soundness Relation

Analysis of an assignment

We now rely on the abstract semantics of expressions:

Jx = eK](M]) = M][x← JeK](M])]

soundness proof is very similar
but now, is given in terms of γ

Xavier Rival Abstract Interpretation: Introduction April 3rd, 2020 12 / 32

Another Soundness Relation

Abstract semantics of conditions

Analysis of a condition
the semantics JcK : M −→ Vbool of a condition evaluates it into a
boolean value (or an error)
but the semantics relies on its functional inverse:
e.g., {m ∈M | JcK(m) = TRUE} or {m ∈M | JcK(m) = FALSE}
thus, the abstract semantics should tell which memories satisfy a
condition:

JcK] : Vbool × D] −→ D]

∀b ∈ Vbool, ∀m ∈ γ(M]), JcK(m) = b =⇒ m ∈ γ(JcK](b,M]))

we assume that the abstract domain provides such a function
JcK] : Vbool × D] −→ D]

we will implement some when considering specific abstract domains

We will see more general principles soon
Xavier Rival Abstract Interpretation: Introduction April 3rd, 2020 13 / 32

Another Soundness Relation

Analysis of a condition statement

Abstraction of concrete union:
we assume a sound abstract union operation join]V over the value
abstract domain:

∀v]0, v
]
1, γV(v]0) ∪ γV(v]1) ⊆ γV(join]V(v]0, v

]
1))

it may be tV if it exists, but could over-approximate it
we let join] be the pointwise extension of join]V
it is also sound: ∀M]

0,M
]
1, γ(M]

0) ∪ γ(M]
1) ⊆ γ(join](M]

0,M
]
1))

We derive:

Jif(c)P0 else P1K](M]) =

join](JP0K](JcK](TRUE,M])), JP1K](JcK](FALSE,M])))

Proof of soundness:
similar as in the previous course
relies on the soundness of JcK], JP0K], JP1K] and join]

Xavier Rival Abstract Interpretation: Introduction April 3rd, 2020 14 / 32

Another Soundness Relation

Analysis of a loop

Again, quite similar to the previous course:
statement while(c)P , with abstract pre-condition M]

we assume JcK] and JPK] sound abstract semantics for the condition
and the loop body
we assume the abstract domain is a finite height lattice
we derive, using a new version of the fixpoint transfer theorem
(exercise):

Jwhile(c)PK](M]) = JcK](FALSE, lfpM] F])

where F] : M]
0 7−→ join](M]

0, JPK](JcK](TRUE,M]
0)))

Computation of abstract iterates:{
M]

0 = M]

M]
n+1 = join](M]

n, JPK](JcK](TRUE,M]
n)))

Exit condition: when successive iterates are equal
Xavier Rival Abstract Interpretation: Introduction April 3rd, 2020 15 / 32

Another Soundness Relation

Static analysis

We can now summarize the definition of our static analysis:

Definition

JP0;P1K](M]) = JP1K] ◦ JP0K](M])
Jx = eK](M]) = M][x← JeK](M])]

Jinput()K](M]) = M][x← >]

Jif(c)P0 else P1K](M]) = join](JP0K](JcK](TRUE,M])),
JP1K](JcK](FALSE,M])))

Jwhile(c)PK](M]) = JcK](FALSE, lfpM] F])

where F] : M]
0 7−→ join](M]

0, JPK](JcK](TRUE,M]
0)))

And, by induction over the syntax, we can prove:

Soundness
For all program P , ∀M] ∈ D], JPK ◦ γ(M]) ⊆ γ ◦ JPK](M])

Xavier Rival Abstract Interpretation: Introduction April 3rd, 2020 16 / 32

Revisiting Abstract Iteration

Outline

1 Another Soundness Relation

2 Revisiting Abstract Iteration

3 Conclusion

Xavier Rival Abstract Interpretation: Introduction April 3rd, 2020 17 / 32

Revisiting Abstract Iteration

Limitations related to abstract iteration

We need a finite height lattice:
otherwise the computation of lfpF] may not converge
as was the case when we discussed WLP calculus
consequence 1: so far, the abstract domain of intervals is out...
consequence 2: if the number of variables is not fixed or bounded,
we cannot prove convergence at this point

Even when the abstract domain D]
V is of finite height, this height

may be huge: then abstract computations are very costly!

We now need a more general abstract iteration technique

Intuition from search for an unknown inductive property:
1 look at the base case and following cases
2 try to generalize them

Xavier Rival Abstract Interpretation: Introduction April 3rd, 2020 18 / 32

Revisiting Abstract Iteration

Widening iteration: search for inductive abstract properties

Computing invariants about infinite executions with widening O

Widening O over-approximates ∪: soundness guarantee
Widening O guarantees the termination of the analyses
Typical choice of O: remove unstable constraints

Example: iteration of the translation (2, 1), with octagonal polyhedra
(i.e., convex polyhedra the axes of which are either at a 0◦ or 45◦ angle)

initial

x

y

X0

iteration 1

x

y

X0

F (X0)

X1 = X0OF (X0)

iteration 2: stable !

x

y

X1

F (X1)

Initially: 3 constraints
After one iteration: 2 constraints, then stable

Xavier Rival Abstract Interpretation: Introduction April 3rd, 2020 19 / 32

Revisiting Abstract Iteration

Widening operator

Widening operator: Definition

A widening operator over an abstract domain D] is a binary operator O
such that:

∀M]
0,M

]
1, γ(M]

0) ∪ γ(M]
1) ⊆ γ(M]

0OM
]
1)

if (N]
k)k∈N is a sequence of elements of D] the sequence (M]

k)k∈N
defined below is stationary:

M]
0 = N]

0
M]

k+1 = M]
kON

]
k+1

Intuition:
point 1 expresses over-approximation of concrete union
point 2 enforces termination
Alternate definitions exist:
e.g., using v instead of ⊆ over concretizations

Xavier Rival Abstract Interpretation: Introduction April 3rd, 2020 20 / 32

Revisiting Abstract Iteration

Widening operator in a finite height domain

Theorem
We assume that (D],v) is a finite height domain and that t is the
least upper bound over D].
Then t defines a widening over D].

Proof:
1 since M]

0 v M]
0 tM]

1, we have γ(M]
0) v γ(M]

0 tM]
1)

2 a sequence of iterates (M]
k)k∈N is an increasing chain, so if every

increasing chain is finite, it will eventually stabilize

Applications:

obvious widening operators for the lattices of constants, signs...
abstract iteration algorithms are also the same

Xavier Rival Abstract Interpretation: Introduction April 3rd, 2020 21 / 32

Revisiting Abstract Iteration

A widening operator in an infinite height domain

We consider the value lattice of semi intervals with left bound 0:
D]
V = {⊥}] Z?+] {+∞}; γV(v) = {0, 1, . . . , v}
∀v], ⊥ v v] and if v]0 ≤ v]1, then v]0 v v]1

We define the widening operator below:

Widening operator

⊥Ov] = v]

v]O⊥ = v]

v]0Ov
]
1 =

{
v]0 if v]0 ≥ v]1
+∞ if v]0 < v]1

Examples: [0, 8]O[0, 6] = [0, 8] [0, 8]O[0, 9] = [0,+∞[

Widening for intervals
Exercise: generalize this definition for both bounds

Xavier Rival Abstract Interpretation: Introduction April 3rd, 2020 22 / 32

Revisiting Abstract Iteration

Fixpoint approximation using a widening operator

Theorem: widening based fixpoint approximation
We assume (C ,⊆) is a complete lattice and that (A,v) is an abstract
domain with a concretization function γ : A→ C and a widening operator
O. Moreover, we assume that:

f is continuous (so it has a least fixpoint lfp f =
⋃

n∈N f n(∅))
f ◦ γ ⊆ γ ◦ f]

We let the sequence (M]
k)k∈N be defined by:

M]
0 = ⊥

M]
k+1 = M]

kOf
](M]

k)

Then:
1 (M]

k)k∈N is stationary and we write M]
lim for its limit

2 lfp f ⊆ γ(M]
lim)

Xavier Rival Abstract Interpretation: Introduction April 3rd, 2020 23 / 32

Revisiting Abstract Iteration

Fixpoint approximation using a widening operator, proof

We assume all the assumptions of the theorem, and prove the two points:

1 Sequence convergence: We let

{
N]

0 = ⊥
N]
k+1 = f](M]

k)

Then, convergence follows directly from the definition of widening.
There exists a rank K from which all iterates are stable.

2 Soundness of the limit:
We prove by induction over k that ∀l ≥ k , f k(∅) ⊆ γ(M]

l):
I the result clearly holds for k = 0;
I if the result holds at rank k and l ≥ k then:

f k+1(∅) = f (f k(∅))

⊆ f (γ(M]
l)) by induction

⊆ γ(f](M]
l)) since f ◦ γ ⊆ γ ◦ f]

⊆ γ(M]
l Of

](M]
l)) by definition of O

= γ(M]
l+1)

When (M]
k)k∈N converges, ∀l ≥ K , M]

l = M]
K = M]

∞, thus
∀k , f k(∅) ⊆ γ(M]

∞) thus lfp f ⊆ γ(M]
∞)

Xavier Rival Abstract Interpretation: Introduction April 3rd, 2020 24 / 32

Revisiting Abstract Iteration

Example widening iteration

int x = 0;

while(TRUE){

if(x < 10 000){

x = x + 1;

} else {

x = −x;

}

}

Xavier Rival Abstract Interpretation: Introduction April 3rd, 2020 25 / 32

Revisiting Abstract Iteration

Example widening iteration

int x = 0;
x ∈ [0, 0]

while(TRUE){

if(x < 10 000){

x = x + 1;

} else {

x = −x;

}

}

Xavier Rival Abstract Interpretation: Introduction April 3rd, 2020 25 / 32

Revisiting Abstract Iteration

Example widening iteration

int x = 0;
x ∈ [0, 0]

while(TRUE){
x ∈ [0, 0]

if(x < 10 000){

x = x + 1;

} else {

x = −x;

}

}

Entry into the loop

Xavier Rival Abstract Interpretation: Introduction April 3rd, 2020 25 / 32

Revisiting Abstract Iteration

Example widening iteration

int x = 0;
x ∈ [0, 0]

while(TRUE){
x ∈ [0, 0]

if(x < 10 000){
x ∈ [0, 0]

x = x + 1;

} else {
x ∈ ∅

x = −x;

}

}

Only the “true” branch may be taken

Xavier Rival Abstract Interpretation: Introduction April 3rd, 2020 25 / 32

Revisiting Abstract Iteration

Example widening iteration

int x = 0;
x ∈ [0, 0]

while(TRUE){
x ∈ [0, 0]

if(x < 10 000){
x ∈ [0, 0]

x = x + 1;
x ∈ [1, 1]

} else {
x ∈ ∅

x = −x;
x ∈ ∅

}

}

Incrementation

Xavier Rival Abstract Interpretation: Introduction April 3rd, 2020 25 / 32

Revisiting Abstract Iteration

Example widening iteration

int x = 0;
x ∈ [0, 0]

while(TRUE){
x ∈ [0, 0]

if(x < 10 000){
x ∈ [0, 0]

x = x + 1;
x ∈ [1, 1]

} else {
x ∈ ∅

x = −x;
x ∈ ∅

}
x ∈ [1, 1]

}

Abstract union at the end of the condition

Xavier Rival Abstract Interpretation: Introduction April 3rd, 2020 25 / 32

Revisiting Abstract Iteration

Example widening iteration

int x = 0;
x ∈ [0, 0]

while(TRUE){
x ∈ [0,+∞[

if(x < 10 000){
x ∈ [0, 0]

x = x + 1;
x ∈ [1, 1]

} else {
x ∈ ∅

x = −x;
x ∈ ∅

}
x ∈ [1, 1]

}

Widening at loop head

Xavier Rival Abstract Interpretation: Introduction April 3rd, 2020 25 / 32

Revisiting Abstract Iteration

Example widening iteration

int x = 0;
x ∈ [0, 0]

while(TRUE){
x ∈ [0,+∞[

if(x < 10 000){
x ∈ [0, 9999]

x = x + 1;
x ∈ [1, 1]

} else {
x ∈ [10000,+∞[

x = −x;
x ∈ ∅

}
x ∈ [1, 1]

}

Now both branches may be taken

Xavier Rival Abstract Interpretation: Introduction April 3rd, 2020 25 / 32

Revisiting Abstract Iteration

Example widening iteration

int x = 0;
x ∈ [0, 0]

while(TRUE){
x ∈ [0,+∞[

if(x < 10 000){
x ∈ [0, 9999]

x = x + 1;
x ∈ [1, 10000]

} else {
x ∈ [10000,+∞[

x = −x;
x ∈]−∞,−10000]

}
x ∈ [1, 1]

}

Numerical assignments

Xavier Rival Abstract Interpretation: Introduction April 3rd, 2020 25 / 32

Revisiting Abstract Iteration

Example widening iteration

int x = 0;
x ∈ [0, 0]

while(TRUE){
x ∈ [0,+∞[

if(x < 10 000){
x ∈ [0, 9999]

x = x + 1;
x ∈ [1, 10000]

} else {
x ∈ [10000,+∞[

x = −x;
x ∈]−∞,−10000]

}
x ∈]−∞, 10000]

}

Abstract union at the end of the condition

Xavier Rival Abstract Interpretation: Introduction April 3rd, 2020 25 / 32

Revisiting Abstract Iteration

Example widening iteration

int x = 0;
x ∈ [0, 0]

while(TRUE){
x ∈]−∞,+∞[

if(x < 10 000){
x ∈ [0, 9999]

x = x + 1;
x ∈ [1, 10000]

} else {
x ∈ [10000,+∞[

x = −x;
x ∈]−∞,−10000]

}
x ∈]−∞, 10000]

}

Widening at loop head

Xavier Rival Abstract Interpretation: Introduction April 3rd, 2020 25 / 32

Revisiting Abstract Iteration

Example widening iteration

int x = 0;
x ∈ [0, 0]

while(TRUE){
x ∈]−∞,+∞[

if(x < 10 000){
x ∈]−∞, 9999]

x = x + 1;
x ∈ [1, 10000]

} else {
x ∈ [10000,+∞[

x = −x;
x ∈]−∞,−10000]

}
x ∈]−∞, 10000]

}

Both branches may be taken

Xavier Rival Abstract Interpretation: Introduction April 3rd, 2020 25 / 32

Revisiting Abstract Iteration

Example widening iteration

int x = 0;
x ∈ [0, 0]

while(TRUE){
x ∈]−∞,+∞[

if(x < 10 000){
x ∈]−∞, 9999]

x = x + 1;
x ∈]−∞, 10000]

} else {
x ∈ [10000,+∞[

x = −x;
x ∈]−∞,−10000]

}
x ∈]−∞, 10000]

}

Numerical assignments

Xavier Rival Abstract Interpretation: Introduction April 3rd, 2020 25 / 32

Revisiting Abstract Iteration

Example widening iteration

int x = 0;
x ∈ [0, 0]

while(TRUE){
x ∈]−∞,+∞[

if(x < 10 000){
x ∈]−∞, 9999]

x = x + 1;
x ∈]−∞, 10000]

} else {
x ∈ [10000,+∞[

x = −x;
x ∈]−∞,−10000]

}
x ∈]−∞, 10000]

}

Stable! No information at loop head,
but still, some interesting information inside the loop

Xavier Rival Abstract Interpretation: Introduction April 3rd, 2020 25 / 32

Revisiting Abstract Iteration

Loop unrolling

From the example, we observe that intervals widening is imprecise:
quickly goes to −∞ or +∞
ignores possible stable bounds

Can we do better ?
Yes, we can... many techniques improve standard widening

Loop unrolling: postpone widening
We fix an index l , and postpone widening until after l

M]
0 = ⊥

M]
k+1 = join](M]

k , f
](M]

k)) if k < l

M]
k+1 = M]

kOf
](M]

k) otherwise

Typically, k is set to 1 or 2...
Proof of a new fixpoint approximation theorem: very similar

Xavier Rival Abstract Interpretation: Introduction April 3rd, 2020 26 / 32

Revisiting Abstract Iteration

Widening with threshold

Now, let us improve the widening itself:
the standard O operator of intervals goes straight to ∞
we can slow down the process

Threshold widening
Let T be a finite set of integers, called thresholds. We let the
threshold widening be defined by:
⊥Ov] = v]

v]O⊥ = v]

v]0Ov
]
1 =

v]0 if v]0 ≥ v]1
min{v] ∈ T | ∀i , v]i ≤ v]} if {v] ∈ T | ∀i , v]i ≤ v]} 6= ∅
+∞ otherwise

Proof of the widening property: exercise
Example with L = {10}:

[0, 8]O[0, 9] = [0, 10] [0, 8]O[0, 15] = [0,+∞[
Xavier Rival Abstract Interpretation: Introduction April 3rd, 2020 27 / 32

Revisiting Abstract Iteration

Techniques related to iterations

No widening after visiting a branch for the first time:
loop unrolling postpones widening for a finite number of times
there are finitely many branches in any block of code
branch: condition block entry or inner loop entry

Principle
Mark program branches and apply widening only when no new
branch was visited during the previous iteration

Post-fixpoint iteration:
observation: if f ◦ γ ⊆ γ ◦ f] and lfp f ⊆ γ(M]), then:
lfp f = f (lfp f) ⊆ f ◦ γ(M]) ⊆ γ ◦ f](M])
so f](M]) also approximates lfp f , and may be better

Principle
After an abstract invariant is found, perform additional iterations

Xavier Rival Abstract Interpretation: Introduction April 3rd, 2020 28 / 32

Revisiting Abstract Iteration

Example widening iteration, more precise

Classical techniques:
add test values and neighbors as thresholds
alternate join and widening
no widening after visiting a new branch

int x = 0;

while(TRUE){

if(x < 10 000){ 9999 will be a threshold value at loop head

x = x + 1;

} else {

x = −x;

}

}

Xavier Rival Abstract Interpretation: Introduction April 3rd, 2020 29 / 32

Revisiting Abstract Iteration

Example widening iteration, more precise

Classical techniques:
add test values and neighbors as thresholds
alternate join and widening
no widening after visiting a new branch

int x = 0;
x ∈ [0, 0]

while(TRUE){

if(x < 10 000){ 9999 will be a threshold value at loop head

x = x + 1;

} else {

x = −x;

}

}

Xavier Rival Abstract Interpretation: Introduction April 3rd, 2020 29 / 32

Revisiting Abstract Iteration

Example widening iteration, more precise

Classical techniques:
add test values and neighbors as thresholds
alternate join and widening
no widening after visiting a new branch

int x = 0;
x ∈ [0, 0]

while(TRUE){
x ∈ [0, 0]

if(x < 10 000){ 9999 will be a threshold value at loop head

x = x + 1;

} else {

x = −x;

}

}

Entering the loop
Xavier Rival Abstract Interpretation: Introduction April 3rd, 2020 29 / 32

Revisiting Abstract Iteration

Example widening iteration, more precise

Classical techniques:
add test values and neighbors as thresholds
alternate join and widening
no widening after visiting a new branch

int x = 0;
x ∈ [0, 0]

while(TRUE){
x ∈ [0, 0]

if(x < 10 000){ 9999 will be a threshold value at loop head
x ∈ [0, 0]

x = x + 1;

} else {
x ∈ ∅

x = −x;

}

}

Only true branch possible
Xavier Rival Abstract Interpretation: Introduction April 3rd, 2020 29 / 32

Revisiting Abstract Iteration

Example widening iteration, more precise

Classical techniques:
add test values and neighbors as thresholds
alternate join and widening
no widening after visiting a new branch

int x = 0;
x ∈ [0, 0]

while(TRUE){
x ∈ [0, 0]

if(x < 10 000){ 9999 will be a threshold value at loop head
x ∈ [0, 0]

x = x + 1;
x ∈ [1, 1]

} else {
x ∈ ∅

x = −x;
x ∈ ∅

}

}

Incrementation of interval
Xavier Rival Abstract Interpretation: Introduction April 3rd, 2020 29 / 32

Revisiting Abstract Iteration

Example widening iteration, more precise

Classical techniques:
add test values and neighbors as thresholds
alternate join and widening
no widening after visiting a new branch

int x = 0;
x ∈ [0, 0]

while(TRUE){
x ∈ [0, 0]

if(x < 10 000){ 9999 will be a threshold value at loop head
x ∈ [0, 0]

x = x + 1;
x ∈ [1, 1]

} else {
x ∈ ∅

x = −x;
x ∈ ∅

}
x ∈ [1, 1]

}

Propagation
Xavier Rival Abstract Interpretation: Introduction April 3rd, 2020 29 / 32

Revisiting Abstract Iteration

Example widening iteration, more precise

Classical techniques:
add test values and neighbors as thresholds
alternate join and widening
no widening after visiting a new branch

int x = 0;
x ∈ [0, 0]

while(TRUE){
x ∈ [0, 1]

if(x < 10 000){ 9999 will be a threshold value at loop head
x ∈ [0, 0]

x = x + 1;
x ∈ [1, 1]

} else {
x ∈ ∅

x = −x;
x ∈ ∅

}
x ∈ [1, 1]

}

Join at loop head
Xavier Rival Abstract Interpretation: Introduction April 3rd, 2020 29 / 32

Revisiting Abstract Iteration

Example widening iteration, more precise

Classical techniques:
add test values and neighbors as thresholds
alternate join and widening
no widening after visiting a new branch

int x = 0;
x ∈ [0, 0]

while(TRUE){
x ∈ [0, 1]

if(x < 10 000){ 9999 will be a threshold value at loop head
x ∈ [0, 1]

x = x + 1;
x ∈ [1, 1]

} else {
x ∈ ∅

x = −x;
x ∈ ∅

}
x ∈ [1, 1]

}

Still only the true branch is possible
Xavier Rival Abstract Interpretation: Introduction April 3rd, 2020 29 / 32

Revisiting Abstract Iteration

Example widening iteration, more precise

Classical techniques:
add test values and neighbors as thresholds
alternate join and widening
no widening after visiting a new branch

int x = 0;
x ∈ [0, 0]

while(TRUE){
x ∈ [0, 1]

if(x < 10 000){ 9999 will be a threshold value at loop head
x ∈ [0, 1]

x = x + 1;
x ∈ [1, 2]

} else {
x ∈ ∅

x = −x;
x ∈ ∅

}
x ∈ [1, 1]

}

Incrementation of interval
Xavier Rival Abstract Interpretation: Introduction April 3rd, 2020 29 / 32

Revisiting Abstract Iteration

Example widening iteration, more precise

Classical techniques:
add test values and neighbors as thresholds
alternate join and widening
no widening after visiting a new branch

int x = 0;
x ∈ [0, 0]

while(TRUE){
x ∈ [0, 1]

if(x < 10 000){ 9999 will be a threshold value at loop head
x ∈ [0, 1]

x = x + 1;
x ∈ [1, 2]

} else {
x ∈ ∅

x = −x;
x ∈ ∅

}
x ∈ [1, 2]

}

Propagation
Xavier Rival Abstract Interpretation: Introduction April 3rd, 2020 29 / 32

Revisiting Abstract Iteration

Example widening iteration, more precise

Classical techniques:
add test values and neighbors as thresholds
alternate join and widening
no widening after visiting a new branch

int x = 0;
x ∈ [0, 0]

while(TRUE){
x ∈ [0, 9999] instead of [0,+∞[

if(x < 10 000){ 9999 will be a threshold value at loop head
x ∈ [0, 1]

x = x + 1;
x ∈ [1, 2]

} else {
x ∈ ∅

x = −x;
x ∈ ∅

}
x ∈ [1, 2]

}

Widening at the loop head, + threshold
Xavier Rival Abstract Interpretation: Introduction April 3rd, 2020 29 / 32

Revisiting Abstract Iteration

Example widening iteration, more precise

Classical techniques:
add test values and neighbors as thresholds
alternate join and widening
no widening after visiting a new branch

int x = 0;
x ∈ [0, 0]

while(TRUE){
x ∈ [0, 9999] instead of [0,+∞[

if(x < 10 000){ 9999 will be a threshold value at loop head
x ∈ [0, 9999]

x = x + 1;
x ∈ [1, 2]

} else {
x ∈ ∅

x = −x;
x ∈ ∅

}
x ∈ [1, 2]

}

Now both branches are possible...
Xavier Rival Abstract Interpretation: Introduction April 3rd, 2020 29 / 32

Revisiting Abstract Iteration

Example widening iteration, more precise

Classical techniques:
add test values and neighbors as thresholds
alternate join and widening
no widening after visiting a new branch

int x = 0;
x ∈ [0, 0]

while(TRUE){
x ∈ [0, 9999] instead of [0,+∞[

if(x < 10 000){ 9999 will be a threshold value at loop head
x ∈ [0, 9999]

x = x + 1;
x ∈ [1, 10000]

} else {
x ∈ ∅

x = −x;
x ∈ ∅

}
x ∈ [1, 2]

}

Numerical assignments
Xavier Rival Abstract Interpretation: Introduction April 3rd, 2020 29 / 32

Revisiting Abstract Iteration

Example widening iteration, more precise

Classical techniques:
add test values and neighbors as thresholds
alternate join and widening
no widening after visiting a new branch

int x = 0;
x ∈ [0, 0]

while(TRUE){
x ∈ [0, 9999] instead of [0,+∞[

if(x < 10 000){ 9999 will be a threshold value at loop head
x ∈ [0, 9999]

x = x + 1;
x ∈ [1, 10000]

} else {
x ∈ ∅

x = −x;
x ∈ ∅

}
x ∈ [1, 10000]

}

Join at the end of the loop
Xavier Rival Abstract Interpretation: Introduction April 3rd, 2020 29 / 32

Revisiting Abstract Iteration

Example widening iteration, more precise

Classical techniques:
add test values and neighbors as thresholds
alternate join and widening
no widening after visiting a new branch

int x = 0;
x ∈ [0, 0]

while(TRUE){
x ∈ [0, 10000] instead of]−∞,+∞[

if(x < 10 000){ 9999 will be a threshold value at loop head
x ∈ [0, 9999]

x = x + 1;
x ∈ [1, 10000]

} else {
x ∈ ∅

x = −x;
x ∈ ∅

}
x ∈ [1, 10000]

}

Join after widening
Xavier Rival Abstract Interpretation: Introduction April 3rd, 2020 29 / 32

Revisiting Abstract Iteration

Example widening iteration, more precise

Classical techniques:
add test values and neighbors as thresholds
alternate join and widening
no widening after visiting a new branch

int x = 0;
x ∈ [0, 0]

while(TRUE){
x ∈ [0, 10000] instead of]−∞,+∞[

if(x < 10 000){ 9999 will be a threshold value at loop head
x ∈ [0, 9999]

x = x + 1;
x ∈ [1, 10000]

} else {
x ∈ [10000, 10000] instead of [10000,+∞[

x = −x;
x ∈ ∅

}
x ∈ [1, 10000]

}

True branch stable, false branch visited for the first time
Xavier Rival Abstract Interpretation: Introduction April 3rd, 2020 29 / 32

Revisiting Abstract Iteration

Example widening iteration, more precise

Classical techniques:
add test values and neighbors as thresholds
alternate join and widening
no widening after visiting a new branch

int x = 0;
x ∈ [0, 0]

while(TRUE){
x ∈ [0, 10000] instead of]−∞,+∞[

if(x < 10 000){ 9999 will be a threshold value at loop head
x ∈ [0, 9999]

x = x + 1;
x ∈ [1, 10000]

} else {
x ∈ [10000, 10000] instead of [10000,+∞[

x = −x;
x ∈ [−10000,−10000]

}
x ∈ [1, 10000]

}

True branch stable, false branch visited for the first time
Xavier Rival Abstract Interpretation: Introduction April 3rd, 2020 29 / 32

Revisiting Abstract Iteration

Example widening iteration, more precise

Classical techniques:
add test values and neighbors as thresholds
alternate join and widening
no widening after visiting a new branch

int x = 0;
x ∈ [0, 0]

while(TRUE){
x ∈ [0, 10000] instead of]−∞,+∞[

if(x < 10 000){ 9999 will be a threshold value at loop head
x ∈ [0, 9999]

x = x + 1;
x ∈ [1, 10000]

} else {
x ∈ [10000, 10000] instead of [10000,+∞[

x = −x;
x ∈ [−10000,−10000]

}
x ∈ [−10000, 10000]

}

Join at the end of the loop
Xavier Rival Abstract Interpretation: Introduction April 3rd, 2020 29 / 32

Revisiting Abstract Iteration

Example widening iteration, more precise

Classical techniques:
add test values and neighbors as thresholds
alternate join and widening
no widening after visiting a new branch

int x = 0;
x ∈ [0, 0]

while(TRUE){
x ∈ [−10000, 10000] instead of]−∞,+∞[

if(x < 10 000){ 9999 will be a threshold value at loop head
x ∈ [0, 9999]

x = x + 1;
x ∈ [1, 10000]

} else {
x ∈ [10000, 10000] instead of [10000,+∞[

x = −x;
x ∈ [−10000,−10000]

}
x ∈ [−10000, 10000]

}

Join again: no widening after visiting a new branch
Xavier Rival Abstract Interpretation: Introduction April 3rd, 2020 29 / 32

Revisiting Abstract Iteration

Example widening iteration, more precise

Classical techniques:
add test values and neighbors as thresholds
alternate join and widening
no widening after visiting a new branch

int x = 0;
x ∈ [0, 0]

while(TRUE){
x ∈ [−10000, 10000] instead of]−∞,+∞[

if(x < 10 000){ 9999 will be a threshold value at loop head
x ∈ [−10000, 9999]

x = x + 1;
x ∈ [1, 10000]

} else {
x ∈ [10000, 10000] instead of [10000,+∞[

x = −x;
x ∈ [−10000,−10000]

}
x ∈ [−10000, 10000]

}

Branches
Xavier Rival Abstract Interpretation: Introduction April 3rd, 2020 29 / 32

Revisiting Abstract Iteration

Example widening iteration, more precise

Classical techniques:
add test values and neighbors as thresholds
alternate join and widening
no widening after visiting a new branch

int x = 0;
x ∈ [0, 0]

while(TRUE){
x ∈ [−10000, 10000] instead of]−∞,+∞[

if(x < 10 000){ 9999 will be a threshold value at loop head
x ∈ [−10000, 9999]

x = x + 1;
x ∈ [−9999, 10000]

} else {
x ∈ [10000, 10000] instead of [10000,+∞[

x = −x;
x ∈ [−10000,−10000]

}
x ∈ [−10000, 10000]

}

Incrementation of interval in true branch; false branch stable
Xavier Rival Abstract Interpretation: Introduction April 3rd, 2020 29 / 32

Revisiting Abstract Iteration

Example widening iteration, more precise

Classical techniques:
add test values and neighbors as thresholds
alternate join and widening
no widening after visiting a new branch

int x = 0;
x ∈ [0, 0]

while(TRUE){
x ∈ [−10000, 10000] instead of]−∞,+∞[

if(x < 10 000){ 9999 will be a threshold value at loop head
x ∈ [−10000, 9999]

x = x + 1;
x ∈ [−9999, 10000]

} else {
x ∈ [10000, 10000] instead of [10000,+∞[

x = −x;
x ∈ [−10000,−10000]

}
x ∈ [−10000, 10000]

}

Everything is stable; exact ranges inferred
Xavier Rival Abstract Interpretation: Introduction April 3rd, 2020 29 / 32

Revisiting Abstract Iteration

Widening and monotonicity

Remarks about the widening over intervals:
it is monotone in its second argument,
but it is not monotone in its first argument!

In fact, interesting widenings are not monotone in their first argument:

Let (D],v) be an infinite height domain, with a widening O that is stable
(∀v], v]Ov] = v]) and such that ∀v]0, v

]
1, ∀i , v

]
i v v]0Ov

]
1. Then, O is not

monotone in its first argument (proof: Patrick Cousot).

Proof: we assume it is, let w]
0 @ w]

1 @ . . . be an infinite chain over D] and
define v]0 = w]

0, v
]
k+1 = v]kOw

]
k+1; we prove by induction that v]k = w]

k :
clear at rank 0
we assume that v]k = w]

k : then v]k+1 = v]kOw
]
k+1, so w]

k+1 v v]k+1;
moreover, v]k+1 = v]kOw

]
k+1 = w]

kOw
]
k+1 v w]

k+1Ow
]
k+1 = w]

k+1

This contradicts the widening definition: the sequence should be stationary.
Xavier Rival Abstract Interpretation: Introduction April 3rd, 2020 30 / 32

Conclusion

Outline

1 Another Soundness Relation

2 Revisiting Abstract Iteration

3 Conclusion

Xavier Rival Abstract Interpretation: Introduction April 3rd, 2020 31 / 32

Conclusion

Summary

This lecture:
abstraction and its formalization
computation of an abstract semantics in a very simplified case

Next lectures:
construction of a few non trivial abstractions
more general ways to compute sound abstract properties

Update on projects...

Xavier Rival Abstract Interpretation: Introduction April 3rd, 2020 32 / 32

	Another Soundness Relation
	Revisiting Abstract Iteration
	Conclusion

