
Concurrent programs

Concurrent programs

Course 6 Axiomatic semantics Antoine Miné p. 53 / 60

Concurrent programs

Concurrent program syntax

Language

add a parallel composition statement: stat || stat

semantics: s1 || s2
execute s1 and s2 in parallel

allowing an arbitrary interleaving of atomic statements
(expression evaluation or assignments)

terminates when both s1 and s2 terminate

Hoare logic: extended by Owicki and Gries [Owicki76]

first idea:
{P1} s1 {Q1} {P2} s2 {Q2}
{P1 ^ P2} s1 || s2 {Q1 ^ Q2}

but this is unsound

Course 6 Axiomatic semantics Antoine Miné p. 54 / 60

Concurrent programs

Concurrent programs: rule soundness

Issue:
{P1} s1 {Q1} {P2} s2 {Q2}
{P1 ^ P2} s1 || s2 {Q1 ^ Q2}

is not always sound

example:

given s1
def
= X 1 and s2

def
= if X = 0 then Y 1, we derive:

{X = Y = 0} s1 {X = 1 ^ Y = 0} {X = Y = 0} s2 {X = 0 ^ Y = 1}
{X = Y = 0} s1 || s2 {false}

Solution:

the proofs of {P1} s1 {Q1} and {P2} s2 {Q2} must not interfere

Course 6 Axiomatic semantics Antoine Miné p. 55 / 60

Concurrent programs

Concurrent programs: rule soundness

interference freedom

given proofs �1 and �2 of {P1} s1 {Q1} and {P2} s2 {Q2}
�1 does not interfere with �2 if:

for any � appearing before a statement in �1

for any {P 0
2} s 02 {Q 0

2} appearing in �2

{� ^ P 0
2} s 02 {�} holds

and moreover {Q1 ^ P 0
2} s 02 {Q1}

i.e.: the assertions used to prove {P1} s1 {Q1} are stable by s2

example:

given s1
def
= X 1 and s2

def
= if X = 0 then Y 1, we derive:

{X = 0 ^ Y 2 [0, 1]} s1 {X = 1 ^ Y 2 [0, 1]} {X 2 [0, 1] ^ Y = 0} s2 {X 2 [0, 1] ^ Y 2 [0, 1]}
{X = Y = 0} s1 || s2 {X = 1 ^ Y 2 [0, 1]}

Course 6 Axiomatic semantics Antoine Miné p. 56 / 60

Concurrent programs

Concurrent programs: rule completeness

Issue: incompleteness

{X = 0} X X + 1 || X X + 1 {X = 2} is valid

but no proof of it can be derived

Solution: auxiliary variables

introduce explicitly program points and program counters

example:
`1 X X + 1 `2 || `3 X X + 1 `4

with auxiliary variables pc1 2 {1, 2}, pc2 2 {3, 4}
we can now express that a process is at a given control point
and distinguish assertions based on the location of other processes

s1
def
= `1

X X + 1 `2, s2
def
= `3

X X + 1 `4

{(pc2 = 3 ^ X = 0) _ (pc2 = 4 ^ X = 1)} s1 {(pc2 = 3 ^ X = 1) _ (pc2 = 4 ^ X = 2)}
{(pc1 = 1 ^ X = 0) _ (pc1 = 2 ^ X = 1)} s2 {(pc1 = 1 ^ X = 1) _ (pc1 = 2 ^ X = 2)}
=) {pc1 = 1 ^ pc2 = 3 ^ X = 0} s1 || s2 {pc1 = 2 ^ pc2 = 4 ^ X = 1}

in fact, auxiliary variables make the proof method complete
Course 6 Axiomatic semantics Antoine Miné p. 57 / 60

Conclusion

Conclusion

Course 6 Axiomatic semantics Antoine Miné p. 58 / 60

Conclusion

Conclusion

logic allows us to reason about program correctness

verification can be reduced to proofs of simple logic statements

Issue: automation

annotations are required (loop invariants, contracts)

verification conditions must be proven

to scale up to realistic programs, we need to automate as much as possible

Some solutions:

automatic logic solvers to discharge proof obligations
SAT / SMT solvers

abstract interpretation to approximate the semantics
fully automatic
able to infer invariants

Course 6 Axiomatic semantics Antoine Miné p. 59 / 60

Conclusion

Bibliography

[Apt81] K. Apt. Ten Years of Hoare’s logic: A survey In ACM TOPLAS,
3(4):431–483, 1981.

[Cousot02] P. Cousot. Constructive design of a hierarchy of semantics of a transition

system by abstract interpretation. In TCS, 277(1–2):47–103, 2002.

[Dijkstra76] E.W. Dijkstra. Guarded commands, nondeterminacy and formal

derivation of program In Comm. ACM, 18(8):453–457, 1975.

[Floyd67] R. Floyd. Assigning meanings to programs In In Proc. Sympos. Appl.
Math., Vol. XIX, pages 19–32, 1967.

[Hoare69] C.A.R. Hoare. An axiomatic basis for computer programming In Commun.
ACM 12(10), 1969.

[King69] J.C. King. A program verifier In PhD thesis, Dept. of Computer Science,
Carnegie-Mellon University, 1969.

[Owicki76] S. Owicki & D. Gries. An axiomatic proof technique for parallel programs

I In Acta Informatica, 6(4):319–340, 1976.

Course 6 Axiomatic semantics Antoine Miné p. 60 / 60

	Specifications
	Floyd–Hoare logic
	Predicate calculus
	Verification conditions
	Termination
	Non-determinism
	Arrays
	Concurrent programs
	Conclusion

