Operational Semantics Semantics and applications to verification

Xavier Rival

École Normale Supérieure

February 14, 2020

Program of this first lecture

Operational semantics

Mathematical description of the executions of a program

A model of programs: transition systems

- definition, a small step semantics
- a few common examples

Trace semantics: a kind of big step semantics

- finite and infinite executions
- fixpoint-based definitions
- notion of compositional semantics

Outline

Transition systems and small step semantics

- Definition and properties
- Examples

Traces semantics

Definition

We will characterize a program by:

• states:

photography of the program status at an instant of the execution

• execution steps: how do we move from one state to the next one

Definition: transition systems (TS)

A transition system is a tuple $(\mathbb{S}, \rightarrow)$ where:

- \mathbb{S} is the set of states of the system
- $\bullet \to \subseteq \mathbb{S} \times \mathbb{S}$ is the transition relation of the system

Note:

• the set of states may be infinite

Transition systems: properties of the transition relation

A deterministic system is such that a state fully determines the next state

$$orall s_0, s_1, s_1' \in \mathbb{S}, \ (s_0 o s_1 \wedge s_0 o s_1') \Longrightarrow s_1 = s_1'$$

Otherwise, a transition system is non deterministic, i.e.:

$$\exists s_0, s_1, s_1' \in \mathbb{S}, \ s_0 \rightarrow s_1 \wedge s_0 \rightarrow s_1' \wedge s_1 \neq s_1'$$

Notes:

- the transition relation → defines atomic execution steps; it is often called small-step semantics or structured operational semantics
- steps are discrete (not continuous) to describe both discrete and continuous behaviors, we would need to look at *hybrid systems* (beyond the scope of this lecture)

Transition systems: initial and final states

Initial / final states:

we often consider transition systems with a set of initial and final states:

- \bullet a set of initial states $\mathbb{S}_\mathcal{I}\subseteq\mathbb{S}$ denotes states where the execution should start
- a set of final states $\mathbb{S}_{\mathcal{F}}\subseteq\mathbb{S}$ denotes states where the execution should reach the end of the program

When needed, we add these to the definition of the transition systems $(\mathbb{S}, \rightarrow, \mathbb{S}_{\mathcal{I}}, \mathbb{S}_{\mathcal{F}})$.

Blocking state (not the same as final state):

- a state $s_0 \in \mathbb{S}$ is blocking when it is the origin of no transition: $\forall s_1 \in \mathbb{S}, \neg(s_0 \rightarrow s_1)$
- example: we often introduce an error state (usually noted Ω to denote the erroneous, blocking configuration)

Outline

Transition systems and small step semantics

- Definition and properties
- Examples

Traces semantics

Finite automata as transition systems

We can formalize the **word recognition** by a finite automaton using a transition system:

- We consider automaton $\mathcal{A} = (\mathcal{Q}, \mathit{q_{\mathrm{i}}}, \mathit{q_{\mathrm{f}}},
 ightarrow)$
- A "state" is defined by:
 - the remaining of the word to recognize
 - the automaton state that has been reached so far

thus, $\mathbb{S}=\textit{Q}\times\textit{L}^{*}$

• The transition relation \rightarrow of the transition system is defined by:

$$(q_0, aw)
ightarrow (q_1, w) \iff q_0 \stackrel{a}{\longrightarrow} q_1$$

• The initial and final states are defined by:

$$\mathbb{S}_{\mathcal{I}} = \{(q_{\mathrm{i}}, w) \mid w \in L^*\}$$
 $\mathbb{S}_{\mathcal{F}} = \{(q_{\mathrm{f}}, \epsilon)\}$

Pure λ -calculus

A bare bones model of functional programing:

λ -terms	β -reduction
The set of λ -terms is defined by:	• $(\lambda x \cdot t) u \rightarrow_{\beta} t[x \leftarrow u]$
$t, u, \ldots ::= x$ variable	• if $u ightarrow_{eta} v$ then $\lambda x \cdot u$ –
$\lambda x \cdot t$ abstraction	• if $u \rightarrow_{\beta} v$ then $u t \rightarrow_{\beta}$
<i>t u</i> application	• if $u \rightarrow_{\beta} v$ then $t u \rightarrow_{\beta}$

The λ -calculus defines a transition system:

- \mathbb{S} is the set of λ -terms and \rightarrow_{β} the transition relation
- \rightarrow_{β} is non-deterministic; example ? though, ML fixes an execution order
- given a lambda term t_0 , we may consider $(\mathbb{S}, \rightarrow_{\beta}, \mathbb{S}_{\mathcal{I}})$ where $\mathbb{S}_{\mathcal{I}} = \{t_0\}$
- blocking states are terms with no redex $(\lambda x \cdot u) v$

 $\lambda x \cdot u \rightarrow_{\beta} \lambda x \cdot v$

 $ut \rightarrow_{\beta} vt$ $t u \rightarrow_{\beta} t v$

A MIPS like assembly language: syntax

We now consider a (very simplified) assembly language

- machine integers: sequences of 32-bits (set: \mathbb{B}^{32})
- instructions are encoded over 32-bits (set: $\mathbb{I}_{\mathrm{MIPS}}$) and stored into the same space as data (i.e., $\mathbb{I}_{\mathrm{MIPS}} \subseteq \mathbb{B}^{32}$)
- $\bullet\,$ we assume a fixed set of addresses $\mathbb A$

Memory configurations	Instructions
 Program counter pc current instruction General purpose registers r₀r₃₁ Main memory (RAM) mem : A → B³² where A ⊆ B³² 	$i ::= (\in \mathbb{I}_{MIPS})$ $ add \mathbf{r}_d, \mathbf{r}_s, \mathbf{r}_{s'} addition$ $ addi \mathbf{r}_d, \mathbf{r}_s, \mathbf{v} add. \mathbf{v} \in \mathbb{B}^{32}$ $ sub \mathbf{r}_d, \mathbf{r}_s, \mathbf{r}_{s'} subtraction$ $ b t b t branch$ $ blt \mathbf{r}_s, \mathbf{r}_{s'}, t cond. branch$ $ d \mathbf{r}_d, o, \mathbf{r}_x relative load$ $ st \mathbf{r}_d, o, \mathbf{r}_x relative store$ $\mathbf{v}, t, o \in \mathbb{B}^{32}, d, s, s', x \in [0, 31]$

A MIPS like assembly language: states

Definition: state

A state is a tuple (π, ρ, μ) which comprises:

- A program counter value $\pi \in \mathbb{B}^{32}$
- A function mapping each general purpose register to its value $\rho: \{0, \dots, 31\} \to \mathbb{B}^{32}$
- A function mapping each memory cell to its value $\mu:\mathbb{A}\to\mathbb{B}^{32}$

What would a dangerous state be ?

- writing over an instruction
- reading or writing outside the program's memory
- we cannot fully formalize these yet...

as we need to formalize the behavior of each instruction first

A MIPS like assembly language: transition relation

We assume a state $s = (\pi, \rho, \mu)$ and that $\mu(\pi) = i$; then:

• if
$$i = \operatorname{add} \mathbf{r}_d, \mathbf{r}_s, \mathbf{r}_{s'}$$
, then:
 $s \to (\pi + 4, \rho[d \leftarrow \rho(s) + \rho(s')], \mu)$
• if $i = \operatorname{addi} \mathbf{r}_d, \mathbf{r}_s, v$, then:
 $s \to (\pi + 4, \rho[d \leftarrow \rho(s) + v], \mu)$

• if $i = \operatorname{sub} \mathbf{r}_d, \mathbf{r}_s, \mathbf{r}_{s'}$, then:

$$s
ightarrow (\pi + 4,
ho[d \leftarrow
ho(s) -
ho(s')], \mu)$$

• if $i = \mathbf{b} t$, then:

$$s
ightarrow (t,
ho, \mu)$$

A MIPS like assembly language: transition relation

We assume a state $s = (\pi, \rho, \mu)$ and that $\mu(\pi) = i$; then:

• if $i = blt r_s, r_{s'}, t$, then:

$$s
ightarrow \left\{ egin{array}{cc} (t,
ho,\mu) & ext{if }
ho(s) <
ho(s') \ (\pi+4,
ho,\mu) & ext{otherwise} \end{array}
ight.$$

• if
$$i = \operatorname{Id} \mathbf{r}_{d}, o, \mathbf{r}_{x}$$
, then:
 $s \rightarrow \begin{cases} (\pi + 4, \rho[d \leftarrow \mu(\rho(x) + o)], \mu) & \text{if } \rho(x) + o \in \mathbb{A} \\ \Omega & \text{otherwise} \end{cases}$

• if $i = \operatorname{st} \mathbf{r}_d, o, \mathbf{r}_x$, then: $\mathbf{s} \rightarrow \begin{cases} (\pi + 4, \rho, \mu[\rho(x) + o \leftarrow \rho(d)]) & \text{if } \rho(x) + o \in \mathbb{A} \\ \Omega & \text{otherwise} \end{cases}$

A simple imperative language: syntax

We now look at a more classical **imperative language** (intuitively, a bare-bone subset of C):

- variables X: finite, predefined set of variables
- labels \mathbb{L} : before and after each statement
- values \mathbb{V} : $\mathbb{V}_{int} \cup \mathbb{V}_{float} \cup \dots$

Syntax

b ::= {i;...;i;}

block, program (\mathbb{P})

A simple imperative language: states

A **non-error state** should fully describe the configuration at one instant of the program execution, including memory and control

The memory state defines the current contents of the memory

 $m\in\mathbb{M}=\mathbb{X}\longrightarrow\mathbb{V}$

The control state defines where the program currently is

- analoguous to the program counter
- can be defined by adding labels $\mathbb{L} = \{l_0, l_1, \ldots\}$ between each pair of consecutive statements; then:

 $\mathbb{S} = \mathbb{L} \times \mathbb{M} \uplus \{ \Omega \}$

• or by the program remaining to be executed; then:

 $\mathbb{S} = \mathbb{P} \times \mathbb{M} \uplus \{\Omega\}$

A simple imperative language: semantics of expressions

• The semantics [[e]] of expression e should evaluate each expression into a value, given a memory state

• Evaluation errors may occur: division by zero... error value is also noted Ω

Thus: $\llbracket e \rrbracket : \mathbb{M} \longrightarrow \mathbb{V} \uplus \{\Omega\}$

Definition, by induction over the syntax:

$$\begin{bmatrix} v \end{bmatrix}(m) = v \\ \begin{bmatrix} x \end{bmatrix}(m) = m(x) \\ \begin{bmatrix} e_0 + e_1 \end{bmatrix}(m) = \begin{bmatrix} e_0 \end{bmatrix}(m) \pm \begin{bmatrix} e_1 \end{bmatrix}(m) \\ \begin{bmatrix} e_0 / e_1 \end{bmatrix}(m) = \begin{cases} \Omega & \text{if } \llbracket e_1 \rrbracket(m) = 0 \\ \\ \llbracket e_0 \rrbracket(m) / \llbracket e_1 \rrbracket(m) & \text{otherwise} \end{cases}$$

where $\underline{\oplus}$ is the machine implementation of operator \oplus , and is Ω -strict, i.e., $\forall v \in \mathbb{V}, v \underline{\oplus} \Omega = \Omega \underline{\oplus} v = \Omega.$

A simple imperative language: semantics of conditions

- The semantics [[c]] of condition c should return a *boolean value*
- It follows a similar definition to that of the semantics of expressions: $[\![c]\!]:\mathbb{M}\longrightarrow \mathbb{V}_{\mathrm{bool}} \uplus \{\Omega\}$

Definition, by induction over the syntax:

$$\begin{bmatrix} \text{TRUE} \end{bmatrix}(m) &= \text{TRUE} \\ \begin{bmatrix} \text{FALSE} \end{bmatrix}(m) &= \text{FALSE} \\ \end{bmatrix}(m) &= \text{FALSE} \\ \begin{bmatrix} e_0 < e_1 \end{bmatrix}(m) &= \begin{cases} \text{TRUE} & \text{if } \llbracket e_0 \rrbracket(m) < \llbracket e_1 \rrbracket(m) \\ \text{FALSE} & \text{if } \llbracket e_0 \rrbracket(m) \ge \llbracket e_1 \rrbracket(m) \\ \Omega & \text{if } \llbracket e_0 \rrbracket(m) = \Omega \text{ or } \llbracket e_1 \rrbracket(m) = \Omega \\ \end{bmatrix}(m) = \Omega \\ \begin{bmatrix} \text{TRUE} & \text{if } \llbracket e_0 \rrbracket(m) = \llbracket e_1 \rrbracket(m) \\ \text{FALSE} & \text{if } \llbracket e_0 \rrbracket(m) \neq \llbracket e_1 \rrbracket(m) \\ \Omega & \text{if } \llbracket e_0 \rrbracket(m) = \Omega \text{ or } \llbracket e_1 \rrbracket(m) \\ \end{bmatrix}(m) = \Omega \\ \end{bmatrix}(m) = \left\{ \begin{array}{l} \text{TRUE} & \text{if } \llbracket e_0 \rrbracket(m) = \Pi \\ \end{bmatrix}(m) = \Omega \\ [m] \\ [m] \\ \end{bmatrix}(m) = \Omega \\ [m] \\ [$$

A simple imperative language: transitions

Transitions describe **local program execution steps**, thus are defined by case analysis on the program statements

Case of assignment $l_0 : x = e; l_1$

• if
$$\llbracket e \rrbracket(m) \neq \Omega$$
, then $(\ell_0, m) \rightarrow (\ell_1, m[x \leftarrow \llbracket e \rrbracket(m)])$

• if
$$\llbracket e
rbracket(m) = \Omega$$
, then $(l_0, m) o \Omega$

Case of condition $l_0 : if(c){l_1 : b_t l_2} else{l_3 : b_f l_4} l_5$

• if
$$\llbracket c \rrbracket(m) = \texttt{TRUE}$$
, then $(l_0, m) \to (l_1, m)$

• if
$$\llbracket c \rrbracket(m) = FALSE$$
, then $(l_0, m) \rightarrow (l_3, m)$

• if
$$\llbracket c
rbracket(m) = \Omega$$
, then $(l_0, m) o \Omega$

- $(l_2, m) \rightarrow (l_5, m)$
- $(l_4, m) \rightarrow (l_5, m)$

A simple imperative language: transitions

Case of loop
$$l_0$$
: while(c){ l_1 : b_t l_2 } l_3
• if $[c](m) = \text{TRUE}$, then $\begin{cases} (l_0, m) \rightarrow (l_1, m) \\ (l_2, m) \rightarrow (l_1, m) \end{cases}$
• if $[c](m) = \text{FALSE}$, then $\begin{cases} (l_0, m) \rightarrow (l_3, m) \\ (l_2, m) \rightarrow (l_3, m) \end{cases}$
• if $[c](m) = \Omega$, then $\begin{cases} (l_0, m) \rightarrow \Omega \\ (l_2, m) \rightarrow \Omega \end{cases}$

Case of $\{l_0 : i_0; l_1 : ...; l_{n-1}i_{n-1}; l_n\}$

• the transition relation is defined by the individual instructions

Extending the language with non-determinism

The language we have considered so far is a bit limited:

- it is deterministic: at most one transition possible from any state
- it does not support the input of values

Changes if we model non deterministic inputs...

... with an input instruction:

- i ::= ... | x := input()
- $l_0 : x := input(); l_1 \text{ generates transitions}$

$$\forall v \in \mathbb{V}, (l_0, m) \rightarrow (l_1, m[x \leftarrow v])$$

• one instruction induces non determinism

... with a random function:

• expressions have a
non-deterministic semantics:

$$\begin{bmatrix} [e] \end{bmatrix} : \mathbb{M} \to \mathcal{P}(\mathbb{V} \uplus \{\Omega\})$$

$$\begin{bmatrix} rand() \end{bmatrix} (m) = \mathbb{V}$$

$$\begin{bmatrix} v \end{bmatrix} (m) = \{v\}$$

$$\begin{bmatrix} c \end{bmatrix} : \mathbb{M} \to \mathcal{P}(\mathbb{V}_{bool} \uplus \{\Omega\})$$

• all instructions induce non determinism

Semantics of real world programming languages

C language:

- several norms: ANSI C'99, ANSI C'11, K&R...
- not fully specified:
 - undefined behavior
 - implementation dependent behavior: architecture (ABI) or implementation (compiler...)
 - unspecified parts: leave room for implementation of compilers and optimizations
- formalizations in HOL (C'99), in Coq (CompCert C compiler)

OCaml language:

- more formal...
- ... but still with some unspecified parts, e.g., execution order

Outline

Transition systems and small step semantics

Traces semantics

- Definitions
- Finite traces semantics
- Fixpoint definition
- Compositionality
- Infinite traces semantics

B) Summary

Execution traces

- So far, we considered only states and atomic transitions
- We now consider program executions as a whole

Definition: traces

- A finite trace is a finite sequence of states s_0, \ldots, s_n , noted $\langle s_0, \ldots, s_n \rangle$
- An infinite trace is an infinite sequence of states $\langle s_0, \ldots
 angle$

Besides, we write:

- S* for the set of finite traces
- S^ω for the set of infinite traces
- $\mathbb{S}^{\propto} = \mathbb{S}^* \cup \mathbb{S}^{\omega}$ for the set of finite or infinite traces

Operations on traces: concatenation

Definition: concatenation

The concatenation operator · is defined by:

We also define:

- the empty trace ϵ , neutral element for \cdot
- the length operator |.|:

$$\begin{cases} |\epsilon| = 0 \\ |\langle s_0, \dots, s_n \rangle| = n+1 \\ |\langle s_0, \dots \rangle| = \omega \end{cases}$$

Definitions

Comparing traces: the prefix order relation

Definition: prefix order relation
Relation
$$\prec$$
 is defined by:
 $\langle s_0, \dots, s_n \rangle \prec \langle s'_0, \dots, s'_{n'} \rangle \iff \begin{cases} n \leq n' \\ \forall i \in \llbracket 0, n \rrbracket, s_i = s'_i \end{cases}$
 $\langle s_0, \dots \rangle \prec \langle s'_0, \dots \rangle \iff \forall i \in \mathbb{N}, s_i = s'_i$
 $\langle s_0, \dots, s_n \rangle \prec \langle s'_0, \dots \rangle \iff \forall i \in \llbracket 0, n \rrbracket, s_i = s'_i$

Proof: straightforward application of the definition of order relations

Outline

Transition systems and small step semantics

Traces semantics

- Definitions
- Finite traces semantics
- Fixpoint definition
- Compositionality
- Infinite traces semantics

B) Summary

Semantics of finite traces

We consider a transition system $\mathcal{S} = (\mathbb{S},
ightarrow)$

Definition

The finite traces semantics $\llbracket S \rrbracket^*$ is defined by:

$$\llbracket S \rrbracket^* = \{ \langle s_0, \dots, s_n \rangle \in \mathbb{S}^* \mid \forall i, s_i \to s_{i+1} \}$$

Example:

- contrived transition system $S = (\{a, b, c, d\}, \{(a, b), (b, a), (b, c)\})$
- finite traces semantics:

$$\begin{split} \llbracket \mathcal{S} \rrbracket^* &= \{ \begin{array}{cc} \epsilon, \\ \langle a, b, \dots, a, b, a \rangle, & \langle b, a, \dots, a, b, a \rangle, \\ \langle a, b, \dots, a, b, a, b \rangle, & \langle b, a, \dots, a, b, a, b \rangle, \\ \langle a, b, \dots, a, b, a, b, c \rangle, & \langle b, a, \dots, a, b, a, b, c \rangle \\ \langle c \rangle, & \langle d \rangle & \} \end{split}$$

Xavier Rival

Interesting subsets of the finite trace semantics

We consider a transition system $\mathcal{S} = (\mathbb{S}, \rightarrow, \mathbb{S}_\mathcal{I}, \mathbb{S}_\mathcal{F})$

• the initial traces, i.e., starting from an initial state:

$$\{\langle s_0, \dots, s_n \rangle \in [\![\mathcal{S}]\!]^* \mid s_0 \in \mathbb{S}_{\mathcal{I}}\}$$

• the traces reaching a blocking state:

$$\{\sigma \in \llbracket \mathcal{S} \rrbracket^* \mid \forall \sigma' \in \llbracket \mathcal{S} \rrbracket^*, \sigma \prec \sigma' \Longrightarrow \sigma = \sigma'\}$$

• the traces ending in a final state:

$$\{\langle s_0,\ldots,s_n\rangle\in [\![\mathcal{S}]\!]^*\mid s_n\in\mathbb{S}_{\mathcal{F}}\}$$

• the maximal traces are both initial and final

Example (same transition system, with $\mathbb{S}_{\mathcal{I}} = \{a\}$ and $\mathbb{S}_{\mathcal{F}} = \{c\}$):

• traces from an initial state ending in a final state are all of the form: $\langle a,b,\ldots,a,b,a,b,c\rangle$

Xavier Rival

Example: finite automaton

We consider the example of the previous lecture:

$$L = \{a, b\} \qquad Q = \{q_0, q_1, q_2\}$$

$$q_1 = q_0 \qquad q_f = q_2$$

$$q_0 \xrightarrow{a} q_1 \qquad q_1 \xrightarrow{b} q_2 \qquad q_2 \xrightarrow{a} q_1 \qquad \xrightarrow{q_0 \qquad a \qquad q_1 \qquad a \qquad q_2 \rightarrow q_2}$$

Then, we have the following traces:

$$\begin{aligned} \tau_0 &= \langle (q_0, ab), (q_1, b), (q_2, \epsilon) \rangle \\ \tau_1 &= \langle (q_0, abab), (q_1, bab), (q_2, ab), (q_1, b), (q_2, \epsilon) \rangle \\ \tau_2 &= \langle (q_0, ababab), (q_1, babab), (q_2, abab), (q_1, bab) \rangle \\ \tau_3 &= \langle (q_0, abaaa), (q_1, baaa), (q_2, aaa), (q_1, aa) \rangle \end{aligned}$$

Then:

- τ_0, τ_1 are initial traces, reaching a final state
- τ_2 is an initial trace, and is not maximal
- τ_3 reaches a blocking state, but not a final state

Xavier Rival

Operational Semantics

Example: λ -term

We consider λ -term $\lambda y \cdot ((\lambda x \cdot y)((\lambda x \cdot x x)(\lambda x \cdot x x)))$, and show two traces generated from it (at each step the reduced lambda is shown in red):

$$\tau_0 = \langle \lambda y \cdot ((\lambda x \cdot y)((\lambda x \cdot x x)(\lambda x \cdot x x))) \\ \lambda y \cdot y \rangle$$

$$\tau_{1} = \langle \lambda y \cdot ((\lambda x \cdot y)((\lambda x \cdot x x)(\lambda x \cdot x x))), \\ \lambda y \cdot ((\lambda x \cdot y)((\lambda x \cdot x x)(\lambda x \cdot x x))), \\ \lambda y \cdot ((\lambda x \cdot y)((\lambda x \cdot x x)(\lambda x \cdot x x))) \rangle \rangle$$

Then:

- τ_0 is a maximal trace; it reaches a blocking state (no more reduction can be done)
- τ₁ can be extended for arbitrarily many steps ;
 the second part of the course will study infinite traces

Example: imperative program

Similarly, we can write the traces of a simple imperative program:

- very precise description of what the program does...
- ... but quite cumbersome

Outline

Transition systems and small step semantics

Traces semantics

- Definitions
- Finite traces semantics
- Fixpoint definition
- Compositionality
- Infinite traces semantics

B) Summary

Towards a fixpoint definition

We consider again our contrived transition system

$$\mathcal{S} = (\{a, b, c, d\}, \{(a, b), (b, a), (b, c)\})$$

Traces by length:

i	traces of length <i>i</i>
0	ϵ
1	$\langle a angle, \langle b angle, \langle c angle, \langle d angle$
2	$\langle a,b angle,\langle b,a angle,\langle b,c angle$
3	$\langle a,b,a angle,\langleb,a,b angle,\langlea,b,c angle$
4	$\langle a, b, a, b \rangle, \langle b, a, b, a \rangle, \langle b, a, b, c \rangle$

Like the automaton in lecture 1, this suggests a least fixpoint definition: traces of length i + 1 can be derived from the traces of length i, by adding a transition

Xavier Rival

Operational Semantics

Trace semantics fixpoint form

We define a semantic function, that computes the traces of length i + 1 from the traces of length i (where $i \ge 1$), and adds the traces of length 1:

Finite traces semantics as a fixpoint Let $\mathcal{I} = \{\epsilon\} \cup \{\langle s \rangle \mid s \in \mathbb{S}\}$. Let F_* be the function defined by: $F_*: \begin{array}{cc} \mathcal{P}(\mathbb{S}^*) & \longrightarrow & \mathcal{P}(\mathbb{S}^*) \\ X & \longmapsto & \mathcal{I} \cup \{\langle s_0, \dots, s_n, s_{n+1} \rangle \mid \langle s_0, \dots, s_n \rangle \in X \land s_n \to s_{n+1}\} \end{array}$

Then, F_* is continuous and thus has a least-fixpoint and:

Ifp
$$F_* = \llbracket S \rrbracket^* = \bigcup_{n \in \mathbb{N}} F_*^n(\emptyset)$$

Fixpoint definition: proof (1), fixpoint existence

First, we prove that F_* is **continuous**.

Let $\mathcal{X} \subseteq \mathcal{P}(\mathbb{S}^*)$ such that $\mathcal{X} \neq \emptyset$ and $A = \bigcup_{U \in \mathcal{X}} U$. Then:

$$\begin{aligned} F_*(\bigcup_{X \in \mathcal{X}} X) &= \mathcal{I} \cup \{ \langle s_0, \dots, s_n, s_{n+1} \rangle \mid (\langle s_0, \dots, s_n \rangle \in \bigcup_{U \in \mathcal{X}} U) \land s_n \to s_{n+1} \} \\ &= \mathcal{I} \cup \{ \langle s_0, \dots, s_n, s_{n+1} \rangle \mid \exists U \in \mathcal{X}, \ \langle s_0, \dots, s_n \rangle \in U \land s_n \to s_{n+1} \} \\ &= \mathcal{I} \cup (\bigcup_{U \in \mathcal{X}} \{ \langle s_0, \dots, s_n, s_{n+1} \rangle \mid \langle s_0, \dots, s_n \rangle \in U \land s_n \to s_{n+1} \}) \\ &= \bigcup_{U \in \mathcal{X}} (\mathcal{I} \cup \{ \langle s_0, \dots, s_n, s_{n+1} \rangle \mid \langle s_0, \dots, s_n \rangle \in U \land s_n \to s_{n+1} \}) \\ &= \bigcup_{U \in \mathcal{X}} F_*(U) \end{aligned}$$

In particular, this is true for any increasing chain \mathcal{X} (here, we considered any non empty family), hence F_* is continuous.

As $(\mathcal{P}(\mathbb{S}^*), \subseteq)$ is a CPO, the continuity of F_* entails the existence of a least-fixpoint (Kleene theorem); moreover, it implies that:

Ifp
$$F_* = \bigcup_{n \in \mathbb{N}} F_*^n(\emptyset)$$

Fixpoint definition: proof (2), fixpoint equality

We now show that $[S]^*$ is equal to Ifp F_* , by showing the property below, by induction over *n*:

$$\forall n \geq 1, \ \forall k < n, \ \langle s_0, \ldots, s_k \rangle \in F_*^n(\emptyset) \iff \langle s_0, \ldots, s_k \rangle \in \llbracket \mathcal{S} \rrbracket^*$$

- $\bullet\,$ at rank 1, only trace ϵ and the traces of length 1 need to be considered, and this case is trivial
- at rank n + 1, we need to consider both traces of length 1 (the case of which is trivial) and traces of length n + 1 for some integer n ≥ 1:

$$\begin{array}{l} \langle s_0, \dots, s_k, s_{k+1} \rangle \in \llbracket \mathcal{S} \rrbracket^* \\ \Leftrightarrow \quad \langle s_0, \dots, s_k \rangle \in \llbracket \mathcal{S} \rrbracket^* \wedge s_k \to s_{k+1} \\ \Leftrightarrow \quad \langle s_0, \dots, s_k \rangle \in \mathcal{F}_*^n(\emptyset) \wedge s_k \to s_{k+1} \quad (k < n \text{ since } k+1 < n+1) \\ \Leftrightarrow \quad \langle s_0, \dots, s_k, s_{k+1} \rangle \in \mathcal{F}_*^{n+1}(\emptyset) \end{array}$$

Trace semantics fixpoint form: example

Example, with the same simple transition system $\mathcal{S} = (\mathbb{S}, \rightarrow)$:

ullet ightarrow is defined by a
ightarrow $b,\ b
ightarrow$ a and b
ightarrow c

Then, the first iterates are:

The traces of $[\![S]\!]^*$ of length n+1 appear in $F_*^n(\emptyset)$

Xavier Rival

Outline

Transition systems and small step semantics

Traces semantics

- Definitions
- Finite traces semantics
- Fixpoint definition
- Compositionality
- Infinite traces semantics

B) Summary

Notion of compositional semantics

The traces semantics definition we have seen is global:

- the whole system defines a transition relation
- we iterate this relation until we get a fixpoint

Though, a **modular** definition would be nicer, to allow reasoning on program fragments, or derive properties of a program from properties of its pieces...

Can we derive a more modular expression of the semantics ?

Notion of compositional semantics

Observation: programs often have an inductive structure

- λ -terms are defined by induction over the syntax
- imperative programs are defined by induction over the syntax
- there are exceptions: our MIPS language does not naturally look that way

Definition: compositional semantics

A semantics $[\![.]\!]$ is said to be **compositional** when the semantics of a program can be defined as a function of the semantics of its parts, i.e., When program π writes down as $C[\pi_0, \ldots, \pi_k]$ where π_0, \ldots, π_k are its components, there exists a function F_C such that $[\![\pi]\!] = F_C([\![\pi_0]\!], \ldots, [\![\pi_k]\!])$, where F_C depends only on syntactic construction F_C .

Case of a simplified imperative language

Case of a sequence of two instructions $b \equiv \mathit{l}_0: i_0; \mathit{l}_1: i_1; \mathit{l}_2:$

$$\llbracket \mathtt{b} \rrbracket^* = \llbracket \mathtt{i}_0 \rrbracket^* \cup \llbracket \mathtt{i}_1 \rrbracket^* \ \cup \ \{ \langle s_0, \dots, s_m \rangle \mid \exists n \in \llbracket 0, m \rrbracket, \ \langle s_0, \dots, s_n \rangle \in \llbracket \mathtt{i}_0 \rrbracket^* \land \langle s_n, \dots, s_m \rangle \in \llbracket \mathtt{i}_1 \rrbracket^* \}$$

This amounts to concatenating traces of $[[i_0]]^*$ and $[[i_1]]^*$ that share a state in common (necessarily at point l_1).

Cases of a condition, a loop: similar

- by concatenation of traces around junction points
- by doing a least-fixpoint computation over loops

We can provide a compositional semantics for our simplified imperative language

Xavier Rival

Operational Semantics

Case of λ -calculus

Case of a λ -term $t = (\lambda x \cdot u) v$:

- executions may start with a reduction in *u*
- executions may start with a reduction in v
- executions may start with the reduction of the head redex
- an execution may mix reductions steps in u and v in an arbitrary order

No nice compositional trace semantics of λ -calculus...

Outline

Transition systems and small step semantics

Traces semantics

- Definitions
- Finite traces semantics
- Fixpoint definition
- Compositionality
- Infinite traces semantics

B) Summary

Non termination

Can the finite traces semantics express non termination ?

Consider the case of our contrived system:

$$\mathbb{S} = \{a, b, c, d\} \qquad (\rightarrow) = \{(a, b), (b, a), (b, c)\}$$

System behaviors:

- this system clearly has non-terminating behaviors: it can loop from *a* to *b* and back forever
- the finite traces semantics does show the existence of this cycle as there exists an infinite chain of finite traces for the prefix order ≺:

 $\langle a, b \rangle, \langle a, b, a \rangle, \langle a, b, a, b \rangle, \langle a, b, a, b, a \rangle, \ldots \in \llbracket S \rrbracket^*$

though, the existence of this chain is not very obvious

Thus, we now define a semantics made of infinite traces

Semantics of infinite traces

We consider a transition system $\mathcal{S} = (\mathbb{S},
ightarrow)$

Definition

The infinite traces semantics $[\![\mathcal{S}]\!]^{\omega}$ is defined by:

$$\llbracket S \rrbracket^{\omega} = \{ \langle s_0, \ldots \rangle \in \mathbb{S}^{\omega} \mid \forall i, \, s_i \to s_{i+1} \}$$

Infinite traces starting from an initial state (considering $\mathcal{S} = (\mathbb{S}, \rightarrow, \mathbb{S}_{\mathcal{I}}, \mathbb{S}_{\mathcal{F}})$):

$$\{\langle s_0,\ldots\rangle\in [\![\mathcal{S}]\!]^\omega\mid s_0\in\mathbb{S}_\mathcal{I}\}$$

Example:

contrived transition system defined by

$$\mathbb{S} = \{a, b, c, d\} \qquad (\rightarrow) = \{(a, b), (b, a), (b, c)\}$$

• the infinite traces semantics contains exactly two traces

$$\llbracket S \rrbracket^{\omega} = \{ \langle a, b, \dots, a, b, a, b, \dots \rangle, \langle b, a, \dots, b, a, b, a, \dots \rangle \}$$

Xavier Rival

Operational Semantics

Fixpoint form

Can we also provide a fixpoint form for $[\![S]\!]^{\omega}$?

Intuitively, $\langle s_0, s_1, \ldots \rangle \in \llbracket S \rrbracket^{\omega}$ if and only if $\forall n, s_n \to s_{n+1}$, i.e.,

 $\forall n \in \mathbb{N}, \ \forall k \leq n, \ s_k \rightarrow s_{k+1}$

Let F_{ω} be defined by:

$$\begin{array}{rcl} F_{\omega}: & \mathcal{P}(\mathbb{S}^{\omega}) & \longrightarrow & \mathcal{P}(\mathbb{S}^{\omega}) \\ & X & \longmapsto & \{\langle s_0, s_1, \dots, s_n, \dots \rangle \mid \langle s_1, \dots, s_n, \dots \rangle \in X \land s_0 \to s_1 \} \end{array}$$

Then, we can show by induction that:

$$\sigma \in \llbracket \mathcal{S} \rrbracket^{\omega} \iff \forall n \in \mathbb{N}, \ \sigma \in F_{\omega}^{n}(\mathbb{S}^{\omega}) \\ \iff \sigma \in \bigcap_{n \in \mathbb{N}} F_{\omega}^{n}(\mathbb{S}^{\omega})$$

Fixpoint form of the semantics of infinite traces

Infinite traces semantics as a fixpoint

Let F_{ω} be the function defined by:

$$\begin{array}{cccc} F_{\omega}: & \mathcal{P}(\mathbb{S}^{\omega}) & \longrightarrow & \mathcal{P}(\mathbb{S}^{\omega}) \\ & X & \longmapsto & \{\langle s_0, s_1, \dots, s_n, \dots \rangle \mid \langle s_1, \dots, s_n, \dots \rangle \in X \land s_0 \to s_1 \} \end{array}$$

Then, F_{ω} is \cap -continuous and thus has a greatest-fixpoint; moreover:

$$\mathsf{gfp}\, F_\omega = \llbracket \mathcal{S} \rrbracket^\omega = \bigcap_{n \in \mathbb{N}} F^n_\omega(\mathbb{S}^\omega)$$

Proof sketch:

- the \cap -continuity proof is similar as for the \cup -continuity of F_*
- by the dual version of Kleene's theorem, **gfp** F_{ω} exists and is equal to $\bigcap_{n \in \mathbb{N}} F_{\omega}^{n}(\mathbb{S}^{\omega})$, i.e. to $[\![S]\!]^{\omega}$ (similar induction proof)

Fixpoint form of the infinite traces semantics: iterates

Example, with the same simple transition system:

•
$$\mathbb{S} = \{a, b, c, d\}$$

•
$$ightarrow$$
 is defined by $a
ightarrow$ b, $b
ightarrow$ a and $b
ightarrow$ c

Then, the first iterates are:

$$\begin{array}{lll} F^{0}_{\omega}(\mathbb{S}^{\omega}) &=& \mathbb{S}^{\omega} \\ F^{1}_{\omega}(\mathbb{S}^{\omega}) &=& \langle a, b \rangle \cdot \mathbb{S}^{\omega} \cup \langle b, a \rangle \cdot \mathbb{S}^{\omega} \cup \langle b, c \rangle \cdot \mathbb{S}^{\omega} \\ F^{2}_{\omega}(\mathbb{S}^{\omega}) &=& \langle b, a, b \rangle \cdot \mathbb{S}^{\omega} \cup \langle a, b, a \rangle \cdot \mathbb{S}^{\omega} \cup \langle a, b, c \rangle \cdot \mathbb{S}^{\omega} \\ F^{3}_{\omega}(\mathbb{S}^{\omega}) &=& \langle a, b, a, b \rangle \cdot \mathbb{S}^{\omega} \cup \langle b, a, b, a \rangle \cdot \mathbb{S}^{\omega} \cup \langle b, a, b, c \rangle \cdot \mathbb{S}^{\omega} \\ F^{4}_{\omega}(\mathbb{S}^{\omega}) &=& \dots \end{array}$$

Intuition

- at iterate n, prefixes of length n + 1 match the traces in the infinite semantics
- only $\langle a, b, \dots, a, b, a, b, \dots \rangle$ and $\langle b, a, \dots, b, a, b, a, \dots \rangle$ belong to all iterates

Outline

2) Traces semantics

Summary

We have discussed today:

- small-step / structural operational semantics: individual program steps
- big-step / natural semantics: program executions as sequences of transitions
- their fixpoint definitions and properties will play a great role to design verification techniques

Next lectures:

- another family of semantics, more compact and compositional
- semantic program and proof methods