Operational Semantics
Semantics and applications to verification

Xavier Rival

École Normale Supérieure

February 15, 2019
Program of this first lecture

Operational semantics

Mathematical description of the executions of a program

1. A model of programs: transition systems
 - definition, a small step semantics
 - a few common examples

2. Trace semantics: a kind of big step semantics
 - finite and infinite executions
 - fixpoint-based definitions
 - notion of compositional semantics
Outline

1 Transition systems and small step semantics
 - Definition and properties
 - Examples

2 Traces semantics

3 Summary
Definition

We will characterize a program by:

- **states:**
 photography of the program status at an instant of the execution
- **execution steps:** how do we move from one state to the next one

Definition: transition systems (TS)

A **transition system** is a tuple \((S, \rightarrow)\) where:

- \(S\) is the **set of states** of the system
- \(\rightarrow \subseteq S \times S\) is the **transition relation** of the system

Note:

- the set of states **may be infinite**
Transition systems: properties of the transition relation

A deterministic system is such that a state fully determines the next state

$$\forall s_0, s_1, s'_1 \in S, (s_0 \rightarrow s_1 \land s_0 \rightarrow s'_1) \implies s_1 = s'_1$$

Otherwise, a transition system is non deterministic, i.e.:

$$\exists s_0, s_1, s'_1 \in S, s_0 \rightarrow s_1 \land s_0 \rightarrow s'_1 \land s_1 \neq s'_1$$

Notes:

- the transition relation \rightarrow defines atomic execution steps; it is often called small-step semantics or structured operational semantics
- steps are discrete (not continuous)
 to describe both discrete and continuous behaviors, we would need to look at hybrid systems (beyond the scope of this lecture)
Transition systems: initial and final states

Initial / final states:
we often consider transition systems with a set of initial and final states:

- a set of **initial states** $S_I \subseteq S$ denotes states where the execution should start
- a set of **final states** $S_F \subseteq S$ denotes states where the execution should reach the end of the program

When needed, we add these to the definition of the transition systems $(S, \rightarrow, S_I, S_F)$.

Blocking state (not the same as final state):

- a state $s_0 \in S$ is **blocking** when it is the origin of no transition:
 $\forall s_1 \in S, \neg (s_0 \rightarrow s_1)$
- example: we often introduce an **error state** (usually noted Ω to denote the erroneous, blocking configuration)
Outline

1 Transition systems and small step semantics
 • Definition and properties
 • Examples

2 Traces semantics

3 Summary
Finite automata as transition systems

We can formalize the **word recognition** by a finite automaton using a transition system:

- We consider **automaton** $A = (Q, q_i, q_f, \rightarrow)$
- A “state” is defined by:
 - the **remaining of the word to recognize**
 - the **automaton state** that has been reached so far
 thus, $S = Q \times L^*$
- The **transition relation** \rightarrow of the transition system is defined by:
 $$(q_0, aw) \rightarrow (q_1, w) \iff q_0 \xrightarrow{a} q_1$$
- The **initial** and **final states** are defined by:
 $$S_I = \{(q_i, w) \mid w \in L^*\} \quad \quad \quad S_F = \{(q_f, \epsilon)\}$$
Pure λ-calculus

A bare bones model of functional programming:

λ-terms

The set of λ-terms is defined by:

\[
\begin{align*}
t, u, \ldots &::= x \quad \text{variable} \\
&\quad | \quad \lambda x \cdot t \quad \text{abstraction} \\
&\quad | \quad t u \quad \text{application}
\end{align*}
\]

β-reduction

\[
\begin{align*}
(\lambda x \cdot t) u &\rightarrow_\beta t[x \leftarrow u] \\
\text{if } u &\rightarrow_\beta v \text{ then } \lambda x \cdot u \rightarrow_\beta \lambda x \cdot v \\
\text{if } u &\rightarrow_\beta v \text{ then } u t \rightarrow_\beta v t \\
\text{if } u &\rightarrow_\beta v \text{ then } t u \rightarrow_\beta t v
\end{align*}
\]

The λ-calculus defines a transition system:

- S is the set of λ-terms and \rightarrow_β the transition relation
- \rightarrow_β is non-deterministic; example?
 though, ML fixes an execution order
- given a lambda term t_0, we may consider $(S, \rightarrow_\beta, S_I)$ where $S_I = \{t_0\}$
- blocking states are terms with no redex $(\lambda x \cdot u) v$
A MIPS like assembly language: syntax

We now consider a (very simplified) assembly language

- machine integers: sequences of 32-bits (set: \mathbb{B}^{32})
- instructions are encoded over 32-bits (set: \mathbb{I}_{MIPS})
 and stored into the same space as data (i.e., $\mathbb{I}_{\text{MIPS}} \subseteq \mathbb{B}^{32}$)
- we assume a fixed set of addresses \mathbb{A}

Memory configurations

- **Program counter** pc
 - current instruction
- **General purpose registers**
 - $r_0 \ldots r_{31}$
- **Main memory** (RAM)
 - $\text{mem} : \mathbb{A} \to \mathbb{B}^{32}$
 - where $\mathbb{A} \subseteq \mathbb{B}^{32}$

Instructions

\[
i ::= (\in \mathbb{I}_{\text{MIPS}}) \\
| \text{add } r_d, r_s, r_s' \quad \text{addition} \\
| \text{addi } r_d, r_s, v \quad \text{add. } v \in \mathbb{B}^{32} \\
| \text{sub } r_d, r_s, r_s' \quad \text{subtraction} \\
| b t \quad \text{branch} \\
| \text{blt } r_s, r_s', t \quad \text{cond. branch} \\
| \text{ld } r_d, o, r_x \quad \text{relative load} \\
| \text{st } r_d, o, r_x \quad \text{relative store} \\
\]
A MIPS like assembly language: states

Definition: state

A state is a tuple (π, ρ, μ) which comprises:

- A program counter value $\pi \in \mathbb{B}^{32}$
- A function mapping each general purpose register to its value $\rho : \{0, \ldots, 31\} \rightarrow \mathbb{B}^{32}$
- A function mapping each memory cell to its value $\mu : A \rightarrow \mathbb{B}^{32}$

What would a dangerous state be?

- writing over an instruction
- reading or writing outside the program’s memory
- we cannot fully formalize these yet...
 as we need to formalize the behavior of each instruction first
A MIPS like assembly language: transition relation

We assume a state $s = (\pi, \rho, \mu)$ and that $\mu(\pi) = i$; then:

- **if** $i = \text{add } r_d, r_s, r_s'$, then:
 $$s \rightarrow (\pi + 4, \rho[d \leftarrow \rho(s) + \rho(s')], \mu)$$

- **if** $i = \text{addi } r_d, r_s, v$, then:
 $$s \rightarrow (\pi + 4, \rho[d \leftarrow \rho(s) + v], \mu)$$

- **if** $i = \text{sub } r_d, r_s, r_s'$, then:
 $$s \rightarrow (\pi + 4, \rho[d \leftarrow \rho(s) - \rho(s')], \mu)$$

- **if** $i = \text{b } t$, then:
 $$s \rightarrow (t, \rho, \mu)$$
A MIPS like assembly language: transition relation

We assume a state $s = (\pi, \rho, \mu)$ and that $\mu(\pi) = i$; then:

- **if** $i = \text{blt } r_s, r_s', t$, **then**:

 $$s \rightarrow \begin{cases} (t, \rho, \mu) & \text{if } \rho(s) < \rho(s') \\ (\pi + 4, \rho, \mu) & \text{otherwise} \end{cases}$$

- **if** $i = \text{ld } r_d, o, r_x$, **then**:

 $$s \rightarrow \begin{cases} (\pi + 4, \rho[d \leftarrow \mu(\rho(x) + o)], \mu) & \text{if } \rho(x) + o \in A \\ \Omega & \text{otherwise} \end{cases}$$

- **if** $i = \text{st } r_d, o, r_x$, **then**:

 $$s \rightarrow \begin{cases} (\pi + 4, \rho, \mu[d \leftarrow \rho(x) + o]) & \text{if } \rho(x) + o \in A \\ \Omega & \text{otherwise} \end{cases}$$
A simple imperative language: syntax

We now look at a more classical imperative language (intuitively, a bare-bone subset of C):

- **variables** X: finite, predefined set of variables
- **labels** L: before and after each statement
- **values** V: $V_{\text{int}} \cup V_{\text{float}} \cup \ldots$

Syntax

<table>
<thead>
<tr>
<th>e</th>
<th>::=</th>
<th>v ($v \in V$)</th>
<th>x ($x \in X$)</th>
<th>$e + e$</th>
<th>$e \ast e$</th>
<th>\ldots</th>
<th>expressions</th>
</tr>
</thead>
<tbody>
<tr>
<td>c</td>
<td>::=</td>
<td>TRUE</td>
<td>FALSE</td>
<td>$e < e$</td>
<td>$e = e$</td>
<td>conditions</td>
<td></td>
</tr>
<tr>
<td>i</td>
<td>::=</td>
<td>$x := e;$</td>
<td>if(c) b else b</td>
<td>while(c) b</td>
<td>assignment</td>
<td></td>
<td></td>
</tr>
<tr>
<td>b</td>
<td>::=</td>
<td>${i; \ldots ; i;}$</td>
<td>block, program(\mathbb{P})</td>
<td>loop</td>
<td>condition</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
A simple imperative language: states

A **non-error state** should fully describe the configuration at one instant of the program execution, including memory and control.

The **memory state** defines the current contents of the memory:

\[m \in M = X \rightarrow V \]

The **control state** defines *where* the program currently is:

- analogous to the **program counter**
- can be defined by adding **labels** \(\mathbb{L} = \{ l_0, l_1, \ldots \} \) between each pair of consecutive statements; then:

\[S = \mathbb{L} \times M \uplus \{ \Omega \} \]

- or by the **program remaining to be executed**; then:

\[S = P \times M \uplus \{ \Omega \} \]
A simple imperative language: semantics of expressions

- The **semantics** $[e]$ of expression e should evaluate each expression into a value, given a memory state.
- **Evaluation errors** may occur: division by zero...
 - error value is also noted Ω.

Thus: $[e] : M \rightarrow V \cup \{\Omega\}$

Definition, by induction over the syntax:

$$
\begin{align*}
[e](m) &= e \\
[x](m) &= m(x) \\
[e_0 + e_1](m) &= [e_0](m) \oplus [e_1](m) \\
[e_0 / e_1](m) &= \begin{cases}
\Omega & \text{if } [e_1](m) = 0 \\
[e_0](m) \oslash [e_1](m) & \text{otherwise}
\end{cases}
\end{align*}
$$

where \oplus is the machine implementation of operator \oplus, and is Ω-strict, i.e., $\forall v \in V, v \oplus \Omega = \Omega \oplus v = \Omega$.
The semantics $[c]$ of condition c should return a boolean value.

It follows a similar definition to that of the semantics of expressions:

$[c] : M \rightarrow \mathbb{V}_{\text{bool}} \cup \{\Omega\}$

Definition, by induction over the syntax:

- $[\text{TRUE}](m) = \text{TRUE}$
- $[\text{FALSE}](m) = \text{FALSE}$
- $[e_0 < e_1](m) = \begin{cases} \text{TRUE} & \text{if } [e_0](m) < [e_1](m) \\ \text{FALSE} & \text{if } [e_0](m) \geq [e_1](m) \\ \Omega & \text{if } [e_0](m) = \Omega \text{ or } [e_1](m) = \Omega \end{cases}$
- $[e_0 = e_1](m) = \begin{cases} \text{TRUE} & \text{if } [e_0](m) = [e_1](m) \\ \text{FALSE} & \text{if } [e_0](m) \neq [e_1](m) \\ \Omega & \text{if } [e_0](m) = \Omega \text{ or } [e_1](m) = \Omega \end{cases}$
Transition systems and small step semantics

Examples

A simple imperative language: transitions

Transitions describe local program execution steps, thus are defined by case analysis on the program statements

Case of assignment \(\ell_0 : x = e; \ell_1 \)
- if \(\llbracket e \rrbracket(m) \neq \Omega \), then \((\ell_0, m) \rightarrow (\ell_1, m[x \leftarrow \llbracket e \rrbracket(m)])\)
- if \(\llbracket e \rrbracket(m) = \Omega \), then \((\ell_0, m) \rightarrow \Omega\)

Case of condition \(\ell_0 : \text{if}(c)\{ \ell_1 : b_t \ell_2 \} \text{else}\{ \ell_3 : b_f \ell_4 \} \ell_5 \)
- if \(\llbracket c \rrbracket(m) = \text{TRUE} \), then \((\ell_0, m) \rightarrow (\ell_1, m)\)
- if \(\llbracket c \rrbracket(m) = \text{FALSE} \), then \((\ell_0, m) \rightarrow (\ell_3, m)\)
- if \(\llbracket c \rrbracket(m) = \Omega \), then \((\ell_0, m) \rightarrow \Omega\)
- \((\ell_2, m) \rightarrow (\ell_5, m)\)
- \((\ell_4, m) \rightarrow (\ell_5, m)\)
A simple imperative language: transitions

Case of loop $l_0 : \text{while}(c)\{l_1 : b_t \ l_2\} \ l_3$

- if $\llbracket c \rrbracket(m) = \text{TRUE}$, then
 \[
 \begin{cases}
 (l_0, m) \rightarrow (l_1, m) \\
 (l_2, m) \rightarrow (l_1, m)
 \end{cases}
 \]

- if $\llbracket c \rrbracket(m) = \text{FALSE}$, then
 \[
 \begin{cases}
 (l_0, m) \rightarrow (l_3, m) \\
 (l_2, m) \rightarrow (l_3, m)
 \end{cases}
 \]

- if $\llbracket c \rrbracket(m) = \Omega$, then
 \[
 \begin{cases}
 (l_0, m) \rightarrow \Omega \\
 (l_2, m) \rightarrow \Omega
 \end{cases}
 \]

Case of $\{l_0 : i_0; l_1 : \ldots; l_{n-1}i_{n-1}; l_n\}$

- the transition relation is defined by the individual instructions
Extending the language with non-determinism

The language we have considered so far is a bit **limited**:
- it is **deterministic**: at most one transition possible from any state
- it does not support the **input of values**

Changes if we model non deterministic inputs...

* ... with an input instruction:*
 - $i ::= \ldots | x := \text{input}()$
 - $\ell_0 : x := \text{input}(); \ell_1$ generates transitions
 \[
 \forall v \in V, \; (\ell_0, m) \rightarrow (\ell_1, m[x \leftarrow v])
 \]
 - one instruction induces non determinism

* ... with a random function:*
 - $e ::= \ldots | \text{rand}()$
 - **expressions** have a **non-deterministic** semantics:
 \[
 [e] : M \rightarrow \mathcal{P}(V \cup \{\Omega\})
 \]
 \[
 [\text{rand}] (m) = V
 \]
 \[
 [v] (m) = \{v\}
 \]
 \[
 [c] : M \rightarrow \mathcal{P}(V_{\text{bool}} \cup \{\Omega\})
 \]
 - all instructions induce non determinism
Semantics of real world programming languages

C language:
- several **norms**: ANSI C’99, ANSI C’11, K&R...
- not fully specified:
 - undefined behavior
 - implementation dependent behavior: architecture (ABI) or implementation (compiler...)
 - unspecified parts: leave room for implementation of compilers and optimizations
- **formalizations** in HOL (C’99), in Coq (CompCert C compiler)

OCaml language:
- more formal...
- ... but still with some unspecified parts, e.g., execution order
Outline

1 Transition systems and small step semantics

2 Traces semantics
 - Definitions
 - Finite traces semantics
 - Fixpoint definition
 - Compositionality
 - Infinite traces semantics

3 Summary
Execution traces

- So far, we considered only states and atomic transitions.
- We now consider program executions as a whole.

Definition: traces

- A **finite trace** is a finite sequence of states \(s_0, \ldots, s_n \), noted \(\langle s_0, \ldots, s_n \rangle \).
- An **infinite trace** is an infinite sequence of states \(\langle s_0, \ldots \rangle \).

Besides, we write:

- \(S^* \) for the set of finite traces.
- \(S^\omega \) for the set of infinite traces.
- \(S^\alpha = S^* \cup S^\omega \) for the set of finite or infinite traces.
Operations on traces: concatenation

Definition: concatenation

The **concatenation operator** \(\cdot \) is defined by:

\[
\langle s_0, \ldots, s_n \rangle \cdot \langle s'_0, \ldots, s'_{n'} \rangle = \langle s_0, \ldots, s_n, s'_0, \ldots, s'_{n'} \rangle
\]
\[
\langle s_0, \ldots, s_n \rangle \cdot \langle s'_0, \ldots \rangle = \langle s_0, \ldots, s_n, s'_0, \ldots \rangle
\]
\[
\langle s_0, \ldots, s_n, \ldots \rangle \cdot \sigma' = \langle s_0, \ldots, s_n, \ldots \rangle
\]

We also define:

- the **empty trace** \(\epsilon \), neutral element for \(\cdot \).
- the **length operator** \(|.|\):

\[
\begin{cases}
|\epsilon| &= 0 \\
|\langle s_0, \ldots, s_n \rangle| &= n + 1 \\
|\langle s_0, \ldots \rangle| &= \omega
\end{cases}
\]
Comparing traces: the prefix order relation

Definition: prefix order relation

Relation \prec is defined by:

$$\langle s_0, \ldots, s_n \rangle \prec \langle s'_0, \ldots, s'_n \rangle \iff \begin{cases} n \leq n' \\ \forall i \in [0,n], \ s_i = s'_i \end{cases}$$

$$\langle s_0, \ldots \rangle \prec \langle s'_0, \ldots \rangle \iff \forall i \in \mathbb{N}, \ s_i = s'_i$$

$$\langle s_0, \ldots, s_n \rangle \prec \langle s'_0, \ldots \rangle \iff \forall i \in [0,n], \ s_i = s'_i$$

Proof: straightforward application of the definition of order relations
Outline

1. Transition systems and small step semantics

2. Traces semantics
 - Definitions
 - Finite traces semantics
 - Fixpoint definition
 - Compositionality
 - Infinite traces semantics

3. Summary
Semantics of finite traces

We consider a transition system $S = (S, \rightarrow)$

Definition

The finite traces semantics $\mathcal{J}[S]^{\ast}$ is defined by:

$$\mathcal{J}[S]^{\ast} = \{ \langle s_0, \ldots, s_n \rangle \in S^{\ast} \mid \forall i, s_i \rightarrow s_{i+1} \}$$

Example:

- contrived transition system $S = (\{a, b, c, d\}, \{(a, b), (b, a), (b, c)\})$
- finite traces semantics:

$$\mathcal{J}[S]^{\ast} = \{ \epsilon, \langle a, b, \ldots, a, b, a \rangle, \langle b, a, \ldots, a, b, a \rangle, \langle a, b, \ldots, a, b, a, b \rangle, \langle b, a, \ldots, a, b, a, b \rangle, \langle a, b, \ldots, a, b, a, b, c \rangle, \langle b, a, \ldots, a, b, a, b, c \rangle, \langle c \rangle, \langle d \rangle \}$$
Interesting subsets of the finite trace semantics

We consider a transition system $S = (\mathcal{S}, \rightarrow, \mathcal{S}_I, \mathcal{S}_F)$

- the **initial traces**, i.e., starting from an initial state:
 \[
 \{\langle s_0, \ldots, s_n \rangle \in [\mathcal{S}]^* \mid s_0 \in \mathcal{S}_I\}
 \]

- the **traces reaching a blocking state**:
 \[
 \{\sigma \in [\mathcal{S}]^* \mid \forall \sigma' \in [\mathcal{S}]^*, \sigma \prec \sigma' \implies \sigma = \sigma'\}
 \]

- the **traces ending in a final state**:
 \[
 \{\langle s_0, \ldots, s_n \rangle \in [\mathcal{S}]^* \mid s_n \in \mathcal{S}_F\}
 \]

- the **maximal traces** are both initial and final

Example (same transition system, with $\mathcal{S}_I = \{a\}$ and $\mathcal{S}_F = \{c\}$):
- traces from an initial state ending in a final state are all of the form:
 \[
 \langle a, b, \ldots, a, b, a, b, c \rangle
 \]
Example: finite automaton

We consider the example of the previous lecture:

\[
L = \{a, b\} \quad Q = \{q_0, q_1, q_2\}
\]

\[
q_i = q_0 \quad q_f = q_2
\]

\[
q_0 \xrightarrow{a} q_1 \quad q_1 \xrightarrow{b} q_2 \quad q_2 \xrightarrow{a} q_1
\]

Then, we have the following traces:

\[
\tau_0 = \langle (q_0, ab), (q_1, b), (q_2, \epsilon) \rangle
\]

\[
\tau_1 = \langle (q_0, abab), (q_1, bab), (q_2, ab), (q_1, b), (q_2, \epsilon) \rangle
\]

\[
\tau_2 = \langle (q_0, ababab), (q_1, babab), (q_2, abab), (q_1, bab) \rangle
\]

\[
\tau_3 = \langle (q_0, abaaa), (q_1, baaa), (q_2, aaa), (q_1, aa) \rangle
\]

Then:

- \(\tau_0, \tau_1\) are initial traces, reaching a final state
- \(\tau_2\) is an initial trace, and is not maximal
- \(\tau_3\) reaches a blocking state, but not a final state
Example: \(\lambda \)-term

We consider \(\lambda \)-term \(\lambda y \cdot ((\lambda x \cdot y)((\lambda x \cdot x x)(\lambda x \cdot x x))) \), and show two traces generated from it (at each step the reduced lambda is shown in red):

\[
\tau_0 = \langle \quad \lambda y \cdot ((\lambda x \cdot y)((\lambda x \cdot x x)(\lambda x \cdot x x))) \\
 \lambda y \cdot y \quad \rangle
\]

\[
\tau_1 = \langle \quad \lambda y \cdot ((\lambda x \cdot y)((\lambda x \cdot x x)(\lambda x \cdot x x))), \\
 \lambda y \cdot ((\lambda x \cdot y)((\lambda x \cdot x x)(\lambda x \cdot x x))), \\
 \lambda y \cdot ((\lambda x \cdot y)((\lambda x \cdot x x)(\lambda x \cdot x x))) \quad \rangle
\]

Then:

- \(\tau_0 \) is a maximal trace; it reaches a blocking state (no more reduction can be done)
- \(\tau_1 \) can be extended for arbitrarily many steps; the second part of the course will study infinite traces
Example: imperative program

Similarly, we can write the traces of a simple imperative program:

\[
\begin{align*}
\ell_0 & : \quad x := 1; \\
\ell_1 & : \quad y := 0; \\
\ell_2 & : \quad \textbf{while}(x < 4)\{ \\
\ell_3 & : \quad y := y + x; \\
\ell_4 & : \quad x := x + 1; \\
\ell_5 & : \quad \} \\
\ell_6 & : \quad (\text{final program point})
\end{align*}
\]

\[
\tau = \langle (\ell_0, (x = 6, y = 8)), (\ell_1, (x = 1, y = 8)), (\ell_2, (x = 1, y = 0)), (\ell_3, (x = 1, y = 0)), (\ell_4, (x = 1, y = 1)), (\ell_5, (x = 2, y = 1)), (\ell_3, (x = 2, y = 1)), (\ell_4, (x = 2, y = 3)), (\ell_5, (x = 3, y = 3)), (\ell_3, (x = 3, y = 3)), (\ell_4, (x = 3, y = 6)), (\ell_5, (x = 4, y = 6)), (\ell_6, (x = 4, y = 6)) \rangle
\]

- very \textbf{precise} description of what the program does...
- ... but \textbf{quite cumbersome}
Outline

1 Transition systems and small step semantics

2 Traces semantics
 - Definitions
 - Finite traces semantics
 - Fixpoint definition
 - Compositionality
 - Infinite traces semantics

3 Summary
Towards a fixpoint definition

We consider again our contrived transition system

\[S = (\{a, b, c, d\}, \{(a, b), (b, a), (b, c)\}) \]

Traces by length:

<table>
<thead>
<tr>
<th>(i)</th>
<th>traces of length (i)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>(\varepsilon)</td>
</tr>
<tr>
<td>1</td>
<td>(\langle a\rangle, \langle b\rangle, \langle c\rangle, \langle d\rangle)</td>
</tr>
<tr>
<td>2</td>
<td>(\langle a, b\rangle, \langle b, a\rangle, \langle b, c\rangle)</td>
</tr>
<tr>
<td>3</td>
<td>(\langle a, b, a\rangle, \langle b, a, b\rangle, \langle a, b, c\rangle)</td>
</tr>
<tr>
<td>4</td>
<td>(\langle a, b, a, b\rangle, \langle b, a, b, a\rangle, \langle b, a, b, c\rangle)</td>
</tr>
</tbody>
</table>

Like the automaton in lecture 1, this suggests a least fixpoint definition: traces of length \(i + 1\) can be derived from the traces of length \(i\), by adding a transition.
Trace semantics fixpoint form

We define a **semantic function**, that computes the traces of length \(i + 1\) from the traces of length \(i\) (where \(i \geq 1\)), and adds the traces of length 1:

Finite traces semantics as a fixpoint

Let \(\mathcal{I} = \{\epsilon\} \cup \{\langle s \rangle \mid s \in S\}\). Let \(F_*\) be the function defined by:

\[
F_* : \mathcal{P}(S^*) \longrightarrow \mathcal{P}(S^*) \\
X \longmapsto \mathcal{I} \cup \{\langle s_0, \ldots, s_n, s_{n+1} \rangle \mid \langle s_0, \ldots, s_n \rangle \in X \land s_n \rightarrow s_{n+1}\}
\]

Then, \(F_*\) is **continuous** and thus has a least-fixpoint and:

\[
\text{lfp } F_* = [S]^* = \bigcup_{n \in \mathbb{N}} F_*^n(\emptyset)
\]
Fixpoint definition: proof (1), fixpoint existence

First, we prove that F_* is **continuous**.

Let $\mathcal{X} \subseteq \mathcal{P}(S^*)$ such that $\mathcal{X} \neq \emptyset$ and $A = \bigcup_{U \in \mathcal{X}} U$. Then:

$$F_*(\bigcup_{X \in \mathcal{X}} X) = \mathcal{I} \cup \{ \langle s_0, \ldots, s_n, s_{n+1} \rangle \mid (\langle s_0, \ldots, s_n \rangle \in \bigcup_{U \in \mathcal{X}} U) \land s_n \rightarrow s_{n+1} \}$$

$$= \mathcal{I} \cup \{ \langle s_0, \ldots, s_n, s_{n+1} \rangle \mid \exists U \in \mathcal{X}, \langle s_0, \ldots, s_n \rangle \in U \land s_n \rightarrow s_{n+1} \}$$

$$= \mathcal{I} \cup \left(\bigcup_{U \in \mathcal{X}} \{ \langle s_0, \ldots, s_n, s_{n+1} \rangle \mid \langle s_0, \ldots, s_n \rangle \in U \land s_n \rightarrow s_{n+1} \} \right)$$

$$= \bigcup_{U \in \mathcal{X}} \left(\mathcal{I} \cup \{ \langle s_0, \ldots, s_n, s_{n+1} \rangle \mid \langle s_0, \ldots, s_n \rangle \in U \land s_n \rightarrow s_{n+1} \} \right)$$

$$= \bigcup_{U \in \mathcal{X}} F_*(U)$$

In particular, this is true for any increasing chain \mathcal{X} (here, we considered any non empty family), hence F_* is continuous.

As $(\mathcal{P}(S^*), \subseteq)$ is a CPO, the continuity of F_* entails the **existence of a least-fixpoint** (Kleene theorem); moreover, it implies that:

$$\text{lfp } F_* = \bigcup_{n \in \mathbb{N}} F_*^n(\emptyset)$$
We now show that \([S]^*\) is equal to \(\text{lfp } F_\ast\), by showing the property below, by induction over \(n\):

\[
\forall k < n, \langle s_0, \ldots, s_k \rangle \in F_\ast^n(\emptyset) \iff \langle s_0, \ldots, s_k \rangle \in [S]^*
\]

- at rank 0, both sides evaluate to \(\emptyset\)
- at rank 1, only trace \(\epsilon\) and the traces of length 1 need to be considered, and its case is trivial
- at rank \(n + 1\), we need to consider both traces of length 1 (the case of which is trivial) and traces of length \(n + 1\) for some integer \(n \geq 1\):

\[
\langle s_0, \ldots, s_k, s_{k+1} \rangle \in [S]^*
\]

\[
\iff \langle s_0, \ldots, s_k \rangle \in [S]^* \land s_k \rightarrow s_{k+1}
\]

\[
\iff \langle s_0, \ldots, s_k \rangle \in F_\ast^n(\emptyset) \land s_k \rightarrow s_{k+1} \quad (k < n \text{ since } k + 1 < n + 1)
\]

\[
\iff \langle s_0, \ldots, s_k, s_{k+1} \rangle \in F_\ast^{n+1}(\emptyset)
\]
Trace semantics fixpoint form: example

Example, with the same simple transition system $S = (\mathcal{S}, \rightarrow)$:

- $\mathcal{S} = \{a, b, c, d\}$
- \rightarrow is defined by $a \rightarrow b$, $b \rightarrow a$ and $b \rightarrow c$

Then, the first iterates are:

\[
\begin{align*}
F_0^\ast(\emptyset) & = \emptyset \\
F_1^\ast(\emptyset) & = \{\epsilon, \langle a \rangle, \langle b \rangle, \langle c \rangle, \langle d \rangle\} \\
F_2^\ast(\emptyset) & = F_1^\ast(\emptyset) \cup \{\langle b, a \rangle, \langle a, b \rangle, \langle b, c \rangle\} \\
F_3^\ast(\emptyset) & = F_2^\ast(\emptyset) \cup \{\langle a, b, a \rangle, \langle b, a, b \rangle, \langle a, b, c \rangle\} \\
F_4^\ast(\emptyset) & = F_3^\ast(\emptyset) \cup \{\langle b, a, b, a \rangle, \langle a, b, a, b \rangle, \langle b, a, b, c \rangle\} \\
F_5^\ast(\emptyset) & = F_4^\ast(\emptyset) \cup \{\langle a, b, a, b, a \rangle, \langle b, a, b, a, b \rangle, \langle a, b, a, b, c \rangle\} \\
F_6^\ast(\emptyset) & = \ldots
\end{align*}
\]

The traces of $[\mathcal{S}]^\ast$ of length $n + 1$ appear in $F_n^\ast(\emptyset)$
Outline

1. Transition systems and small step semantics

2. Traces semantics
 - Definitions
 - Finite traces semantics
 - Fixpoint definition
 - Compositionality
 - Infinite traces semantics

3. Summary
The traces semantics definition we have seen is **global**:
- the **whole system** defines a **transition relation**
- we **iterate** this relation until we get a fixpoint

Though, a **modular** definition would be nicer, to allow reasoning on program fragments, or derive properties of a program from properties of its pieces...

Can we derive a more modular expression of the semantics?
Notion of compositional semantics

Observation: programs often have an inductive structure

- **λ-terms** are defined by induction over the syntax
- **imperative programs** are defined by induction over the syntax
- **there are exceptions:** our MIPS language does not naturally look that way

Definition: compositional semantics

A semantics $\llbracket . \rrbracket$ is said to be **compositional** when the semantics of a program can be defined as a function of the semantics of its parts, i.e.,

When program π writes down as $C[\pi_0, \ldots, \pi_k]$ where π_0, \ldots, π_k are its components, there exists a function F_C such that $\llbracket \pi \rrbracket = F_C(\llbracket \pi_0 \rrbracket, \ldots, \llbracket \pi_k \rrbracket)$, where F_C depends only on syntactic construction F_C.
Case of a simplified imperative language

Case of **a sequence of two instructions** $b \equiv l_0 : i_0; l_1 : i_1; l_2$:

$$\begin{align*}
[b]^* &= [i_0]^* \cup [i_1]^* \\
&\cup \{ \langle s_0, \ldots, s_m \rangle \mid \exists n \in [0, m], \\
&\quad \langle s_0, \ldots, s_n \rangle \in [i_0]^* \land \langle s_n, \ldots, s_m \rangle \in [i_1]^* \}\}
\end{align*}$$

This amounts to **concatenating** traces of $[i_0]^*$ and $[i_1]^*$ that share a state in common (necessarily at point l_1).

Cases of **a condition, a loop**: similar

- by **concatenation** of traces around **junction points**
- by doing a **least-fixpoint computation** over loops

We can provide a compositional semantics for our simplified imperative language.
Case of \(\lambda \)-calculus

Case of a \(\lambda \)-term \(t = (\lambda x \cdot u)v \):

- executions may start with a reduction in \(u \)
- executions may start with a reduction in \(v \)
- executions may start with the reduction of the head redex
- an execution may mix reductions steps in \(u \) and \(v \) in an arbitrary order

No nice compositional trace semantics of \(\lambda \)-calculus...
Outline

1 Transition systems and small step semantics

2 Traces semantics
 - Definitions
 - Finite traces semantics
 - Fixpoint definition
 - Compositionality
 - Infinite traces semantics

3 Summary
Non termination

Can the finite traces semantics express non termination?

Consider the case of our contrived system:

$$S = \{a, b, c, d\} \quad (\rightarrow) = \{(a, b), (b, a), (b, c)\}$$

System behaviors:

- this system clearly has non-terminating behaviors: it can loop from a to b and back forever
- the finite traces semantics does show the existence of this cycle as there exists an infinite chain of finite traces for the prefix order \prec:
 \[\langle a, b\rangle, \langle a, b, a\rangle, \langle a, b, a, b\rangle, \langle a, b, a, b, a\rangle, \ldots \in [S]^*\]
- though, the existence of this chain is not very obvious

Thus, we now define a semantics made of infinite traces
Semantics of infinite traces

We consider a transition system $S = (S, \rightarrow)$

Definition

The **infinite traces semantics** $[S]^\omega$ is defined by:

$$[S]^\omega = \{ \langle s_0, \ldots \rangle \in S^\omega \mid \forall i, s_i \rightarrow s_{i+1} \}$$

Infinite traces starting from an initial state (considering $S = (S, \rightarrow, S_I, S_F)$):

$$\{ \langle s_0, \ldots \rangle \in [S]^\omega \mid s_0 \in S_I \}$$

Example:

- contrived transition system defined by

 $S = \{a, b, c, d\}$

 $(\rightarrow) = \{(a, b), (b, a), (b, c)\}$

- the infinite traces semantics contains **exactly two** traces

 $[S]^\omega = \{ \langle a, b, \ldots, a, b, a, b, \ldots \rangle, \langle b, a, \ldots, b, a, b, a, \ldots \rangle \}$
Can we also provide a fixpoint form for $[S]^{\omega}$?

Intuitively, $\langle s_0, s_1, \ldots \rangle \in [S]^{\omega}$ if and only if $\forall n, \ s_n \rightarrow s_{n+1}$, i.e.,

$$\forall n \in \mathbb{N}, \forall k \leq n, \ s_k \rightarrow s_{k+1}$$

Let F_{ω} be defined by:

$$F_{\omega} : \mathcal{P}(S^{\omega}) \rightarrow \mathcal{P}(S^{\omega})$$

$$X \mapsto \{ \langle s_0, s_1, \ldots, s_n, \ldots \rangle \mid \langle s_1, \ldots, s_n, \ldots \rangle \in X \land s_0 \rightarrow s_1 \}$$

Then, we can show by induction that:

$$\sigma \in [S]^{\omega} \iff \forall n \in \mathbb{N}, \sigma \in F_{\omega}^n(S^{\omega}) \iff \sigma \in \bigcap_{n \in \mathbb{N}} F_{\omega}^n(S^{\omega})$$
Fixpoint form of the semantics of infinite traces

Infinite traces semantics as a fixpoint

Let F_ω be the function defined by:

$$F_\omega : \mathcal{P}(S^\omega) \longrightarrow \mathcal{P}(S^\omega)$$

$$X \longmapsto \{\langle s_0, s_1, \ldots, s_n, \ldots \rangle | \langle s_1, \ldots, s_n, \ldots \rangle \in X \land s_0 \rightarrow s_1\}$$

Then, F_ω is \cap-continuous and thus has a greatest-fixpoint; moreover:

$$\text{gfp } F_\omega = [S]^\omega = \bigcap_{n \in \mathbb{N}} F_\omega^n(S^\omega)$$

Proof sketch:

- the \cap-continuity proof is similar as for the \cup-continuity of F_*
- by the dual version of Kleene’s theorem, $\text{gfp } F_\omega$ exists and is equal to $\bigcap_{n \in \mathbb{N}} F_\omega^n(S^\omega)$, i.e. to $[S]^\omega$ (similar induction proof)
Fixpoint form of the infinite traces semantics: iterates

Example, with the same simple transition system:

- $S = \{a, b, c, d\}$
- \rightarrow is defined by $a \rightarrow b$, $b \rightarrow a$ and $b \rightarrow c$

Then, the first iterates are:

$$F^0_\omega(S^\omega) = S^\omega$$
$$F^1_\omega(S^\omega) = \langle a, b \rangle \cdot S^\omega \cup \langle b, a \rangle \cdot S^\omega \cup \langle b, c \rangle \cdot S^\omega$$
$$F^2_\omega(S^\omega) = \langle b, a, b \rangle \cdot S^\omega \cup \langle a, b, a \rangle \cdot S^\omega \cup \langle a, b, c \rangle \cdot S^\omega$$
$$F^3_\omega(S^\omega) = \langle a, b, a, b \rangle \cdot S^\omega \cup \langle b, a, b, a \rangle \cdot S^\omega \cup \langle b, a, b, c \rangle \cdot S^\omega$$
$$F^4_\omega(S^\omega) = \ldots$$

Intuition

- at iterate n, prefixes of length $n + 1$ match the traces in the infinite semantics
- only $\langle a, b, \ldots, a, b, a, b, \ldots \rangle$ and $\langle b, a, \ldots, b, a, b, a, \ldots \rangle$ belong to all iterates
Outline

1. Transition systems and small step semantics
2. Traces semantics
3. Summary
Summary

We have discussed today:

- **small-step / structural operational semantics:** individual program steps
- **big-step / natural semantics:** program executions as sequences of transitions
- their **fixpoint definitions** and properties will play a great role to design verification techniques

Next lectures:

- another family of semantics, **more compact and compositional**
- **semantic program and proof methods**