Abstract Interpretation IV

Semantics and Application to Program Verification

Antoine Miné

École normale supérieure, Paris
year 2015-2016

Course 13
27 May 2016

Overview

Selected advanced topics:

- reduced products of abstract domains
- disjunctive abstract domains
- inter-procedural analysis

Practical session:

- implement a reduced product
- help with the project

Reduced products

Idea

Theory:

- the set of abstract domains is a lattice,
- ordered by abstraction, which is a partial order, i.e.: $(C, \leq) \underset{\alpha}{\stackrel{\gamma}{\alpha}}(A, \sqsubseteq)$ denotes that C is more concrete than A. (every property of A can also be represented exactly in C)
- there is a least upper bound \sqcup for arbitrary sets of domains and a greatest lower bound \sqcap.

Application: reduced product
Effective construction for the least upper bound $A_{1} \sqcap A_{2}$, able to represent properties expressible in either A_{1} or A_{2}

Benefit

We can design more precise analyses
by combining existing abstractions

Abstract domain lattice

Reminder: interval abstraction

- $\alpha_{i}(S) \stackrel{\text { def }}{=}[\min S, \max S]$
- $\gamma_{i}([a, b]) \stackrel{\text { def }}{=}\{x \in \mathbb{Z} \mid a \leq x \leq b\}$

Reminder: sign abstraction

Composing abstractions

$$
\begin{aligned}
& \mathcal{P}(\mathbb{Z}) \\
& \stackrel{+}{a} \\
& \{[a, b] \mid a \leq b\} \cup\{\perp\} \\
& \stackrel{\alpha_{s}^{\prime}}{\stackrel{\gamma_{s}^{\prime}}{\leftrightarrows}} \\
& \{\perp, 0, \leq 0, \geq 0, \top\} \\
& \text { where: } \quad \gamma_{s}^{\prime}(\perp) \stackrel{\text { def }}{=} \perp \quad \gamma_{s}^{\prime}(\top) \stackrel{\text { def }}{=}[-\infty,+\infty] \\
& \gamma_{s}^{\prime}(\geq 0) \stackrel{\text { def }}{=}[0,+\infty] \quad \gamma_{s}^{\prime}(\leq 0) \stackrel{\text { def }}{=}[-\infty, 0] \quad \gamma_{s}^{\prime}(0) \stackrel{\text { def }}{=}[0,0]
\end{aligned}
$$

We can compose Galois connections:

$$
\begin{aligned}
& \text { If }\left(X_{1}, \sqsubseteq_{1}\right) \underset{\alpha_{1}}{\stackrel{\alpha_{1}}{\leftrightarrows}}\left(X_{2}, \sqsubseteq_{2}\right) \underset{\alpha_{2}}{\stackrel{\gamma_{2}}{\leftrightarrows}}\left(X_{3}, \sqsubseteq_{3}\right) \text {, then } \\
& \left(X_{1}, \sqsubseteq_{1}\right) \underset{\alpha_{2} \circ \alpha_{1}}{{ }_{1} \circ \alpha_{2}}\left(X_{3}, \sqsubseteq_{3}\right) .
\end{aligned}
$$

Proof: $\left(\alpha_{2} \circ \alpha_{1}\right)(c) \sqsubseteq_{3} a \Longleftrightarrow \alpha_{1}(c) \sqsubseteq_{2} \gamma_{2}(a) \Longleftrightarrow c \sqsubseteq_{1}\left(\gamma_{1} \circ \gamma_{2}\right)(a)$

Parity domain

Part of the abstraction lattice for $\mathcal{P}(\mathbb{Z})$

- signs are more abstract than intervals;
every sign information can be expressed as an interval
- parities and intervals are incomparable;
no common property, except \perp and T
- $\mathcal{P}(\mathbb{Z})$ is the most concrete domain;
- $\{T\}$ is the most abstract domain;
- intervals \wedge parities is the coarsest abstract domain more precise than intervals and parities.

Reduced product construction

Simple product

Algebraic structure:
Given two domains ($\mathcal{D}_{1}^{\sharp}, \sqsubseteq_{1}$) and ($\mathcal{D}_{2}^{\#}, \sqsubseteq_{2}$), we use pairs of abstract elements to represent conjunctions of properties.

- $\mathcal{D}_{1 \times 2}^{\sharp} \stackrel{\text { def }}{=} \mathcal{D}_{1}^{\sharp} \times \mathcal{D}_{2}^{\#}$
- $\gamma_{1 \times 2}\left(X_{1}^{\sharp}, X_{2}^{\sharp}\right) \stackrel{\text { def }}{=} \gamma_{1}\left(\boldsymbol{X}_{1}^{\sharp}\right) \cap \gamma_{2}\left(\boldsymbol{X}_{2}^{\sharp}\right)$
- $\alpha_{1 \times 2}(S) \stackrel{\text { def }}{=}\left(\alpha_{1}(S), \alpha_{2}(S)\right)$
- $\left(X_{1}^{\sharp}, X_{2}^{\sharp}\right) \sqsubseteq_{1 \times 2}\left(Y_{1}^{\sharp}, Y_{2}^{\sharp}\right) \stackrel{\text { def }}{\Longleftrightarrow} X_{1}^{\sharp} \sqsubseteq_{1} Y_{1}^{\sharp} \quad$ and $\quad X_{2}^{\sharp} \sqsubseteq_{2} Y_{2}^{\sharp}$

Abstract operators in \mathcal{D}^{\sharp} :
Applied in parallel (independently) in each abstract domain:

- $\left(X_{1}^{\sharp}, X_{2}^{\sharp}\right) \cup_{1 \times 2}^{\sharp}\left(Y_{1}^{\sharp}, Y_{2}^{\sharp}\right) \stackrel{\text { def }}{=}\left(X_{1}^{\sharp} \cup_{1}^{\sharp} Y_{1}^{\sharp}, X_{2}^{\sharp} \cup_{2}^{\#} Y_{2}^{\sharp}\right)$,;
- $\left(X_{1}^{\sharp}, X_{2}^{\sharp}\right) \nabla_{1 \times 2}\left(Y_{1}^{\sharp}, Y_{2}^{\sharp}\right) \stackrel{\text { def }}{=}\left(X_{1}^{\sharp} \nabla_{1} Y_{1}^{\sharp}, X_{2}^{\sharp} \nabla_{2} Y_{2}^{\sharp}\right)$;
- $S^{\sharp} \llbracket s \rrbracket_{1 \times 2}\left(X_{1}^{\sharp}, X_{2}^{\sharp}\right) \stackrel{\text { def }}{=}\left(S^{\sharp} \llbracket s \rrbracket_{1}\left(X_{1}^{\sharp}\right), S^{\sharp} \llbracket s \rrbracket_{2}\left(X_{2}^{\sharp}\right)\right)$.

Simple products: limitations

$$
\begin{aligned}
& V \leftarrow 1 \text {; } \\
& \text { while } V \leq 10 \text { do } V \leftarrow V+2 \text { done; } \\
& \text { - if } V \geq 12 \text { then } \bullet V \leftarrow 0 \bullet \text {; }
\end{aligned}
$$

Analysis in the product domain of intervals and parities:

	intervals	parities	product: intervals \times parities
\bullet	$V \in[11,12]$	V odd	$(V \in[11,12]) \wedge(V$ odd $)$
\bullet	$V=12$	V odd	$(V=12) \wedge(V$ odd $)$
\bullet	$V=0$	V even	$(V=0) \wedge(V$ even $)$

Identical to two separate analyses:

- at • , we get $(V=12) \wedge(V$ odd $)$, which represents \emptyset;
- at \bullet, we apply $V \leftarrow 0$ independently on intervals and parities, which gives $(V=0) \wedge(V$ even $)$, instead of $\emptyset!$
\Longrightarrow huge loss of precision

Fully reduced product

Idea: propagate information between domains
Given Galois connections (α_{1}, γ_{1}) and (α_{2}, γ_{2}) over \mathcal{D}_{1}^{\sharp} and \mathcal{D}_{2}^{\sharp}, we define a reduction operator ρ as:

$$
\begin{aligned}
& \rho: \mathcal{D}_{1 \times 2}^{\sharp} \rightarrow \mathcal{D}_{1 \times 2}^{\sharp} \\
& \rho\left(X_{1}^{\sharp}, X_{2}^{\sharp}\right) \stackrel{\text { def }}{=}\left(\alpha_{1}\left(\gamma_{1}\left(X_{1}^{\sharp}\right) \cap \gamma_{2}\left(X_{2}^{\sharp}\right)\right), \alpha_{2}\left(\gamma_{1}\left(X_{1}^{\sharp}\right) \cap \gamma_{2}\left(X_{2}^{\sharp}\right)\right)\right)
\end{aligned}
$$

i.e., the best representation of $\gamma_{1 \times 2}\left(X_{1}^{\sharp}, X_{2}^{\sharp}\right)$ in both domains

Application:
use ρ to transfer information between domains after abstract operations:

- $\left(X_{1}^{\sharp}, X_{2}^{\sharp}\right) \cup_{1 \times 2}^{\sharp}\left(Y_{1}^{\sharp}, Y_{2}^{\sharp}\right) \stackrel{\text { def }}{=} \rho\left(X_{1}^{\sharp} \cup_{1}^{\#} Y_{1}^{\sharp}, X_{2}^{\sharp} \cup_{2}^{\sharp} Y_{2}^{\sharp}\right)$,
- $S^{\sharp} \llbracket s \rrbracket_{1 \times 2}\left(X_{1}^{\sharp}, X_{2}^{\sharp}\right) \stackrel{\text { def }}{=} \rho\left(S^{\sharp} \llbracket s \rrbracket_{1}\left(X_{1}^{\sharp}\right), S^{\sharp} \llbracket s \rrbracket_{2}\left(X_{2}^{\sharp}\right)\right)$.

Warning:
ρ should not be used on fixpoint iterates with widening $\nabla\left(X_{n+1} \stackrel{\text { def }}{=} \rho\left(X_{n} \nabla F\left(X_{n}\right)\right)\right)$
\Longrightarrow this could prevent the convergence in $\mathcal{D}_{1}^{\sharp} \times \mathcal{D}_{2}^{\#}$!

Analysis with reduction: exemple

$$
V \leftarrow 1 ;
$$

while $V \leq 10$ do $V \leftarrow V+2$ done;

- if $V \geq 12$ then $V \leftarrow 0$

Reduction ρ between intervals and parities $\rho([a, b], p)$:
First refine interval bounds $[a, b]$ using parity information p, then refine the parity information using the refined bounds:

- let $a^{\prime}=a+1$ if $a \notin \gamma_{p}(p), a^{\prime}=a$ otherwise;
- let $b^{\prime}=b-1$ if $b \notin \gamma_{p}(p), b^{\prime}=b$ otherwise;
- if $a^{\prime}>b^{\prime}$, return (\perp, \perp);
- if $a^{\prime}=b^{\prime}$, return $\left(\left[a^{\prime}, b^{\prime}\right], \alpha_{p}(a)\right)$;
- otherwise, return $\left(\left[a^{\prime}, b^{\prime}\right], p\right)$.

Example:
At •, $\rho([11,12]$, odd $)=([11,11]$, odd $)$
\Longrightarrow the "then" branch is not reachable.

Partial reduction

The optimal reduction ρ is well-defined but:

- ρ assumes we have Galois connections;
- there is no general effective algorithm to compute ρ. (similar to the case of optimal operators, defined as $F^{\sharp} \stackrel{\text { def }}{=} \alpha \circ F \circ \gamma$)

Partial reduction:

Practical definition, when the optimal reduction is not available:

- $\rho\left(X_{1}^{\sharp}, X_{2}^{\sharp}\right)=\left(Y_{1}^{\sharp}, Y_{2}^{\sharp}\right)$ is a partial reduction if:
- $Y_{1}^{\sharp} \sqsubseteq_{1} X_{1}^{\#}$ and $Y_{2}^{\#} \sqsubseteq_{2} X_{2}^{\#}$
(improvement)
- $\gamma_{1 \times 2}\left(Y_{1}^{\sharp}, Y_{2}^{\sharp}\right)=\gamma_{1 \times 2}\left(X_{1}^{\sharp}, X_{2}^{\sharp}\right)$
(soundness)
Example:
$\rho\left(X_{1}^{\sharp}, X_{2}^{\sharp}\right) \stackrel{\text { def }}{=} \begin{cases}\left(\perp_{1}, \perp_{2}\right) & \text { if } X_{1}^{\sharp}=\perp_{1} \text { or } X_{2}^{\sharp}=\perp_{2} \\ \left(X_{1}^{\sharp}, X_{2}^{\sharp}\right) & \text { otherwise }\end{cases}$
In practice, an analyzer contains many abstract domains (for expressiveness) with limited reductions between them (for efficiency).

Disjunctive domains

Motivation

Remark: most domains abstract convex sets (conjunctions of constraints) $\Longrightarrow \cup^{\sharp}$ causes a loss of precision!

The need for non-convex invariants

$$
\begin{aligned}
& X \leftarrow \operatorname{rand}(10,20) ; \\
& Y \leftarrow \operatorname{rand}(0,1) ; \\
& \text { if } Y>0 \text { then } X \leftarrow-X ; \\
& -\quad Z \leftarrow 100 / X
\end{aligned}
$$

Concrete semantics:
At $\bullet, X \in[-20,-10] \cup[10,20]$
\Longrightarrow there is no division by zero
Abstract analysis:
Convex analyses (intervals, polyhedra) will find $X \in[-20,20]$
(with intervals, $[-20,-10] \cup[10,20]=[-20,20]$)
\Longrightarrow possible division by zero

Disjunctive domains

Principle:

generic constructions to lift any numeric abstract domain to a domain able to represent disjunctions exactly

Example constructions:

- powerset completion
unordered "soup" of abstract elements
- state partitioning
abstract elements keyed to selected subsets of environments
- path-sensitive analyses
partition with respect to the history of execution
each construction has its strength and weakness
they can be combined during an analysis to exploit the best of each

Powerset completion

Powerset completion

Given: $\quad\left(\mathcal{E}^{\sharp}, \sqsubseteq, \gamma, \cup^{\sharp}, \cap^{\sharp}, \nabla, S^{\sharp} \llbracket \operatorname{stat} \rrbracket\right)$
abstract domain \mathcal{E}^{\sharp}

with concretization $\gamma: \mathcal{E}^{\sharp} \rightarrow \mathcal{P}(\mathcal{E})$
sound abstractions $\cup^{\sharp}, \cap^{\sharp}, S^{\sharp} \llbracket$ stat \rrbracket of $\cup, \cap, S \llbracket s t a t \rrbracket$, and a widening ∇
Construct: $\quad\left(\hat{\mathcal{E}}^{\sharp}, \hat{彑}, \hat{\gamma}, \hat{\cup}^{\sharp}, \hat{\cap}^{\sharp}, \hat{\nabla}, \hat{S}^{\sharp} \llbracket\right.$ stat $\left.\rrbracket\right)$

- $\hat{\mathcal{E}}^{\sharp} \stackrel{\text { def }}{=} \mathcal{P}_{\text {finite }}\left(\mathcal{E}^{\sharp}\right)$
(finite sets of abstract elements)
- $\hat{\gamma}\left(A^{\sharp}\right) \stackrel{\text { def }}{=} \cup\left\{\gamma\left(X^{\sharp}\right) \mid X^{\sharp} \in A^{\sharp}\right\}$
(join of concretizations)

Example: using the interval domain as \mathcal{E}^{\sharp}
$\hat{\gamma}(\{[-10,-5],[2,4],[0,0],[2,3]\})=[-10,-5] \cup\{0\} \cup[2,4]$

Ordering

Issue: how can we compare two elements of $\hat{\mathcal{E}}^{\sharp}$?

- $\hat{\gamma}$ is generally not injective there is no canonical representation for $\hat{\gamma}\left(A^{\sharp}\right)$
- testing $\hat{\gamma}\left(A^{\sharp}\right)=\hat{\gamma}\left(B^{\sharp}\right)$ or $\hat{\gamma}\left(A^{\sharp}\right) \subseteq \hat{\gamma}\left(B^{\sharp}\right)$ is difficult

Example: powerset completion of the interval domain

$A^{\#}$

$B^{\#}$

$C^{\#}$
$A^{\sharp}=\{\{0\} \times\{0\},[0,1] \times\{1\}\}$
$B^{\sharp}=\{\{0\} \times\{0\},\{0\} \times\{1\},\{1\} \times\{1\}\}$
$C^{\#}=\{\{0\} \times[0,1],[0,1] \times\{1\}\}$
$\hat{\gamma}\left(A^{\sharp}\right)=\hat{\gamma}\left(B^{\sharp}\right)=\hat{\gamma}\left(C^{\sharp}\right)$
B^{\sharp} is more costly to represent: it requires three abstract elements instead of two
C^{\sharp} is a covering and not a partition (red \cap blue $=\{0\} \times\{1\} \neq \emptyset$)

Ordering (cont.)

Solution: sound approximation of \subseteq
$A^{\sharp} \hat{\sqsubseteq} B^{\sharp} \stackrel{\text { def }}{\Longleftrightarrow} \forall X^{\sharp} \in A^{\sharp}: \exists Y^{\sharp} \in B^{\sharp}: X^{\sharp} \sqsubseteq Y^{\sharp}$ (Hoare powerdomain order)

- $\hat{\sqsubseteq}$ is a partial order (when \sqsubseteq is)
- \oint is a sound approximation of \subseteq (when \sqsubseteq is)
$A^{\sharp} \hat{\subseteq} B^{\sharp} \Longrightarrow \hat{\gamma}\left(A^{\sharp}\right) \subseteq \hat{\gamma}\left(B^{\sharp}\right)$ but the converse may not hold
- testing $\hat{\sqsubseteq}$ reduces to testing \sqsubseteq finitely many times

Example: powerset completion of the interval domain

$$
\begin{aligned}
& \hat{\gamma}\left(A^{\sharp}\right)=\hat{\gamma}\left(B^{\sharp}\right)=\hat{\gamma}\left(C^{\sharp}\right) \\
& B^{\sharp} \hat{\sqsubseteq} A^{\sharp} \hat{\sqsubseteq} C^{\sharp}
\end{aligned}
$$

Abstract operations

Abstract operators

- $\hat{S}^{\sharp} \llbracket s t a t \rrbracket A^{\sharp} \stackrel{\text { def }}{=}\left\{S^{\sharp} \llbracket s t a t \rrbracket X^{\sharp} \mid X^{\sharp} \in A^{\sharp}\right\}$ apply stat on each abstract element independently
- $A^{\sharp} \hat{\cup}^{\sharp} B^{\sharp} \stackrel{\text { def }}{=} A^{\sharp} \cup B^{\sharp}$ keep elements from both arguments without applying any abstract operation \hat{U}^{\sharp} is exact
- $A^{\sharp} \hat{\cap}^{\sharp} B^{\sharp} \stackrel{\text { def }}{=}\left\{X^{\sharp} \cap^{\sharp} Y^{\sharp} \mid X^{\sharp} \in A^{\sharp}, Y^{\sharp} \in B^{\sharp}\right\}$
\hat{n}^{\sharp} is exact if \cap^{\sharp} is (as \cup and \cap are distributive)

Galois connection:

in general, there is no abstraction function $\hat{\alpha}$ corresponding to $\hat{\gamma}$
Example: powerset completion $\hat{\mathcal{E}}^{\sharp}$ of the interval domain \mathcal{E}^{\sharp} given the disc $S \stackrel{\text { def }}{=}\left\{(x, y) \mid x^{2}+y^{2} \leq 1\right\}$
$\alpha(S)=[-1,1] \times[-1,1] \quad$ (optimal interval abstraction) but there is no best abstraction in $\hat{\mathcal{E}}^{\sharp}$

$\alpha(S)$

not $\hat{\alpha}(S)$

Dynamic approximation

Issue: the size $\left|A^{\sharp}\right|$ of elements $A^{\sharp} \in \hat{\mathcal{E}}^{\sharp}$ is unbounded every application of $\hat{\cup}^{\sharp}$ adds some more elements \Longrightarrow efficiency and convergence problems

Solution: to reduce the size of elements

- redundancy removal
$\operatorname{simplify}\left(A^{\sharp}\right) \stackrel{\text { def }}{=}\left\{X^{\sharp} \in A^{\sharp} \mid \forall Y^{\sharp} \neq X^{\sharp} \in A^{\sharp}: X^{\sharp} \nsubseteq Y^{\sharp}\right\}$
no loss of precision: $\hat{\gamma}\left(\operatorname{simplify}\left(A^{\sharp}\right)\right)=\hat{\gamma}\left(A^{\sharp}\right)$
- collapse: join elements in \mathcal{E}^{\sharp}
collapse $\left(A^{\sharp}\right) \stackrel{\text { def }}{=}\left\{\cup^{\sharp}\left\{X^{\sharp} \in A^{\sharp}\right\}\right\}$

large loss of precision, but very effective: \mid collapse $\left(A^{\sharp}\right) \mid=1$
- partial collapse: limit $\left|A^{\sharp}\right|$ to a fixed size k by U^{\sharp} but how to choose which elements to merge? no easy solution!

Widening

Issue: for loops, abstract iterations $\left(A_{n}^{\sharp}\right)_{n \in \mathbb{N}}$ may not converge

- the size of A_{n}^{\sharp} may grow arbitrarily large
- even if $\left|A_{n}^{\sharp}\right|$ is stable, some elements in A_{n}^{\sharp} may not converge if \mathcal{E}^{\sharp} has infinite increasing sequences
\Longrightarrow we need a widening $\hat{\nabla}$
Widenings for powerset domains are difficult to design
Example widening: collapse after a fixed number N of iterations
$A_{n+1}^{\sharp} \stackrel{\text { def }}{=} A_{n}^{\sharp} \hat{\nabla} B_{n}^{\sharp} \stackrel{\text { def }}{=} \begin{cases}\operatorname{simplify}\left(A_{n}^{\sharp} \hat{U}^{\sharp} B_{n}^{\sharp}\right) & \text { if } n<N \\ \operatorname{collapse}\left(A_{n}^{\sharp}\right) \nabla \operatorname{collapse}\left(B_{n}^{\sharp}\right) & \text { otherwise }\end{cases}$
(this is very naïve, see Bagnara et al. STTT06 for more interesting widenings)

State partitioning

State partitioning

Principle:

- partition a priori \mathcal{E} into finitely many sets
- abstract each partition of \mathcal{E} independently using an element of \mathcal{E}^{\sharp}

Abstract domain:

Given an abstract partition $P^{\sharp} \subseteq \mathcal{E}^{\sharp}$, i.e., a set such that:

- P^{\sharp} is finite
- $\cup\left\{\gamma\left(X^{\sharp}\right) \mid X^{\sharp} \in P^{\sharp}\right\}=\mathcal{E}$
for generality, we have in fact a covering, not a partitioning of \mathcal{E}
i.e., we can have $X^{\sharp} \neq Y^{\sharp} \in P^{\sharp}$ with $\gamma\left(X^{\sharp}\right) \cap \gamma\left(Y^{\sharp}\right) \neq \emptyset$

We define $\tilde{\mathcal{E}}^{\sharp} \stackrel{\text { def }}{=} P^{\sharp} \rightarrow \mathcal{E}^{\sharp}$
representable in memory, as $P^{\#}$ is finite

Ordering

	${ }^{\text {P2 }}$	P4
${ }^{\text {P1 }}$	${ }^{\text {P3 }}$	${ }^{\text {P5 }}$

Example: \mathcal{E}^{\sharp} is the interval domain

$$
\begin{aligned}
& P^{\#}=\left\{P_{1}, P_{2}, P_{3}, P_{4}, P_{5}\right\} \text { where } \\
& P_{1}=[-\infty, 0] \times[-\infty,+\infty] \\
& P_{2}=[0,10] \times[0,+\infty] \\
& P_{3}=[0,10] \times[-\infty, 0] \\
& P_{4}=[10,+\infty] \times[0,+\infty] \\
& P_{5}=[10,+\infty] \times[-\infty, 0] \\
& X^{\sharp}=\left[P_{1} \mapsto[-6,-5] \times[5,6],\right. \\
& P_{2} \mapsto \perp \text {, } \\
& P_{3} \mapsto[9,10] \times[-\infty,-1], \\
& P_{4} \mapsto \perp \text {, } \\
& \left.P_{5} \mapsto[10,12] \times[-3,-1]\right]
\end{aligned}
$$

- $\tilde{\mathcal{E}}^{\sharp} \stackrel{\text { def }}{=} P^{\sharp} \rightarrow \mathcal{E}^{\sharp}$
- $\tilde{\gamma}\left(A^{\sharp}\right) \stackrel{\text { def }}{=} \cup\left\{\gamma\left(A^{\sharp}\left(X^{\sharp}\right)\right) \cap \gamma\left(X^{\sharp}\right) \mid X^{\sharp} \in P^{\sharp}\right\}$
- $A^{\sharp} \check{\sqsubseteq} B^{\sharp} \stackrel{\text { def }}{\Longleftrightarrow} \forall X^{\sharp} \in P^{\sharp}: A^{\sharp}\left(X^{\sharp}\right) \sqsubseteq B^{\sharp}\left(X^{\sharp}\right) \quad$ (point-wise order)
- $\tilde{\alpha}(S) \stackrel{\text { def }}{=} \lambda X^{\sharp} \in P^{\sharp} . \alpha\left(S \cap \gamma\left(X^{\sharp}\right)\right)$
if \mathcal{E}^{\sharp} enjoys a Galois connection, so does $\tilde{\mathcal{E}}^{\sharp}$

Abstract operators

Abstract operators: point-wise extension from \mathcal{E}^{\sharp} to $P^{\sharp} \rightarrow \mathcal{E}^{\sharp}$

- $A \tilde{\cup}^{\sharp} B \stackrel{\text { def }}{=} \lambda X^{\sharp} \in P^{\sharp} . A\left(X^{\sharp}\right) \cup^{\sharp} B\left(X^{\sharp}\right)$
- $A \tilde{n}^{\sharp} B \stackrel{\text { def }}{=} \lambda X^{\sharp} \in P^{\sharp} . A\left(X^{\sharp}\right) \cap^{\sharp} B\left(X^{\sharp}\right)$
- $A \tilde{\nabla} B \stackrel{\text { def }}{=} \lambda X^{\sharp} \in P^{\sharp} . A\left(X^{\sharp}\right) \nabla B\left(X^{\sharp}\right)$
- $\tilde{S}^{\sharp} \llbracket e \leq 0$? $\rrbracket A^{\sharp} \stackrel{\text { def }}{=} \lambda X^{\sharp} \in P^{\sharp} . S^{\sharp} \llbracket e \leq 0 ? \rrbracket A^{\sharp}\left(X^{\sharp}\right)$
- $\tilde{S}^{\sharp} \llbracket V \leftarrow e \rrbracket A^{\sharp}$ is more complex
any $S^{\sharp} \llbracket V \leftarrow e \rrbracket A^{\sharp}\left(X^{\sharp}\right)$ may escape its partition X^{\sharp}; we must cut them at partition borders and glue the pieces falling into the same partition

$$
\text { example: } \quad X \leftarrow X+2
$$

$$
\tilde{S}^{\sharp} \llbracket V \leftarrow e \rrbracket A^{\sharp} \stackrel{\text { def }}{=} \lambda X^{\sharp} . \cup^{\sharp}\left\{X^{\sharp} \cap^{\sharp} S^{\sharp} \llbracket V \leftarrow e \rrbracket A\left(Y^{\sharp}\right) \mid Y^{\sharp} \in P^{\sharp}\right\}
$$

Example analysis

> Example
> $\quad X \leftarrow \operatorname{rand}(10,20) ;$
> $Y \leftarrow \operatorname{rand}(0,1) ;$
> if $Y>0 \operatorname{then} X \leftarrow-X ;$
> - $Z \leftarrow 100 / X$

Analysis:

- \mathcal{E}^{\sharp} is the interval domain
- partition with respect to the sign of X
$P^{\sharp} \stackrel{\text { def }}{=}\left\{X^{+}, X^{-}\right\}$where
$X^{+} \stackrel{\text { def }}{=}[0,+\infty] \times \mathbb{Z} \times \mathbb{Z}$ and $X^{-} \stackrel{\text { def }}{=}[-\infty, 0] \times \mathbb{Z} \times \mathbb{Z}$
- at - we find:
$X^{+} \mapsto[X \in[10,20], Y \mapsto[0,0], Z \mapsto[0,0]]$
$X^{-} \mapsto[X \in[-20,-10], Y \mapsto[1,1], Z \mapsto[0,0]]$
\Longrightarrow no division by zero

Path partitioning

Path sensitivity

Principle: partition wrt. the history of computation

- keep different abstract elements for different execution paths e.g., different branches taken, different loop iterations
- avoid merging with \cup^{\sharp} elements at control-flow joins at the end of if \cdots then \cdot. else, or at loop head

Intuition: as a program transformation

```
\(X \leftarrow \operatorname{rand}(-50,50)\);
if \(X \geq 0\) then
        \(Y \leftarrow X+10\)
else
    \(Y \leftarrow X-10 ;\)
assert \(Y \neq 0\)
```

$$
\begin{aligned}
& X \leftarrow \operatorname{rand}(-50,50) ; \\
& \text { if } X \geq 0 \text { then } \\
& Y \leftarrow X+10 ; \\
& \text { assert } Y \neq 0 \\
& \text { else } \\
& Y \leftarrow X-10 ; \\
& Y \leftarrow \begin{array}{l}
\text { assert } Y \neq 0
\end{array}
\end{aligned}
$$

the assert is tested in the context of each branch instead of after the control-flow join the interval domain can prove the assertion on the right, but not on the left

Abstract domain

Formalization: we consider here only if \cdots then \cdots else

- \mathcal{L} denote syntactic labels of if \cdots then \cdots else instructions
- history abstraction $H \stackrel{\text { def }}{=} \mathcal{L} \rightarrow\{$ true, false, $\perp\}$
$H \in \mathbb{H}$ indicates the outcome of the last time we executed each test:
- $H(\ell)=$ true: we took the then branch
- $H(\ell)=$ false: we took the else branch
- $H(\ell)=\perp$: we never executed the test

Notes:

- $\mathbb{H}_{\text {can }}$ remember the outcome of several successive tests ℓ_{1} : if \cdots then \cdots else; $\ell_{2}:$ if \cdots then \cdots else
- for tests in loops, 어 remembers only the last outcome while \cdots do ℓ : if \cdots then \cdots else
- we could extend \mathbb{H} to longer histories with $\mathbb{H}=(\mathcal{L} \rightarrow\{\text { true, false, } \perp\})^{*}$
- we could extend \mathbb{H} to track loop iterations with $\mathbb{H}=\mathcal{L} \rightarrow \mathbb{N}$
- $\breve{\mathcal{E}}^{\sharp} \stackrel{\text { def }}{=} \mathbb{H} \rightarrow \mathcal{E}^{\sharp}$
use a different abstract element for each abstract history

Abstract operators

- $\breve{\mathcal{E}}^{\sharp} \stackrel{\text { def }}{=} H \rightarrow \mathcal{E}^{\sharp}$
- $\breve{\gamma}\left(A^{\sharp}\right)=\cup\left\{\gamma\left(A^{\sharp}(H)\right) \mid H \in \mathbb{H}\right\}$
- $\breve{彑}, \breve{U}^{\sharp}, \breve{n}^{\sharp}, \breve{\nabla}$ are point-wise- $\breve{S} \sharp \llbracket V \leftarrow e \rrbracket$ and $\breve{S} \sharp \llbracket e \leq 0$? 』 are point-wise
- $\breve{S}^{\sharp} \llbracket \ell$: if c then s_{1} else $s_{2} \rrbracket A^{\sharp}$ is more complex
- we merge all information about ℓ

$$
C^{\sharp}=\lambda H \cdot A^{\sharp}(H[\ell \mapsto \text { true }]) \cup^{\sharp} A^{\sharp}(H[\ell \mapsto \text { false }]) \cup^{\sharp} A^{\sharp}(H[\ell \mapsto \perp])
$$

- we compute the then branch, where $H(\ell)=$ true

$$
\begin{aligned}
& T^{\prime \sharp}=\breve{S}^{\sharp} \llbracket s_{1} \rrbracket\left(\breve{S}^{\sharp} \llbracket c ? \rrbracket T^{\sharp}\right) \text { where } \\
& T^{\sharp}=\lambda H \cdot C^{\sharp}(H) \text { if } H(\ell)=\text { true, } \perp \text { otherwise }
\end{aligned}
$$

- we compute the else branch, where $H(\ell)=$ false

$$
\begin{aligned}
& F^{\prime \sharp}=\breve{S}^{\sharp} \llbracket s_{2} \rrbracket\left(\breve{S}^{\sharp} \llbracket \neg c ? \rrbracket F^{\sharp}\right) \text { where } \\
& F^{\sharp}=\lambda H \cdot C^{\sharp}(H) \text { if } H(\ell)=\text { false }, \perp \text { otherwise }
\end{aligned}
$$

- we join both branches: $T^{\prime \sharp} U^{\sharp} F^{\prime \sharp}$
the join is exact as $\forall H \in \mathbb{H}$: either $T^{\prime \sharp}(H)=\perp$ or $F^{\prime \sharp}(H)=\perp$
\Longrightarrow we get a semantic by induction on the syntax of the original program

Complex example

Linear interpolation

$$
\begin{aligned}
& X \leftarrow \operatorname{rand}(T X[0], T X[N]) \\
& I \leftarrow 0 ; \\
& \text { while } I<N \wedge X>T X[I+1] \text { do } \\
& \quad I \leftarrow I+1 ; \\
& \text { done; } \\
& Y \leftarrow T Y[I]+(X-T X[I]) \times T S[I]
\end{aligned}
$$

Concrete semantics: table-based interpolation based on the value of X

- look-up index I in the interpolation table: $T X[I] \leq X \leq T X[I+1]$
- interpolate from value $T Y[I]$ when $X=T X[I]$ with slope $T S[I]$

Analysis: in the interval domain

- without partitioning:
$Y \in[\min T Y, \max T Y]+(X-[\min T X, \max T X]) \times[\min T S, \max T S]$
- partitioning with respect to the number of loop iterations:
$Y \in \cup_{I \in[0, N]} T Y[I]+([0, T X[I+1]-T X[/]) \times T S[/]$
more precise as it keeps the relation between table indices

Inter-procedural analyses

Overview

- Analysis on the control-flow graph reduce function calls and returns to gotos useful for the project!
- Inlining
simple and precise
but not efficient and may not terminate
- Call-site and call-stack abstraction
terminates even for recursive programs
parametric cost-precision trade-off
- Tabulated abstraction
optimal reuse of analysis partial results
- We also mentioned summary-based abstractions last week, leveraging relational domains for modular bottom-up analysis
in general, these different abstractions give incomparable results; there is no clear winner

Analysis on the control-flow graph

Inter-procedural control-flow graphs

Extend control-flow graphs:

- one subgraph for each function
- additional arcs to denote function calls and returns
we get one big graph without procedures nor calls, only gotos
\Longrightarrow reduced to a classic analysis based on equation systems
but difficult to use in a denotational-style analysis by induction on the syntax

Note: to simplify, we assume here no local variable and no function argument:

- locals and arguments are transformed into globals
- only possible if there are no recursive calls

Example: Control-flow graph

Example

$$
\begin{aligned}
& \text { main : } \\
& \quad R \leftarrow-1 ; \\
& X \leftarrow \operatorname{rand}(5,10) ; f() ; \\
& X \leftarrow 80 ; f()
\end{aligned}
$$

```
f:
R\leftarrow2\timesX;
if R>100 then R}\leftarrow
```


create one control-flow graph for each function

Example: Control-flow graph

Example

$$
\begin{array}{l|l}
\text { main : } & f: \\
\quad R \leftarrow-1 ; & R \leftarrow 2 \times X ; \\
X \leftarrow \operatorname{rand}(5,10) ; f() ; & \text { if } R>100 \text { then } R \leftarrow 0 \\
X \leftarrow 80 ; f() &
\end{array}
$$

replace call instructions with gotos

Example: Equation system

$$
\begin{aligned}
& \mathcal{S}_{\text {main }, 1}=\top \\
& \mathcal{S}_{\text {main }, 2}=\mathrm{S} \llbracket R \leftarrow 1 \rrbracket \mathcal{S}_{\text {main }, 1} \\
& \mathcal{S}_{\text {main }, 3}=\mathrm{S} \llbracket X \leftarrow \operatorname{rand}(5,10) \rrbracket \mathcal{S}_{\text {main }, 2} \\
& \mathcal{S}_{\text {main }, 4}=\mathcal{S}_{\mathrm{f}, 6} \\
& \mathcal{S}_{\text {main }, 5}=\mathrm{S} \llbracket X \leftarrow 80 \rrbracket \mathcal{S}_{\text {main }, 4} \\
& \mathcal{S}_{\text {main }, 6}=\mathcal{S}_{\mathrm{f}, 6} \\
& \\
& \mathcal{S}_{\mathrm{f}, 1}=\mathcal{S}_{\text {main }, 3} \cup \mathcal{S}_{\text {main }, 5} \\
& \mathcal{S}_{\mathrm{f}, 2}=\mathrm{S} \llbracket R \leftarrow 2 X \rrbracket \mathcal{S}_{\mathrm{f}, 1} \\
& \mathcal{S}_{\mathrm{f}, 3}=\mathrm{S} \llbracket R>100 \rrbracket \mathcal{S}_{\mathrm{f}, 2} \\
& \mathcal{S}_{\mathrm{f}, 4}=\mathrm{S} \llbracket R \leftarrow 0 \rrbracket \mathcal{S}_{\mathrm{f}, 3} \\
& \mathcal{S}_{\mathrm{f}, 5}=\mathrm{S} \llbracket R \leq 100 \rrbracket \mathcal{S}_{\mathrm{f}, 2} \\
& \mathcal{S}_{\mathrm{f}, 6}=\mathcal{S}_{\mathrm{f}, 4} \cup \mathcal{S}_{\mathrm{f}, 5}
\end{aligned}
$$

- each variable \mathcal{S}_{i} denotes a set of environments at a control location i
- we can derive an abstract version of the system

$$
\text { e.g.: } \mathcal{S}_{f, 2}^{\sharp}=S^{\sharp} \llbracket R \leftarrow 2 X \rrbracket \mathcal{S}_{f, 1}^{\sharp}, \mathcal{S}_{f, 6}^{\sharp}=\mathcal{S}_{f, 4}^{\sharp} \cup \cup^{\sharp} \mathcal{S}_{f, 5}^{\sharp} \text {, etc. }
$$

- we can solve the abstract system, using widenings to terminate c.f. project

Example: Equation system

$$
\begin{aligned}
& \mathcal{S}_{\text {main }, 1}=\top \\
& \mathcal{S}_{\text {main }, 2}=\mathrm{S} \llbracket R \leftarrow 1 \rrbracket \mathcal{S}_{\text {main, } 1} \\
& \mathcal{S}_{\text {main }, 3}=\mathrm{S} \llbracket X \leftarrow \operatorname{rand}(5,10) \rrbracket \mathcal{S}_{\text {main }, 2} \\
& \mathcal{S}_{\text {main }, 4}=\mathcal{S}_{\mathrm{f}, 6} \\
& \mathcal{S}_{\text {main }, 5}=\mathrm{S} \llbracket X \leftarrow 80 \rrbracket \mathcal{S}_{\text {main }, 4} \\
& \mathcal{S}_{\text {main }, 6}=\mathcal{S}_{\mathrm{f}, 6}
\end{aligned}
$$

$$
\mathcal{S}_{f, 1}=\mathcal{S}_{\text {main }, 3} \cup \mathcal{S}_{\text {main }, 5}
$$

$$
\mathcal{S}_{\mathrm{f}, 2}=\mathrm{S} \llbracket R \leftarrow 2 X \rrbracket \mathcal{S}_{\mathrm{f}, 1}
$$

$$
\mathcal{S}_{\mathrm{f}, 3}=\mathrm{S} \llbracket R>100 \rrbracket \mathcal{S}_{\mathrm{f}, 2}
$$

$$
\mathcal{S}_{\mathrm{f}, 4}=\mathrm{S} \llbracket R \leftarrow 0 \rrbracket \mathcal{S}_{\mathrm{f}, 3}
$$

$$
\mathcal{S}_{\mathrm{f}, 5}=\mathrm{S} \llbracket R \leq 100 \rrbracket \mathcal{S}_{\mathrm{f}, 2}
$$

$$
\mathcal{S}_{\mathrm{f}, 6}=\mathcal{S}_{\mathrm{f}, 4} \cup \mathcal{S}_{\mathrm{f}, 5}
$$

using intervals we get the following solution:

$$
\begin{array}{ll}
\mathcal{S}_{\text {main }, 1}^{\sharp}: X, R \in \mathbb{Z} & \mathcal{S}_{f, 1}^{\sharp}: X \in[5,80], R \in[-1,100] \\
\mathcal{S}_{\text {main }, 2}^{\sharp}: X \in \mathbb{Z}, R=-1 & \mathcal{S}_{f, 2}^{\sharp}: X \in[5,80], R \in[10,160] \\
\mathcal{S}_{\text {main }, 3}^{\sharp}: X \in[5,10], R=-1 & \mathcal{S}_{f, 3}^{\sharp}: X \in[5,80], R \in[101,160] \\
\mathcal{S}_{\text {main }, 4}^{\sharp}: X \in[5,80], R \in[0,100] & \mathcal{S}_{f, 4}^{\sharp}: X \in[5,80], R=0 \\
\mathcal{S}_{\text {main }, 5}^{\sharp}: X=80, R \in[0,100] & \mathcal{S}_{f}^{\sharp}: X \in[5,80], R \in[10,100] \\
\mathcal{S}_{\text {main }, 6}^{\sharp}: X \in[5,80], R \in[0,100] & \mathcal{S}_{f, 6}^{\sharp}: X \in[5,80], R \in[0,100]
\end{array}
$$

Imprecision

In fact, in our example, $R=0$ holds at the end of the program but we find $R \in[0,100]$!
\Longrightarrow the analysis is imprecise
Explanation: the control-flow graph adds impossible executions paths

General case: concrete semantics

Procedures

Syntax:

- \mathcal{F} finite set of procedure names
- body : $\mathcal{F} \rightarrow$ stat: procedure bodies
- main \in stat: entry point body
- \mathbb{V}_{G} : set of global variables
- \mathbb{V}_{f} : set of local variables for procedure $f \in \mathcal{F}$ procedure f can only access $\mathbb{V}_{f} \cup \mathbb{V}_{G}$
main has no local variable and can only access ∇_{G}
- stat $::=f\left(\right.$ expr $_{1}, \ldots$, expr $\left._{\left|\mathbb{V}_{f}\right|}\right) \mid \cdots$
procedure call, $f \in \mathcal{F}$, setting all its local variables
local variables double as procedure arguments
no special mechanism to return a value (a global variable can be used)

Concrete environments

Notes:

- when f calls g, we must remember the value of f 's locals \mathbb{V}_{f} in the semantics of g and restore them when returning
- several copies of each $V \in \mathbb{V}_{f}$ may exist at a given time due to recursive calls, i.e.: cycles in the call graph
\Longrightarrow concrete environments use per-variable stacks
Stacks: $\mathcal{S} \stackrel{\text { def }}{=} \mathbb{Z}^{*} \quad$ (finite sequences of integers)
- $\operatorname{push}(v, s) \stackrel{\text { def }}{=} v \cdot s$

$$
\left(v, v^{\prime} \in \mathbb{Z}, s, s^{\prime} \in \mathcal{S}\right)
$$

- $\operatorname{pop}(s) \stackrel{\text { def }}{=} s^{\prime}$ when $\exists v: s=v \cdot s^{\prime}$, undefined otherwise
- peek $(s) \stackrel{\text { def }}{=} v$ when $\exists s^{\prime}: s=v \cdot s^{\prime}$, undefined otherwise
- $\boldsymbol{\operatorname { s e t }}(v, s) \stackrel{\text { def }}{=} v \cdot s^{\prime}$ when $\exists v^{\prime}: s=v^{\prime} \cdot s^{\prime}$, undefined otherwise

Environments: $\quad \mathcal{E} \stackrel{\text { def }}{=}\left(\cup_{f \in \mathcal{F}} \mathbb{V}_{f} \cup \mathbb{V}_{G}\right) \rightarrow \mathcal{S}$
for \mathbb{V}_{G}, stacks are not necessary but simplify the presentation
traditionally, there is a single global stack for all local variables
using per-variable stacks instead also makes the presentation simpler

Concrete semantics

Concrete semantics: on $\mathcal{E} \stackrel{\text { def }}{=}\left(\cup_{f \in \mathcal{F}} \mathbb{V}_{f} \cup \mathbb{V}_{G}\right) \rightarrow \mathcal{S}$ variable reads and updates only consider the top of the stack; procedure calls push and pop local variables

- $\mathrm{E} \llbracket V \rrbracket \rho \stackrel{\text { def }}{=} \boldsymbol{\operatorname { p e e k }}(\rho(V))$
- $\mathrm{S} \llbracket V \leftarrow e \rrbracket R \stackrel{\text { def }}{=}\{\rho[V \mapsto \boldsymbol{s e t}(x, \rho(V))] \mid \rho \in R, x \in \mathrm{E} \llbracket e \rrbracket \rho\}$
- $\mathrm{S} \llbracket f\left(e_{V_{1}}, \ldots, e_{V_{n}}\right) \rrbracket R=R_{3}$, where:

$$
R_{1} \stackrel{\text { def }}{=}\left\{\rho\left[\forall V \in \mathbb{V}_{f}: V \mapsto \operatorname{push}\left(x_{V}, \rho(V)\right) \rrbracket \mid \rho \in R, \forall V \in \mathbb{V}_{f}: x_{V} \in \mathbb{E} \llbracket e_{V} \rrbracket \rho\right\}\right.
$$

(evaluate each argument e_{V} and push its value x_{V} on the stack $\rho(V)$)
$R_{2} \stackrel{\text { def }}{=} \mathrm{S} \llbracket \operatorname{body}(f) \rrbracket R_{1}$
(evaluate the procedure body)
$R_{3} \stackrel{\text { def }}{=}\left\{\rho\left[\forall V \in \mathbb{V}_{f}: V \mapsto \operatorname{pop}(\rho(V))\right] \mid \rho \in R_{2}\right\}$
(pop local variables)

- initial environment: $\rho_{0} \stackrel{\text { def }}{=} \lambda V \in \mathbb{V}_{G} .0$
other statements are unchanged

Semantic inlining

Semantic inlining

Naïve abstract procedure call: mimic the concrete semantics

- assign abstract variables to stack positions:

$$
\mathbb{V} \# \stackrel{\text { def }}{=} \mathbb{V}_{G} \cup\left(\cup_{f \in \mathcal{F}} \mathbb{V}_{f} \times \mathbb{N}\right)
$$

$\mathbb{V} \sharp$ is infinite, but each abstract environment uses finitely many variables

- $\mathcal{E}_{\mathbb{V}}^{\sharp}$ abstracts $\mathcal{P}(\mathbb{V} \rightarrow \mathbb{Z})$, for any finite $\mathbb{V} \subseteq \mathbb{V} \sharp$
$V \in \mathbb{V}_{f}$ denotes $(V, 0)$ in $\mathbb{V} \sharp$
push V : shift variables, replacing (V, i) with $(V, i+1)$, then add $(V, 0)$
pop V : remove $(V, 0)$ and shift each (V, i) to $(V, i-1)$
- $S^{\sharp} \llbracket f\left(e_{1}, \ldots, e_{n}\right) \rrbracket X^{\sharp}$ is then reduced to:

$$
\begin{array}{lr}
X_{1}^{\sharp}=S^{\sharp} \llbracket \text { push } V_{1} ; \ldots ; \text { push } V_{n} \rrbracket X^{\sharp} & \text { (add fresh variables for } \mathbb{V}_{f} \text {) } \\
X_{2}^{\sharp}=S^{\sharp} \llbracket V_{1} \leftarrow e_{1} ; \ldots ; V_{n} \leftarrow e_{n} \rrbracket X_{1}^{\sharp} & \text { (bind arguments to locals) } \\
X_{3}^{\sharp}=S^{\sharp} \llbracket \text { body }(f) \rrbracket X_{2}^{\sharp} & \text { (execute the procedure body) } \\
X_{4}^{\sharp}=S^{\sharp} \llbracket \text { pop } V_{1} ; \ldots ; \text { pop } V_{n} \rrbracket X_{3}^{\sharp} & \text { (delete local variables) }
\end{array}
$$

Limitations:

- does not terminate in case of unbounded recursivity
- requires many abstract variables to represent the stacks
- procedures must be re-analyzed for every call full context-sensitivity: precise but costly

Example

Example

$$
\begin{array}{l|l}
\text { main : } & f(X): \\
\quad R \leftarrow-1 ; & R \leftarrow 2 \times X ; \\
\quad f(\operatorname{rand}(5,10)) ; & \text { if } R>100 \text { then } R \leftarrow 0 \\
\quad f(80) &
\end{array}
$$

Analysis using intervals

- after the first call to f, we get $R \in[10,20]$
- after the second call to f, we get $R=0$

Call-site abstraction

Call-site abstraction

Abstracting stacks: into a fixed, bounded set \mathbb{V}^{\sharp} of variables

- $\mathbb{V} \sharp \stackrel{\text { def }}{=} \cup_{f \in \mathcal{F}}\left\{V, \hat{V} \mid V \in \mathbb{V}_{f}\right\} \cup \mathbb{V}_{G}$ two copies of each local variable
V abstracts the value at the top of the stack (current call)
\hat{V} abstracts the rest of the stack
- $S^{\sharp} \llbracket$ push $V \rrbracket X^{\sharp} \stackrel{\text { def }}{=} X^{\sharp} \cup^{\sharp} S^{\sharp} \llbracket \hat{V} \leftarrow V \rrbracket X^{\sharp}$
$S^{\sharp} \llbracket$ pop $V \rrbracket X^{\sharp} \stackrel{\text { def }}{=} X^{\sharp} \cup^{\sharp} S^{\sharp} \llbracket V \leftarrow \hat{V} \rrbracket X^{\sharp}$
weak updates, similar to array manipulation
no need to create and delete variables dynamically
- assignments and tests always access V, not \hat{V} \Longrightarrow strong update (precise)

Note: when there is no recursivity, \hat{V}, push and pop can be omitted

Call-site abstraction

Principle: merge all the contexts in which each function is called

- we maintain two global maps $\mathcal{F} \rightarrow \mathcal{E}^{\sharp}$:
$C^{\sharp}(f)$: abstracts the environments when calling f $R^{\sharp}(f)$: abstracts the environments when returning from f gather environments from all possible calls to f, disregarding the call sites
- during the analysis, when encountering a call $S^{\sharp} \llbracket \operatorname{body}(f) \rrbracket X^{\sharp}$:
we return $R^{\sharp}(f)$
but we also replace C^{\sharp} with $C^{\sharp}\left[f \mapsto C^{\sharp}(f) \cup^{\sharp} X^{\sharp}\right]$
- $R^{\sharp}(f)$ is computed from $C^{\sharp}(f)$ as

$$
R^{\sharp}(f)=S^{\sharp} \llbracket \operatorname{body}(f) \rrbracket\left(C^{\sharp}(f)\right)
$$

Call-site abstraction

Fixpoint:

there may be circular dependencies between C^{\sharp} and R^{\sharp} e.g., in $f(2) ; f(3)$, the input for $f(3)$ depends on the output from $f(2)$
\Longrightarrow we compute a fixpoint for $C^{\#}$ by iteration:

- initially, $\forall f: C^{\sharp}(f)=R^{\sharp}(f)=\perp$
- analyze main
- while $\exists f$: $C^{\sharp}(f)$ not stable apply widening ∇ to the iterates of $C^{\sharp}(f)$ update $R^{\sharp}(f)=S^{\sharp} \llbracket \operatorname{body}(f) \rrbracket C^{\sharp}(f)$ analyze main and all the procedures again (this may modify some $C^{\sharp}(g)$)
\Longrightarrow using ∇, the analysis always terminates in finite time
we can be more efficient and avoid re-analyzing procedures when not needed e.g., use a workset algorithm, track procedure dependencies, etc.

Example

Example

$$
\begin{aligned}
& \text { main : } \\
& \quad R \leftarrow-1 ; \\
& \quad f(\mathbf{r a n d}(5,10)) \text {; } \\
& \quad f(80)
\end{aligned}
$$

$$
\begin{aligned}
& f(X): \\
& \quad R \leftarrow 2 \times X ; \\
& \text { if } R>100 \text { then } R \leftarrow 0
\end{aligned}
$$

Analysis: using intervals (without widening as there is no dependency)

- first analysis of main: we get $\perp \quad\left(\right.$ as $\left.R^{\sharp}(f)=\perp\right)$ but $C^{\sharp}(f)=[R \mapsto[-1,-1], X \mapsto[5,10]]$
- first analysis of $f: R^{\sharp}(f)=[R \mapsto[10,20], X \mapsto[5,10]]$
- second analysis of main: we get $C^{\sharp}(f)=[R \mapsto[-1,20], X \mapsto[5,80]]$
- second analysis of $f: R^{\sharp}(f)=[R \mapsto[0,100], X \mapsto[5,80]]$
- final analysis of main, we find $R \in[0,100]$ at the program end less precise than $R=0$ found by semantic inlining

Partial context-sensitivity

Variants: k-limiting, k is a constant

- stack:
assign a distinct variable for the k highest levels of V abstract the lower (unbounded) stack part with \hat{V} more precise than keeping only the top of the stack separately
- context-sensitivity:
each syntactic call has a unique call-site $\ell \in \mathcal{L}$ a call stack is a sequence of nested call sites: $c \in \mathcal{L}^{*}$ an abstract call stack remembers the last k call sites: $c^{\sharp} \in \mathcal{L}^{k}$ the C^{\sharp} and R^{\sharp} maps now distinguish abstract call stacks $C^{\sharp}, R^{\sharp}: \mathcal{L}^{k} \rightarrow \mathcal{E}^{\sharp}$
more precise than a partitioning by function only
larger k give more precision but less efficiency

Example: context-sensitivity

Example

$$
\begin{aligned}
& \text { main }: \\
& \quad R \leftarrow-1 ; \\
& \ell_{1}: f(\operatorname{rand}(5,10)) ; \\
& \ell_{2}: f(80)
\end{aligned}
$$

$$
\begin{aligned}
& f(X): \\
& \quad R \leftarrow 2 \times X ; \\
& \quad \text { if } R>100 \text { then } R \leftarrow 0
\end{aligned}
$$

Analysis: using intervals and $k=1$

- $C^{\sharp}\left(\ell_{1}\right)=[R \mapsto[-1,1], X \mapsto[5,10]]$ $\Longrightarrow R^{\sharp}\left(\ell_{1}\right)=[R \mapsto[10,20], X \mapsto[5,10]]$
- $C^{\sharp}\left(\ell_{2}\right)=[R \mapsto[10,20], X \mapsto[80,80]]$ $\Longrightarrow R^{\sharp}\left(\ell_{2}\right)=[R \mapsto[0,0], X \mapsto[80,80]]$
- at the end of the analysis, we get $R=0$ more precise than $R \in[0,100]$ found without context-sensitivity

Tabulation abstraction

Cardinal power

Principle:

the semantic of a function is $\mathrm{S} \llbracket \operatorname{body}(f) \rrbracket: \mathcal{P}(\mathcal{E}) \rightarrow \mathcal{P}(\mathcal{E})$
\Longrightarrow abstract it as an abstract function in $\mathcal{E}^{\sharp} \rightharpoonup \mathcal{E}^{\sharp}$
we use a partial function as the image of most abstract elements is not useful

Analysis: tabulated analysis

- use a global partial map $F^{\sharp}: \mathcal{F} \times \mathcal{E}^{\sharp} \rightharpoonup \mathcal{E}^{\sharp}$
- F^{\sharp} is initially empty, and is filled on-demand
- when encountering $S^{\sharp} \llbracket b o d y(f) \rrbracket X^{\sharp}$
return $F^{\sharp}\left(f, X^{\sharp}\right)$ if defined
else, compute $S^{\sharp} \llbracket \operatorname{body}(f) \rrbracket X^{\sharp}$, store it in $F^{\sharp}\left(f, X^{\sharp}\right)$ and return it
Optimizations: trade precision for efficiency
- if $X^{\sharp} \sqsubseteq Y^{\sharp}$ and $F^{\sharp}\left(f, X^{\sharp}\right)$ is not defined, we can use $F^{\sharp}\left(f, Y^{\sharp}\right)$ instead
- if the size of F^{\sharp} grows too large, use $F^{\sharp}(f, \top)$ instead sound, and ensures that the analysis terminates in finite time

Example

Example

$$
\begin{aligned}
& \text { main : } \\
& \quad R \leftarrow-1 ; \\
& \quad f(\operatorname{rand}(5,10)) ; \\
& \quad f(80)
\end{aligned}
$$

$$
\begin{aligned}
& f(X): \\
& \quad R \leftarrow 2 \times X \text {; } \\
& \text { if } R>100 \text { then } R \leftarrow 0
\end{aligned}
$$

Analysis using intervals

- $F^{\sharp}=$

$$
\begin{aligned}
& {\left[\begin{array}{rl}
(f,[R \mapsto[-1,-1], X & \mapsto[5,10]])
\end{array} \mapsto[R \mapsto[10,20], X \mapsto[5,10]],\right.} \\
&(f,[R \mapsto[10,20], X \mapsto[80,80]])\mapsto[R \mapsto[0,0], X \mapsto[80,80]]]
\end{aligned}
$$

- at the end of the analysis, we get again $R=0$
here, the function partitioning gives the same result as the call-site partitioning

Dynamic partitioning: complex example

Example: McCarthy's 91 function

main :

$$
M c(\operatorname{rand}(0,+\infty))
$$

$$
\begin{aligned}
& \operatorname{Mc}(n): \\
& \quad \text { if } n>100 \text { then } r \leftarrow n-10 \\
& \quad \text { else } \operatorname{Mc}(n+11) ; M c(r)
\end{aligned}
$$

- in the concrete, when terminating:

$$
r=n-10 \text { when } n>101, \text { and } r=91 \text { wen } n \in[0,101]
$$

- using a widening ∇ to choose tabulated abstract values $F^{\sharp}\left(f, X^{\sharp}\right)$ we find: $n \in[0,72] \quad \Rightarrow \quad r=91$
$n \in[73,90] \quad \Rightarrow \quad r \in[91,101]$
$n \in[91,101] \quad \Rightarrow \quad r=91$
$n \in[102,111] \quad \Rightarrow \quad r \in[91,101]$
$n \in[112,+\infty] \Rightarrow r \in[91,+\infty]$
(source: Bourdoncle, JFP 1992)

