Abstract Interpretation IV

Semantics and Application to Program Verification

Antoine Miné

École normale supérieure, Paris year 2015–2016

> Course 13 27 May 2016

Selected advanced topics:

- reduced products of abstract domains
- disjunctive abstract domains
- inter-procedural analysis

Practical session:

- implement a reduced product
- help with the project

Reduced products

Theory:

- the set of abstract domains is a lattice,
- ordered by abstraction, which is a partial order, i.e.:
 (C, ≤) ≤ γ (A, ⊑) denotes that C is more concrete than A.
 (every property of A can also be represented exactly in C)
- there is a least upper bound ⊔ for arbitrary sets of domains and a greatest lower bound ⊓.

Application: reduced product

Effective construction for the least upper bound $A_1 \sqcap A_2$, able to represent properties expressible in either A_1 or A_2

Benefit		
We can design more precise analyses		
by combining existing abstractions		
	_	

Abstract domain lattice

Reminder: interval abstraction

Reminder: sign abstraction

Composing abstractions

 $\begin{array}{ccc} \mathcal{P}(\mathbb{Z}) & \xleftarrow{\gamma_i} & \{ [a,b] \mid a \leq b \} \cup \{ \bot \} & \xleftarrow{\gamma'_s} & \{ \bot, 0, \leq 0, \geq 0, \top \} \\ \text{where:} & \gamma'_s(\bot) & \stackrel{\text{def}}{=} & \bot & \gamma'_s(\top) & \stackrel{\text{def}}{=} & [-\infty, +\infty] \\ & \gamma'_s(\geq 0) & \stackrel{\text{def}}{=} & [0, +\infty] & \gamma'_s(\leq 0) & \stackrel{\text{def}}{=} & [-\infty, 0] & \gamma'_s(0) & \stackrel{\text{def}}{=} & [0, 0] \end{array}$

We can compose Galois connections: If $(X_1, \sqsubseteq_1) \xrightarrow{\gamma_1} (X_2, \sqsubseteq_2) \xrightarrow{\gamma_2} (X_3, \sqsubseteq_3)$, then $(X_1, \sqsubseteq_1) \xrightarrow{\gamma_1 \circ \gamma_2} (X_3, \sqsubseteq_3)$.

 $\underline{\mathsf{Proof:}} \ (\alpha_2 \circ \alpha_1)(c) \sqsubseteq_3 \mathsf{a} \iff \alpha_1(c) \sqsubseteq_2 \gamma_2(\mathsf{a}) \iff c \sqsubseteq_1 (\gamma_1 \circ \gamma_2)(\mathsf{a})$

Abstract domain lattice

Parity domain

Reduced products

Part of the abstraction lattice for $\mathcal{P}(\mathbb{Z})$

 signs are more abstract than intervals;

every sign information can be expressed as an interval

- parities and intervals are incomparable;
 no common property, except ⊥ and ⊤
- $\mathcal{P}(\mathbb{Z})$ is the most concrete domain;
- $\{\top\}$ is the most abstract domain;
- intervals \land parities is the coarsest abstract domain more precise than intervals and parities.

Reduced product construction

Simple product

Algebraic structure:

Given two domains $(\mathcal{D}_1^{\sharp}, \sqsubseteq_1)$ and $(\mathcal{D}_2^{\sharp}, \sqsubseteq_2)$, we use pairs of abstract elements to represent conjunctions of properties.

• $\mathcal{D}_{1\times 2}^{\sharp} \stackrel{\text{def}}{=} \mathcal{D}_{1}^{\sharp} \times \mathcal{D}_{2}^{\sharp}$ • $\gamma_{1\times 2}(X_{1}^{\sharp}, X_{2}^{\sharp}) \stackrel{\text{def}}{=} \gamma_{1}(X_{1}^{\sharp}) \cap \gamma_{2}(X_{2}^{\sharp})$ • $\alpha_{1\times 2}(S) \stackrel{\text{def}}{=} (\alpha_{1}(S), \alpha_{2}(S))$ • $(X_{1}^{\sharp}, X_{2}^{\sharp}) \sqsubseteq_{1\times 2} (Y_{1}^{\sharp}, Y_{2}^{\sharp}) \stackrel{\text{def}}{\longleftrightarrow} X_{1}^{\sharp} \sqsubseteq_{1} Y_{1}^{\sharp} \text{ and } X_{2}^{\sharp} \sqsubseteq_{2} Y_{2}^{\sharp}$

Abstract operators in \mathcal{D}^{\sharp} :

Applied in parallel (independently) in each abstract domain:

•
$$(X_1^{\sharp}, X_2^{\sharp}) \cup_{1 \times 2}^{\sharp} (Y_1^{\sharp}, Y_2^{\sharp}) \stackrel{\text{\tiny def}}{=} (X_1^{\sharp} \cup_1^{\sharp} Y_1^{\sharp}, X_2^{\sharp} \cup_2^{\sharp} Y_2^{\sharp}),;$$

•
$$(X_1^{\sharp}, X_2^{\sharp}) \nabla_{1 \times 2} (Y_1^{\sharp}, Y_2^{\sharp}) \stackrel{\text{def}}{=} (X_1^{\sharp} \nabla_1 Y_1^{\sharp}, X_2^{\sharp} \nabla_2 Y_2^{\sharp});$$

Simple products: limitations

$$\begin{array}{l} V \leftarrow 1; \\ \text{while } V \leq 10 \text{ do } V \leftarrow V + 2 \text{ done}; \\ \bullet \text{ if } V \geq 12 \text{ then } \bullet V \leftarrow 0 \bullet; \end{array}$$

Analysis in the product domain of intervals and parities:

	intervals	parities	product: intervals \times parities
٠	$V \in [11, 12]$	V odd	$(V \in [11, 12]) \land (V odd)$
•	V = 12	V odd	$(V = 12) \land (V \text{ odd})$
•	V = 0	V even	$(V=0) \land (V even)$

Identical to two separate analyses:

- at •, we get (V = 12) \land (V odd), which represents \emptyset ;
- at ●, we apply V ← 0 independently on intervals and parities, which gives (V = 0) ∧ (V even), instead of Ø!

 \implies huge loss of precision

Fully reduced product

Idea: propagate information between domains

Given Galois connections (α_1, γ_1) and (α_2, γ_2) over \mathcal{D}_1^{\sharp} and \mathcal{D}_2^{\sharp} , we define a reduction operator ρ as:

$$\begin{split} \rho &: \mathcal{D}_{1 \times 2}^{\sharp} \to \mathcal{D}_{1 \times 2}^{\sharp} \\ \rho(X_1^{\sharp}, X_2^{\sharp}) \stackrel{\text{def}}{=} (\alpha_1(\gamma_1(X_1^{\sharp}) \cap \gamma_2(X_2^{\sharp})), \ \alpha_2(\gamma_1(X_1^{\sharp}) \cap \gamma_2(X_2^{\sharp}))) \end{split}$$

i.e., the best representation of $\gamma_{1\times 2}(X_1^{\sharp},X_2^{\sharp})$ in both domains

Application:

use ρ to transfer information between domains after abstract operations:

•
$$(X_1^{\sharp}, X_2^{\sharp}) \cup_{1 \times 2}^{\sharp} (Y_1^{\sharp}, Y_2^{\sharp}) \stackrel{\text{def}}{=} \rho(X_1^{\sharp} \cup_1^{\sharp} Y_1^{\sharp}, X_2^{\sharp} \cup_2^{\sharp} Y_2^{\sharp}),$$

• $S^{\sharp} \llbracket s \rrbracket_{1 \times 2} (X_1^{\sharp}, X_2^{\sharp}) \stackrel{\text{def}}{=} \rho(S^{\sharp} \llbracket s \rrbracket_1 (X_1^{\sharp}), S^{\sharp} \llbracket s \rrbracket_2 (X_2^{\sharp})).$

Warning:

 ρ should not be used on fixpoint iterates with widening $\forall (X_{n+1} \stackrel{\text{def}}{=} \rho(X_n \forall F(X_n))) \implies$ this could prevent the convergence in $\mathcal{D}_1^{\sharp} \times \mathcal{D}_2^{\sharp}!$

Analysis with reduction: exemple

$$V \leftarrow 1;$$

while $V \le 10$ do $V \leftarrow V + 2$ done;
• if $V \ge 12$ then $V \leftarrow 0$

<u>Reduction</u> ρ between intervals and parities $\rho([a, b], p)$: First refine interval bounds [a, b] using parity information p, then refine the parity information using the refined bounds:

• let
$$a' = a + 1$$
 if $a
ot\in \gamma_p(p)$, $a' = a$ otherwise;

• let
$$b' = b - 1$$
 if $b
ot\in \gamma_p(p)$, $b' = b$ otherwise;

• if
$$a' > b'$$
, return (\bot, \bot) ;

• if
$$a' = b'$$
, return $([a', b'], \alpha_p(a))$;

• otherwise, return ([a', b'], p).

Example:

At •, $\rho([11, 12], \text{odd}) = ([11, 11], \text{odd})$ \implies the "then" branch is not reachable.

Partial reduction

The optimal reduction ρ is well-defined but:

- ρ assumes we have Galois connections;
- \bullet there is no general effective algorithm to compute $\rho.$

(similar to the case of optimal operators, defined as $F^{\sharp} \stackrel{\text{def}}{=} \alpha \circ F \circ \gamma$)

Partial reduction:

Practical definition, when the optimal reduction is not available:

• $\rho(X_1^{\sharp}, X_2^{\sharp}) = (Y_1^{\sharp}, Y_2^{\sharp})$ is a partial reduction if: • $Y_1^{\sharp} \sqsubseteq_1 X_1^{\sharp}$ and $Y_2^{\sharp} \sqsubseteq_2 X_2^{\sharp}$ (improvement) • $\gamma_{1 \times 2}(Y_1^{\sharp}, Y_2^{\sharp}) = \gamma_{1 \times 2}(X_1^{\sharp}, X_2^{\sharp})$ (soundness)

Example:

$$\rho(X_1^{\sharp}, X_2^{\sharp}) \stackrel{\text{def}}{=} \begin{cases} (\bot_1, \bot_2) & \text{if } X_1^{\sharp} = \bot_1 \text{ or } X_2^{\sharp} = \bot_2 \\ (X_1^{\sharp}, X_2^{\sharp}) & \text{otherwise} \end{cases}$$

In practice, an analyzer contains many abstract domains (for expressiveness) with limited reductions between them (for efficiency).

Course 13

Abstract Interpretation IV

Disjunctive domains

Motivation

<u>Remark:</u> most domains abstract **convex sets** (conjunctions of constraints) $\implies \cup^{\sharp}$ causes a loss of precision!

Concrete semantics:

At •, $X \in [-20, -10] \cup [10, 20]$ \implies there is no division by zero

Abstract analysis:

Convex analyses (intervals, polyhedra) will find $X \in [-20, 20]$ (with intervals, $[-20, -10] \cup^{\sharp} [10, 20] = [-20, 20]$) \implies possible division by zero

Course 13

(false alarm)

Disjunctive domains

Principle:

generic constructions to lift any numeric abstract domain to a domain able to represent disjunctions exactly

Example constructions:

powerset completion

unordered "soup" of abstract elements

state partitioning

abstract elements keyed to selected subsets of environments

path-sensitive analyses

partition with respect to the history of execution

each construction has its strength and weakness they can be combined during an analysis to exploit the best of each

Powerset completion

Powerset completion

$\underline{\operatorname{Given:}} \quad (\mathcal{E}^{\sharp}, \sqsubseteq, \gamma, \cup^{\sharp}, \cap^{\sharp}, \nabla, \mathsf{S}^{\sharp}[\![\operatorname{stat}]\!])$

abstract domain \mathcal{E}^{\sharp} ordered by \sqsubseteq , which also acts as a sound abstraction of \subseteq (i.e., $\subseteq^{\sharp}=\sqsubseteq$) with concretization $\gamma: \mathcal{E}^{\sharp} \to \mathcal{P}(\mathcal{E})$ sound abstractions $\cup^{\sharp}, \cap^{\sharp}, S^{\sharp}[[stat]]]$ of $\cup, \cap, S[[stat]]]$, and a widening \bigtriangledown

$\underline{\textbf{Construct:}} \quad (\hat{\mathcal{E}}^{\sharp}, \hat{\sqsubseteq}, \hat{\gamma}, \hat{\cup}^{\sharp}, \hat{\cap}^{\sharp}, \hat{\nabla}, \hat{S}^{\sharp}[\![\textit{stat}]\!])$

- $\hat{\mathcal{E}}^{\sharp} \stackrel{\text{def}}{=} \mathcal{P}_{finite}(\mathcal{E}^{\sharp})$ (finite sets of abstract elements)
- $\hat{\gamma}(A^{\sharp}) \stackrel{\text{def}}{=} \cup \{ \gamma(X^{\sharp}) \, | \, X^{\sharp} \in A^{\sharp} \}$ (join of concretizations)

Example: using the interval domain as \mathcal{E}^{\sharp} $\hat{\gamma}(\{[-10, -5], [2, 4], [0, 0], [2, 3]\}) = [-10, -5] \cup \{0\} \cup [2, 4]$

Ordering

<u>Issue:</u> how can we compare two elements of $\hat{\mathcal{E}}^{\sharp}$?

• $\hat{\gamma}$ is generally not injective

there is no canonical representation for $\hat{\gamma}(A^{\sharp})$

• testing $\hat{\gamma}(A^{\sharp}) = \hat{\gamma}(B^{\sharp})$ or $\hat{\gamma}(A^{\sharp}) \subseteq \hat{\gamma}(B^{\sharp})$ is difficult

Example: powerset completion of the interval domain

$$\begin{aligned} &\mathcal{A}^{\sharp} = \{\{0\} \times \{0\}, \, [0,1] \times \{1\}\} \\ &\mathcal{B}^{\sharp} = \{\{0\} \times \{0\}, \, \{0\} \times \{1\}, \, \{1\} \times \{1\}\} \\ &\mathcal{C}^{\sharp} = \{\{0\} \times [0,1], \, [0,1] \times \{1\}\} \\ &\hat{\gamma}(\mathcal{A}^{\sharp}) = \hat{\gamma}(\mathcal{B}^{\sharp}) = \hat{\gamma}(\mathcal{C}^{\sharp}) \end{aligned}$$

 B^{\sharp} is more costly to represent: it requires three abstract elements instead of two C^{\sharp} is a covering and not a partition (red \cap blue = $\{0\} \times \{1\} \neq \emptyset$)

Ordering (cont.)

Solution: sound approximation of \subseteq $A^{\sharp} \stackrel{\frown}{=} B^{\sharp} \stackrel{\text{def}}{\longrightarrow} \forall X^{\sharp} \in A^{\sharp} : \exists Y^{\sharp} \in B^{\sharp} : X^{\sharp} \sqsubseteq Y^{\sharp}$ (Hoare powerdomain order)

- $\hat{\sqsubseteq}$ is a partial order (when \sqsubseteq is)
- $\widehat{\sqsubseteq}$ is a sound approximation of \subseteq (when \sqsubseteq is) $A^{\sharp} \stackrel{\circ}{\sqsubseteq} B^{\sharp} \implies \hat{\gamma}(A^{\sharp}) \subseteq \hat{\gamma}(B^{\sharp})$ but the converse may not hold
- testing $\hat{\sqsubseteq}$ reduces to testing \sqsubseteq finitely many times

$$\hat{\gamma}(A^{\sharp}) = \hat{\gamma}(B^{\sharp}) = \hat{\gamma}(C)$$
$$B^{\sharp} \stackrel{c}{\sqsubseteq} A^{\sharp} \stackrel{c}{\sqsubseteq} C^{\sharp}$$

Abstract operations

Abstract operators

•
$$\hat{\mathsf{S}}^{\sharp} \llbracket \mathsf{stat} \rrbracket \mathsf{A}^{\sharp} \stackrel{\text{def}}{=} \{ \mathsf{S}^{\sharp} \llbracket \mathsf{stat} \rrbracket \mathsf{X}^{\sharp} \mid \mathsf{X}^{\sharp} \in \mathsf{A}^{\sharp} \}$$

apply stat on each abstract element independently

• $A^{\sharp} \stackrel{\circ}{\cup}{}^{\sharp} B^{\sharp} \stackrel{\text{def}}{=} A^{\sharp} \cup B^{\sharp}$

keep elements from both arguments without applying any abstract operation $\hat{\cup}^{\sharp}$ is exact

•
$$A^{\sharp} \cap^{\sharp} B^{\sharp} \stackrel{\text{def}}{=} \{ X^{\sharp} \cap^{\sharp} Y^{\sharp} | X^{\sharp} \in A^{\sharp}, Y^{\sharp} \in B^{\sharp} \}$$

 $\cap^{\sharp} \text{ is exact if } \cap^{\sharp} \text{ is (as } \cup \text{ and } \cap \text{ are distributive)}$

Galois connection:

in general, there is no abstraction function $\hat{\alpha}$ corresponding to $\hat{\gamma}$

 $\label{eq:example:st$

Dynamic approximation

<u>Issue:</u> the size $|A^{\sharp}|$ of elements $A^{\sharp} \in \hat{\mathcal{E}}^{\sharp}$ is unbounded every application of $\hat{\cup}^{\sharp}$ adds some more elements ⇒ efficiency and convergence problems

Solution: to reduce the size of elements

redundancy removal

 $\underset{\text{ on loss of precision: } \hat{\gamma}(A^{\sharp}) \stackrel{\text{def}}{=} \{ X^{\sharp} \in A^{\sharp} \, | \, \forall Y^{\sharp} \neq X^{\sharp} \in A^{\sharp} \colon X^{\sharp} \not\sqsubseteq Y^{\sharp} \}$

• collapse: join elements in \mathcal{E}^{\sharp}

 $collapse(A^{\sharp}) \stackrel{\text{\tiny def}}{=} \{ \cup^{\sharp} \{ X^{\sharp} \in A^{\sharp} \} \}$

large loss of precision, but very effective: $|collapse(A^{\sharp})| = 1$

 partial collapse: limit |A[♯]| to a fixed size k by ∪[♯] but how to choose which elements to merge? no easy solution!

Widening

<u>Issue:</u> for loops, abstract iterations $(A_n^{\sharp})_{n \in \mathbb{N}}$ may not converge

- the size of A_n^{\sharp} may grow arbitrarily large
- even if |A_n[#]| is stable, some elements in A_n[#] may not converge if E[#] has infinite increasing sequences
- \Longrightarrow we need a widening $\hat{\nabla}$

Widenings for powerset domains are difficult to design

Example widening:collapse after a fixed number N of iterations $A_{n+1}^{\sharp} \stackrel{\text{def}}{=} A_n^{\sharp} \stackrel{\Diamond}{=} B_n^{\sharp} \stackrel{\text{def}}{=} \begin{cases} simplify(A_n^{\sharp} \stackrel{\bigcirc}{=} B_n^{\sharp}) & \text{if } n < N \\ collapse(A_n^{\sharp}) \bigtriangledown collapse(B_n^{\sharp}) & \text{otherwise} \end{cases}$

(this is very naïve, see Bagnara et al. STTT06 for more interesting widenings)

State partitioning

State partitioning

Principle:

- partition a priori $\mathcal E$ into finitely many sets
- abstract each partition of ${\mathcal E}$ independently using an element of ${\mathcal E}^{\sharp}$

Abstract domain:

Given an abstract partition $P^{\sharp} \subseteq \mathcal{E}^{\sharp}$, i.e., a set such that:

• P^{\sharp} is finite

•
$$\cup \{\gamma(X^{\sharp}) | X^{\sharp} \in P^{\sharp}\} = \mathcal{E}$$

for generality, we have in fact a covering, not a partitioning of \mathcal{E}
i.e., we can have $X^{\sharp} \neq Y^{\sharp} \in P^{\sharp}$ with $\gamma(X^{\sharp}) \cap \gamma(Y^{\sharp}) \neq \emptyset$

We define $\tilde{\mathcal{E}}^{\sharp} \stackrel{\text{\tiny def}}{=} P^{\sharp} \to \mathcal{E}^{\sharp}$

representable in memory, as P^{\sharp} is finite

Ordering

if \mathcal{E}^{\sharp} enjoys a Galois connection, so does $\tilde{\mathcal{E}}^{\sharp}$

Abstract operators

Abstract operators: point-wise extension from \mathcal{E}^{\sharp} to $P^{\sharp} \to \mathcal{E}^{\sharp}$

- $A \tilde{\cup}^{\sharp} B \stackrel{\text{def}}{=} \lambda X^{\sharp} \in P^{\sharp}.A(X^{\sharp}) \cup^{\sharp} B(X^{\sharp})$
- $A \cap^{\sharp} B \stackrel{\text{def}}{=} \lambda X^{\sharp} \in P^{\sharp}.A(X^{\sharp}) \cap^{\sharp} B(X^{\sharp})$
- $A \stackrel{\tilde{\nabla}}{=} B \stackrel{\text{def}}{=} \lambda X^{\sharp} \in P^{\sharp}.A(X^{\sharp}) \triangledown B(X^{\sharp})$
- $\tilde{\mathsf{S}}^{\sharp} \llbracket e \leq 0? \rrbracket A^{\sharp} \stackrel{\text{def}}{=} \lambda X^{\sharp} \in P^{\sharp}.\mathsf{S}^{\sharp} \llbracket e \leq 0? \rrbracket A^{\sharp}(X^{\sharp})$
- Š[#][[V ← e]] A[#] is more complex any S[#][[V ← e]] A[#](X[#]) may escape its partition X[#]; we must cut them at partition borders and glue the pieces falling into the same partition

Example analysis

Analysis:

- \mathcal{E}^{\sharp} is the interval domain
- partition with respect to the sign of X
 P[#] ^{def} = { X⁺, X⁻ } where
 X⁺ ^{def} = [0, +∞] × ℤ × ℤ and X⁻ ^{def} = [-∞, 0] × ℤ × ℤ
 at we find:

$$\begin{array}{l} X^+ \mapsto [X \in [10, 20], Y \mapsto [0, 0], Z \mapsto [0, 0]] \\ X^- \mapsto [X \in [-20, -10], Y \mapsto [1, 1], Z \mapsto [0, 0]] \end{array}$$

 \implies no division by zero

Path partitioning

Path sensitivity

Principle: partition wrt. the history of computation

- keep different abstract elements for different execution paths e.g., different branches taken, different loop iterations
- avoid merging with ∪[#] elements at control-flow joins at the end of if ··· then ··· else, or at loop head

Intuition: as a program transformation

$$\begin{array}{l} X \leftarrow \mathsf{rand}(-50, 50);\\ \mathsf{if} \ X \geq 0 \ \mathsf{then}\\ \ Y \leftarrow X + 10;\\ \ \mathsf{assert} \ Y \neq 0\\ \mathsf{else}\\ \ Y \leftarrow X - 10;\\ \ \mathsf{assert} \ Y \neq 0 \end{array}$$

the **assert** is tested in the context of each branch instead of after the control-flow join

the interval domain can prove the assertion on the right, but not on the left

Course	13
--------	----

Abstract Interpretation IV

Antoine Miné

Abstract domain

Formalization: we consider here only if · · · then · · · else

- \mathcal{L} denote syntactic labels of if \cdots then \cdots else instructions
- history abstraction $\mathbb{H} \stackrel{\text{def}}{=} \mathcal{L} \to \{ \text{true}, \text{false}, \bot \}$

 $H \in \mathbb{H}$ indicates the outcome of the last time we executed each test:

- $H(\ell) =$ true: we took the **then** branch
- $H(\ell) =$ false: we took the **else** branch
- $H(\ell) = \bot$: we never executed the test

Notes:

- \mathbb{H} can remember the outcome of several successive tests ℓ_1 : if \cdots then \cdots else; ℓ_2 : if \cdots then \cdots else
- for tests in loops, \mathbb{H} remembers only the last outcome while \cdots do ℓ : if \cdots then \cdots else
- we could extend $\mathbb H$ to longer histories with $\mathbb H=(\mathcal L\to\{\,{\sf true},{\sf false},\bot\,\})^*$
- we could extend $\mathbb H$ to track loop iterations with $\mathbb H=\mathcal L\to\mathbb N$

• $\breve{\mathcal{E}}^{\sharp} \stackrel{\text{def}}{=} \mathbb{H} \to \mathcal{E}^{\sharp}$

use a different abstract element for each abstract history

Abstract operators

- $\check{\mathcal{E}}^{\sharp} \stackrel{\text{def}}{=} \mathbb{H} \to \mathcal{E}^{\sharp}$
- $\check{\gamma}(A^{\sharp}) = \cup \{ \gamma(A^{\sharp}(H)) \, | \, H \in \mathbb{H} \}$
- $\underline{\check{}}$, $\check{\cup}^{\sharp}$, $\check{\cap}^{\sharp}$, $\check{\forall}$ are point-wise
- $\check{S}^{\sharp} \llbracket V \leftarrow e \rrbracket$ and $\check{S}^{\sharp} \llbracket e \le 0? \rrbracket$ are point-wise
- $\check{S}^{\sharp} \llbracket \ell : \text{if } c \text{ then } s_1 \text{ else } s_2 \rrbracket A^{\sharp} \text{ is more complex}$
 - we merge all information about ℓ

$$C^{\sharp} = \lambda H.A^{\sharp}(H[\ell \mapsto \mathsf{true}]) \ \cup^{\sharp} \ A^{\sharp}(H[\ell \mapsto \mathsf{false}]) \ \cup^{\sharp} \ A^{\sharp}(H[\ell \mapsto \bot])$$

- we compute the then branch, where $H(\ell) = \text{true}$ $T'^{\sharp} = \check{S}^{\sharp} \llbracket s_1 \rrbracket (\check{S}^{\sharp} \llbracket c? \rrbracket T^{\sharp})$ where $T^{\sharp} = \lambda H.C^{\sharp}(H)$ if $H(\ell) = \text{true}, \perp$ otherwise
- we compute the else branch, where $H(\ell) = \text{false}$ $F'^{\sharp} = \breve{S}^{\sharp} [\![s_2]\!] (\breve{S}^{\sharp} [\![\neg c?]\!] F^{\sharp})$ where $F^{\sharp} = \lambda H.C^{\sharp}(H)$ if $H(\ell) = \text{false}, \perp$ otherwise
- we join both branches: T'[#] Ŭ[#] F'[#]
 the join is exact as ∀H ∈ H: either T'[#](H) = ⊥ or F'[#](H) = ⊥

 \Longrightarrow we get a semantic by induction on the syntax of the original program

Complex example

Linear interpolation

 $\begin{array}{l} X \leftarrow \operatorname{rand}(TX[0], TX[N]); \\ l \leftarrow 0; \\ \text{while } l < N \land X > TX[l+1] \text{ do} \\ l \leftarrow l+1; \\ \text{done;} \\ Y \leftarrow TY[l] + (X - TX[l]) \times TS[l] \end{array}$

<u>Concrete semantics:</u> table-based interpolation based on the value of X

- look-up index I in the interpolation table: $TX[I] \le X \le TX[I+1]$
- interpolate from value TY[I] when X = TX[I] with slope TS[I]

Analysis: in the interval domain

• without partitioning: $Y \in [\min TY, \max TY] + (X - [\min TX, \max TX]) \times [\min TS, \max TS]$

• partitioning with respect to the number of loop iterations: $Y \in \bigcup_{I \in [0,N]} TY[I] + ([0, TX[I + 1] - TX[I]) \times TS[I]$ more precise as it keeps the relation between table indices

Inter-procedural analyses

Overview

• Analysis on the control-flow graph

reduce function calls and returns to *gotos* useful for the project!

Inlining

simple and precise but not efficient and may not terminate

• Call-site and call-stack abstraction

terminates even for recursive programs parametric cost-precision trade-off

Tabulated abstraction

optimal reuse of analysis partial results

 We also mentioned summary-based abstractions last week, leveraging relational domains for modular bottom-up analysis

in general, these different abstractions give incomparable results; there is no clear winner

Analysis on the control-flow graph

Inter-procedural control-flow graphs

Extend control-flow graphs:

- one subgraph for each function
- additional arcs to denote function calls and returns

we get one big graph without procedures nor calls, only gotos \implies reduced to a classic analysis based on equation systems but difficult to use in a denotational-style analysis by induction on the syntax

Note: to simplify, we assume here no local variable and no function argument:

- locals and arguments are transformed into globals
- only possible if there are no recursive calls

Example: Control-flow graph

create one control-flow graph for each function

Inter-procedural analyses

Analysis on the control-flow graph

Example: Control-flow graph

replace call instructions with gotos

Course 13

Example: Equation system

$$\begin{split} \mathcal{S}_{\text{main},1} &= \top \\ \mathcal{S}_{\text{main},2} &= S[\![R \leftarrow 1]\!] \, \mathcal{S}_{\text{main},1} \\ \mathcal{S}_{\text{main},3} &= S[\![X \leftarrow \text{rand}(5,10)]\!] \, \mathcal{S}_{\text{main},2} \\ \mathcal{S}_{\text{main},4} &= \mathcal{S}_{\text{f},6} \\ \mathcal{S}_{\text{main},5} &= S[\![X \leftarrow 80]\!] \, \mathcal{S}_{\text{main},4} \\ \mathcal{S}_{\text{main},6} &= \mathcal{S}_{\text{f},6} \end{split}$$

$S_{f,1}$:	$= S_{main,3} \cup S_{main,5}$
$S_{f,2}$:	$= S\llbracket R \leftarrow 2X \rrbracket \mathcal{S}_{f,1}$
$S_{f,3}$:	$= S[[R > 100]] S_{f,2}$
$S_{f,4}$:	$= S[[R \leftarrow 0]] \mathcal{S}_{f,3}$
$S_{f,5}$:	$= S[[R \le 100]] \mathcal{S}_{f,2}$
$\mathcal{S}_{f,6}$ =	$= \mathcal{S}_{f,4} \cup \mathcal{S}_{f,5}$

• each variable S_i denotes a set of environments at a control location i

- we can derive an abstract version of the system e.g.: $S_{f,2}^{\sharp} = S^{\sharp} [\![R \leftarrow 2X]\!] S_{f,1}^{\sharp}, S_{f,6}^{\sharp} = S_{f,4}^{\sharp} \cup^{\sharp} S_{f,5}^{\sharp},$ etc.
- we can solve the abstract system, using widenings to terminate c.f. project

Example: Equation system

$$\begin{split} \mathcal{S}_{\text{main},1}^{\sharp} &: X, R \in \mathbb{Z} \\ \mathcal{S}_{\text{main},2}^{\sharp} &: X \in \mathbb{Z}, R = -1 \\ \mathcal{S}_{\text{main},3}^{\sharp} &: X \in [5,10], R = -1 \\ \mathcal{S}_{\text{main},3}^{\sharp} &: X \in [5,80], R \in [0,100] \\ \mathcal{S}_{\text{main},4}^{\sharp} &: X \in [5,80], R \in [0,100] \\ \mathcal{S}_{\text{main},5}^{\sharp} &: X = 80, R \in [0,100] \\ \mathcal{S}_{\text{main},6}^{\sharp} &: X \in [5,80], R \in [0,100] \\ \end{split}$$

$$\begin{split} \mathcal{S}_{\text{main},1} &= \top \\ \mathcal{S}_{\text{main},2} &= \mathbb{S} \llbracket R \leftarrow 1 \rrbracket \mathcal{S}_{\text{main},1} \\ \mathcal{S}_{\text{main},3} &= \mathbb{S} \llbracket X \leftarrow \text{rand}(5,10) \rrbracket \mathcal{S}_{\text{main},2} \\ \mathcal{S}_{\text{main},4} &= \mathcal{S}_{\text{f},6} \\ \mathcal{S}_{\text{main},5} &= \mathbb{S} \llbracket X \leftarrow 80 \rrbracket \mathcal{S}_{\text{main},4} \\ \mathcal{S}_{\text{main},6} &= \mathcal{S}_{\text{f},6} \end{split}$$

$$\begin{array}{l} \mathcal{S}_{\mathrm{f},1} = \mathcal{S}_{\mathrm{main},3} \cup \mathcal{S}_{\mathrm{main},5} \\ \mathcal{S}_{\mathrm{f},2} = \mathrm{S}\llbracket R \leftarrow 2X \, \rrbracket \, \mathcal{S}_{\mathrm{f},1} \\ \mathcal{S}_{\mathrm{f},3} = \mathrm{S}\llbracket R > 100 \, \rrbracket \, \mathcal{S}_{\mathrm{f},2} \\ \mathcal{S}_{\mathrm{f},4} = \mathrm{S}\llbracket R \leftarrow 0 \, \rrbracket \, \mathcal{S}_{\mathrm{f},3} \\ \mathcal{S}_{\mathrm{f},5} = \mathrm{S}\llbracket R \leq 100 \, \rrbracket \, \mathcal{S}_{\mathrm{f},2} \\ \mathcal{S}_{\mathrm{f},6} = \mathcal{S}_{\mathrm{f},4} \cup \mathcal{S}_{\mathrm{f},5} \end{array}$$

Imprecision

In fact, in our example, R = 0 holds at the end of the program but we find $R \in [0, 100]!$

 \Longrightarrow the analysis is imprecise

Explanation: the control-flow graph adds impossible executions paths

General case: concrete semantics

Procedures

Syntax:

- \mathcal{F} finite set of procedure names
- **body** : $\mathcal{F} \rightarrow stat$: procedure bodies
- *main* ∈ *stat*: entry point body
- V_G : set of global variables
- V_f: set of local variables for procedure f ∈ F procedure f can only access V_f ∪ V_G main has no local variable and can only access V_G
- stat ::= $f(expr_1, \ldots, expr_{|V_f|}) | \cdots$
 - procedure call, $f \in \mathcal{F}$, setting all its local variables

local variables double as procedure arguments no special mechanism to return a value (a global variable can be used)

Concrete environments

Notes:

- when f calls g, we must remember the value of f's locals V_f in the semantics of g and restore them when returning
- several copies of each $V \in V_f$ may exist at a given time due to recursive calls, i.e.: cycles in the call graph
- \implies concrete environments use per-variable stacks

<u>Stacks</u>: $\mathcal{S} \stackrel{\text{def}}{=} \mathbb{Z}^*$ (finite sequences of integers)

•
$$\mathsf{push}(v,s) \stackrel{\mathsf{def}}{=} v \cdot s$$
 $(v,v' \in \mathbb{Z}, s, s' \in S)$

- $\mathbf{pop}(s) \stackrel{\text{def}}{=} s'$ when $\exists v : s = v \cdot s'$, undefined otherwise
- $\mathbf{peek}(s) \stackrel{\text{def}}{=} v$ when $\exists s' : s = v \cdot s'$, undefined otherwise
- $set(v,s) \stackrel{\text{def}}{=} v \cdot s'$ when $\exists v' : s = v' \cdot s'$, undefined otherwise

<u>Environments</u>: $\mathcal{E} \stackrel{\text{def}}{=} (\cup_{f \in \mathcal{F}} \mathbb{V}_f \cup \mathbb{V}_G) \rightarrow \mathcal{S}$

for $\mathbb{V}_{\mathcal{G}},$ stacks are not necessary but simplify the presentation

traditionally, there is a single global stack for all local variables using per-variable stacks instead also makes the presentation simpler

Course 13

Abstract Interpretation IV

Antoine Miné

Concrete semantics

<u>Concrete semantics</u>: on $\mathcal{E} \stackrel{\text{def}}{=} (\cup_{f \in \mathcal{F}} \mathbb{V}_f \cup \mathbb{V}_G) \to \mathcal{S}$ variable reads and updates only consider the top of the stack; procedure calls push and pop local variables

- $\mathbb{E}\llbracket V \rrbracket \rho \stackrel{\text{def}}{=} \mathbf{peek}(\rho(V))$
- S[[$V \leftarrow e$]] $R \stackrel{\text{def}}{=} \{ \rho[V \mapsto \operatorname{set}(x, \rho(V))] \mid \rho \in R, x \in \mathsf{E}[\![e]\!] \rho \}$

•
$$S[[f(e_{V_1},...,e_{V_n})]] R = R_3$$
, where:

 $R_{1} \stackrel{\text{def}}{=} \{ \rho[\forall V \in \mathbb{V}_{f} : V \mapsto \mathsf{push}(x_{V}, \rho(V))] \mid \rho \in R, \forall V \in \mathbb{V}_{f} : x_{V} \in \mathbb{E}\llbracket e_{V} \rrbracket \rho \}$ (evaluate each argument e_{V} and push its value x_{V} on the stack $\rho(V)$) $R_{2} \stackrel{\text{def}}{=} S\llbracket body(f) \rrbracket R_{1}$ (evaluate the procedure body) $R_{3} \stackrel{\text{def}}{=} \{ \rho[\forall V \in \mathbb{V}_{f} : V \mapsto \mathsf{pop}(\rho(V))] \mid \rho \in R_{2} \}$ (pop local variables)

• initial environment: $\rho_0 \stackrel{\text{def}}{=} \lambda V \in \mathbb{V}_G.0$

other statements are unchanged

Semantic inlining

Semantic inlining

Naïve abstract procedure call: mimic the concrete semantics

• assign abstract variables to stack positions:

 $\mathbb{V}^{\sharp} \stackrel{\text{def}}{=} \mathbb{V}_{\mathcal{G}} \cup \left(\cup_{f \in \mathcal{F}} \mathbb{V}_{f} \times \mathbb{N} \right)$

 \mathbb{V}^{\sharp} is infinite, but each abstract environment uses finitely many variables

•
$$\mathcal{E}^{\sharp}_{\mathbb{V}}$$
 abstracts $\mathcal{P}(\mathbb{V} \to \mathbb{Z})$, for any finite $\mathbb{V} \subseteq \mathbb{V}^{\sharp}$

 $V \in \mathbb{V}_f$ denotes (V, 0) in \mathbb{V}^{\sharp} **push** V: shift variables, replacing (V, i) with (V, i + 1), then add (V, 0)**pop** V: remove (V, 0) and shift each (V, i) to (V, i - 1)

•
$$S^{\sharp} \llbracket f(e_1, \ldots, e_n) \rrbracket X^{\sharp}$$
 is then reduced to:
 $X_1^{\sharp} = S^{\sharp} \llbracket push V_1; \ldots; push V_n \rrbracket X^{\sharp}$ (add fresh variables for \mathbb{V}_f)
 $X_2^{\sharp} = S^{\sharp} \llbracket V_1 \leftarrow e_1; \ldots; V_n \leftarrow e_n \rrbracket X_1^{\sharp}$ (bind arguments to locals)
 $X_3^{\sharp} = S^{\sharp} \llbracket body(f) \rrbracket X_2^{\sharp}$ (execute the procedure body)
 $X_4^{\sharp} = S^{\sharp} \llbracket pop V_1; \ldots; pop V_n \rrbracket X_3^{\sharp}$ (delete local variables)

Limitations:

- does not terminate in case of unbounded recursivity
- requires many abstract variables to represent the stacks
- procedures must be re-analyzed for every call full context-sensitivity: precise but costly

Example

Analysis using intervals

- after the first call to f, we get $R \in [10, 20]$
- after the second call to f, we get R = 0

Abstracting stacks: into a fixed, bounded set \mathbb{V}^{\sharp} of variables

•
$$\mathbb{V}^{\sharp} \stackrel{\text{def}}{=} \bigcup_{f \in \mathcal{F}} \{ V, \hat{V} \mid V \in \mathbb{V}_f \} \cup \mathbb{V}_G$$

two copies of each local variable
 V abstracts the value at the top of the stack (current call)
 \hat{V} abstracts the rest of the stack

•
$$S^{\sharp}[[push V]] X^{\sharp} \stackrel{\text{def}}{=} X^{\sharp} \cup^{\sharp} S^{\sharp}[[\hat{V} \leftarrow V]] X^{\sharp}$$

 $S^{\sharp}[[pop V]] X^{\sharp} \stackrel{\text{def}}{=} X^{\sharp} \cup^{\sharp} S^{\sharp}[[V \leftarrow \hat{V}]] X^{\sharp}$

weak updates, similar to array manipulation no need to create and delete variables dynamically

• assignments and tests always access V, not $\hat{V} \implies$ strong update (precise)

<u>Note:</u> when there is no recursivity, \hat{V} , **push** and **pop** can be omitted

Principle: merge all the contexts in which each function is called

- we maintain two global maps $\mathcal{F} \to \mathcal{E}^{\sharp}$:
 - $C^{\sharp}(f)$: abstracts the environments when calling f $R^{\sharp}(f)$: abstracts the environments when returning from fgather environments from all possible calls to f, disregarding the call sites
- during the analysis, when encountering a call S[#] [[body(f)]] X[#]: we return R[#](f) but we also replace C[#] with C[#] [f → C[#](f) ∪[#] X[#]]
- *R*[#](*f*) is computed from *C*[#](*f*) as
 R[#](*f*) = *S*[#][[body(*f*)](*C*[#](*f*))

Fixpoint:

there may be circular dependencies between C^{\sharp} and R^{\sharp}

e.g., in f(2); f(3), the input for f(3) depends on the output from f(2)

 \implies we compute a fixpoint for C^{\sharp} by iteration:

• initially,
$$\forall f \colon C^{\sharp}(f) = R^{\sharp}(f) = \bot$$

• analyze main

```
    while ∃f: C<sup>#</sup>(f) not stable
        apply widening ∇ to the iterates of C<sup>#</sup>(f)
        update R<sup>#</sup>(f) = S<sup>#</sup>[[body(f)]] C<sup>#</sup>(f)
        analyze main and all the procedures again
        (this may modify some C<sup>#</sup>(g))
```

\Longrightarrow using \triangledown , the analysis always terminates in finite time

we can be more efficient and avoid re-analyzing procedures when not needed e.g., use a workset algorithm, track procedure dependencies, etc.

Example

Example	
$\begin{array}{l} \begin{array}{l} \textit{main}:\\ R\leftarrow-1;\\ \textit{f}(\textit{rand}(5,10));\\ \textit{f}(80) \end{array}$	$f(X):$ $R \leftarrow 2 \times X;$ if $R > 100$ then $R \leftarrow 0$

Analysis: using intervals (without widening as there is no dependency)

- first analysis of main: we get \perp (as $R^{\sharp}(f) = \perp$) but $C^{\sharp}(f) = [R \mapsto [-1, -1], X \mapsto [5, 10]]$
- first analysis of $f: R^{\sharp}(f) = [R \mapsto [10, 20], X \mapsto [5, 10]]$
- second analysis of *main*: we get $C^{\ddagger}(f) = [R \mapsto [-1, 20], X \mapsto [5, 80]]$
- second analysis of $f: R^{\sharp}(f) = [R \mapsto [0, 100], X \mapsto [5, 80]]$
- final analysis of *main*, we find $R \in [0, 100]$ at the program end less precise than R = 0 found by semantic inlining

Partial context-sensitivity

<u>Variants:</u> k-limiting, k is a constant

• stack:

assign a distinct variable for the k highest levels of V abstract the lower (unbounded) stack part with \hat{V} more precise than keeping only the top of the stack separately

• context-sensitivity:

each syntactic call has a unique call-site $\ell \in \mathcal{L}$ a call stack is a sequence of nested call sites: $c \in \mathcal{L}^*$ an abstract call stack remembers the last k call sites: $c^{\sharp} \in \mathcal{L}^k$ the C^{\sharp} and R^{\sharp} maps now distinguish abstract call stacks $C^{\sharp}, R^{\sharp} : \mathcal{L}^k \to \mathcal{E}^{\sharp}$

more precise than a partitioning by function only

larger k give more precision but less efficiency

Example: context-sensitivity

Analysis: using intervals and k = 1

•
$$C^{\sharp}(\ell_1) = [R \mapsto [-1, 1], X \mapsto [5, 10]]$$

 $\implies R^{\sharp}(\ell_1) = [R \mapsto [10, 20], X \mapsto [5, 10]]$

•
$$C^{\sharp}(\ell_2) = [R \mapsto [10, 20], X \mapsto [80, 80]]$$

 $\implies R^{\sharp}(\ell_2) = [R \mapsto [0, 0], X \mapsto [80, 80]]$

 at the end of the analysis, we get R = 0 more precise than R ∈ [0, 100] found without context-sensitivity

Tabulation abstraction

Cardinal power

Principle:

- the semantic of a function is $S[body(f)] : \mathcal{P}(\mathcal{E}) \to \mathcal{P}(\mathcal{E})$
- \implies abstract it as an abstract function in $\mathcal{E}^{\sharp} \rightharpoonup \mathcal{E}^{\sharp}$
- we use a partial function as the image of most abstract elements is not useful

Analysis: tabulated analysis

- use a global partial map $F^{\sharp} : \mathcal{F} \times \mathcal{E}^{\sharp} \rightharpoonup \mathcal{E}^{\sharp}$
- F^{\sharp} is initially empty, and is filled on-demand
- when encountering S[#] [[body(f)]] X[#] return F[#](f, X[#]) if defined else, compute S[#] [[body(f)]] X[#], store it in F[#](f, X[#]) and return it

Optimizations: trade precision for efficiency

- if $X^{\sharp} \sqsubseteq Y^{\sharp}$ and $F^{\sharp}(f, X^{\sharp})$ is not defined, we can use $F^{\sharp}(f, Y^{\sharp})$ instead
- if the size of F[#] grows too large, use F[#](f, ⊤) instead sound, and ensures that the analysis terminates in finite time

Example

here, the function partitioning gives the same result as the call-site partitioning

Inter-procedural analyses

Dynamic partitioning: complex example

```
Example: McCarthy's 91 function

main :

Mc(rand(0, +\infty))

Mc(n) :

if n > 100 then r \leftarrow n - 10

else Mc(n + 11); Mc(r)
```

• in the concrete, when terminating: r = n - 10 when n > 101, and r = 91 wen $n \in [0, 101]$

• using a widening ∇ to choose tabulated abstract values $F^{\sharp}(f, X^{\sharp})$ we find: $n \in [0, 72] \Rightarrow r = 91$ $n \in [73, 90] \Rightarrow r \in [91, 101]$ $n \in [91, 101] \Rightarrow r = 91$ $n \in [102, 111] \Rightarrow r \in [91, 101]$ $n \in [112, +\infty] \Rightarrow r \in [91, +\infty]$

(source: Bourdoncle, JFP 1992)