
Abstract Interpretation IV
Semantics and Application to Program Verification

Antoine Miné

École normale supérieure, Paris
year 2015–2016

Course 13
27 May 2016

Course 13 Abstract Interpretation IV Antoine Miné p. 1 / 61

Overview

Selected advanced topics:

reduced products of abstract domains

disjunctive abstract domains

inter-procedural analysis

Practical session:

implement a reduced product

help with the project

Course 13 Abstract Interpretation IV Antoine Miné p. 2 / 61

Reduced products

Reduced products

Course 13 Abstract Interpretation IV Antoine Miné p. 3 / 61

Reduced products

Idea

Theory:

the set of abstract domains is a lattice,

ordered by abstraction, which is a partial order, i.e.:

(C ,≤) −−−→←−−−α
γ

(A,v) denotes that C is more concrete than A.

(every property of A can also be represented exactly in C)

there is a least upper bound t for arbitrary sets of domains
and a greatest lower bound u.

Application: reduced product

Effective construction for the least upper bound A1 u A2,
able to represent properties expressible in either A1 or A2

Benefit

We can design more precise analyses
by combining existing abstractions

Course 13 Abstract Interpretation IV Antoine Miné p. 4 / 61

Reduced products Abstract domain lattice

Abstract domain lattice

Course 13 Abstract Interpretation IV Antoine Miné p. 5 / 61

Reduced products Abstract domain lattice

Reminder: interval abstraction

P(Z) −−−→←−−−αi

γi { [a, b] | a ≤ b } ∪ {⊥}

αi (S)
def
= [min S ,max S]

γi ([a, b])
def
= { x ∈ Z | a ≤ x ≤ b }

Course 13 Abstract Interpretation IV Antoine Miné p. 6 / 61

Reduced products Abstract domain lattice

Reminder: sign abstraction

P(Z) −−−→←−−−αs

γs {⊥, 0,≤ 0,≥ 0,>}

γs(⊥)
def
= ∅

γs(0)
def
= {0}

γs(≥ 0)
def
= N

γs(≤ 0)
def
= −N

γs(>)
def
= Z

αs(S)
def
=

⊥ if S = ∅
0 if S = {0}
≥ 0 else, if ∀s ∈ S , s ≥ 0

≤ 0 else, if ∀s ∈ S , s ≤ 0

> otherwise

Course 13 Abstract Interpretation IV Antoine Miné p. 7 / 61

Reduced products Abstract domain lattice

Composing abstractions

P(Z) −−−→←−−−αi

γi { [a, b] | a ≤ b } ∪ {⊥} −−−→←−−−
α′

s

γ′
s {⊥, 0,≤ 0,≥ 0,>}

where: γ′s(⊥)
def
= ⊥ γ′s(>)

def
= [−∞,+∞]

γ′s(≥ 0)
def
= [0,+∞] γ′s(≤ 0)

def
= [−∞, 0] γ′s(0)

def
= [0, 0]

We can compose Galois connections:

If (X1,v1) −−−→←−−−
α1

γ1

(X2,v2) −−−→←−−−
α2

γ2

(X3,v3), then

(X1,v1) −−−−−→←−−−−−
α2◦α1

γ1◦γ2

(X3,v3).

Proof: (α2 ◦ α1)(c) v3 a ⇐⇒ α1(c) v2 γ2(a) ⇐⇒ c v1 (γ1 ◦ γ2)(a)

Course 13 Abstract Interpretation IV Antoine Miné p. 8 / 61

Reduced products Abstract domain lattice

Parity domain

P(Z) −−−→←−−−
αp

γp

{⊥,>, even, odd}

γp(⊥)
def
= ∅

γp(even)
def
= 2Z

γp(odd)
def
= 2Z + 1

γp(>)
def
= Z

αp(S)
def
=

⊥ if S = ∅
even else, if S ⊆ 2Z

odd else, if S ⊆ 2Z + 1

> otherwise

Course 13 Abstract Interpretation IV Antoine Miné p. 9 / 61

Reduced products Abstract domain lattice

Part of the abstraction lattice for P(Z)

signs are more abstract than
intervals;
every sign information can be expressed as
an interval

parities and intervals are
incomparable;
no common property, except ⊥ and >

P(Z) is the most concrete domain;

{>} is the most abstract domain;

intervals ∧ parities is the coarsest
abstract domain more precise than
intervals and parities.

Course 13 Abstract Interpretation IV Antoine Miné p. 10 / 61

Reduced products Reduced product construction

Reduced product construction

Course 13 Abstract Interpretation IV Antoine Miné p. 11 / 61

Reduced products Reduced product construction

Simple product

Algebraic structure:

Given two domains (D]1,v1) and (D]2,v2), we use pairs of abstract
elements to represent conjunctions of properties.

D]1×2
def
= D]1 × D

]
2

γ1×2(X]
1 ,X

]
2)

def
= γ1(X]

1) ∩ γ2(X]
2)

α1×2(S)
def
= (α1(S), α2(S))

(X]
1 ,X

]
2) v1×2 (Y]

1 ,Y
]
2)

def⇐⇒ X]
1 v1 Y]

1 and X]
2 v2 Y]

2

Abstract operators in D]:
Applied in parallel (independently) in each abstract domain:

(X]
1 ,X

]
2) ∪]1×2 (Y]

1 ,Y
]
2)

def
= (X]

1 ∪
]
1 Y]

1 , X]
2 ∪

]
2 Y]

2), ;

(X]
1 ,X

]
2) O1×2 (Y]

1 ,Y
]
2)

def
= (X]

1 O1 Y]
1 , X]

2 O2 Y]
2);

S]J s K 1×2(X]
1 ,X

]
2)

def
= (S]J s K 1(X]

1), S]J s K 2(X]
2)).

Course 13 Abstract Interpretation IV Antoine Miné p. 12 / 61

Reduced products Reduced product construction

Simple products: limitations

V ← 1;
while V ≤ 10 do V ← V + 2 done;
• if V ≥ 12 then • V ← 0 •;

Analysis in the product domain of intervals and parities:

intervals parities product: intervals × parities
• V ∈ [11, 12] V odd (V ∈ [11, 12]) ∧ (V odd)
• V = 12 V odd (V = 12) ∧ (V odd)
• V = 0 V even (V = 0) ∧ (V even)

Identical to two separate analyses:

at •, we get (V = 12) ∧ (V odd), which represents ∅;
at •, we apply V ← 0 independently on intervals and parities,
which gives (V = 0) ∧ (V even), instead of ∅!

=⇒ huge loss of precision
Course 13 Abstract Interpretation IV Antoine Miné p. 13 / 61

Reduced products Reduced product construction

Fully reduced product

Idea: propagate information between domains

Given Galois connections (α1, γ1) and (α2, γ2) over D]1 and D]2,
we define a reduction operator ρ as:

ρ : D]1×2 → D
]
1×2

ρ(X]
1 ,X

]
2)

def
= (α1(γ1(X]

1) ∩ γ2(X]
2)), α2(γ1(X]

1) ∩ γ2(X]
2)))

i.e., the best representation of γ1×2(X]
1 ,X

]
2) in both domains

Application:

use ρ to transfer information between domains after abstract operations:

(X]
1 ,X

]
2) ∪]1×2 (Y]

1 ,Y
]
2)

def
= ρ(X]

1 ∪
]
1 Y]

1 , X]
2 ∪

]
2 Y]

2),

S]J s K 1×2(X]
1 ,X

]
2)

def
= ρ(S]J s K 1(X]

1), S]J s K 2(X]
2)).

Warning:

ρ should not be used on fixpoint iterates with widening O (Xn+1
def
= ρ(Xn O F (Xn)))

=⇒ this could prevent the convergence in D]
1 ×D

]
2!

Course 13 Abstract Interpretation IV Antoine Miné p. 14 / 61

Reduced products Reduced product construction

Analysis with reduction: exemple

V ← 1;
while V ≤ 10 do V ← V + 2 done;
• if V ≥ 12 then V ← 0

Reduction ρ between intervals and parities ρ([a, b], p):

First refine interval bounds [a, b] using parity information p,
then refine the parity information using the refined bounds:

let a′ = a + 1 if a 6∈ γp(p), a′ = a otherwise;

let b′ = b − 1 if b 6∈ γp(p), b′ = b otherwise;

if a′ > b′, return (⊥,⊥) ;

if a′ = b′, return ([a′, b′], αp(a)) ;

otherwise, return ([a′, b′], p).

Example:

At •, ρ([11, 12], odd) = ([11, 11], odd)
=⇒ the “then” branch is not reachable.

Course 13 Abstract Interpretation IV Antoine Miné p. 15 / 61

Reduced products Reduced product construction

Partial reduction

The optimal reduction ρ is well-defined but:

ρ assumes we have Galois connections;
there is no general effective algorithm to compute ρ.

(similar to the case of optimal operators, defined as F] def
= α ◦ F ◦ γ)

Partial reduction:

Practical definition, when the optimal reduction is not available:

ρ(X]
1 ,X

]
2) = (Y]

1 ,Y
]
2) is a partial reduction if:

Y]
1 v1 X]

1 and Y]
2 v2 X]

2 (improvement)

γ1×2(Y]
1 ,Y

]
2) = γ1×2(X]

1 ,X
]
2) (soundness)

Example:

ρ(X]
1 ,X

]
2)

def
=

{
(⊥1,⊥2) if X]

1 = ⊥1 or X]
2 = ⊥2

(X]
1 ,X

]
2) otherwise

In practice, an analyzer contains many abstract domains (for expressiveness)

with limited reductions between them (for efficiency).

Course 13 Abstract Interpretation IV Antoine Miné p. 16 / 61

Disjunctive domains

Disjunctive domains

Course 13 Abstract Interpretation IV Antoine Miné p. 17 / 61

Disjunctive domains

Motivation

Remark: most domains abstract convex sets (conjunctions of constraints)

=⇒ ∪] causes a loss of precision!

The need for non-convex invariants

X ← rand(10, 20);
Y ← rand(0, 1);
if Y > 0 then X ← −X ;

• Z ← 100/X

Concrete semantics:

At •, X ∈ [−20,−10] ∪ [10, 20]
=⇒ there is no division by zero

Abstract analysis:

Convex analyses (intervals, polyhedra) will find X ∈ [−20, 20]
(with intervals, [−20,−10] ∪] [10, 20] = [−20, 20])

=⇒ possible division by zero (false alarm)

Course 13 Abstract Interpretation IV Antoine Miné p. 18 / 61

Disjunctive domains

Disjunctive domains

Principle:

generic constructions to lift any numeric abstract domain
to a domain able to represent disjunctions exactly

Example constructions:

powerset completion
unordered “soup” of abstract elements

state partitioning
abstract elements keyed to selected subsets of environments

path-sensitive analyses
partition with respect to the history of execution

each construction has its strength and weakness
they can be combined during an analysis to exploit the best of each

Course 13 Abstract Interpretation IV Antoine Miné p. 19 / 61

Disjunctive domains Powerset completion

Powerset completion

Course 13 Abstract Interpretation IV Antoine Miné p. 20 / 61

Disjunctive domains Powerset completion

Powerset completion

Given: (E],v, γ,∪],∩],O,S]J stat K)
abstract domain E]
ordered by v, which also acts as a sound abstraction of ⊆ (i.e., ⊆]=v)
with concretization γ : E] → P(E)
sound abstractions ∪], ∩], S]J stat K of ∪, ∩, SJ stat K , and a widening O

Construct: (Ê], v̂, γ̂, ∪̂], ∩̂], Ô, Ŝ]J stat K)

Ê] def
= Pfinite(E]) (finite sets of abstract elements)

γ̂(A])
def
= ∪ { γ(X]) |X] ∈ A] } (join of concretizations)

Example: using the interval domain as E]

γ̂({[−10,−5], [2, 4], [0, 0], [2, 3]}) = [−10,−5] ∪ {0} ∪ [2, 4]

Course 13 Abstract Interpretation IV Antoine Miné p. 21 / 61

Disjunctive domains Powerset completion

Ordering

Issue: how can we compare two elements of Ê]?

γ̂ is generally not injective
there is no canonical representation for γ̂(A])

testing γ̂(A]) = γ̂(B]) or γ̂(A]) ⊆ γ̂(B]) is difficult

Example: powerset completion of the interval domain

A] B] C]

A] = {{0} × {0}, [0, 1]× {1}}
B] = {{0} × {0}, {0} × {1}, {1} × {1}}
C] = {{0} × [0, 1], [0, 1]× {1}}
γ̂(A]) = γ̂(B]) = γ̂(C])

B] is more costly to represent: it requires three abstract elements instead of two
C] is a covering and not a partition (red ∩ blue = {0} × {1} 6= ∅)

Course 13 Abstract Interpretation IV Antoine Miné p. 22 / 61

Disjunctive domains Powerset completion

Ordering (cont.)

Solution: sound approximation of ⊆

A] v̂ B] def⇐⇒ ∀X] ∈ A]:∃Y] ∈ B]: X] v Y] (Hoare powerdomain order)

v̂ is a partial order (when v is)

v̂ is a sound approximation of ⊆ (when v is)

A] v̂ B] =⇒ γ̂(A]) ⊆ γ̂(B]) but the converse may not hold

testing v̂ reduces to testing v finitely many times

Example: powerset completion of the interval domain

A] B] C]

γ̂(A]) = γ̂(B]) = γ̂(C])

B] v̂ A] v̂ C]

Course 13 Abstract Interpretation IV Antoine Miné p. 23 / 61

Disjunctive domains Powerset completion

Abstract operations

Abstract operators

Ŝ]J stat K A]
def
= { S]J stat K X] |X] ∈ A] }

apply stat on each abstract element independently

A] ∪̂] B] def
= A] ∪ B]

keep elements from both arguments without applying any abstract operation

∪̂] is exact

A] ∩̂] B] def
= {X] ∩] Y] |X] ∈ A], Y] ∈ B] }

∩̂] is exact if ∩] is (as ∪ and ∩ are distributive)

Galois connection:

in general, there is no abstraction function α̂ corresponding to γ̂

Example: powerset completion Ê] of the interval domain E]

given the disc S
def
= { (x , y) | x2 + y2 ≤ 1 }

α(S) = [−1, 1]× [−1, 1] (optimal interval abstraction)
but there is no best abstraction in Ê]

S S

not α̂(S)α(S)

Course 13 Abstract Interpretation IV Antoine Miné p. 24 / 61

Disjunctive domains Powerset completion

Dynamic approximation

Issue: the size |A]| of elements A] ∈ Ê] is unbounded
every application of ∪̂] adds some more elements

=⇒ efficiency and convergence problems

Solution: to reduce the size of elements

redundancy removal

simplify(A])
def
= {X] ∈ A] | ∀Y] 6= X] ∈ A]: X] 6v Y] }

no loss of precision: γ̂(simplify(A])) = γ̂(A])

collapse: join elements in E]

collapse(A])
def
= {∪] {X] ∈ A] } }

large loss of precision, but very effective: |collapse(A])| = 1

partial collapse: limit |A]| to a fixed size k by ∪]
but how to choose which elements to merge? no easy solution!

Course 13 Abstract Interpretation IV Antoine Miné p. 25 / 61

Disjunctive domains Powerset completion

Widening

Issue: for loops, abstract iterations (A]n)n∈N may not converge

the size of A]n may grow arbitrarily large

even if |A]n| is stable, some elements in A]n may not converge
if E] has infinite increasing sequences

=⇒ we need a widening Ô

Widenings for powerset domains are difficult to design

Example widening: collapse after a fixed number N of iterations

A]n+1
def
= A]n Ô B]

n
def
=

{
simplify(A]n ∪̂

]
B]

n) if n < N

collapse(A]n) O collapse(B]
n) otherwise

(this is very näıve, see Bagnara et al. STTT06 for more interesting widenings)

Course 13 Abstract Interpretation IV Antoine Miné p. 26 / 61

Disjunctive domains State partitioning

State partitioning

Course 13 Abstract Interpretation IV Antoine Miné p. 27 / 61

Disjunctive domains State partitioning

State partitioning

Principle:

partition a priori E into finitely many sets

abstract each partition of E independently
using an element of E]

Abstract domain:

Given an abstract partition P] ⊆ E], i.e., a set such that:

P] is finite

∪ { γ(X]) |X] ∈ P] } = E
for generality, we have in fact a covering, not a partitioning of E
i.e., we can have X] 6= Y] ∈ P] with γ(X]) ∩ γ(Y]) 6= ∅

We define Ẽ] def
= P] → E]

representable in memory, as P] is finite

Course 13 Abstract Interpretation IV Antoine Miné p. 28 / 61

Disjunctive domains State partitioning

Ordering

P1

P2

P3

P4

P5

Example: E] is the interval domain

P] = {P1,P2,P3,P4,P5} where
P1 = [−∞, 0]× [−∞,+∞]
P2 = [0, 10]× [0,+∞]
P3 = [0, 10]× [−∞, 0]
P4 = [10,+∞]× [0,+∞]
P5 = [10,+∞]× [−∞, 0]

X] = [P1 7→ [−6,−5]× [5, 6],
P2 7→ ⊥,
P3 7→ [9, 10]× [−∞,−1],
P4 7→ ⊥,
P5 7→ [10, 12]× [−3,−1]]

Ẽ] def
= P] → E]

γ̃(A])
def
= ∪ { γ(A](X])) ∩ γ(X]) |X] ∈ P] }

A] ṽ B] def⇐⇒ ∀X] ∈ P]: A](X]) v B](X]) (point-wise order)

α̃(S)
def
= λX] ∈ P].α(S ∩ γ(X]))

if E] enjoys a Galois connection, so does Ẽ]

Course 13 Abstract Interpretation IV Antoine Miné p. 29 / 61

Disjunctive domains State partitioning

Abstract operators

Abstract operators: point-wise extension from E] to P] → E]

A ∪̃] B
def
= λX] ∈ P].A(X]) ∪] B(X])

A ∩̃] B
def
= λX] ∈ P].A(X]) ∩] B(X])

A Õ B
def
= λX] ∈ P].A(X]) O B(X])

S̃]J e ≤ 0? K A]
def
= λX] ∈ P].S]J e ≤ 0? K A](X])

S̃]J V ← e K A] is more complex
any S]J V ← e K A](X]) may escape its partition X]; we must cut them at
partition borders and glue the pieces falling into the same partition

example: X ← X + 2

S̃]J V ← e K A]
def
= λX]. ∪] {X] ∩] S]J V ← e K A(Y]) |Y] ∈ P] }

Course 13 Abstract Interpretation IV Antoine Miné p. 30 / 61

Disjunctive domains State partitioning

Example analysis

Example

X ← rand(10, 20);
Y ← rand(0, 1);
if Y > 0 then X ← −X ;

• Z ← 100/X

Analysis:

E] is the interval domain

partition with respect to the sign of X

P]
def
= {X +,X− } where

X + def
= [0,+∞]× Z× Z and X−

def
= [−∞, 0]× Z× Z

at • we find:
X + 7→ [X ∈ [10, 20],Y 7→ [0, 0],Z 7→ [0, 0]]
X− 7→ [X ∈ [−20,−10],Y 7→ [1, 1],Z 7→ [0, 0]]

=⇒ no division by zero

Course 13 Abstract Interpretation IV Antoine Miné p. 31 / 61

Disjunctive domains Path partitioning

Path partitioning

Course 13 Abstract Interpretation IV Antoine Miné p. 32 / 61

Disjunctive domains Path partitioning

Path sensitivity

Principle: partition wrt. the history of computation

keep different abstract elements for different execution paths
e.g., different branches taken, different loop iterations

avoid merging with ∪] elements at control-flow joins
at the end of if · · · then · · · else, or at loop head

Intuition: as a program transformation

X ← rand(−50, 50);
if X ≥ 0 then

Y ← X + 10
else

Y ← X − 10;
assert Y 6= 0

−→

X ← rand(−50, 50);
if X ≥ 0 then

Y ← X + 10;
assert Y 6= 0

else
Y ← X − 10;
assert Y 6= 0

the assert is tested in the context of each branch
instead of after the control-flow join

the interval domain can prove the assertion on the right, but not on the left

Course 13 Abstract Interpretation IV Antoine Miné p. 33 / 61

Disjunctive domains Path partitioning

Abstract domain

Formalization: we consider here only if · · · then · · · else

L denote syntactic labels of if · · · then · · · else instructions

history abstraction H
def
= L → {true, false,⊥}

H ∈ H indicates the outcome of the last time we executed each test:

H(`) = true: we took the then branch
H(`) = false: we took the else branch
H(`) = ⊥: we never executed the test

Notes:

– H can remember the outcome of several successive tests
`1 : if · · · then · · · else; `2 : if · · · then · · · else

– for tests in loops, H remembers only the last outcome
while · · · do ` : if · · · then · · · else

– we could extend H to longer histories with H = (L → { true, false,⊥})∗
– we could extend H to track loop iterations with H = L → N

Ĕ] def
= H→ E]

use a different abstract element for each abstract history

Course 13 Abstract Interpretation IV Antoine Miné p. 34 / 61

Disjunctive domains Path partitioning

Abstract operators

Ĕ] def
= H→ E]

γ̆(A]) = ∪ { γ(A](H)) |H ∈ H }

v̆, ∪̆], ∩̆], Ŏ are point-wise

S̆]J V ← e K and S̆]J e ≤ 0? K are point-wise

S̆]J ` : if c then s1 else s2 K A] is more complex
we merge all information about `

C] = λH.A](H[` 7→ true]) ∪] A](H[` 7→ false]) ∪] A](H[` 7→ ⊥])

we compute the then branch, where H(`) = true

T ′] = S̆]J s1 K (S̆]J c? K T]) where

T] = λH.C](H) if H(`) = true, ⊥ otherwise

we compute the else branch, where H(`) = false

F ′] = S̆]J s2 K (S̆]J¬c? K F]) where

F] = λH.C](H) if H(`) = false, ⊥ otherwise

we join both branches: T ′] ∪̆] F ′]

the join is exact as ∀H ∈ H: either T ′](H) = ⊥ or F ′](H) = ⊥

=⇒ we get a semantic by induction on the syntax of the original program
Course 13 Abstract Interpretation IV Antoine Miné p. 35 / 61

Disjunctive domains Path partitioning

Complex example

Linear interpolation

X ← rand(TX [0],TX [N]);
I ← 0;
while I < N ∧ X > TX [I + 1] do

I ← I + 1;
done;
Y ← TY [I] + (X − TX [I])× TS[I]

Concrete semantics: table-based interpolation based on the value of X

look-up index I in the interpolation table: TX [I] ≤ X ≤ TX [I + 1]

interpolate from value TY [I] when X = TX [I] with slope TS [I]

Analysis: in the interval domain

without partitioning:
Y ∈ [min TY ,max TY] + (X − [min TX ,max TX])× [min TS,max TS]

partitioning with respect to the number of loop iterations:
Y ∈ ∪I∈[0,N] TY [I] + ([0,TX [I + 1]− TX [I])× TS[I]

more precise as it keeps the relation between table indices

Course 13 Abstract Interpretation IV Antoine Miné p. 36 / 61

Inter-procedural analyses

Inter-procedural analyses

Course 13 Abstract Interpretation IV Antoine Miné p. 37 / 61

Inter-procedural analyses

Overview

Analysis on the control-flow graph
reduce function calls and returns to gotos
useful for the project!

Inlining
simple and precise
but not efficient and may not terminate

Call-site and call-stack abstraction
terminates even for recursive programs
parametric cost-precision trade-off

Tabulated abstraction
optimal reuse of analysis partial results

We also mentioned summary-based abstractions last week,
leveraging relational domains for modular bottom-up analysis

in general, these different abstractions give incomparable results;
there is no clear winner

Course 13 Abstract Interpretation IV Antoine Miné p. 38 / 61

Inter-procedural analyses Analysis on the control-flow graph

Analysis on the control-flow graph

Course 13 Abstract Interpretation IV Antoine Miné p. 39 / 61

Inter-procedural analyses Analysis on the control-flow graph

Inter-procedural control-flow graphs

Extend control-flow graphs:

one subgraph for each function

additional arcs to denote function calls and returns

we get one big graph without procedures nor calls, only gotos

=⇒ reduced to a classic analysis based on equation systems
but difficult to use in a denotational-style analysis by induction on the syntax

Note: to simplify, we assume here no local variable and no function argument:

locals and arguments are transformed into globals

only possible if there are no recursive calls

Course 13 Abstract Interpretation IV Antoine Miné p. 40 / 61

Inter-procedural analyses Analysis on the control-flow graph

Example: Control-flow graph

Example

main :
R ← −1;
X ← rand(5, 10); f ();
X ← 80; f ()

f :
R ← 2× X ;
if R > 100 then R ← 0

f()

f()

main: f:

X = 80

R = 2X

R = −1

R <= 100

R = 0

X = rand(5,10)

R > 100

create one control-flow graph for each function

Course 13 Abstract Interpretation IV Antoine Miné p. 41 / 61

Inter-procedural analyses Analysis on the control-flow graph

Example: Control-flow graph

Example

main :
R ← −1;
X ← rand(5, 10); f ();
X ← 80; f ()

f :
R ← 2× X ;
if R > 100 then R ← 0

f()

f()

main: f:

X = 80

R = 2X

R = −1

R <= 100

R = 0

X = rand(5,10)

R > 100

replace call instructions with gotos

Course 13 Abstract Interpretation IV Antoine Miné p. 41 / 61

Inter-procedural analyses Analysis on the control-flow graph

Example: Equation system

f()

f()

main: f:

X = 80

R = 2X

R = −1

R <= 100

R = 0

X = rand(5,10)

R > 100

1

2

3

4

5

6

1

2

3

4

5

6

Smain,1 = >
Smain,2 = SJ R ← 1 KSmain,1

Smain,3 = SJ X ← rand(5, 10) KSmain,2

Smain,4 = Sf,6

Smain,5 = SJ X ← 80 KSmain,4

Smain,6 = Sf,6

Sf,1 = Smain,3 ∪ Smain,5

Sf,2 = SJ R ← 2X KSf,1

Sf,3 = SJ R > 100 KSf,2

Sf,4 = SJ R ← 0 KSf,3

Sf,5 = SJ R ≤ 100 KSf,2

Sf,6 = Sf,4 ∪ Sf,5

each variable Si denotes a set of environments at a control location i

we can derive an abstract version of the system

e.g.: S]f,2 = S]J R ← 2X KS]f,1, S]f,6 = S]f,4 ∪
] S]f,5, etc.

we can solve the abstract system, using widenings to terminate
c.f. project

Course 13 Abstract Interpretation IV Antoine Miné p. 42 / 61

Inter-procedural analyses Analysis on the control-flow graph

Example: Equation system

f()

f()

main: f:

X = 80

R = 2X

R = −1

R <= 100

R = 0

X = rand(5,10)

R > 100

1

2

3

4

5

6

1

2

3

4

5

6

Smain,1 = >
Smain,2 = SJ R ← 1 KSmain,1

Smain,3 = SJ X ← rand(5, 10) KSmain,2

Smain,4 = Sf,6

Smain,5 = SJ X ← 80 KSmain,4

Smain,6 = Sf,6

Sf,1 = Smain,3 ∪ Smain,5

Sf,2 = SJ R ← 2X KSf,1

Sf,3 = SJ R > 100 KSf,2

Sf,4 = SJ R ← 0 KSf,3

Sf,5 = SJ R ≤ 100 KSf,2

Sf,6 = Sf,4 ∪ Sf,5

using intervals we get the following solution:

S]main,1 : X ,R ∈ Z

S]main,2 : X ∈ Z,R = −1

S]main,3 : X ∈ [5, 10],R = −1

S]main,4 : X ∈ [5, 80],R ∈ [0, 100]

S]main,5 : X = 80,R ∈ [0, 100]

S]main,6 : X ∈ [5, 80],R ∈ [0, 100]

S]f,1 : X ∈ [5, 80],R ∈ [−1, 100]

S]f,2 : X ∈ [5, 80],R ∈ [10, 160]

S]f,3 : X ∈ [5, 80],R ∈ [101, 160]

S]f,4 : X ∈ [5, 80],R = 0

S]f,5 : X ∈ [5, 80],R ∈ [10, 100]

S]f,6 : X ∈ [5, 80],R ∈ [0, 100]

Course 13 Abstract Interpretation IV Antoine Miné p. 42 / 61

Inter-procedural analyses Analysis on the control-flow graph

Imprecision

In fact, in our example, R = 0 holds at the end of the program
but we find R ∈ [0, 100]!
=⇒ the analysis is imprecise

Explanation: the control-flow graph adds impossible executions paths

f()

f()

main: f:

X = 80

R = 2X

R = −1

R <= 100

R = 0

X = rand(5,10)

R > 100

1

2

3

4

5

6

1

2

3

4

5

6

Course 13 Abstract Interpretation IV Antoine Miné p. 43 / 61

Inter-procedural analyses General case: concrete semantics

General case: concrete semantics

Course 13 Abstract Interpretation IV Antoine Miné p. 44 / 61

Inter-procedural analyses General case: concrete semantics

Procedures

Syntax:

F finite set of procedure names

body : F → stat: procedure bodies

main ∈ stat: entry point body

VG : set of global variables

Vf : set of local variables for procedure f ∈ F
procedure f can only access Vf ∪ VG

main has no local variable and can only access VG

stat ::= f (expr 1, . . . , expr |Vf |) | · · ·
procedure call, f ∈ F , setting all its local variables

local variables double as procedure arguments
no special mechanism to return a value (a global variable can be used)

Course 13 Abstract Interpretation IV Antoine Miné p. 45 / 61

Inter-procedural analyses General case: concrete semantics

Concrete environments

Notes:

when f calls g , we must remember the value of f ’s locals Vf in the
semantics of g and restore them when returning

several copies of each V ∈ Vf may exist at a given time
due to recursive calls, i.e.: cycles in the call graph

=⇒ concrete environments use per-variable stacks

Stacks: S def
= Z∗ (finite sequences of integers)

push(v , s)
def
= v · s (v , v ′ ∈ Z, s, s′ ∈ S)

pop(s)
def
= s ′ when ∃v : s = v · s ′, undefined otherwise

peek(s)
def
= v when ∃s ′: s = v · s ′, undefined otherwise

set(v , s)
def
= v · s ′ when ∃v ′: s = v ′ · s ′, undefined otherwise

Environments: E def
= (∪f∈F Vf ∪ VG)→ S

for VG , stacks are not necessary but simplify the presentation

traditionally, there is a single global stack for all local variables
using per-variable stacks instead also makes the presentation simpler

Course 13 Abstract Interpretation IV Antoine Miné p. 46 / 61

Inter-procedural analyses General case: concrete semantics

Concrete semantics

Concrete semantics: on E def
= (∪f∈F Vf ∪ VG)→ S

variable reads and updates only consider the top of the stack;
procedure calls push and pop local variables

EJ V K ρ def
= peek(ρ(V))

SJ V ← e K R
def
= { ρ[V 7→ set(x , ρ(V))] | ρ ∈ R, x ∈ EJ e K ρ }

SJ f (eV1 , . . . , eVn) K R = R3, where:

R1
def
= { ρ[∀V ∈ Vf : V 7→ push(xV , ρ(V))] | ρ ∈ R,∀V ∈ Vf : xV ∈ EJ eV K ρ }

(evaluate each argument eV and push its value xV on the stack ρ(V))

R2
def
= SJ body(f) K R1 (evaluate the procedure body)

R3
def
= { ρ[∀V ∈ Vf : V 7→ pop(ρ(V))] | ρ ∈ R2 } (pop local variables)

initial environment: ρ0
def
= λV ∈ VG .0

other statements are unchanged

Course 13 Abstract Interpretation IV Antoine Miné p. 47 / 61

Inter-procedural analyses Semantic inlining

Semantic inlining

Course 13 Abstract Interpretation IV Antoine Miné p. 48 / 61

Inter-procedural analyses Semantic inlining

Semantic inlining

Näıve abstract procedure call: mimic the concrete semantics

assign abstract variables to stack positions:

V]
def
= VG ∪ (∪f∈F Vf × N)
V] is infinite, but each abstract environment uses finitely many variables

E]V abstracts P(V→ Z), for any finite V ⊆ V]

V ∈ Vf denotes (V , 0) in V]

push V : shift variables, replacing (V , i) with (V , i + 1), then add (V , 0)
pop V : remove (V , 0) and shift each (V , i) to (V , i − 1)

S]J f (e1, . . . , en) K X] is then reduced to:

X]
1 = S]J push V1; . . . ; push Vn K X] (add fresh variables for Vf)

X]
2 = S]J V1 ← e1; . . . ; Vn ← en K X]

1 (bind arguments to locals)

X]
3 = S]J body(f) K X]

2 (execute the procedure body)

X]
4 = S]J pop V1; . . . ; pop Vn K X]

3 (delete local variables)

Limitations:
does not terminate in case of unbounded recursivity
requires many abstract variables to represent the stacks
procedures must be re-analyzed for every call
full context-sensitivity: precise but costly

Course 13 Abstract Interpretation IV Antoine Miné p. 49 / 61

Inter-procedural analyses Semantic inlining

Example

Example

main :
R ← −1;
f (rand(5, 10));
f (80)

f (X) :
R ← 2× X ;
if R > 100 then R ← 0

Analysis using intervals

after the first call to f , we get R ∈ [10, 20]

after the second call to f , we get R = 0

Course 13 Abstract Interpretation IV Antoine Miné p. 50 / 61

Inter-procedural analyses Call-site abstraction

Call-site abstraction

Course 13 Abstract Interpretation IV Antoine Miné p. 51 / 61

Inter-procedural analyses Call-site abstraction

Call-site abstraction

Abstracting stacks: into a fixed, bounded set V] of variables

V]
def
= ∪f∈F {V , V̂ |V ∈ Vf } ∪ VG

two copies of each local variable
V abstracts the value at the top of the stack (current call)
V̂ abstracts the rest of the stack

S]J push V K X] def
= X] ∪] S]J V̂ ← V K X]

S]J pop V K X] def
= X] ∪] S]J V ← V̂ K X]

weak updates, similar to array manipulation
no need to create and delete variables dynamically

assignments and tests always access V , not V̂
=⇒ strong update (precise)

Note: when there is no recursivity, V̂ , push and pop can be omitted

Course 13 Abstract Interpretation IV Antoine Miné p. 52 / 61

Inter-procedural analyses Call-site abstraction

Call-site abstraction

Principle: merge all the contexts in which each function is called

we maintain two global maps F → E]:
C](f): abstracts the environments when calling f
R](f): abstracts the environments when returning from f
gather environments from all possible calls to f , disregarding the call sites

during the analysis, when encountering a call S]J body(f) K X]:

we return R](f)
but we also replace C] with C][f 7→ C](f) ∪] X]]

R](f) is computed from C](f) as

R](f) = S]J body(f) K (C](f))

Course 13 Abstract Interpretation IV Antoine Miné p. 53 / 61

Inter-procedural analyses Call-site abstraction

Call-site abstraction

Fixpoint:

there may be circular dependencies between C] and R]

e.g., in f (2); f (3), the input for f (3) depends on the output from f (2)

=⇒ we compute a fixpoint for C] by iteration:

initially, ∀f : C](f) = R](f) = ⊥

analyze main

while ∃f : C](f) not stable
apply widening O to the iterates of C](f)
update R](f) = S]J body(f) K C](f)
analyze main and all the procedures again
(this may modify some C](g))

=⇒ using O, the analysis always terminates in finite time

we can be more efficient and avoid re-analyzing procedures when not needed
e.g., use a workset algorithm, track procedure dependencies, etc.

Course 13 Abstract Interpretation IV Antoine Miné p. 54 / 61

Inter-procedural analyses Call-site abstraction

Example

Example

main :
R ← −1;
f (rand(5, 10));
f (80)

f (X) :
R ← 2× X ;
if R > 100 then R ← 0

Analysis: using intervals (without widening as there is no dependency)

first analysis of main: we get ⊥ (as R](f) = ⊥)

but C](f) = [R 7→ [−1,−1],X 7→ [5, 10]]

first analysis of f : R](f) = [R 7→ [10, 20],X 7→ [5, 10]]

second analysis of main: we get
C](f) = [R 7→ [−1, 20],X 7→ [5, 80]]

second analysis of f : R](f) = [R 7→ [0, 100],X 7→ [5, 80]]

final analysis of main, we find R ∈ [0, 100] at the program end
less precise than R = 0 found by semantic inlining

Course 13 Abstract Interpretation IV Antoine Miné p. 55 / 61

Inter-procedural analyses Call-site abstraction

Partial context-sensitivity

Variants: k−limiting, k is a constant

stack:
assign a distinct variable for the k highest levels of V
abstract the lower (unbounded) stack part with V̂
more precise than keeping only the top of the stack separately

context-sensitivity:
each syntactic call has a unique call-site ` ∈ L
a call stack is a sequence of nested call sites: c ∈ L∗
an abstract call stack remembers the last k call sites: c] ∈ Lk

the C] and R] maps now distinguish abstract call stacks
C],R] : Lk → E]
more precise than a partitioning by function only

larger k give more precision but less efficiency

Course 13 Abstract Interpretation IV Antoine Miné p. 56 / 61

Inter-procedural analyses Call-site abstraction

Example: context-sensitivity

Example

main :
R ← −1;
`1 : f (rand(5, 10));
`2 : f (80)

f (X) :
R ← 2× X ;
if R > 100 then R ← 0

Analysis: using intervals and k = 1

C](`1) = [R 7→ [−1, 1],X 7→ [5, 10]]
=⇒ R](`1) = [R 7→ [10, 20],X 7→ [5, 10]]

C](`2) = [R 7→ [10, 20],X 7→ [80, 80]]
=⇒ R](`2) = [R 7→ [0, 0],X 7→ [80, 80]]

at the end of the analysis, we get R = 0
more precise than R ∈ [0, 100] found without context-sensitivity

Course 13 Abstract Interpretation IV Antoine Miné p. 57 / 61

Inter-procedural analyses Tabulation abstraction

Tabulation abstraction

Course 13 Abstract Interpretation IV Antoine Miné p. 58 / 61

Inter-procedural analyses Tabulation abstraction

Cardinal power

Principle:

the semantic of a function is SJ body(f) K : P(E)→ P(E)

=⇒ abstract it as an abstract function in E] ⇀ E]
we use a partial function as the image of most abstract elements is not useful

Analysis: tabulated analysis

use a global partial map F] : F × E] ⇀ E]

F] is initially empty, and is filled on-demand

when encountering S]J body(f) K X]

return F](f ,X]) if defined

else, compute S]J body(f) K X], store it in F](f ,X]) and return it

Optimizations: trade precision for efficiency

if X] v Y] and F](f ,X]) is not defined, we can use F](f ,Y]) instead

if the size of F] grows too large, use F](f ,>) instead

sound, and ensures that the analysis terminates in finite time

Course 13 Abstract Interpretation IV Antoine Miné p. 59 / 61

Inter-procedural analyses Tabulation abstraction

Example

Example

main :
R ← −1;
f (rand(5, 10));
f (80)

f (X) :
R ← 2× X ;
if R > 100 then R ← 0

Analysis using intervals

F] =
[(f , [R 7→ [−1,−1],X 7→ [5, 10]]) 7→ [R 7→ [10, 20],X 7→ [5, 10]],

(f , [R 7→ [10, 20],X 7→ [80, 80]]) 7→ [R 7→ [0, 0],X 7→ [80, 80]]]

at the end of the analysis, we get again R = 0

here, the function partitioning gives the same result as the call-site partitioning

Course 13 Abstract Interpretation IV Antoine Miné p. 60 / 61

Inter-procedural analyses Tabulation abstraction

Dynamic partitioning: complex example

Example: McCarthy’s 91 function

main :
Mc(rand(0,+∞))

Mc(n) :
if n > 100 then r ← n − 10
else Mc(n + 11); Mc(r)

in the concrete, when terminating:
r = n − 10 when n > 101, and r = 91 wen n ∈ [0, 101]

using a widening O to choose tabulated abstract values F](f ,X])
we find: n ∈ [0, 72] ⇒ r = 91

n ∈ [73, 90] ⇒ r ∈ [91, 101]
n ∈ [91, 101] ⇒ r = 91
n ∈ [102, 111] ⇒ r ∈ [91, 101]
n ∈ [112,+∞] ⇒ r ∈ [91,+∞]

(source: Bourdoncle, JFP 1992)

Course 13 Abstract Interpretation IV Antoine Miné p. 61 / 61

	Reduced products
	Abstract domain lattice
	Reduced product construction

	Disjunctive domains
	Powerset completion
	State partitioning
	Path partitioning

	Inter-procedural analyses
	Analysis on the control-flow graph
	General case: concrete semantics
	Semantic inlining
	Call-site abstraction
	Tabulation abstraction

