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Overview

Selected advanced topics:

reduced products of abstract domains

disjunctive abstract domains

inter-procedural analysis

Practical session:

implement a reduced product

help with the project
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Reduced products

Reduced products
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Reduced products

Idea

Theory:

the set of abstract domains is a lattice,

ordered by abstraction, which is a partial order, i.e.:

(C ,≤) −−−→←−−−α
γ

(A,v) denotes that C is more concrete than A.

(every property of A can also be represented exactly in C)

there is a least upper bound t for arbitrary sets of domains
and a greatest lower bound u.

Application: reduced product

Effective construction for the least upper bound A1 u A2,
able to represent properties expressible in either A1 or A2

Benefit

We can design more precise analyses
by combining existing abstractions
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Reduced products Abstract domain lattice

Abstract domain lattice
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Reduced products Abstract domain lattice

Reminder: interval abstraction

P(Z) −−−→←−−−αi

γi { [a, b] | a ≤ b } ∪ {⊥}

αi (S)
def
= [min S ,max S ]

γi ([a, b])
def
= { x ∈ Z | a ≤ x ≤ b }
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Reduced products Abstract domain lattice

Reminder: sign abstraction

P(Z) −−−→←−−−αs

γs {⊥, 0,≤ 0,≥ 0,>}

γs(⊥)
def
= ∅

γs(0)
def
= {0}

γs(≥ 0)
def
= N

γs(≤ 0)
def
= −N

γs(>)
def
= Z

αs(S)
def
=



⊥ if S = ∅
0 if S = {0}
≥ 0 else, if ∀s ∈ S , s ≥ 0

≤ 0 else, if ∀s ∈ S , s ≤ 0

> otherwise
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Reduced products Abstract domain lattice

Composing abstractions

P(Z) −−−→←−−−αi

γi { [a, b] | a ≤ b } ∪ {⊥} −−−→←−−−
α′

s

γ′
s {⊥, 0,≤ 0,≥ 0,>}

where: γ′s(⊥)
def
= ⊥ γ′s(>)

def
= [−∞,+∞]

γ′s(≥ 0)
def
= [0,+∞] γ′s(≤ 0)

def
= [−∞, 0] γ′s(0)

def
= [0, 0]

We can compose Galois connections:

If (X1,v1) −−−→←−−−
α1

γ1

(X2,v2) −−−→←−−−
α2

γ2

(X3,v3), then

(X1,v1) −−−−−→←−−−−−
α2◦α1

γ1◦γ2

(X3,v3).

Proof: (α2 ◦ α1)(c) v3 a ⇐⇒ α1(c) v2 γ2(a) ⇐⇒ c v1 (γ1 ◦ γ2)(a)
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Reduced products Abstract domain lattice

Parity domain

P(Z) −−−→←−−−
αp

γp

{⊥,>, even, odd}

γp(⊥)
def
= ∅

γp(even)
def
= 2Z

γp(odd)
def
= 2Z + 1

γp(>)
def
= Z

αp(S)
def
=


⊥ if S = ∅
even else, if S ⊆ 2Z

odd else, if S ⊆ 2Z + 1

> otherwise
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Reduced products Abstract domain lattice

Part of the abstraction lattice for P(Z)

signs are more abstract than
intervals;
every sign information can be expressed as
an interval

parities and intervals are
incomparable;
no common property, except ⊥ and >

P(Z) is the most concrete domain;

{>} is the most abstract domain;

intervals ∧ parities is the coarsest
abstract domain more precise than
intervals and parities.
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Reduced products Reduced product construction

Reduced product construction
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Reduced products Reduced product construction

Simple product

Algebraic structure:

Given two domains (D]1,v1) and (D]2,v2), we use pairs of abstract
elements to represent conjunctions of properties.

D]1×2
def
= D]1 × D

]
2

γ1×2(X ]
1 ,X

]
2)

def
= γ1(X ]

1) ∩ γ2(X ]
2)

α1×2(S)
def
= (α1(S), α2(S))

(X ]
1 ,X

]
2) v1×2 (Y ]

1 ,Y
]
2 )

def⇐⇒ X ]
1 v1 Y ]

1 and X ]
2 v2 Y ]

2

Abstract operators in D]:
Applied in parallel (independently) in each abstract domain:

(X ]
1 ,X

]
2) ∪]1×2 (Y ]

1 ,Y
]
2 )

def
= (X ]

1 ∪
]
1 Y ]

1 , X ]
2 ∪

]
2 Y ]

2 ), ;

(X ]
1 ,X

]
2) O1×2 (Y ]

1 ,Y
]
2 )

def
= (X ]

1 O1 Y ]
1 , X ]

2 O2 Y ]
2 );

S]J s K 1×2(X ]
1 ,X

]
2)

def
= (S]J s K 1(X ]

1), S]J s K 2(X ]
2)).
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Reduced products Reduced product construction

Simple products: limitations

V ← 1;
while V ≤ 10 do V ← V + 2 done;
• if V ≥ 12 then • V ← 0 •;

Analysis in the product domain of intervals and parities:

intervals parities product: intervals × parities
• V ∈ [11, 12] V odd (V ∈ [11, 12]) ∧ (V odd)
• V = 12 V odd (V = 12) ∧ (V odd)
• V = 0 V even (V = 0) ∧ (V even)

Identical to two separate analyses:

at •, we get (V = 12) ∧ (V odd), which represents ∅;
at •, we apply V ← 0 independently on intervals and parities,
which gives (V = 0) ∧ (V even), instead of ∅!

=⇒ huge loss of precision
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Reduced products Reduced product construction

Fully reduced product

Idea: propagate information between domains

Given Galois connections (α1, γ1) and (α2, γ2) over D]1 and D]2,
we define a reduction operator ρ as:

ρ : D]1×2 → D
]
1×2

ρ(X ]
1 ,X

]
2 )

def
= (α1(γ1(X ]

1 ) ∩ γ2(X ]
2 )), α2(γ1(X ]

1 ) ∩ γ2(X ]
2 )))

i.e., the best representation of γ1×2(X ]
1 ,X

]
2 ) in both domains

Application:

use ρ to transfer information between domains after abstract operations:

(X ]
1 ,X

]
2 ) ∪]1×2 (Y ]

1 ,Y
]
2 )

def
= ρ(X ]

1 ∪
]
1 Y ]

1 , X ]
2 ∪

]
2 Y ]

2 ),

S]J s K 1×2(X ]
1 ,X

]
2 )

def
= ρ(S]J s K 1(X ]

1 ), S]J s K 2(X ]
2 )).

Warning:

ρ should not be used on fixpoint iterates with widening O (Xn+1
def
= ρ(Xn O F (Xn)))

=⇒ this could prevent the convergence in D]
1 ×D

]
2!
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Reduced products Reduced product construction

Analysis with reduction: exemple

V ← 1;
while V ≤ 10 do V ← V + 2 done;
• if V ≥ 12 then V ← 0

Reduction ρ between intervals and parities ρ([a, b], p):

First refine interval bounds [a, b] using parity information p,
then refine the parity information using the refined bounds:

let a′ = a + 1 if a 6∈ γp(p), a′ = a otherwise;

let b′ = b − 1 if b 6∈ γp(p), b′ = b otherwise;

if a′ > b′, return (⊥,⊥) ;

if a′ = b′, return ([a′, b′], αp(a)) ;

otherwise, return ([a′, b′], p).

Example:

At •, ρ([11, 12], odd) = ([11, 11], odd)
=⇒ the “then” branch is not reachable.
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Reduced products Reduced product construction

Partial reduction

The optimal reduction ρ is well-defined but:

ρ assumes we have Galois connections;
there is no general effective algorithm to compute ρ.

(similar to the case of optimal operators, defined as F ] def
= α ◦ F ◦ γ)

Partial reduction:

Practical definition, when the optimal reduction is not available:

ρ(X ]
1 ,X

]
2) = (Y ]

1 ,Y
]
2 ) is a partial reduction if:

Y ]
1 v1 X ]

1 and Y ]
2 v2 X ]

2 (improvement)

γ1×2(Y ]
1 ,Y

]
2 ) = γ1×2(X ]

1 ,X
]
2) (soundness)

Example:

ρ(X ]
1 ,X

]
2 )

def
=

{
(⊥1,⊥2) if X ]

1 = ⊥1 or X ]
2 = ⊥2

(X ]
1 ,X

]
2 ) otherwise

In practice, an analyzer contains many abstract domains (for expressiveness)

with limited reductions between them (for efficiency).
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Disjunctive domains

Disjunctive domains
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Disjunctive domains

Motivation

Remark: most domains abstract convex sets (conjunctions of constraints)

=⇒ ∪] causes a loss of precision!

The need for non-convex invariants

X ← rand(10, 20);
Y ← rand(0, 1);
if Y > 0 then X ← −X ;

• Z ← 100/X

Concrete semantics:

At •, X ∈ [−20,−10] ∪ [10, 20]
=⇒ there is no division by zero

Abstract analysis:

Convex analyses (intervals, polyhedra) will find X ∈ [−20, 20]
(with intervals, [−20,−10] ∪] [10, 20] = [−20, 20])

=⇒ possible division by zero (false alarm)
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Disjunctive domains

Disjunctive domains

Principle:

generic constructions to lift any numeric abstract domain
to a domain able to represent disjunctions exactly

Example constructions:

powerset completion
unordered “soup” of abstract elements

state partitioning
abstract elements keyed to selected subsets of environments

path-sensitive analyses
partition with respect to the history of execution

each construction has its strength and weakness
they can be combined during an analysis to exploit the best of each
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Disjunctive domains Powerset completion

Powerset completion
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Disjunctive domains Powerset completion

Powerset completion

Given: (E],v, γ,∪],∩],O,S]J stat K )
abstract domain E]
ordered by v, which also acts as a sound abstraction of ⊆ (i.e., ⊆]=v)
with concretization γ : E] → P(E)
sound abstractions ∪], ∩], S]J stat K of ∪, ∩, SJ stat K , and a widening O

Construct: (Ê], v̂, γ̂, ∪̂], ∩̂], Ô, Ŝ]J stat K )

Ê] def
= Pfinite(E]) (finite sets of abstract elements)

γ̂(A])
def
= ∪ { γ(X ]) |X ] ∈ A] } (join of concretizations)

Example: using the interval domain as E]

γ̂({[−10,−5], [2, 4], [0, 0], [2, 3]}) = [−10,−5] ∪ {0} ∪ [2, 4]
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Disjunctive domains Powerset completion

Ordering

Issue: how can we compare two elements of Ê]?

γ̂ is generally not injective
there is no canonical representation for γ̂(A])

testing γ̂(A]) = γ̂(B]) or γ̂(A]) ⊆ γ̂(B]) is difficult

Example: powerset completion of the interval domain

A] B] C ]

A] = {{0} × {0}, [0, 1]× {1}}
B] = {{0} × {0}, {0} × {1}, {1} × {1}}
C ] = {{0} × [0, 1], [0, 1]× {1}}
γ̂(A]) = γ̂(B]) = γ̂(C ])

B] is more costly to represent: it requires three abstract elements instead of two
C ] is a covering and not a partition (red ∩ blue = {0} × {1} 6= ∅)
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Disjunctive domains Powerset completion

Ordering (cont.)

Solution: sound approximation of ⊆

A] v̂ B] def⇐⇒ ∀X ] ∈ A]:∃Y ] ∈ B]: X ] v Y ] (Hoare powerdomain order)

v̂ is a partial order (when v is)

v̂ is a sound approximation of ⊆ (when v is)

A] v̂ B] =⇒ γ̂(A]) ⊆ γ̂(B]) but the converse may not hold

testing v̂ reduces to testing v finitely many times

Example: powerset completion of the interval domain

A] B] C ]

γ̂(A]) = γ̂(B]) = γ̂(C ])

B] v̂ A] v̂ C ]
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Disjunctive domains Powerset completion

Abstract operations

Abstract operators

Ŝ]J stat K A]
def
= { S]J stat K X ] |X ] ∈ A] }

apply stat on each abstract element independently

A] ∪̂] B] def
= A] ∪ B]

keep elements from both arguments without applying any abstract operation

∪̂] is exact

A] ∩̂] B] def
= {X ] ∩] Y ] |X ] ∈ A], Y ] ∈ B] }

∩̂] is exact if ∩] is (as ∪ and ∩ are distributive)

Galois connection:

in general, there is no abstraction function α̂ corresponding to γ̂

Example: powerset completion Ê] of the interval domain E]

given the disc S
def
= { (x , y) | x2 + y2 ≤ 1 }

α(S) = [−1, 1]× [−1, 1] (optimal interval abstraction)
but there is no best abstraction in Ê]

S S

not α̂(S)α(S)
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Disjunctive domains Powerset completion

Dynamic approximation

Issue: the size |A]| of elements A] ∈ Ê] is unbounded
every application of ∪̂] adds some more elements

=⇒ efficiency and convergence problems

Solution: to reduce the size of elements

redundancy removal

simplify(A])
def
= {X ] ∈ A] | ∀Y ] 6= X ] ∈ A]: X ] 6v Y ] }

no loss of precision: γ̂(simplify(A])) = γ̂(A])

collapse: join elements in E]

collapse(A])
def
= {∪] {X ] ∈ A] } }

large loss of precision, but very effective: |collapse(A])| = 1

partial collapse: limit |A]| to a fixed size k by ∪]
but how to choose which elements to merge? no easy solution!
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Disjunctive domains Powerset completion

Widening

Issue: for loops, abstract iterations (A]n)n∈N may not converge

the size of A]n may grow arbitrarily large

even if |A]n| is stable, some elements in A]n may not converge
if E] has infinite increasing sequences

=⇒ we need a widening Ô

Widenings for powerset domains are difficult to design

Example widening: collapse after a fixed number N of iterations

A]n+1
def
= A]n Ô B]

n
def
=

{
simplify(A]n ∪̂

]
B]

n) if n < N

collapse(A]n) O collapse(B]
n) otherwise

(this is very näıve, see Bagnara et al. STTT06 for more interesting widenings)
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Disjunctive domains State partitioning

State partitioning
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Disjunctive domains State partitioning

State partitioning

Principle:

partition a priori E into finitely many sets

abstract each partition of E independently
using an element of E]

Abstract domain:

Given an abstract partition P] ⊆ E], i.e., a set such that:

P] is finite

∪ { γ(X ]) |X ] ∈ P] } = E
for generality, we have in fact a covering, not a partitioning of E
i.e., we can have X ] 6= Y ] ∈ P] with γ(X ]) ∩ γ(Y ]) 6= ∅

We define Ẽ] def
= P] → E]

representable in memory, as P] is finite
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Disjunctive domains State partitioning

Ordering

P1

P2

P3

P4

P5

Example: E] is the interval domain

P] = {P1,P2,P3,P4,P5} where
P1 = [−∞, 0]× [−∞,+∞]
P2 = [0, 10]× [0,+∞]
P3 = [0, 10]× [−∞, 0]
P4 = [10,+∞]× [0,+∞]
P5 = [10,+∞]× [−∞, 0]

X ] = [P1 7→ [−6,−5]× [5, 6],
P2 7→ ⊥,
P3 7→ [9, 10]× [−∞,−1],
P4 7→ ⊥,
P5 7→ [10, 12]× [−3,−1]]

Ẽ] def
= P] → E]

γ̃(A])
def
= ∪ { γ(A](X ])) ∩ γ(X ]) |X ] ∈ P] }

A] ṽ B] def⇐⇒ ∀X ] ∈ P]: A](X ]) v B](X ]) (point-wise order)

α̃(S)
def
= λX ] ∈ P].α(S ∩ γ(X ]))

if E] enjoys a Galois connection, so does Ẽ]
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Disjunctive domains State partitioning

Abstract operators

Abstract operators: point-wise extension from E] to P] → E]

A ∪̃] B
def
= λX ] ∈ P].A(X ]) ∪] B(X ])

A ∩̃] B
def
= λX ] ∈ P].A(X ]) ∩] B(X ])

A Õ B
def
= λX ] ∈ P].A(X ]) O B(X ])

S̃]J e ≤ 0? K A]
def
= λX ] ∈ P].S]J e ≤ 0? K A](X ])

S̃]J V ← e K A] is more complex
any S]J V ← e K A](X ]) may escape its partition X ]; we must cut them at
partition borders and glue the pieces falling into the same partition

example: X ← X + 2

S̃]J V ← e K A]
def
= λX ]. ∪] {X ] ∩] S]J V ← e K A(Y ]) |Y ] ∈ P] }
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Disjunctive domains State partitioning

Example analysis

Example

X ← rand(10, 20);
Y ← rand(0, 1);
if Y > 0 then X ← −X ;

• Z ← 100/X

Analysis:

E] is the interval domain

partition with respect to the sign of X

P]
def
= {X +,X− } where

X + def
= [0,+∞]× Z× Z and X−

def
= [−∞, 0]× Z× Z

at • we find:
X + 7→ [X ∈ [10, 20],Y 7→ [0, 0],Z 7→ [0, 0]]
X− 7→ [X ∈ [−20,−10],Y 7→ [1, 1],Z 7→ [0, 0]]

=⇒ no division by zero
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Disjunctive domains Path partitioning

Path partitioning
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Disjunctive domains Path partitioning

Path sensitivity

Principle: partition wrt. the history of computation

keep different abstract elements for different execution paths
e.g., different branches taken, different loop iterations

avoid merging with ∪] elements at control-flow joins
at the end of if · · · then · · · else, or at loop head

Intuition: as a program transformation

X ← rand(−50, 50);
if X ≥ 0 then

Y ← X + 10
else

Y ← X − 10;
assert Y 6= 0

−→

X ← rand(−50, 50);
if X ≥ 0 then

Y ← X + 10;
assert Y 6= 0

else
Y ← X − 10;
assert Y 6= 0

the assert is tested in the context of each branch
instead of after the control-flow join

the interval domain can prove the assertion on the right, but not on the left
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Disjunctive domains Path partitioning

Abstract domain

Formalization: we consider here only if · · · then · · · else

L denote syntactic labels of if · · · then · · · else instructions

history abstraction H
def
= L → {true, false,⊥}

H ∈ H indicates the outcome of the last time we executed each test:

H(`) = true: we took the then branch
H(`) = false: we took the else branch
H(`) = ⊥: we never executed the test

Notes:

– H can remember the outcome of several successive tests
`1 : if · · · then · · · else; `2 : if · · · then · · · else

– for tests in loops, H remembers only the last outcome
while · · · do ` : if · · · then · · · else

– we could extend H to longer histories with H = (L → { true, false,⊥})∗
– we could extend H to track loop iterations with H = L → N

Ĕ] def
= H→ E]

use a different abstract element for each abstract history
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Disjunctive domains Path partitioning

Abstract operators

Ĕ] def
= H→ E]

γ̆(A]) = ∪ { γ(A](H)) |H ∈ H }

v̆, ∪̆], ∩̆], Ŏ are point-wise

S̆]J V ← e K and S̆]J e ≤ 0? K are point-wise

S̆]J ` : if c then s1 else s2 K A] is more complex
we merge all information about `

C ] = λH.A](H[` 7→ true]) ∪] A](H[` 7→ false]) ∪] A](H[` 7→ ⊥])

we compute the then branch, where H(`) = true

T ′] = S̆]J s1 K (S̆]J c? K T ]) where

T ] = λH.C ](H) if H(`) = true, ⊥ otherwise

we compute the else branch, where H(`) = false

F ′] = S̆]J s2 K (S̆]J¬c? K F ]) where

F ] = λH.C ](H) if H(`) = false, ⊥ otherwise

we join both branches: T ′] ∪̆] F ′]

the join is exact as ∀H ∈ H: either T ′](H) = ⊥ or F ′](H) = ⊥

=⇒ we get a semantic by induction on the syntax of the original program
Course 13 Abstract Interpretation IV Antoine Miné p. 35 / 61



Disjunctive domains Path partitioning

Complex example

Linear interpolation

X ← rand(TX [0],TX [N]);
I ← 0;
while I < N ∧ X > TX [I + 1] do

I ← I + 1;
done;
Y ← TY [I ] + (X − TX [I ])× TS[I ]

Concrete semantics: table-based interpolation based on the value of X

look-up index I in the interpolation table: TX [I ] ≤ X ≤ TX [I + 1]

interpolate from value TY [I ] when X = TX [I ] with slope TS [I ]

Analysis: in the interval domain

without partitioning:
Y ∈ [min TY ,max TY ] + (X − [min TX ,max TX ])× [min TS,max TS]

partitioning with respect to the number of loop iterations:
Y ∈ ∪I∈[0,N] TY [I ] + ([0,TX [I + 1]− TX [I ])× TS[I ]

more precise as it keeps the relation between table indices
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Inter-procedural analyses

Inter-procedural analyses
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Inter-procedural analyses

Overview

Analysis on the control-flow graph
reduce function calls and returns to gotos
useful for the project!

Inlining
simple and precise
but not efficient and may not terminate

Call-site and call-stack abstraction
terminates even for recursive programs
parametric cost-precision trade-off

Tabulated abstraction
optimal reuse of analysis partial results

We also mentioned summary-based abstractions last week,
leveraging relational domains for modular bottom-up analysis

in general, these different abstractions give incomparable results;
there is no clear winner
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Inter-procedural analyses Analysis on the control-flow graph

Analysis on the control-flow graph
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Inter-procedural analyses Analysis on the control-flow graph

Inter-procedural control-flow graphs

Extend control-flow graphs:

one subgraph for each function

additional arcs to denote function calls and returns

we get one big graph without procedures nor calls, only gotos

=⇒ reduced to a classic analysis based on equation systems
but difficult to use in a denotational-style analysis by induction on the syntax

Note: to simplify, we assume here no local variable and no function argument:

locals and arguments are transformed into globals

only possible if there are no recursive calls
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Inter-procedural analyses Analysis on the control-flow graph

Example: Control-flow graph

Example

main :
R ← −1;
X ← rand(5, 10); f ();
X ← 80; f ()

f :
R ← 2× X ;
if R > 100 then R ← 0

f()

f()

main: f:

X = 80

R = 2X

R = −1

R <= 100

R = 0

X = rand(5,10)

R > 100

create one control-flow graph for each function
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Inter-procedural analyses Analysis on the control-flow graph

Example: Control-flow graph

Example

main :
R ← −1;
X ← rand(5, 10); f ();
X ← 80; f ()

f :
R ← 2× X ;
if R > 100 then R ← 0

f()

f()

main: f:

X = 80

R = 2X

R = −1

R <= 100

R = 0

X = rand(5,10)

R > 100

replace call instructions with gotos

Course 13 Abstract Interpretation IV Antoine Miné p. 41 / 61



Inter-procedural analyses Analysis on the control-flow graph

Example: Equation system

f()

f()

main: f:

X = 80

R = 2X

R = −1

R <= 100

R = 0

X = rand(5,10)

R > 100

1

2

3

4

5

6

1

2

3

4

5

6

Smain,1 = >
Smain,2 = SJ R ← 1 KSmain,1

Smain,3 = SJ X ← rand(5, 10) KSmain,2

Smain,4 = Sf,6

Smain,5 = SJ X ← 80 KSmain,4

Smain,6 = Sf,6

Sf,1 = Smain,3 ∪ Smain,5

Sf,2 = SJ R ← 2X KSf,1

Sf,3 = SJ R > 100 KSf,2

Sf,4 = SJ R ← 0 KSf,3

Sf,5 = SJ R ≤ 100 KSf,2

Sf,6 = Sf,4 ∪ Sf,5

each variable Si denotes a set of environments at a control location i

we can derive an abstract version of the system

e.g.: S]f,2 = S]J R ← 2X KS]f,1, S]f,6 = S]f,4 ∪
] S]f,5, etc.

we can solve the abstract system, using widenings to terminate
c.f. project
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Inter-procedural analyses Analysis on the control-flow graph

Example: Equation system

f()

f()

main: f:

X = 80

R = 2X

R = −1

R <= 100

R = 0

X = rand(5,10)

R > 100

1

2

3

4

5

6

1

2

3

4

5

6

Smain,1 = >
Smain,2 = SJ R ← 1 KSmain,1

Smain,3 = SJ X ← rand(5, 10) KSmain,2

Smain,4 = Sf,6

Smain,5 = SJ X ← 80 KSmain,4

Smain,6 = Sf,6

Sf,1 = Smain,3 ∪ Smain,5

Sf,2 = SJ R ← 2X KSf,1

Sf,3 = SJ R > 100 KSf,2

Sf,4 = SJ R ← 0 KSf,3

Sf,5 = SJ R ≤ 100 KSf,2

Sf,6 = Sf,4 ∪ Sf,5

using intervals we get the following solution:

S]main,1 : X ,R ∈ Z

S]main,2 : X ∈ Z,R = −1

S]main,3 : X ∈ [5, 10],R = −1

S]main,4 : X ∈ [5, 80],R ∈ [0, 100]

S]main,5 : X = 80,R ∈ [0, 100]

S]main,6 : X ∈ [5, 80],R ∈ [0, 100]

S]f,1 : X ∈ [5, 80],R ∈ [−1, 100]

S]f,2 : X ∈ [5, 80],R ∈ [10, 160]

S]f,3 : X ∈ [5, 80],R ∈ [101, 160]

S]f,4 : X ∈ [5, 80],R = 0

S]f,5 : X ∈ [5, 80],R ∈ [10, 100]

S]f,6 : X ∈ [5, 80],R ∈ [0, 100]
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Inter-procedural analyses Analysis on the control-flow graph

Imprecision

In fact, in our example, R = 0 holds at the end of the program
but we find R ∈ [0, 100]!
=⇒ the analysis is imprecise

Explanation: the control-flow graph adds impossible executions paths

f()

f()

main: f:

X = 80

R = 2X

R = −1

R <= 100

R = 0

X = rand(5,10)

R > 100

1

2

3

4

5

6

1

2

3

4

5

6
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General case: concrete semantics
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Inter-procedural analyses General case: concrete semantics

Procedures

Syntax:

F finite set of procedure names

body : F → stat: procedure bodies

main ∈ stat: entry point body

VG : set of global variables

Vf : set of local variables for procedure f ∈ F
procedure f can only access Vf ∪ VG

main has no local variable and can only access VG

stat ::= f (expr 1, . . . , expr |Vf |) | · · ·
procedure call, f ∈ F , setting all its local variables

local variables double as procedure arguments
no special mechanism to return a value (a global variable can be used)
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Inter-procedural analyses General case: concrete semantics

Concrete environments

Notes:

when f calls g , we must remember the value of f ’s locals Vf in the
semantics of g and restore them when returning

several copies of each V ∈ Vf may exist at a given time
due to recursive calls, i.e.: cycles in the call graph

=⇒ concrete environments use per-variable stacks

Stacks: S def
= Z∗ (finite sequences of integers)

push(v , s)
def
= v · s (v , v ′ ∈ Z, s, s′ ∈ S)

pop(s)
def
= s ′ when ∃v : s = v · s ′, undefined otherwise

peek(s)
def
= v when ∃s ′: s = v · s ′, undefined otherwise

set(v , s)
def
= v · s ′ when ∃v ′: s = v ′ · s ′, undefined otherwise

Environments: E def
= (∪f∈F Vf ∪ VG )→ S

for VG , stacks are not necessary but simplify the presentation

traditionally, there is a single global stack for all local variables
using per-variable stacks instead also makes the presentation simpler
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Inter-procedural analyses General case: concrete semantics

Concrete semantics

Concrete semantics: on E def
= (∪f∈F Vf ∪ VG )→ S

variable reads and updates only consider the top of the stack;
procedure calls push and pop local variables

EJ V K ρ def
= peek(ρ(V ))

SJ V ← e K R
def
= { ρ[V 7→ set(x , ρ(V ))] | ρ ∈ R, x ∈ EJ e K ρ }

SJ f (eV1 , . . . , eVn ) K R = R3, where:

R1
def
= { ρ[∀V ∈ Vf : V 7→ push(xV , ρ(V ))] | ρ ∈ R,∀V ∈ Vf : xV ∈ EJ eV K ρ }

(evaluate each argument eV and push its value xV on the stack ρ(V ))

R2
def
= SJ body(f ) K R1 (evaluate the procedure body)

R3
def
= { ρ[∀V ∈ Vf : V 7→ pop(ρ(V ))] | ρ ∈ R2 } (pop local variables)

initial environment: ρ0
def
= λV ∈ VG .0

other statements are unchanged
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Inter-procedural analyses Semantic inlining

Semantic inlining

Näıve abstract procedure call: mimic the concrete semantics

assign abstract variables to stack positions:

V]
def
= VG ∪ (∪f∈F Vf × N)
V] is infinite, but each abstract environment uses finitely many variables

E]V abstracts P(V→ Z), for any finite V ⊆ V]

V ∈ Vf denotes (V , 0) in V]

push V : shift variables, replacing (V , i) with (V , i + 1), then add (V , 0)
pop V : remove (V , 0) and shift each (V , i) to (V , i − 1)

S]J f (e1, . . . , en) K X ] is then reduced to:

X ]
1 = S]J push V1; . . . ; push Vn K X ] (add fresh variables for Vf )

X ]
2 = S]J V1 ← e1; . . . ; Vn ← en K X ]

1 (bind arguments to locals)

X ]
3 = S]J body(f ) K X ]

2 (execute the procedure body)

X ]
4 = S]J pop V1; . . . ; pop Vn K X ]

3 (delete local variables)

Limitations:
does not terminate in case of unbounded recursivity
requires many abstract variables to represent the stacks
procedures must be re-analyzed for every call
full context-sensitivity: precise but costly
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Inter-procedural analyses Semantic inlining

Example

Example

main :
R ← −1;
f (rand(5, 10));
f (80)

f (X ) :
R ← 2× X ;
if R > 100 then R ← 0

Analysis using intervals

after the first call to f , we get R ∈ [10, 20]

after the second call to f , we get R = 0
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Inter-procedural analyses Call-site abstraction

Call-site abstraction

Abstracting stacks: into a fixed, bounded set V] of variables

V]
def
= ∪f∈F {V , V̂ |V ∈ Vf } ∪ VG

two copies of each local variable
V abstracts the value at the top of the stack (current call)
V̂ abstracts the rest of the stack

S]J push V K X ] def
= X ] ∪] S]J V̂ ← V K X ]

S]J pop V K X ] def
= X ] ∪] S]J V ← V̂ K X ]

weak updates, similar to array manipulation
no need to create and delete variables dynamically

assignments and tests always access V , not V̂
=⇒ strong update (precise)

Note: when there is no recursivity, V̂ , push and pop can be omitted

Course 13 Abstract Interpretation IV Antoine Miné p. 52 / 61
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Call-site abstraction

Principle: merge all the contexts in which each function is called

we maintain two global maps F → E]:
C ](f ): abstracts the environments when calling f
R](f ): abstracts the environments when returning from f
gather environments from all possible calls to f , disregarding the call sites

during the analysis, when encountering a call S]J body(f ) K X ]:

we return R](f )
but we also replace C ] with C ][f 7→ C ](f ) ∪] X ]]

R](f ) is computed from C ](f ) as

R](f ) = S]J body(f ) K (C ](f ))

Course 13 Abstract Interpretation IV Antoine Miné p. 53 / 61
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Call-site abstraction

Fixpoint:

there may be circular dependencies between C ] and R]

e.g., in f (2); f (3), the input for f (3) depends on the output from f (2)

=⇒ we compute a fixpoint for C ] by iteration:

initially, ∀f : C ](f ) = R](f ) = ⊥

analyze main

while ∃f : C ](f ) not stable
apply widening O to the iterates of C ](f )
update R](f ) = S]J body(f ) K C ](f )
analyze main and all the procedures again
(this may modify some C ](g))

=⇒ using O, the analysis always terminates in finite time

we can be more efficient and avoid re-analyzing procedures when not needed
e.g., use a workset algorithm, track procedure dependencies, etc.
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Inter-procedural analyses Call-site abstraction

Example

Example

main :
R ← −1;
f (rand(5, 10));
f (80)

f (X ) :
R ← 2× X ;
if R > 100 then R ← 0

Analysis: using intervals (without widening as there is no dependency)

first analysis of main: we get ⊥ (as R](f ) = ⊥)

but C ](f ) = [R 7→ [−1,−1],X 7→ [5, 10]]

first analysis of f : R](f ) = [R 7→ [10, 20],X 7→ [5, 10]]

second analysis of main: we get
C ](f ) = [R 7→ [−1, 20],X 7→ [5, 80]]

second analysis of f : R](f ) = [R 7→ [0, 100],X 7→ [5, 80]]

final analysis of main, we find R ∈ [0, 100] at the program end
less precise than R = 0 found by semantic inlining
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Partial context-sensitivity

Variants: k−limiting, k is a constant

stack:
assign a distinct variable for the k highest levels of V
abstract the lower (unbounded) stack part with V̂
more precise than keeping only the top of the stack separately

context-sensitivity:
each syntactic call has a unique call-site ` ∈ L
a call stack is a sequence of nested call sites: c ∈ L∗
an abstract call stack remembers the last k call sites: c] ∈ Lk

the C ] and R] maps now distinguish abstract call stacks
C ],R] : Lk → E]
more precise than a partitioning by function only

larger k give more precision but less efficiency
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Inter-procedural analyses Call-site abstraction

Example: context-sensitivity

Example

main :
R ← −1;
`1 : f (rand(5, 10));
`2 : f (80)

f (X ) :
R ← 2× X ;
if R > 100 then R ← 0

Analysis: using intervals and k = 1

C ](`1) = [R 7→ [−1, 1],X 7→ [5, 10]]
=⇒ R](`1) = [R 7→ [10, 20],X 7→ [5, 10]]

C ](`2) = [R 7→ [10, 20],X 7→ [80, 80]]
=⇒ R](`2) = [R 7→ [0, 0],X 7→ [80, 80]]

at the end of the analysis, we get R = 0
more precise than R ∈ [0, 100] found without context-sensitivity
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Tabulation abstraction
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Inter-procedural analyses Tabulation abstraction

Cardinal power

Principle:

the semantic of a function is SJ body(f ) K : P(E)→ P(E)

=⇒ abstract it as an abstract function in E] ⇀ E]
we use a partial function as the image of most abstract elements is not useful

Analysis: tabulated analysis

use a global partial map F ] : F × E] ⇀ E]

F ] is initially empty, and is filled on-demand

when encountering S]J body(f ) K X ]

return F ](f ,X ]) if defined

else, compute S]J body(f ) K X ], store it in F ](f ,X ]) and return it

Optimizations: trade precision for efficiency

if X ] v Y ] and F ](f ,X ]) is not defined, we can use F ](f ,Y ]) instead

if the size of F ] grows too large, use F ](f ,>) instead

sound, and ensures that the analysis terminates in finite time
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Inter-procedural analyses Tabulation abstraction

Example

Example

main :
R ← −1;
f (rand(5, 10));
f (80)

f (X ) :
R ← 2× X ;
if R > 100 then R ← 0

Analysis using intervals

F ] =
[ (f , [R 7→ [−1,−1],X 7→ [5, 10]]) 7→ [R 7→ [10, 20],X 7→ [5, 10]],

(f , [R 7→ [10, 20],X 7→ [80, 80]]) 7→ [R 7→ [0, 0],X 7→ [80, 80]] ]

at the end of the analysis, we get again R = 0

here, the function partitioning gives the same result as the call-site partitioning
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Dynamic partitioning: complex example

Example: McCarthy’s 91 function

main :
Mc(rand(0,+∞))

Mc(n) :
if n > 100 then r ← n − 10
else Mc(n + 11); Mc(r)

in the concrete, when terminating:
r = n − 10 when n > 101, and r = 91 wen n ∈ [0, 101]

using a widening O to choose tabulated abstract values F ](f ,X ])
we find: n ∈ [0, 72] ⇒ r = 91

n ∈ [73, 90] ⇒ r ∈ [91, 101]
n ∈ [91, 101] ⇒ r = 91
n ∈ [102, 111] ⇒ r ∈ [91, 101]
n ∈ [112,+∞] ⇒ r ∈ [91,+∞]

(source: Bourdoncle, JFP 1992)
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