Abstract Interpretation III

Semantics and Application to Program Verification

Antoine Miné

École normale supérieure, Paris year 2015–2016

> Course 12 20 May 2016

Overview

• Last week: non-relational abstract domains

abstract each variable independently from the others can express important properties (e.g., absence of overflow) unable to represent relations between variables

• This week: relational abstract domains

more precise, but more costly

- the need for relational domains
- linear equality domain
- polyhedra domain
- extensions: weakly relational domains, integers, non-linear expressions
- the Apron library
- practical exercises: relational analysis with the Apron library
- Next week: selected advanced topics on abstract domains

 $(\sum_{i} \alpha_{i} V_{i} = \beta_{i})$ $(\sum_{i} \alpha_{i} V_{i} \ge \beta_{i})$

(intervals)

Relational assignments and tests

Example

 $X \leftarrow rand(0, 10);$ $Y \leftarrow rand(0, 10);$ if $X \ge Y$ then $X \leftarrow Y$ else skip; $D \leftarrow Y - X;$ assert $D \ge 0$

Interval analysis:

• $S^{\sharp}[X \ge Y?]$ is abstracted as the identity given $R^{\sharp} \stackrel{\text{def}}{=} [X \mapsto [0, 10], Y \mapsto [0, 10]]$ $S^{\sharp}[if X \ge Y \text{ then } \cdots] R^{\sharp} = R^{\sharp}$

- $D \leftarrow Y X$ gives $D \in [0, 10] {}^{\sharp} [0, 10] = [-10, 10]$
- the assertion $D \ge 0$ fails

Relational assignments and tests

Example

```
\begin{array}{l} X \leftarrow \mathsf{rand}(0, 10); \\ Y \leftarrow \mathsf{rand}(0, 10); \\ \mathsf{if } X \geq Y \mathsf{ then } X \leftarrow Y \mathsf{ else skip}; \\ D \leftarrow Y - X; \\ \mathsf{assert } D \geq 0 \end{array}
```

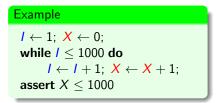
Solution: relational domain

- represent explicitly the information $X \leq Y$
- infer that X ≤ Y holds after the if · · · then · · · else · · · X ≤ Y both after X ← Y when X ≥ Y, and after skip when X < Y
- use $X \leq Y$ to deduce that $Y X \in [0, 10]$

Note:

the invariant we seek, $D \ge 0$, can be exactly represented in the interval domain, but inferring $D \ge 0$ requires a more expressive domain locally

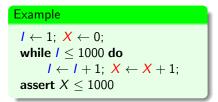
Relational loop invariants



Interval analysis:

- after iterations with widening, we get in 2 iterations: as loop invariant: *I* ∈ [1, +∞] and *X* ∈ [0, +∞] after the loop: *I* ∈ [1001, +∞] and *X* ∈ [0, +∞] ⇒ assert fails
- using a decreasing iteration after widening, we get: as loop invariant: *I* ∈ [1, 1001] and *X* ∈ [0, +∞] after the loop: *I* = 1001 and *X* ∈ [0, +∞] ⇒ assert fails (the test *I* < 1000 only refines *I*, but gives no information on *X*)
- without widening, we get *I* = 1001 and *X* = 1000 ⇒ assert passes but we need 1000 iterations! (~ concrete fixpoint computation)

Relational loop invariants



Solution: relational domain

• infer a relational loop invariant: $I = X + 1 \land 1 \le I \le 1001$

I = X + 1 holds before entering the loop as 1 = 0 + 1

I = X + 1 is invariant by the loop body $I \leftarrow I + 1$; $X \leftarrow X + 1$

(can be inferred in 2 iterations with widening in the polyhedra domain)

propagate the loop exit condition I > 1000 to get:

I = 1001 $X = I - 1 = 1000 \implies \text{assert passes}$

<u>Note:</u>

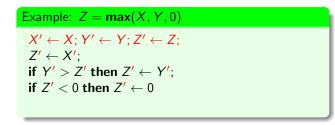
the invariant we seek after the loop exit has an interval form: $X \le 1000$ but we need to infer a more expressive loop invariant to deduce it

Course 12

Relational procedure analysis

Example: $Z = \max(X, Y, 0)$ $Z \leftarrow X;$ if Y > Z then $Z \leftarrow Y;$ if Z < 0 then $Z \leftarrow 0$

Relational procedure analysis



• add and rename variables: keep a copy of input values

Relational procedure analysis

Example: $Z = \max(X, Y, 0)$ $X' \leftarrow X; Y' \leftarrow Y; Z' \leftarrow Z;$ $Z' \leftarrow X';$ if Y' > Z' then $Z' \leftarrow Y';$ if Z' < 0 then $Z' \leftarrow 0$ $//Z' \ge X \land Z' \ge Y \land Z' \ge 0 \land X' = X \land Y' = Y$

- add and rename variables: keep a copy of input values
- infer a relation between input values (X,Y,Z) and current values (X', Y', Z')

Applications: procedure summaries, modular analysis.

Affine Equalities

Affine Equalities

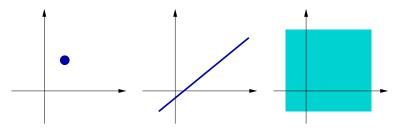
Affine Equalities

Affine equalities

The affine equality domain

We look for invariants of the form: $\wedge_j (\sum_{i=1}^n \alpha_{ij} V_i = \beta_j), \ \alpha_{ij}, \beta_j \in \mathbb{Q}$ where all the α_{ij} and β_j are inferred automatically

We use a domain of affine spaces proposed by Karr in 1976 $\mathcal{E}^{\sharp} \simeq \{ \text{ affine subspaces of } \mathbb{V} \to \mathbb{R} \}$



 $\underline{Notes:}$ we reason in $\mathbb R$ to use results from linear algebra we use coefficients in $\mathbb Q$ to be machine representable

Course 12	Abstract Interpretation III	Antoine Miné	p. 8 / 60

Affine equality representation

Machine representation:

$$\mathcal{E}^{\sharp} \stackrel{\text{def}}{=} \cup_m \ \{ \langle \mathsf{M}, \vec{C} \rangle \, | \, \mathsf{M} \in \mathbb{Q}^{m \times n}, \vec{C} \in \mathbb{Q}^m \, \} \cup \{ \bot \}$$

ullet either the constant ot

• or a pair $\langle \mathbf{M}, \vec{C} \rangle$ where

•
$$\mathbf{M} \in \mathbb{Q}^{m imes n}$$
 is a $m imes n$ matrix, $n = |\mathbb{V}|$ and $m \le n$,

• $\vec{C} \in \mathbb{Q}^m$ is a row-vector with m rows

 $\langle \mathbf{M}, \vec{C} \rangle$ represents an equation system, with solutions:

 $\gamma(\langle \mathsf{M}, \vec{C} \rangle) \stackrel{\text{def}}{=} \{ \vec{V} \in \mathbb{R}^n \, | \, \mathsf{M} \times \vec{V} = \vec{C} \, \}$

• if
$$i < i'$$
 then $k_i < k_{i'}$ (leading index)

Remarks:

the representation is unique

as $m \leq n = |\mathbb{V}|$, the memory cost is in $\mathcal{O}(n^2)$ at worst

op is represented as the empty equation system: m=0

example:

Galois connection

Galois connection:

(actually, a Galois insertion)

between arbitrary subsets and affine subsets

 $(\mathcal{P}(\mathbb{R}^{|\mathbb{V}|}),\subseteq) \xleftarrow{\gamma}{\alpha} (Aff(\mathbb{R}^{|\mathbb{V}|}),\subseteq)$

•
$$\gamma(X) \stackrel{\text{def}}{=} X$$
 (identity)

• $\alpha(X) \stackrel{\text{def}}{=}$ smallest affine subset containing X

 $Aff(\mathbb{R}^{|\mathbb{V}|}) \text{ is closed under arbitrary intersections, so we have:} \\ \alpha(X) = \cap \{ Y \in Aff(\mathbb{R}^{|\mathbb{V}|}) | X \subseteq Y \}$

 $\begin{aligned} & Aff(\mathbb{R}^{|\mathbb{V}|}) \text{ contains every point in } \mathbb{R}^{|\mathbb{V}|} \\ & \text{ we can also construct } \alpha(X) \text{ by (abstract) union:} \\ & \alpha(X) = \cup^{\sharp} \{ \{x\} \mid x \in X \} \end{aligned}$

Notes:

- we have assimilated $\mathbb{V} \to \mathbb{R}$ to $\mathbb{R}^{|\mathbb{V}|}$
- we have used $Aff(\mathbb{R}^{|V|})$ instead of the matrix representation \mathcal{E}^{\sharp} for simplicity; a Galois connection also exists between $\mathcal{P}(\mathbb{R}^{|V|})$ and \mathcal{E}^{\sharp}

Normalisation and emptiness testing

Let $\mathbf{M} \times \vec{V} = \vec{C}$ be a system, not necessarily in normal form

The Gaussian reduction $Gauss(\langle \mathbf{M}, \vec{C} \rangle)$ with $\mathcal{O}(n^3)$ time:

- tells whether the system is satisfiable
- gives an equivalent system in normal form i.e., it returns an element in E[♯]
- by combining rows linearly to remove variable occurrences

Example:

$$\begin{cases} 2X + Y + Z = 19\\ 2X + Y - Z = 9\\ & 3Z = 15\\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & & \\ & & & \\ & & & \\ & & & Z = 5 \end{cases}$$

Affine equality operators

Abstract operators:

If
$$X^{\sharp}, Y^{\sharp} \neq \bot$$
, we define:
 $X^{\sharp} \cap^{\sharp} Y^{\sharp} \stackrel{\text{def}}{=} Gauss \left(\left\langle \begin{bmatrix} \mathbf{M}_{X^{\sharp}} \\ \mathbf{M}_{Y^{\sharp}} \end{bmatrix}, \begin{bmatrix} \vec{c}_{X^{\sharp}} \\ \vec{c}_{Y^{\sharp}} \end{bmatrix} \right\rangle \right)$ (join equations)
 $X^{\sharp} = {}^{\sharp}Y^{\sharp} \stackrel{\text{def}}{\Longrightarrow} \mathbf{M}_{X^{\sharp}} = \mathbf{M}_{Y^{\sharp}} \text{ and } \vec{c}_{X^{\sharp}} = \vec{c}_{Y^{\sharp}}$ (uniqueness)
 $X^{\sharp} \subseteq {}^{\sharp}Y^{\sharp} \stackrel{\text{def}}{\Longrightarrow} X^{\sharp} \cap^{\sharp}Y^{\sharp} = {}^{\sharp}X^{\sharp}$
 $S^{\sharp} \begin{bmatrix} \sum_{j} \alpha_{j} V_{j} = \beta? \end{bmatrix} X^{\sharp} \stackrel{\text{def}}{=} Gauss \left(\left\langle \begin{bmatrix} \mathbf{M}_{X^{\sharp}} \\ \alpha_{1} \cdots \alpha_{n} \end{bmatrix}, \begin{bmatrix} \vec{c}_{X^{\sharp}} \\ \beta \end{bmatrix} \right\rangle \right)$ (add equation)
 $S^{\sharp} \begin{bmatrix} e \bowtie e'? \end{bmatrix} X^{\sharp} \stackrel{\text{def}}{=} X^{\sharp}$ for other tests

Remark:

Affine equality assignment

Non-deterministic assignment: $S^{\sharp} \llbracket V_j \leftarrow [-\infty, +\infty] \rrbracket$

 $\frac{\text{Principle:}}{\text{but reduce the number of equations by only one}}_{(add a single degree of freedom)}$

Algorithm: assuming V_j occurs in M

- Pick the row $\langle \vec{M}_i, C_i \rangle$ such that $M_{ij} \neq 0$ and i maximal
- Use it to eliminate all the occurrences of V_j in lines before i

 $(i \text{ maximal} \implies M \text{ stays in row echelon form})$

• Remove the row $\langle \vec{M}_i, C_i \rangle$

Example: forgetting Z

$$\begin{cases} X + Z = 10 \\ Y + Z = 7 \end{cases} \implies \{ X - Y = 3 \end{cases}$$

The operator is exact

Affine equality assignment

Affine assignments: $S^{\sharp} \llbracket V_j \leftarrow \sum_i \alpha_i V_i + \beta \rrbracket$

$$\begin{split} \mathsf{S}^{\sharp} \llbracket V_{j} \leftarrow \sum_{i} \alpha_{i} V_{i} + \beta \rrbracket X^{\sharp} \stackrel{\text{def}}{=} \\ & \text{if } \alpha_{j} = 0, (\mathsf{S}^{\sharp} \llbracket V_{j} = \sum_{i} \alpha_{i} V_{i} + \beta? \rrbracket \circ \mathsf{S}^{\sharp} \llbracket V_{j} \leftarrow [-\infty, +\infty] \rrbracket) X^{\sharp} \\ & \text{if } \alpha_{j} \neq 0, \langle \mathbf{M}, \vec{C} \rangle \text{ where } V_{j} \text{ is replaced with } \frac{1}{\alpha_{j}} (V_{j} - \sum_{i \neq j} \alpha_{i} V_{i} - \beta) \\ & (\text{variable substitution}) \end{split}$$

 $\begin{array}{ll} \underline{\operatorname{Proof sketch:}} & \text{based on properties in the concrete} \\ \\ \operatorname{non-invertible assignment:} & \alpha_j = 0 \\ & \mathbb{S}[\![V_j \leftarrow e]\!] = \mathbb{S}[\![V_j \leftarrow e]\!] \circ \mathbb{S}[\![V_j \leftarrow [-\infty, +\infty]]\!] \text{ as the value of } V \text{ is not used in } e \\ & \text{so } \mathbb{S}[\![V_j \leftarrow e]\!] = \mathbb{S}[\![V_j = e?]\!] \circ \mathbb{S}[\![V_j \leftarrow [-\infty, +\infty]]\!] \text{ invertible assignment:} & \alpha_j \neq 0 \\ & \mathbb{S}[\![V_j \leftarrow e]\!] \subseteq \mathbb{S}[\![V_j \leftarrow e]\!] \circ \mathbb{S}[\![V_j \leftarrow e]\!] \circ \mathbb{S}[\![V_j \leftarrow [-\infty, +\infty]]\!] \text{ as } e \text{ depends on } V \\ & \rho \in \mathbb{S}[\![V_j \leftarrow e]\!] R \iff \exists \rho' \in R: \rho = \rho'[V_j \mapsto \sum_i \alpha_i \rho'(V_i) + \beta] \\ & \iff \exists \rho' \in R: \rho[V_j \mapsto (\rho(V_j) - \sum_{i \neq j} \alpha_i \rho(V_i) - \beta)/\alpha_j] = \rho' \\ & \iff \rho[V_j \mapsto (\rho(V_j) - \sum_{i \neq j} \alpha_i \rho(V_i) - \beta)/\alpha_j] \in R \end{array}$

Non-affine assignments: revert to non-deterministic case

$$\mathsf{S}^{\sharp}\llbracket V_{j} \leftarrow e \,]\!] \, X^{\sharp} \stackrel{\mathsf{def}}{=} \mathsf{S}^{\sharp}\llbracket V_{j} \leftarrow [-\infty, +\infty] \,]\!] \, X^{\sharp} \qquad \qquad (\mathsf{imprecise but sound})$$

Course 12

Abstract Interpretation III

Antoine Miné

p. 14 / 60

Affine equality join

$$\underline{\mathsf{Join:}} \quad \langle \mathsf{M}, \vec{\mathsf{C}} \rangle \cup^{\sharp} \langle \mathsf{N}, \vec{\mathsf{D}} \rangle$$

<u>Idea:</u> unify columns 1 to *n* of $\langle \mathbf{M}, \vec{C} \rangle$ and $\langle \mathbf{N}, \vec{D} \rangle$ using row operations

Example:

Assume that we have unified columns 1 to k to get $\begin{pmatrix} R \\ 0 \end{pmatrix}$, arguments are in row

echelon form, and we have to unify at column k + 1: ${}^{t}(\vec{0} \ 1 \ \vec{0})$ with ${}^{t}(\vec{\beta} \ 0 \ \vec{0})$

$$\begin{pmatrix} \mathbf{R} \ \vec{\mathbf{0}} \ \mathbf{M}_1 \\ \vec{\mathbf{0}} \ \mathbf{1} \ \vec{\mathbf{M}_2} \\ \mathbf{0} \ \vec{\mathbf{0}} \ \mathbf{M}_3 \end{pmatrix}, \begin{pmatrix} \mathbf{R} \ \vec{\beta} \ \mathbf{N}_1 \\ \vec{\mathbf{0}} \ \mathbf{0} \ \vec{\mathbf{N}_2} \\ \mathbf{0} \ \vec{\mathbf{0}} \ \mathbf{M}_3 \end{pmatrix} \Longrightarrow \begin{pmatrix} \mathbf{R} \ \vec{\beta} \ \mathbf{M}_1' \\ \vec{\mathbf{0}} \ \mathbf{0} \ \vec{\mathbf{0}} \\ \mathbf{0} \ \vec{\mathbf{0}} \ \mathbf{M}_3 \end{pmatrix}, \begin{pmatrix} \mathbf{R} \ \vec{\beta} \ \mathbf{N}_1 \\ \vec{\mathbf{0}} \ \mathbf{0} \ \vec{\mathbf{N}_2} \\ \mathbf{0} \ \vec{\mathbf{0}} \ \mathbf{N}_3 \end{pmatrix}$$

Use the row $(\vec{0} \ 1 \ \vec{M_2})$ to create $\vec{\beta}$ in the left argument Then remove the row $(\vec{0} \ 1 \ \vec{M_2})$ The right argument is unchanged \implies we have now unified columns 1 to k + 1

Unifying ${}^{t}(\vec{\alpha} \ 0 \ \vec{0})$ and ${}^{t}(\vec{0} \ 1 \ \vec{0})$ is similar Unifying ${}^{t}(\vec{\alpha} \ 0 \ \vec{0})$ and ${}^{t}(\vec{\beta} \ 0 \ \vec{0})$ is a bit more complicated... No other case possible as we are in row echelon form

Analysis example

No infinite increasing chain: we can iterate without widening!

Example
$X \leftarrow$ 10; $Y \leftarrow$ 100;
while $X \neq 0$ do
$X \leftarrow X - 1;$
$Y \leftarrow Y + 10$

Abstract loop iterations: $\lim \lambda X^{\sharp} . I^{\sharp} \cup^{\sharp} S^{\sharp} \llbracket body \rrbracket (S^{\sharp} \llbracket X \neq 0? \rrbracket X^{\sharp})$

- loop entry: $I^{\sharp} = (X = 10 \land Y = 100)$
- after one loop body iteration: $F^{\sharp}(I^{\sharp}) = (X = 9 \land Y = 110)$
- $\Longrightarrow X^{\sharp} \stackrel{\text{def}}{=} I^{\sharp} \cup^{\sharp} F^{\sharp}(I^{\sharp}) = (10X + Y = 200)$
- X[‡] is stable

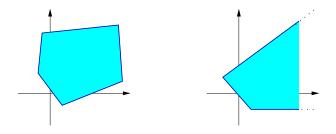
at loop exit, we get S^{\sharp} [[X = 0?]] $(10X + Y = 200) = (X = 0 \land Y = 200)$

The polyhedra domain

We look for invariants of the form: $\wedge_j \left(\sum_{i=1}^n \alpha_{ij} V_i \geq \beta_j \right)$

We use the polyhedra domain by Cousot and Halbwachs (1978)

 $\mathcal{E}^{\sharp} \simeq \{ \text{ closed convex polyhedra of } \mathbb{V} \to \mathbb{R} \, \}$



- <u>Notes:</u> polyhedra need not be bounded (\neq polytopes)
 - we keep reasoning in $\ensuremath{\mathbb{R}}$, to use affine theory

Double description of polyhedra

Polyhedra have dual representations (Weyl-Minkowski Theorem)

Constraint representation

 $\begin{array}{l} \langle \mathbf{M}, \vec{C} \rangle \text{ with } \mathbf{M} \in \mathbb{Q}^{m \times n} \text{ and } \vec{C} \in \mathbb{Q}^m \\ \text{represents:} \quad \gamma(\langle \mathbf{M}, \vec{C} \rangle) \stackrel{\text{def}}{=} \{ \vec{V} \mid \mathbf{M} \times \vec{V} \geq \vec{C} \} \end{array}$

We will also often use a constraint set notation: $\{\sum_{i} \alpha_{ij} V_i \geq \beta_j\}$

Generator representation

 $[\mathbf{P}, \mathbf{R}]$ where

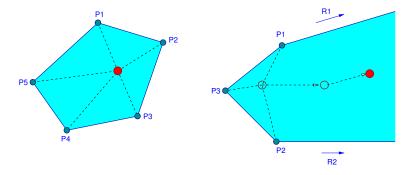
- $\mathbf{P} \in \mathbb{Q}^{n imes p}$ is a set of p points: $\vec{P}_1, \dots, \vec{P}_p$
- $\mathbf{R} \in \mathbb{Q}^{n imes r}$ is a set of r rays: $ec{R}_1, \ldots, ec{R}_r$

 $\gamma([\mathbf{P},\mathbf{R}]) \stackrel{\text{def}}{=} \{ \left(\sum_{j=1}^{p} \alpha_j \vec{P}_j \right) + \left(\sum_{j=1}^{r} \beta_j \vec{R}_j \right) | \forall j, \alpha_j, \beta_j \ge 0 \colon \sum_{j=1}^{p} \alpha_j = 1 \}$

Double description of polyhedra (cont.)

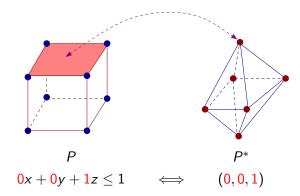
Generator representation examples:

$$\gamma([\mathbf{P},\mathbf{R}]) \stackrel{\text{def}}{=} \{ \left(\sum_{j=1}^{p} \alpha_j \vec{P}_j \right) + \left(\sum_{j=1}^{r} \beta_j \vec{R}_j \right) | \forall j, \alpha_j, \beta_j \ge 0 \colon \sum_{j=1}^{p} \alpha_j = 1 \}$$



- the points define a bounded convex hull
- the rays allow unbounded polyhedra

Duality in polyhedra



Duality: P^* is the dual of P, so that:

- the generators of P^* are the constraints of P
- the constraints of P^* are the generators of P

•
$$P^{**} = P$$

Double description: pros and cons

Pros:

Abstract operations are generally easy on one of the representations

which representation is best depends on the operation

- e.g., constraints for $\cap^{\sharp},$ generators for \cup^{\sharp}
- \implies polyhedra operations are reduced to a single complex algorithm: changing one representation into the other

Cons:

Changing the representation can be costly and cause a combinatorial explosion in the size of the representation!

Example: a hypercube in \mathbb{R}^n with axis-aligned faces

- 2n contraints
- but 2^{*n*} generators (vertices of the hypercube)
- yet, hypercubes occur frequently in program analysis!

We are not free to choose the most compact representation but have to use the representation required by our operation...

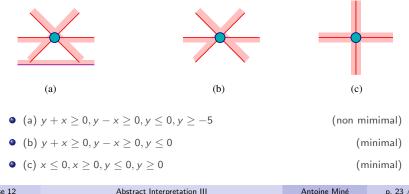
Course 12

Uniqueness, minimality

Minimal representations

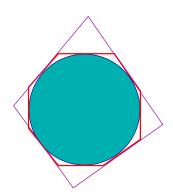
- A constraint / generator system is minimal if no constraint / generator can be omitted without changing the concretization
- Minimal representations are not unique

three different constraint representations for a point Example:



Bound on polyhedra

- There is no bound on the size of the representation of polyhedra even for minimal representations



Example:

a disc has infinitely many polyhedral over-approximations

no approximation is the best one

Representation change: Chernikova's algorithm

Chernikova's algorithm (1968), improved by LeVerge (1992):

- changes a constraint system into an equivalent generator system
- by duality, also changes a generator system into an equivalent constraint system
- also minimizes the representation

Intuition: incremental algorithm

- start from a generator representation of \mathbb{R}^n
- add constraints one by one
- filter generators to keep only those that satisfy the new constraint
- move generators to force them to satisfy the new constraint i.e., they must *saturate* the constraint

Chernikova's algorithm

 $\label{eq:start_start} \begin{array}{ll} \underline{\mbox{Algorithm:}} & \mbox{incrementally add constraints one by one} \\ \hline Start with: & \left\{ \begin{array}{ll} \mbox{P}_0 = \{ (0, \dots, 0) \} & (\text{origin}) \\ \mbox{R}_0 = \{ \vec{x}_i, \ -\vec{x}_i \mid 1 \leq i \leq n \} & (\text{axes}) \end{array} \right. \end{array} \right.$

For each constraint $\vec{M}_k \cdot \vec{V} \ge C_k \in \langle \mathsf{M}, \vec{C} \rangle$, update $[\mathsf{P}_{k-1}, \mathsf{R}_{k-1}]$ to $[\mathsf{P}_k, \mathsf{R}_k]$. Start with $\mathsf{P}_k = \mathsf{R}_k = \emptyset$.

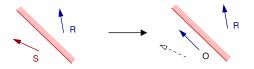
• for any $\vec{P} \in \mathbf{P}_{k-1}$ s.t. $\vec{M}_k \cdot \vec{P} > C_k$, add \vec{P} to \mathbf{P}_k

• for any
$$ec{R} \in \mathbf{R}_{k-1}$$
 s.t. $ec{M}_k \cdot ec{R} \geq 0$, add $ec{R}$ to \mathbf{R}_k

• for any
$$\vec{P}, \vec{Q} \in \mathbf{P}_{k-1}$$
 s.t. $\vec{M}_k \cdot \vec{P} > C_k$ and $\vec{M}_k \cdot \vec{Q} < C_k$, add to \mathbf{P}_k :
 $\vec{O} \stackrel{\text{def}}{=} \frac{C_k - \vec{M}_k \cdot \vec{Q}}{\vec{M}_k \cdot \vec{P} - \vec{M}_k \cdot \vec{Q}} \vec{P} - \frac{C_k - \vec{M}_k \cdot \vec{P}}{\vec{M}_k \cdot \vec{P} - \vec{M}_k \cdot \vec{Q}} \vec{Q}$

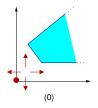
Chernikova's algorithm (cont.)

• for any $\vec{R}, \vec{S} \in \mathbf{R}_{k-1}$ s.t. $\vec{M}_k \cdot \vec{R} > 0$ and $\vec{M}_k \cdot \vec{S} < 0$, add to \mathbf{R}_k : $\vec{O} \stackrel{\text{def}}{=} (\vec{M}_k \cdot \vec{S})\vec{R} - (\vec{M}_k \cdot \vec{R})\vec{S}$



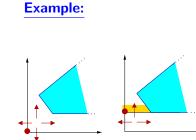
• for any $\vec{P} \in \mathbf{P}_{k-1}$, $\vec{R} \in \mathbf{R}_{k-1}$ s.t. either $\vec{M}_k \cdot \vec{P} > C_k$ and $\vec{M}_k \cdot \vec{R} < 0$, or $\vec{M}_k \cdot \vec{P} < C_k$ and $\vec{M}_k \cdot \vec{R} > 0$ add to \mathbf{P}_k : $\vec{O} \stackrel{\text{def}}{=} \vec{P} + \frac{C_k - \vec{M}_k \cdot \vec{P}}{\vec{M}_k \cdot \vec{R}} \vec{R}$

Chernikova's algorithm example



 $\mathbf{P}_0 = \{(0,0)\} \qquad \qquad \mathbf{R}_0 = \{(1,0), \, (-1,0), \, (0,1), \, (0,-1)\}$

Chernikova's algorithm example



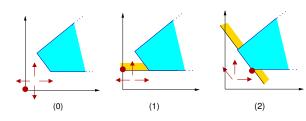
(0)

$$\begin{array}{lll} \mathsf{P}_0 = \{(0,0)\} & \mathsf{R}_0 = \{(1,0),\,(-1,0),\,(0,1),\,(0,-1)\} \\ \geq 1 & \mathsf{P}_1 = \{(0,1)\} & \mathsf{R}_1 = \{(1,0),\,(-1,0),\,(0,1)\} \end{array}$$

Y

(1)

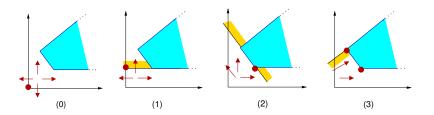
Chernikova's algorithm example



$$\begin{array}{ll} \mathbf{P}_0 = \{(0,0)\} \\ \mathbf{Y} \geq 1 & \mathbf{P}_1 = \{(0,1)\} \\ X+Y \geq 3 & \mathbf{P}_2 = \{(2,1)\} \end{array}$$

$$\begin{aligned} & \mathbf{R}_0 = \{(1,0), \, (-1,0), \, (0,1), \, (0,-1)\} \\ & \mathbf{R}_1 = \{(1,0), \, (-1,0), \, (0,1)\} \\ & \mathbf{R}_2 = \{(1,0), \, (-1,1), \, (0,1)\} \end{aligned}$$

Chernikova's algorithm example



	$\mathbf{P}_0 = \{(0,0)\}$	$\mathbf{R}_0 = \{(1,0), (-1,0), (0,1), (0,-1)\}$
$Y \ge 1$	$\mathbf{P}_1 = \{(0, 1)\}$	${f R}_1=\{(1,0),(-1,0),(0,1)\}$
$X + Y \ge 3$	$\mathbf{P}_2 = \{(2,1)\}$	${f R}_2=\{(1,0), {f (-1,1)}, (0,1)\}$
$X - Y \leq 1$	$\mathbf{P}_3 = \{(2,1), (1,2)\}$	${f R}_3=\{(0,1), {f (1,1)}\}$

we omit redundant generators; they are removed by the full version of the algorithm

Polyhedral abstract operators

Set-theoretic operations:

Assuming $X^{\sharp}, Y^{\sharp} \neq \bot$, we define:

$$X^{\sharp} \subseteq^{\sharp} Y^{\sharp} \quad \stackrel{\mathsf{def}}{\longleftrightarrow} \quad \left\{ \begin{array}{l} \forall \vec{P} \in \mathbf{P}_{X^{\sharp}} \colon \mathbf{M}_{Y^{\sharp}} \times \vec{P} \geq \vec{C}_{Y^{\sharp}} \\ \forall \vec{R} \in \mathbf{R}_{X^{\sharp}} \colon \mathbf{M}_{Y^{\sharp}} \times \vec{R} \geq \vec{0} \end{array} \right.$$

every generator in X^{\sharp} must satisfy every constraint in Y^{\sharp}

 $X^{\sharp} =^{\sharp} Y^{\sharp} \quad \stackrel{\mathsf{def}}{\Longleftrightarrow} \quad X^{\sharp} \subseteq^{\sharp} Y^{\sharp} \text{ et } Y^{\sharp} \subseteq^{\sharp} X^{\sharp}$

both inclusion

$$X^{\sharp} \cap^{\sharp} Y^{\sharp} \stackrel{\text{def}}{=} \left\langle \left[\begin{array}{c} \mathsf{M}_{X^{\sharp}} \\ \mathsf{M}_{Y^{\sharp}} \end{array} \right], \left[\begin{array}{c} \vec{C}_{X^{\sharp}} \\ \vec{C}_{Y^{\sharp}} \end{array} \right] \right\rangle$$

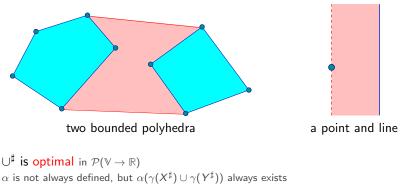
union of constraint sets

$$\subseteq^{\sharp}, =^{\sharp} \text{ and } \cap^{\sharp} \text{ are } \underset{\mathcal{P}(\mathbb{V} \to \mathbb{R})}{\text{ exact in } \mathcal{P}(\mathbb{V} \to \mathbb{R})}$$

Polyhedral abstract operators (cont.)

<u>Union</u>: $X^{\sharp} \cup^{\sharp} Y^{\sharp} \stackrel{\text{def}}{=} [[\mathbf{P}_{X^{\sharp}} \mathbf{P}_{Y^{\sharp}}], [\mathbf{R}_{X^{\sharp}} \mathbf{R}_{Y^{\sharp}}]]$ union of generator sets

Examples:



 \implies topological closure of the convex hull of of $\gamma(X^{\sharp}) \cup \gamma(Y^{\sharp})$

Polyhedral abstract operators (cont.)

Affine test :

$$\mathsf{S}^{\sharp}\llbracket\sum_{i}\alpha_{i}V_{i} \geq \beta? \rrbracket X^{\sharp} \stackrel{\mathsf{def}}{=} \left\langle \left[\begin{array}{c} \mathsf{M}_{X^{\sharp}} \\ \alpha_{1}\cdots\alpha_{n} \end{array} \right], \left[\begin{array}{c} \vec{C}_{X^{\sharp}} \\ \beta \end{array} \right] \right\rangle$$

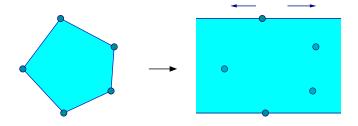
 $\mathsf{S}^{\sharp}\llbracket\sum_{i}\alpha_{i}V_{i} = \beta? \rrbracket X^{\sharp} \stackrel{\text{def}}{=} \mathsf{S}^{\sharp}\llbracket\sum_{i}\alpha_{i}V_{i} \geq -\beta? \rrbracket (\mathsf{S}^{\sharp}\llbracket\sum_{i}(-\alpha_{i})V_{i} \geq \beta? \rrbracket X^{\sharp})$

- simply adds a constraint to the constraint set
- the operators are exact
- the other tests can be abstracted as S[#] [[c]] X[#] ^{def} = X[#] sound but very imprecise

Polyhedral abstract operators (cont.)

Non-deterministic assignment:

 $\mathsf{S}^{\sharp}\llbracket V_{j} \leftarrow \mathsf{rand}(-\infty, +\infty) \rrbracket X^{\sharp} \stackrel{\text{\tiny def}}{=} [\mathsf{P}_{X^{\sharp}}, [\mathsf{R}_{X^{\sharp}} \ \vec{x}_{j} \ (-\vec{x}_{j})]]$



- in the concrete: $S[V_j \leftarrow rand(-\infty, +\infty)]R = \{ \rho[V_j \mapsto v] | \rho \in R, v \in \mathbb{R} \}$
- in the abstract: add two rays parallel to the "forgotten" variable
- exact operator in $\mathcal{P}(\mathbb{V} \to \mathbb{R})$

Operators on polyhedra (cont.)

Affine assignment:

 $S^{\sharp}\llbracket V_{j} \leftarrow \sum_{i} \alpha_{i} V_{i} + \beta \rrbracket X^{\sharp} \stackrel{\text{def}}{=}$ if $\alpha_{j} \neq 0, \langle \mathbf{M}, \vec{C} \rangle$ where V_{j} is replaced with $\frac{1}{\alpha_{j}}(V_{j} - \sum_{i \neq j} \alpha_{i} V_{i} - \beta)$ if $\alpha_{j} = 0, (S^{\sharp}\llbracket \sum_{i} \alpha_{i} V_{i} = V_{j} - \beta? \rrbracket \circ S^{\sharp}\llbracket V_{j} \leftarrow [-\infty, +\infty] \rrbracket) X^{\sharp}$ <u>Examples</u>: $X \leftarrow X + Y$ $X \leftarrow Y$ $X \leftarrow Y$

- similar to the assignment in the equality domain
- the assignment is exact (in $\mathcal{P}(\mathbb{V} \to \mathbb{R})$)
- assignments can also be defined on the generator system
- for non-affine assignments: $S^{\sharp} \llbracket V \leftarrow e \rrbracket \stackrel{\text{def}}{=} S^{\sharp} \llbracket V \leftarrow [-\infty, +\infty] \rrbracket$ (sound but not optimal)

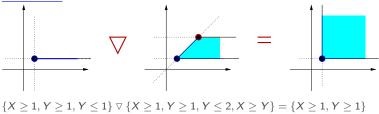
Naive widening on polyhedra

 $\begin{array}{ll} \mathcal{E}^{\sharp} \text{ has strictly increasing infinite chains} \implies \text{we need a widening} \\ \hline \mathbf{Ddfinition:} & X^{\sharp} \bigtriangledown Y^{\sharp} \stackrel{\text{def}}{=} \{ \ c \in X^{\sharp} \mid Y^{\sharp} \subseteq^{\sharp} \{ c \} \} \end{array}$

- keep the constraints from X^{\sharp} satisfied by Y^{\sharp}
- unlike \cup^{\sharp} , no new constraint is created
- \bigtriangledown reduces the set of constraints

 \implies ensures termination

Example:

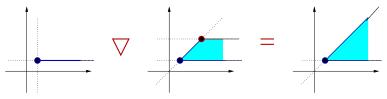


Better widenings on polyhedra

Taking into account constraints from Y^{\sharp}

$$\begin{array}{rcl} X^{\sharp} \bigtriangledown Y^{\sharp} & \stackrel{\text{def}}{=} & \{ c \in X^{\sharp} \mid Y^{\sharp} \subseteq^{\sharp} \{ c \} \} \\ & \cup & \{ c \in Y^{\sharp} \mid \exists c' \in X^{\sharp} \colon X^{\sharp} =^{\sharp} (X^{\sharp} \setminus c') \cup \{ c \} \} \end{array}$$

also keeps the constraints from Y^{\sharp} that are equivalent to a constraint from X^{\sharp}



 $\{X \geq 1, Y \geq 1, Y \leq 1\} \triangledown \{X \geq 1, Y \geq 1, Y \leq 2, X \geq Y\} = \{X \geq 1, \textbf{X} \geq \textbf{Y}\}$

Widening with thresholds

parameterized by a finite set of constraints T

$$\begin{array}{rcl} X^{\sharp} \bigtriangledown Y^{\sharp} & \stackrel{\text{def}}{=} & \{ c \in X^{\sharp} \mid Y^{\sharp} \subseteq^{\sharp} \{ c \} \} \\ & \cup & \{ c \in T \mid X^{\sharp} \subseteq^{\sharp} \{ c \} \land Y^{\sharp} \subseteq^{\sharp} \{ c \} \} \end{array}$$

adds constraints from ${\mathcal T}$ when stable, similar to the widening on intervals. . .

Example analysis with polyhedra

Example $X \leftarrow 2; l \leftarrow 0;$ while l < 10 do if rand(0, 1) = 0 then $X \leftarrow X + 2$ else $X \leftarrow X - 3;$ $l \leftarrow l + 1$ done

Loop invariant :

increasing iteration with widening

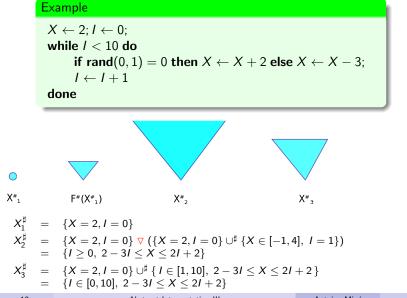
$$\begin{array}{rcl} X_1^{\sharp} &=& \{X=2, I=0\} \\ X_2^{\sharp} &=& \{X=2, I=0\} \lor (\{X=2, I=0\} \cup^{\sharp} \{X \in [-1,4], I=1\}) \\ &=& \{X=2, I=0\} \lor \{I \in [0,1], 2-3I \leq X \leq 2I+2\} \\ &=& \{I \geq 0, 2-3I \leq X \leq 2I+2\} \end{array}$$

decreasing iteration: to get $I \leq 10$

$$\begin{array}{rcl} X_3^{\sharp} & = & \{X=2, I=0\} \cup^{\sharp} \{I \in [1,10], \ 2-3I \leq X \leq 2I+2\} \\ & = & \{I \in [0,10], \ 2-3I \leq X \leq 2I+2\} \end{array}$$

at the end of the loop, we get: $I = 10 \land X \in [-28, 22]$

Example analysis with polyhedra (illustration)



Summary of numeric abstract domains

Cost vs. precision:

Domain	Invariants	Memory cost	Time cost (per op.)
intervals	$V \in [\ell, h]$	$\mathcal{O}(\mathbb{V})$	$\mathcal{O}(\mathbb{V})$
affine equalities	$\sum_{i} \alpha_i V_i = \beta_i$	$\mathcal{O}(\mathbb{V} ^2)$	$\mathcal{O}(\mathbb{V} ^3)$
polyhedra	$\sum_{i} \alpha_i V_i \ge \beta_i$	unbounded, exponential in practice	

- domains provide a tradeoff between precision and cost
- relational invariants are sometimes necessary

even to prove non-relational properties

- an abstract domain is defined by
 - a choice of abstract properties and operators (semantic aspect)
 - data-structures and algorithms (algorithmic aspect)
- an abstract domain mixes two kinds of approximations:
 - static approximations (choice of abstract properties)
 - dynamic approximations

Course 12

Abstract Interpretation III

Antoine Miné

(widening)

Weakly relational domains

Principle: restrict the expressiveness of polyhedra to be more efficient at the cost of precision

Example domains:

- Based on constraint propagation: (closure algorithms)
 - Octagons: $\pm X \pm Y \leq c$ shortest path closure: $x + y \leq c \land -y + z \leq d \implies x + z \leq c + d$ quadratic memory cost, cubic time cost
 - Two-variables per inequality: αx + βy ≤ c slightly more complex closure algorithm, by Nelson
 - Octahedra: $\sum_{i} \alpha_i V_i \leq c, \ \alpha_i \in \{-1, 0, 1\}$ incomplete propagation, to avoid exponential cost
 - Pentagons: X − Y ≤ 0 restriction of octagons incomplete propagation, aims at linear cost
- Based on linear programming:
 - Template polyhedra: $\mathbf{M} \times \vec{V} \ge \vec{C}$ for a fixed \mathbf{M}

Integers

Issue:

in relational domains we used implicitly real-valued environments $\mathbb{V}\to\mathbb{R}$ our concrete semantics is based on integer-valued environments $\mathbb{V}\to\mathbb{Z}$

In fact, an abstract element X^{\sharp} does not represent $\gamma(X^{\sharp}) \subseteq \mathbb{R}^{|\mathbb{V}|}$, but:

 $\gamma_{\mathbb{Z}}(X^{\sharp}) \stackrel{\text{def}}{=} \gamma(X^{\sharp}) \cap \mathbb{Z}^{|\mathbb{V}|}$ (keep only integer points)

<u>Soundness and exactness</u> for $\gamma_{\mathbb{Z}}$

- ⊆[#] and =[#] are is no longer exact
 e.g., γ(2X = 1) ≠ γ(⊥), but γ_Z(2X = 1) = γ(⊥) = Ø
- $\bullet \ \cap^{\sharp}$ and affine tests are still exact
- affine and non-deterministic assignments are no longer exact
 e.g., R[#] = (Y = 2X), S[#] [[X ← [-∞, +∞]]] R[#] = ⊤,
 but S[[X ← [-∞, +∞]]] (γ_Z(R[#])) = Z × (2Z)
- all the operators are still sound $\mathbb{Z}^{[\mathbb{V}]} \subseteq \mathbb{R}^{[\mathbb{V}]}$, so $\forall X^{\sharp} : \gamma_{\mathbb{Z}}(X^{\sharp}) \subseteq \gamma(X^{\sharp})$

(in general, soundness, exactness, optimality depend on the definition of γ)

Integers (cont.)

Possible solutions:

- enrich the domain (add exact representations for operation results)
 - congruence equalities: $\wedge_i \sum_j \alpha_{ij} V_j \equiv \beta_i [\gamma_i]$ (Granger 1991)
 - Pressburger arithmetic (first order logic with 0, 1, +) decidable, but with very costly algorithms
- design optimal (non-exact) operators

also based on costly algorithms, e.g.:

- normalization: integer hull smallest polyhedra containing γ_Z(X[‡])
- emptiness testing: integer programming NP-hard, while linear programming is P
- pragmatic solution (efficient, non-optimal) use regular operators for ℝ^{|V|}, then tighten each constraint to remove as many non-integer points as possible
 e.g.: 2X + 6Y ≥ 3 → X + 3Y ≥ 2

Note: we abstract integers as reals!

Non-linear expressions

Issue:

Our relational domains can only deal with linear expressions How can we abstract non-linear assignments such as $X \leftarrow Y \times Z$?

<u>Idea:</u> replace $Y \times Z$ with a sound linear approximation

Framework:

We define an approximation preorder \leq on expressions:

$$\frac{\mathbf{R} \models \mathbf{e}_1 \preceq \mathbf{e}_2} \iff \forall \, \rho \in \mathbf{R}, \, \mathsf{E}[\![\mathbf{e}_1 \,]\!] \, \rho \subseteq \mathsf{E}[\![\mathbf{e}_2 \,]\!] \, \rho$$

Soundness property:

if $\gamma(X^{\sharp}) \models e \leq e'$ then: • $S[V \leftarrow e] \gamma(X^{\sharp}) \subseteq \gamma(S[V \leftarrow e'] X^{\sharp})$ • $S[e \bowtie 0?] \gamma(X^{\sharp}) \subseteq \gamma(S^{\sharp}[e' \bowtie 0?] X^{\sharp})$

(we can now use e' in the abstract instead of e!)

In practice, we put expressions into affine interval form:

```
expr_{\ell}: [a_0, b_0] + \sum_k [a_k, b_k] V_k
```

Benefits:

- affine expressions are easy to manipulate
- interval coefficients allow non-determinism in expressions, hence, the opportunity for abstraction
- we can easily construct generalized abstract operators to handle affine interval expressions in our domains possibly by first abstracting further expressions into $[a_0, b_0] + \sum_k c_k V_k$ using the bounds on each V_k

Linearization (cont.)

Operations on affine interval forms

- adding \boxplus and subtracting \boxminus two forms
- multiplying \boxtimes and dividing \square a form by an interval

Noting i_k the interval $[a_k, b_k]$ and using interval operations $+^{\sharp}$, $-^{\sharp}$, \times^{\sharp} , $/^{\sharp}$ (e.g., $[a, b] +^{\sharp} [c, d] = [a + c, b + d]$):

• $(i_0 + \sum_k i_k \times V_k) \boxplus (i'_0 + \sum_k i'_k \times V_k) \stackrel{\text{def}}{=} (i_0 + {}^{\sharp}i'_0) + \sum_k (i_k + {}^{\sharp}i'_k) \times V_k$ • $i \boxtimes (i_0 + \sum_k i_k \times V_k) \stackrel{\text{def}}{=} (i \times {}^{\sharp}i_0) + \sum_k (i \times {}^{\sharp}i_k) \times V_k$

• . . .

 $\frac{\text{Projection}}{\pi_k} : \mathcal{E}^{\sharp} \to expr_{\ell}$

We suppose we are given an abstract interval projection operator π_k such that:

$$\pi_k(X^{\sharp}) = [a, b] \text{ where } [a, b] \supseteq \{ \ \rho(V_k) \mid \rho \in \gamma(X^{\sharp}) \}$$

Linearization (cont.)

 $\underline{\mathsf{Intervalization}} \quad \iota: (expr_\ell \times \mathcal{E}^{\sharp}) \to expr_\ell$

Flattens the expression into a single interval:

$$\iota(i_0 + \sum_k (i_k \times V_k), X^{\sharp}) \stackrel{\text{def}}{=} i_0 + {}^{\sharp} \sum_{b,k}^{\sharp} (i_k \times {}^{\sharp} \pi_k(X^{\sharp})).$$

 $\underline{\mathsf{Linearization}} \quad \ell: (\mathsf{expr} \times \mathcal{E}^{\sharp}) \to \mathsf{expr}_{\ell}$

Defined by induction on the syntax of expressions:

- $\ell(V, X^{\sharp}) \stackrel{\text{\tiny def}}{=} [1, 1] \times V$
- $\ell(\operatorname{rand}(a, b), X^{\sharp}) \stackrel{\text{def}}{=} [a, b]$
- $\ell(e_1+e_2,X^{\sharp}) \stackrel{\text{def}}{=} \ell(e_1,X^{\sharp}) \boxplus \ell(e_2,X^{\sharp})$
- $\ell(e_1 e_2, X^{\sharp}) \stackrel{\text{def}}{=} \ell(e_1, X^{\sharp}) \boxminus \ell(e_2, X^{\sharp})$
- $\ell(e_1/e_2, X^{\sharp}) \stackrel{\text{def}}{=} \ell(e_1, X^{\sharp}) \boxtimes \iota(\ell(e_2, X^{\sharp}), X^{\sharp})$

•
$$\ell(e_1 \times e_2, X^{\sharp}) \stackrel{\text{def}}{=} \operatorname{can} \operatorname{be} \begin{cases} \operatorname{either} & \iota(\ell(e_1, X^{\sharp}), X^{\sharp}) \boxtimes \ell(e_2, X^{\sharp}) \\ \operatorname{or} & \iota(\ell(e_2, X^{\sharp}), X^{\sharp}) \boxtimes \ell(e_1, X^{\sharp}) \end{cases}$$

Linearization application

Property soundness of the linearization:

For any abstract domain \mathcal{E}^{\sharp} , any $X^{\sharp} \in \mathcal{E}^{\sharp}$ and $e \in expr$, we have: $\gamma(X^{\sharp}) \models e \preceq \ell(e, X^{\sharp})$

Remarks:

 ℓ results in a loss of precision

 ℓ is not monotonic for \preceq

 $(\mathsf{e.g.},\ \ell(V/V,V\mapsto [1,+\infty])=[0,1]\times V \not\preceq 1)$

Example: analysis with polyhedra

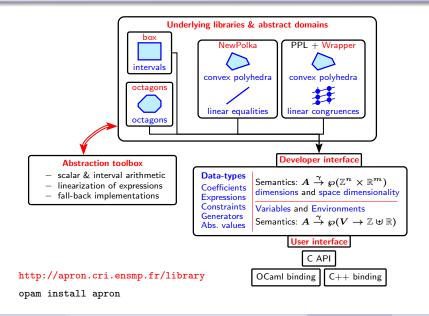
 $Y \leftarrow \mathsf{rand}(0, 1000);$ $T \leftarrow \mathsf{rand}(-1, 1);$ $X \leftarrow T \times Y$

• $T \times Y$ is linearized as $[-1, 1] \times Y$

• we can prove that $X \leq Y$

Using the Apron Library

Apron library



Apron modules

The Apron module contains sub-modules:

• Abstract1

abstract elements

• Manager

abstract domains (arguments to all Abstract1 operations)

Polka

creates a manager for polyhedra abstract elements

• Var

integer or real program variables (denoted as a string)

Environment

sets of integer and real program variables

• Texpr1

arithmetic expression trees

• Tcons1

arithmetic constraints (based on Texpr1)

• Coeff

numeric coefficients (appear in Texpr1, Tcons1)

Using the Apron Library

Variables and environments

Variables: type Var.t

variables are denoted by their name, as a string:

(assumes implicitly that no two program variables have the same name)

• Var.of_string: string -> Var.t

Environments: type Environment.t

an abstract element abstracts a set of mappings in $\mathbb{V} \to \mathbb{R}$ \mathbb{V} is the environment; it contains integer-valued and real-valued variables

- Environment.make: Var.t array -> Var.t array -> t make ivars rvars creates an environment with ivars integer variables and rvars real variables; make [||] [||] is the empty environment
- Environment.add: Environment.t -> Var.t array -> Var.t array -> t add env ivars rvars adds some integer or real variables to env
- Environment.remove: t -> Var.t array -> t

internally, an abstract element abstracts a set of points in $\mathbb{R}^n;$ the environment maintains the mapping from variable names to dimensions in [1,n]

Course	12
--------	----

Expressions

Concrete expression trees: type Texpr1.expr

unary operators

type Texpr1.unop = Neg | ···

```
binary operators
```

type Texpr1.binop = Add | Sub | Mul | Div | ···

• numeric type:

(we only use integers, but reals and floats are also possible)

```
type Texpr1.typ = Int | ···
```

o rounding direction:

(only useful for the division on integers; we use rounding to zero, i.e., truncation)

```
type Texpr1.round = Zero | ···
```

Expressions (cont.)

Internal expression form: type Texpr1.t

concrete expression trees must be converted to an internal form to be used in abstract operations

• Texpr1.of_expr: Environment.t -> Texpr1.expr -> Texpr1.t

(the environment is used to convert variable names to dimensions in \mathbb{R}^n)

Coefficients: type Coeff.t

```
can be either a scalar \{c\} or an interval [a, b]
```

we can use the M_{pqf} module to convert from strings to arbitrary precision integers, before converting them into Coeff.t:

```
• for scalars \{c\}:
```

Coeff.s_of_mpqf (Mpqf.of_string c)

• for intervals [*a*, *b*]:

```
Coeff.i_of_mpqf (Mpqf.of_string a) (Mpqf.of_string b)
```

Constraints

Constraints: type Tcons1.t

constructor *expr* \bowtie 0:

<u>Note:</u> avoid using DISEQ directly, which is not very precise; but use a disjunction of two SUP constraints instead

Constraint arrays: type Tcons1.earray

abstract operators do not use constraints, but constraint arrays instead

Example: constructing an array ar containing a single constraint:

```
let c = Tcons1.make texpr1 typ in
let ar = Tcons1.array_make env 1 in
Tcons1.array_set ar 0 c
```

Abstract operators

Abstract elements: type Abstract1.t

- Abstract1.top: Manager.t -> Environment.t -> t create an abstract element where variables have any value
- Abstract1.env: t -> Environment.t recover the environment on which the abstract element is defined
- Abstract1.change_environment: Manager.t -> t -> Environment.t -> bool -> t

set the new environment, adding or removing variables if necessary the bool argument should be set to false: variables are not initialized

Abstract1.assign_texpr: Manager.t -> t -> Var.t -> Texpr1.t -> t option -> t

abstract assignment; the option argument should be set to None

- Abstract1.forget_array: Manager.t -> t -> Var.t array -> bool -> t non-deterministic assignment: forget the value of variables (when bool is false)
- Abstract1.meet_tcons_array: Manager.t -> t -> Tcons1.earray -> t abstract test: add one or several constraint(s)

Using the Apron Library

Abstract operators (cont.)

- Abstract1.join: Manager.t → t → t → t abstract union ∪[♯]
- Abstract1.meet: Manager.t -> t -> t -> t abstract intersection ∩[♯]
- Abstract1.widen: Manager.t -> t -> t -> t widening ∇
- Abstract1.is_leq: Manager.t -> t -> t -> bool ⊆[‡]: return true if the first argument is included in the second
- Abstract1.is_bottom: Manager.t -> t -> t bool whether the abstract element represents ∅
- Abstract1.print: Format.formatter -> t -> unit print the abstract element

Contract:

- operators return a new, immutable abstract element (functional style)
- operators return over-approximations (not always optimal; e.g.: for non-linear expressions)
- predicates return true (definitely true) or false (don't know)

Managers

Managers: type Manager.t

The manager denotes a choice of abstract domain To use the polyhedra domain, construct the manager with:

```
• let manager = Polka.manager_alloc_loose ()
```

the same manager variable is passed to all Abstract1 function to choose another domain, you only need to change the line defining manager

Other libraries:

٩	Polka.manager_alloc_equalities	(affine equalities)
٩	Polka.manager_alloc_strict	(\geq and $>$ affine inequalities over $\mathbb{R})$
٩	Box.manager_alloc	(intervals)
٩	Oct.manager_alloc	(octagons)
٩	Ppl.manager_alloc_grid	(affine congruences)
۲	PolkaGrid.manager_alloc	(affine inequalities and congruences)

Argument compatibility: ensure that:

• the same manager is used when creating and using an abstract element

the type system checks for the compatibility between 'a Manager.t and 'a Abstract1.t

- expressions and abstract elements have the same environment
- assigned variables exist in the environment of the abstract element
- both abstract elements of binary operators (∪, ∩, ∇, ⊆) are defined on the same environment

Failure to ensure this results in a Manager.Error exception

Using the Apron Library

Abstract domain skeleton using Apron

```
open Apron
module RelationalDomain = (struct
  (* manager *)
 type man = Polka.loose Polka.t
 let manager = Polka.manager_alloc_loose ()
  (* abstract elements *)
 type t = man Abstract1.t
  (* utilities *)
 val expr_to_texpr: expr -> Texpr1.expr
  (* implementation *)
  . . .
end: ENVIRONMENT DOMAIN)
```

To compile: add to the Makefile:

```
OCAMLINC = · · · -I +zarith -I +apron -I +gmp
CMA = bigarray.cma gmp.cma apron.cma polkaMPQ.cma
```

Using the Apron Library

Fall-back assignments and tests

```
let rec expr_to_texpr = function
| AST_binary (op, e1, e2) ->
  match op with
    | AST_PLUS -> Texpr1.Binop ···
    | ...
    | _ -> raise Top
let assign env var expr =
  try
    let e = expr_to_texpr expr in
    Abstract1.assign_texpr ···
  with Top -> Abstract1.forget_array ...
let compare abs e1 e2 =
  try
    . . .
    Abstract1.meet_tcons_array ···
  with Top -> abs
```

Idea:

raise Top to abort a computation catch it to fall-back to sound coarse assignments and tests