Course 8

Model Checking Modulo Theories

Cubicle
 An SMT based model checker for parameterized systems

Sylvain Conchon

LRI (UMR 8623), Université Paris-Sud INRIA Saclay - Île-de-France

Contents

- A short tutorial on Cubicle
- Theoretical foundations
- Implementation details

Cubicle : an open source model checker

Cubicle is an open source software written in OCaml.

- It is based on the theoretical framework of Model Checking Modulo Theories [Ghilardi, Ranise]
- Its implementation relies on a lightweight and enhanced version of the SMT solver Alt-Ergo

Cubicle is the result of a fruitful collaboration between University of Paris-Sud and Intel corporation

Cubicle's input language

Inspired by the description language of the Mur φ model checker (Dill's group at Stanford)

A program is only represented by a set of global variables and guarded commands.

Guarded commands

A guarded command consists of a predicate on the state variables, called a guard, and a set of assignments that update those variables to change the state.

The control structure is only a single infinite loop which repeatedly execute two steps:

1. evaluate all the guards, given the current values of global variables
2. arbitrarily choose one of the commands whose guard is true and execute it, updating the variables

Example 1 : sequential programs

Example 2 : granularity

```
LO:
    X := 1;
    L1:
        Y := X + 1;
    L2:
```


Example 2 : granularity

```
L0 :
    X := 1;
L1:
    EAX := X;
L2:
    EAX := EAX + 1;
L3:
    Y := EAX;
L4:
```


Example 2 : granularity

LO :

$$
X:=1 ;
$$

L1:
EAX := X;
L2:
EAX $:=\mathrm{EAX}+1$; L3:

$$
\mathrm{Y}:=\mathrm{EAX}
$$

L4:

```
type loc = L0 | L1 | L2 | L3 | L4
var X : int
var Y : int
var EAX : int
var PC : loc
init () { X = 0 && Y = 0 && PC = LO }
transition t1 ()
requires { PC = LO }{X := 1; PC := L1 }
transition t2 ()
requires { PC = L1 }{ EAX := X; PC := L2 }
transition t3 ()
requires { PC = L2 }
{ EAX := EAX + 1; PC := L3 }
transition t4 ()
requires { PC = L3 }{ Y := EAX; PC := L4 }
```


Example 3 : threads

$$
X, Y=0
$$

Thread 1	Thread 2
L0 $:$	L0 $:$
X $:=1 ;$	$\mathrm{Y}:=1 ;$
L1:	L1:
EAX $:=\mathrm{Y} ;$	EBX $:=\mathrm{X} ;$
L2:	L2 $:$

Example 3 : interleaving semantics

Example 3

```
type location = L0 | L1 | L2
var X : int
var Y : int
var EAX : int
var EBX : int
var PC1 : location
var PC2 : location
init () { PC1 = L0 && PC2 = L0 && X = 0 && Y = 0 }
```

transition writex_1 ()
requires $\{\mathrm{PC} 1=\mathrm{L} 0\}\{\mathrm{X}:=1 ; \mathrm{PC} 1:=\mathrm{L} 1\}$
transition ready_1 ()
requires $\{\mathrm{PC} 1=\mathrm{L} 1\}\{\mathrm{EAX}:=\mathrm{Y} ; \mathrm{PC} 1:=\mathrm{L} 2\}$
transition writey_2 ()
requires $\{\mathrm{PC} 2=\mathrm{L} 0\}\{\mathrm{Y}:=1 ; \mathrm{PC} 2:=\mathrm{L} 1\}$
transition readx_2 ()
requires $\{\mathrm{PC} 2=\mathrm{L} 1\}\{\mathrm{EBX}:=\mathrm{X} ; \mathrm{PC} 2:=\mathrm{L} 2\}$

Example 3 : safety property

- Characterize bad states
- Use Cubicle to show that bad states cannot be reach from initial states

```
type loc = L0 | L1 | L2
var X : int
var Y : int
var EAX : int
var EBX : int
var PC1 : loc
var PC2 : loc
init () { PC1 = L0 && PC2 = L0 && X = 0 && Y = 0 }
unsafe () { PC1 = L2 && PC2 = L2 && EAX = 0 && EBX = 0 }
```


Example 4 : encoding asynchronous writes

Example 4 : encoding asynchronous writes

```
var WriteBuffer1 : int
var WriteBuffer2 : int
var Sync1 : bool
var Sync2 : bool
var PC1 : location
var PC2 : location
```

```
transition write_x ()
requires { PC1 = L1 }
{ WriteBuffer1 := 1;
    Sync1 := True;
    PC1 := L2; }
transition read_y ()
requires { PC1 = L2 }
{ EAX := Y;
    PC1 := L3; }
transition write_y ()
requires { PC2 = L1 }
{ WriteBuffer2 := 1;
    Sync2 := True;
    PC2 := L2; }
transition read_x ()
requires { PC2 = L2 }
{ EBX := X;
    PC2 := L3; }
```


Parameterized systems

Modeling and verifying programs involving an arbitrary number of processes

- Replication of components
- Unknown or very large number of components

Typical examples : cache coherence protocols, mutual exclusion algorithms, fault-tolerant protocols

Array-based transition systems

Cubicle handles parameterized systems through :

- a new built-in data type proc (with unspecified cardinality)
- state variables defined as arrays indexed by process identifiers
- initial states described with a universally-quantified formula over processes
- bad states described with existentially-quantified formulas over processes
- transitions parameterized by process identifiers

Example 5 : array-based transition systems

A Dekker-like mutual exclusion algorithm


```
var Turn : proc
array Req[proc] : bool
array CS[proc] : bool
init (i) { Req[i]=False && CS[i]=False }
unsafe (i j) { CS[i]=True && CS[j]=True }
transition req (i)
requires { Req[i] = False }
{ Req[i] := True }
transition enter (i)
requires {Req[i]=True && CS [i]=False && Turn=i}
{ CS[i] := True }
transition exit (i)
requires { CS[i]=True }
{ Turn := ? ;
    CS[i] := False;
    Req[i] := False }
```


Example 6 : global conditions

```
type t = Idle | Wait | Crit
array Q[proc] : t
```

```
init (i) { Q[i]=Idle }
unsafe (i j) { Q[i]=Crit && Q[j]=Crit }
```

transition wait (i)
requires $\{Q[i]=I d l e \& \&$
forall_other j. (j<i || Q[j]=Idle) \}
\{ Q[i] := Wait \}
transition enter (i)
requires $\{Q[i]=$ Wait \&\&
forall_other j. (i<j || Q[j]=Idle) \}
\{ Q[i] := Crit \}
transition exit (i)
requires $\{\mathrm{Q}[\mathrm{i}]=$ Crit $\}$
\{ Q[i] := Idle \}

Example 7 : case analysis

MESI protocol

```
type state = M | E | S | I
array St[proc]: state
init (i) { St[i] = I }
transition read_miss ( i )
requires { St[i] = I }
{ St[j] := case | j = i : S
    | St[j] = E : S
    | St[j] = M : S
    | _ : St[j] }
transition write_miss ( i )
requires { St[i] = I }
{St[j] := case | j = i : E | _ : I }
transition write_hit_1 ( i )
requires { St[i] = E }{ St[i] := M }
transition write_hit_2 ( i )
requires { St[i] = S }
{St[j] := case | j = i : E | _ : I }
```


Language limitations

Cubicle's input language is still limited; it could be further improved.

- data types (records, several parameterized data types)
- programming constructs (sequences, loops)
- arithmetic expressions

Theoretical foundation : MCMT

Cubicle implements the Model Checking Modulo Theories (MCMT) framework [Ghilardi, Ranise] where system states and transitions are defined as first-order formulas

- Initial states are defined by a universally quantified formula
- Bad states are defined by special existentially quantified formulas, called cubes
- Transitions correspond to existentially quantified formulas

Example

type st = Idle | Want | Crit
var Turn : proc
array S[proc] : st
init (z) $\{\mathrm{S}[\mathrm{z}]=$ Idle $\}$
unsafe (x y) \{

$$
\mathrm{S}[\mathrm{x}]=\text { Crit \&\& } \mathrm{S}[\mathrm{y}]=\text { Crit }
$$

\}
transition req (i)
requires $\{\mathrm{S}[\mathrm{i}]=$ Idle \}
\{ S[i] := Want \}
transition enter (i)
requires \{ S[i] = Want \&\& Turn = i $\}$
\{ S[i] := Crit \}
transition exit (i)
requires \{ S[i] = Crit \}
\{ Turn := ? ;
S[i] := Idle \}

Example

predicate $R(t, w, c)$
axiom init: $\forall t, w, c .(\forall i . \neg w[i] \wedge \neg c[i]) \Rightarrow R(t, w, c)$
axiom $r e q: \forall t, t^{\prime}, w, w^{\prime}, c, c^{\prime}$.

$$
\begin{aligned}
& R(t, w, c) \wedge \exists i . \neg w[i] \wedge w^{\prime}=w[i \leftarrow t r u e] \wedge t^{\prime}=t \wedge c^{\prime}=c \\
& \quad \Rightarrow R\left(t^{\prime}, w^{\prime}, c^{\prime}\right)
\end{aligned}
$$

axiom enter : $\forall t, t^{\prime}, w, w^{\prime}, c, c^{\prime}$.

$$
\begin{aligned}
& R(t, w, c) \wedge \exists i . w[i] \wedge \neg c[i] \wedge t=i \wedge c^{\prime}=c[i \leftarrow t r u e] \wedge t^{\prime}=t \wedge w^{\prime}=w \\
& \quad \Rightarrow R\left(t^{\prime}, w^{\prime}, c^{\prime}\right)
\end{aligned}
$$

axiom exit: $\forall t, t^{\prime}, w, w^{\prime}, c, c^{\prime}$.

$$
\begin{aligned}
& R(t, w, c) \wedge \exists i . c[i] \wedge w^{\prime}=w[i \leftarrow \text { false }] \wedge c^{\prime}=c[i \leftarrow \text { false }] \\
& \quad \Rightarrow R\left(t^{\prime}, w^{\prime}, c^{\prime}\right)
\end{aligned}
$$

goal unsafe : $\exists t, w, c, i, j \cdot R(t, w, c) \wedge i \neq j \wedge c[i] \wedge c[j]$

Checking safety = Backward Reachability (BR)

I : inital states U : unsafe states (cube) \mathcal{T} : transitions
BR ():

$$
\text { V }:=\emptyset ;
$$

push(Q, U);
while not_empty (Q) do

$$
\varphi:=\operatorname{pop}(\mathrm{Q})
$$

if $\varphi \wedge I$ sat then return unsafe

$$
\text { if } \neg\left(\varphi \models \bigvee_{\psi \in \mathrm{V}} \psi\right) \text { then }
$$

$$
\mathrm{V}:=\mathrm{V} \cup\{\varphi\}
$$

$$
\operatorname{push}\left(Q, \operatorname{pre}_{\mathcal{T}}(\varphi)\right)
$$

return safe

Checking safety = Backward Reachability (BR)

```
I: inital states \(U\) : unsafe states (cube) \(\mathcal{T}\) : transitions
```

BR ():

$$
\text { V }:=\emptyset ;
$$

```
push(Q, U );
```

while not_empty (Q) do

$$
\varphi:=\operatorname{pop}(\mathrm{Q})
$$

if $\varphi \wedge$ I sat then return unsafe (* SMT check *)
if $\neg\left(\varphi \models \bigvee_{\psi \in \mathrm{V}} \psi\right)$ then (* SMT check *)

$$
\mathrm{V}:=\mathrm{V} \cup\{\varphi\}
$$

$$
\operatorname{push}\left(Q, \operatorname{pre}_{\mathcal{T}}(\varphi)\right)
$$

return safe

Pre-images

Given a transition $t \in \mathcal{T}, \operatorname{pre}_{t}(\varphi)$ is a formula that describes the set of states from which a φ-state is reachable in one t-step

$$
\operatorname{pre}_{\mathcal{T}}(\varphi)=\bigvee_{t \in \mathcal{T}} \operatorname{pre}_{t}(\varphi)
$$

If φ is a cube, then $\operatorname{pre}_{\mathcal{T}}(\varphi)$ can also be represented as a union of cubes

Running BR

U

Running BR

Running BR

BR : example

Implementation issues and optimizations

Fixpoint computation

```
V := \emptyset
push(Q, U)
while not_empty(Q) do
    \varphi:= pop(Q)
    if }\varphi\wedgeI\mathrm{ sat then return(unsafe)
    if }\neg(\varphi\models\mp@subsup{\bigvee}{\psi\in\textrm{V}}{}\psi)\mathrm{ then
        V := V \cup{\varphi}
        push(Q, pre}\mathcal{T}(\varphi)
return(safe)
```


Fixpoint computation: a challenge

$$
\varphi \models \bigvee_{\psi \in \mathrm{V}} \psi
$$

Fixpoint computation: a challenge

$$
\exists \bar{x} . F \models \bigvee_{\psi \in \mathrm{V}} \exists \bar{y} \cdot G_{\psi}
$$

Fixpoint computation: a challenge

$$
\exists \bar{x} \cdot F \wedge \bigwedge_{\psi \in \mathrm{V}} \forall \bar{y} \cdot \neg G_{\psi} \quad \text { satisfiable ? }
$$

Fixpoint computation: a challenge

$$
\exists \bar{x} . F \wedge \bigwedge_{\psi \in \mathrm{V}} \forall \bar{y} . \neg G_{\psi} \quad \text { satisfiable ? }
$$

F and G_{ψ} are conjunctions of literals involving several theories (uninterpreted function symbols, linear arithmetic, enumerations)

Fixpoint computation: a challenge

$$
\exists \bar{x} . F \wedge \bigwedge_{\psi \in \mathrm{V}} \bigwedge_{\sigma \in \Sigma}\left(\neg G_{\psi}\right) \sigma \quad \text { satisfiable ? }
$$

Fixpoint computation: a challenge

$$
\exists \bar{x} . F \wedge \bigwedge_{\psi \in \mathrm{V}} \bigwedge_{\sigma \in \Sigma}\left(\neg G_{\psi}\right) \sigma \quad \text { satisfiable ? }
$$

Suppose $|\mathrm{V}|=20000$ and $|\Sigma|=120$ (e.g. $|\bar{x}|=|\bar{y}|=5$) then

$$
\left|\bigwedge_{\psi \in \mathrm{V}} \bigwedge_{\sigma \in \Sigma}\left(\neg G_{\psi}\right) \sigma\right| \sim 2.10^{6} \text { clauses }
$$

Fixpoint computation: optimizations

- Fast checks: $G_{\psi} \sigma \subseteq F$
- Irrelevant permutations:

$$
L \in G_{\psi} \sigma \text { and } L^{\prime} \in F \text { and } \neg\left(L \wedge L^{\prime}\right) \text { is immediate }
$$

- A single SMT-context is used for each fixpoint check; it just gets incremented and repeatedly verified

Node deletion

$$
\begin{aligned}
& \mathrm{V}:=\emptyset \\
& \text { push(Q, U) } \\
& \text { while not_empty (Q) } \\
& \qquad \quad:=\operatorname{pop}(Q) \\
& \text { if } \varphi \wedge \text { I sat then return(unsafe) } \\
& \text { if } \neg\left(\varphi \models \bigvee_{\psi \in V} \psi\right) \text { then } \\
& \qquad V:=V \cup\{\varphi\} \\
& \quad \operatorname{push}(Q, \operatorname{pre}(\varphi)) \\
& \text { return(safe) }
\end{aligned}
$$

Node deletion : backward simplification

Node deletion : backward simplification

Node deletion : backward simplification

Node deletion : backward simplification

Towards a concurrent implementation

- Based on the Functory Library [Filliâtre, Krishnamani] : master / worker architecture
- Search can be parallelized:
- Expensive tasks = fixpoint checks
- Synchronization to keep a precise guidance (BFS)
- Deletion becomes dangerous

Node deletion in parallel BFS

Other topics around Cubicle

- Invariant synthesis (BRAB, IC3)
- Industrial size hierarchical protocols
- Certification (traces, Why3)
- X86TSO
- C11

Some papers

The Model Checking Modulo Theories paradigm has been originally proposed by Silvio Ghilardi et Silvio Ranise

- http://users.mat.unimi.it/users/ghilardi/mcmt/

In particular, I recommend
Backward Reachability of Array-based Systems by SMT Solving: Termination and Invariant Synthesis [LMCS, vol.6, n.4, 2010]

More information on Cubicle

- Certificates for Parameterized Model Checking [FM 2015]
- Invariants for Finite Instances and Beyond [FMCAD 2013]
- Cubicle: A Parallel SMT-based Model Checker for Parameterized Systems [CAV 2012]

Thank you!

Terminaison de l'analyse

La terminaison de l'analyse arrière n'est pas garantie en général, mais elle l'est sous certaines conditions

- étudions l'évolution de l'ensemble V et considérons la séquence

$$
V_{0} \subseteq V_{1} \subseteq V_{1} \subseteq \ldots \subseteq V_{n} \subseteq \ldots
$$

où V_{n} représente l'ensemble V à la $n^{\text {ième }}$ itération de la boucle while

- pour que la boucle ne termine pas, il faut nécessairement que de nouveaux cubes soient ajoutés régulièrement dans V, i.e. qu'il existe une infinité d'ensembles de nœuds visités $V_{k_{i}}$ tels que $V_{k_{1}} \subset V_{k_{2}} \subset \cdots$

On va définir les condiditions suffisantes pour que cette sous-séquence d'inclusions strictes soit finie

Terminaison: configurations

Soit \mathcal{S} un système paramétré à tableaux
Une configuration de \mathcal{S} est un état concret du système, i.e. un modèle pour

- les types
- les variables globales
- les tableaux du système

En particulier, une configuration doit fixer le nombre de processus du système, i.e. la cardinalité du type proc.

Un système à tableaux \mathcal{S} a un nombre potentiellement infini de configurations.

Terminaison: pré-ordres et idéaux

Définition. un pré-ordre bien fondé \preceq est une relation binaire réflexive et transitive sans suite infinie strictement décroissante

On note $\llbracket \varphi \rrbracket$ l'ensemble des configurations qui satisfont un cube φ

Si l'ensemble des configurations est muni d'un pré-ordre bien fondé \preceq, alors on peut montrer [Ghilardi\&Ranise, LMCS 2010] que $\llbracket \varphi \rrbracket$ est un idéal, c'est-à-dire que

$$
\text { si } s \in \llbracket \varphi \rrbracket \text { et } s \preceq s^{\prime} \text { alors } s^{\prime} \in \llbracket \varphi \rrbracket
$$

Par extension, il est immédiat de montrer que chaque ensemble V_{n} de nœuds visités est également un idéal.

Terminaison: bel ordre

Définition. Un pré-ordre bien fondé \preceq est un bel ordre si pour toute séquence infinie de configurations s_{1}, s_{2}, \ldots, il existe nécessairement $i<j$ tels que $s_{i} \preceq s_{j}$

Théorème. Si \preceq est un bel ordre, alors toute séquence d'inclusions strictes d'idéaux $\llbracket V_{k_{1}} \rrbracket \subset \llbracket V_{k_{2}} \rrbracket \subset \cdots$ est finie.

De plus, $\llbracket . \rrbracket$ est monotone, i.e. si $V \subset V^{\prime}$ alors $\llbracket V \rrbracket \subset \llbracket V^{\prime} \rrbracket$ donc la finitude de la séquence d'inclusion $\llbracket V_{k_{1}} \rrbracket \subset \llbracket V_{k_{2}} \rrbracket \subset \cdots$ implique bien la finitude de la séquence $V_{0} \subseteq V_{1} \subseteq \cdots \subseteq V_{n} \subseteq \cdots$

Terminaison: preuve du théorème

On raisonne par contradiction

- Si la séquence $\llbracket V_{k_{1}} \rrbracket \subset \llbracket V_{k_{2}} \rrbracket \subset \cdots$ est infinie, alors il existe également une séquence infinie de configurations s_{1}, s_{2}, \ldots telle que $s_{i} \in \llbracket V_{k_{i}} \rrbracket$ et $s_{i} \notin \llbracket V_{k_{j}} \rrbracket$, pour tout $j<i$.
- De plus, $s_{j} \npreceq s_{i}$, sinon $s_{i} \in \llbracket V_{k_{j}} \rrbracket$ puisque chaque $\llbracket V_{k_{j}} \rrbracket$ est un idéal.
- L'existence de cette suite infinie contredit donc l'hypothèse que \preceq est un bel ordre

Terminaison: conditions suffisantes

Les conditions suffisantes pour que l'ensemble des configurations soit muni d'un bel ordre dépendent essentiellement du choix des opérations de comparaison sur le type proc et sur les types des éléments des tableaux

$$
\begin{aligned}
& \text { type } t=A|B| C \\
& \text { array } V[p r o c]: ~ t
\end{aligned}
$$

On peut exhiber un bel ordre grâce au lemme de Dickson:

$$
\left(\mathbb{N}^{k}, \leq_{k}\right) \text { est muni d'un bel ordre pour tout } k
$$

Ainsi, la configuration $V[\# 1]=A, V[\# 2]=B, V[\# 3]=A, V[\# 4]=C$ est encodée par le triplet d'entiers $(2,1,1)$

How to scale?

Cubicle's benchmarks on academic problems are promising

	Cubicle	CMurphi		
Szymanski_at	0.30 s	$8.04 \mathrm{~s}(8)$	$5 \mathrm{~m} 12 \mathrm{~s}(10)$	$2 \mathrm{~h} 50 \mathrm{~m}(12)$
German_Baukus	7.03 s	$0.74 \mathrm{~s}(4)$	$19 \mathrm{~m} 35 \mathrm{~s}(8)$	$4 \mathrm{~h} 49 \mathrm{~m}(10)$
German.CTC	3 m 23 s	$1.83 \mathrm{~s}(4)$	$43 \mathrm{~m} 46 \mathrm{~s}(8)$	$12 \mathrm{~h} 35 \mathrm{~m}(10)$
German_pfs	3 m 58 s	$0.99 \mathrm{~s}(4)$	$22 \mathrm{~m} 56 \mathrm{~s}(8)$	$5 \mathrm{~h} 30 \mathrm{~m}(10)$
Chandra-Toueg	2 h 01 m	$5.68 \mathrm{~s}(4)$	$2 \mathrm{~m} 58 \mathrm{~s}(5)$	$1 \mathrm{~h} 36 \mathrm{~m}(6)$

How to scale?

But how to scale up on industrial-like problems?

	Cubicle	CMurphi		
Szymanski_at	0.30 s	$8.04 \mathrm{~s}(8)$	$5 \mathrm{~m} 12 \mathrm{~s}(10)$	$2 \mathrm{~h} 50 \mathrm{~m}(12)$
German_Baukus	7.03 s	$0.74 \mathrm{~s}(4)$	$19 \mathrm{~m} 35 \mathrm{~s}(8)$	$4 \mathrm{~h} 49 \mathrm{~m}(10)$
German.CTC	3 m 23 s	$1.83 \mathrm{~s}(4)$	$43 \mathrm{~m} 46 \mathrm{~s}(8)$	$12 \mathrm{~h} 35 \mathrm{~m}(10)$
German_pfs	3 m 58 s	$0.99 \mathrm{~s}(4)$	$22 \mathrm{~m} 56 \mathrm{~s}(8)$	$5 \mathrm{~h} 30 \mathrm{~m}(10)$
Chandra-Toueg	2 h 01 m	$5.68 \mathrm{~s}(4)$	$2 \mathrm{~m} 58 \mathrm{~s}(5)$	$1 \mathrm{~h} 36 \mathrm{~m}(6)$
Szymanski_na	T.O.	$0.88 \mathrm{~s}(4)$	$8 \mathrm{~m} 25 \mathrm{~s}(6)$	$7 \mathrm{~h} 08 \mathrm{~m}(8)$
Flash_nodata	O.M.	$4.86 \mathrm{~s}(3)$	$3 \mathrm{~m} 33 \mathrm{~s}(4)$	$2 \mathrm{~h} 46 \mathrm{~m} \mathrm{(5)}$
Flash	O.M.	$1 \mathrm{~m} 27 \mathrm{~s}(3)$	$2 \mathrm{~h} 15 \mathrm{~m} \mathrm{(4)}$	O.M. (5)

O.M. $>20 \mathrm{~GB}$ T.O. $>20 \mathrm{~h}$

What Industrial-Like Means (for us)

A well-known candidate : the FLASH protocol (stanford multiprocessor architecture - 1994)

- Cache-coherence shared memory
- High-performance message passing
- 67 million states for 4 processes (~ 40 variables, ~ 75 transitions)

Our Solution to Scale Up

We designed a new core algorithm for Cubicle that

- infers invariants for parameterized case using finite instances
- inserts and checks them on the fly in a backward reachability loop
- backtracks if necessary

BRAB (Backward Reachability Algorithm with Approximations)
[FMCAD 2013]

Example: German-ish cache coherence protocol

Client i :
Cache $[i] \in\{E, S, I\}$

Directory:

Cmd $\in\{r s, r e, \epsilon\}$
Ptr \in proc
$\operatorname{Shr}[i] \in\{$ true, false $\}$
$\operatorname{Exg} \in\{$ true, false $\}$

Initial states: $\forall i$. Cache $[i]=\mathrm{I} \wedge \neg \operatorname{Shr}[i] \wedge \neg \operatorname{Exg} \wedge \operatorname{Cmd}=\epsilon$ Unsafe states: $\exists i, j . i \neq j \wedge$ Cache $[i]=\mathrm{E} \wedge$ Cache $[j] \neq \mathrm{I}$? (cubes)

Example: German-ish cache coherence protocol

Client i :
Cache $[i] \in\{E, S, I\}$
Directory:
Cmd $\in\{r s, r e, \epsilon\}$
Ptr \in proc
$\operatorname{Shr}[i] \in\{$ true, false $\}$
Exg $\in\{$ true, false $\}$

$$
\begin{array}{ll}
t_{5}: \exists i . & \operatorname{Ptr}=i \wedge \operatorname{Cmd}=\mathrm{rs} \wedge \neg \operatorname{Exg} \wedge \\
& \operatorname{Cmd}^{\prime}=\epsilon \wedge \operatorname{Shr}^{\prime}[i] \wedge \operatorname{Cache}^{\prime}[i]=\mathrm{S}
\end{array}
$$

Backward reachability algorithm

BRAB: intuition

U

BRAB: intuition

$$
6
$$

BRAB: intuition

BRAB algorithm

I: inital states U : unsafe states (cubes) \mathcal{T} : transitions

BRAB ():
B := $\emptyset ; \quad \operatorname{Kind}(U):=$ Orig; $\quad \operatorname{From}(U):=U$;
$\mathcal{M}:=\operatorname{FWD}\left(d_{\text {max }}, k\right)$;
while $\operatorname{BWDA}()=$ unsafe do
if $\operatorname{Kind}(F)=$ Orig then return unsafe
$\mathrm{B}:=\mathrm{B} \cup\{\operatorname{From}(\mathrm{F})\}$;
return safe

BRAB algorithm

I: inital states U : unsafe states (cubes) \mathcal{T} : transitions

BWD ():

$$
\text { V }:=\emptyset \text {; }
$$

```
push(Q, U )
```

while not empty (Q) do

$$
\varphi:=\operatorname{pop}(\mathrm{Q}) ;
$$

if $\varphi \wedge I$ sat then return unsafe

$$
\begin{aligned}
& \text { if } \neg\left(\varphi \models \bigvee_{\psi \in \mathrm{V}} \psi\right) \text { then } \\
& \mathrm{V}:=\mathrm{V} \cup\{\varphi\} ; \\
& \text { push(Q, } \left.\operatorname{pre}_{\mathcal{T}}(\varphi)\right) \text {; }
\end{aligned}
$$

return safe

BRAB algorithm

I: inital states U : unsafe states (cubes) \mathcal{T} : transitions

BWDA ():

$$
\text { V }:=\emptyset ;
$$

push(Q, U) ;

while not empty (\mathbb{Q}) do

$$
\varphi:=\operatorname{pop}(\mathrm{Q}) ;
$$

if $\varphi \wedge I$ sat then return unsafe

$$
\begin{gathered}
\text { if } \neg\left(\varphi \models \bigvee_{\psi \in \mathrm{V}} \psi\right) \text { then } \\
\mathrm{V}:=\mathrm{V} \cup\{\varphi\} ;
\end{gathered}
$$

$$
\operatorname{push}\left(Q, \operatorname{Approx}_{\mathcal{T}}(\varphi)\right) ;
$$

return safe

BRAB algorithm

I: inital states U : unsafe states (cubes) \mathcal{T} : transitions

Approx $_{\mathcal{T}}(\varphi)$:
foreach ψ in candidates (φ) do if $\psi \notin \mathrm{B} \wedge \mathcal{M} \neq \psi$ then
$\operatorname{Kind}(\psi):=$ Appr $;$
return ψ
return $\operatorname{pre}_{\mathcal{T}}(\varphi)$
©
\Leftrightarrow

Example: BRAB on German-ish

Some benchmarks

	BRAB	Cubicle	CMurphi		
Szymanski_at	0.14s	0.30s	8.04s (8)	5m12s (10)	2h50m (12)
German_Baukus	0.25s	7.03s	0.74s (4)	19m35s (8)	4h49m (10)
German.CTC	0.29s	3m23s	1.83s (4)	43m46s (8)	12h35m (10)
German_pfs	0.34s	3m58s	0.99s (4)	22m56s (8)	5h30m (10)
Chandra-Toueg	2m17s	2h01m	5.68s (4)	2m58s (5)	1h36m (6)
Szymanski_na	0.19s	T.O.	0.88s (4)	8m25s (6)	7h08m (8)
Flash_nodata	0.36s	O.M.	4.86s (3)	3m33s (4)	2h46m (5)
Flash	5m40s	O.M.	1m27s (3)	2h15m (4)	O.M. (5)

$$
\begin{array}{r}
\text { O.M. }>20 \mathrm{~GB} \\
\text { T.O. }>20 \mathrm{~h}
\end{array}
$$

