The Coq Proof Assistant

Semantics and applications to verification

Xavier Rival

Ecole Normale Supérieure

February, 24. 2017

Xavier Rival The Coq Proof Assistant February, 24. 2017

1/16

What is a proof assistant ?

A tool to formalize and verify proofs |

The key word is assistant: it assists the user in
@ defining the proof goals formally;
@ setting up the structure of the proofs;
@ making the proof steps;

@ checking the overall consistency of the proof, at the end.

Some steps are more assisted than others:

e formalization is done with respect to the knowledge of the user, it is
error prone

@ key structural arguments (induction hypotheses and such) are very
hard to get right in general

@ checking a series of proof steps is easier to mechanize...

Xavier Rival The Coq Proof Assistant February, 24. 2017 2/ 16

Purpose of Coq and principle

Coq is a programming language
@ We can define data-types and write programs in Coq
@ Language similar to a pure functional language

e Very expressive type system (more on this later)

@ Programs can be ran inside Coq
Programming language of the year ACM Award in 2014...

Coq is a proof assistant
o It allows to express theorems and proofs
@ It can verify a proof

@ It can also infer some proofs or proof steps

Proof search is usually mostly manual and takes most of the time

Xavier Rival The Coq Proof Assistant February, 24. 2017 3/16

Main proof assistants

Coq: the topic of this lecture

Isabelle / HOL: a higher order logic framework
@ syntax is closer to the logics

@ proof term underneath...

ACL2: A Computational Logic for Applicative Common Lisp
e a framework for automated reasoning

@ based on functional common lisp

PVS: Prototype Verification System
@ kernel extends Church types

@ less emphasis on the notion of proof term, more emphasis on
automation

Xavier Rival The Coq Proof Assistant February, 24. 2017

4/16

Overall workflow

@ Define the objects properties need be proved about
Data-structures, base types, programs written in the Coq (or
vernacular) language

@ Write and prove intermediate lemmas

» a theorem is defined by a formula in the Coq language.
» a proof requires a sequence of tactics applications
tactics are described as part of a separate language.
» at the end of the proof, a proof term is constructed and verified.

© Write and prove the main theorems

Q If needed, extract programs

Two languages: one for definitions/theorems/proofs, one for tactics]

Xavier Rival The Coq Proof Assistant February, 24. 2017 5/ 16

In Coq, everything is a term

@ The core of Coq is defined by a language of terms

e Commands are used in order to manipulate terms

Examples of terms:
e base values: 0, 1, true...
@ types: nat, bool, but also Prop...
e functions: fun (n: nat) => n + 1
o function applications: (fun (n: nat) =>n + 1) 8
@ logical formulas:
exists p: nat, 8 = 2 * p,
forall a b: Prop, a/\b -> a
complex functions (more on this one later):
fun (a b : Prop) (H : a /\ b) =>
and_ind (fun (HO : a) (_ : b) => HO) H

Xavier Rival The Coq Proof Assistant February, 24. 2017

6/ 16

In Coq, every term has a type

As observed, types are terms

@ Every term also has a type, denoted by term: type
@ 0: nat

@ nat: Set

@ Set: Type

e Type: Type (caveat: not quite the same instance)

@ (fun (n: nat) => n + 1): nat -> nat

@ more complex types get interesting:

fun (a b : Prop) (H : a /\ b) =>
and_ind (fun (HO : a) (_ : b) => HO) H
: forall a b: Prop, a /\ b -> a

Xavier Rival The Coq Proof Assistant February, 24. 2017 7/ 16

Curry-Howard correspondence

The core principle of Coq
@ A proof of P can be viewed a term of type P

@ A proof of P = Q can be viewed a function transforming a proof of
P into a proof of @, hence, a function of type P — Q...

Similarity between typing rules and proof rules:

Nx:PFu:Q . NLPHQ . i
TFax-u:P—Q ™M rFpP—=q@ """
MFu:P—Q Thv:iP (FP—Q THP

NM-wv:Q N-Q
Correspondance:
program | proof Searching a proof of P
type theorem = searching v of type P J

Xavier Rival The Coq Proof Assistant February, 24. 2017 8/ 16

Defining a term

Two ways:
@ Define it fully, with its type and its definition
Definition zero: mnat := O.
Definition incr (n: nat): nat :=n + 1.

@ Provide only its type and search for a proof of it

Lemma lzero: nat.
exact O.

Save.

Definition lincr: forall n: nat, nat.
intro. exact (n + 1).

Save.

o Definition: Definition name u: t := def.

@ Proof: Definition name u: t. or Lemma name u: t.

Xavier Rival The Coq Proof Assistant February, 24. 2017

9/ 16

Inductive definition

@ A very powerful mechanism
@ In Coq, almost everything is actually an inductive definition
. examples: integers, booleans, equality, conjunction...
e Syntax:
Inductive tree : Set :=
| leaf: tree
| node: tree -> tree -> tree.
@ Induction principles automatically provided by Coq, and to use in

induction proofs:
tree_ind: forall P : tree -> Prop,
P leaf
-> (forall t : tree, P t -> forall tO : tree, P tO
-> P (node t t0))
-> forall t : tree, P t

Xavier Rival The Coq Proof Assistant February, 24. 2017 10 / 16

Recursive functions

@ Very natural to work with inductive definitions

@ Caveat: must provably terminate
this is usually checked with a strict sub-term condition

e Syntax:
Fixpoint size (t: tree) : nat :=
match t with
| leaf => 0
| node t0 t1 => 1 + (size t0) + (size t1)
end.
o |ll formed definition, rejected by the system (termination issue):
Fixpoint f (t: tree): nat :=
match t with
| leaf | node leaf leaf => 0
| node _ _ => f (node leaf leaf)
end.

Xavier Rival The Coq Proof Assistant February, 24. 2017 11 / 16

Proving a term

View in proof mode:

@ above the bar: current
assumptions

a : Prop
b : Prop @ below the bar: current subgoal
H:a/\b (there may be several goals)
g(l) 2 @ at the end: displays
' ——e No more subgoals.
a @ command Save. stores the

term.

Progression towards a finished proof:
@ based on commands called tactics
@ in the background, Coq constructs the proof term

Xavier Rival The Coq Proof Assistant February, 24. 2017 12 / 16

A few tactics, and their effect

@ Each tactic performs a basic operation on the current goal
@ In the background, Coq constructs the proof term
@ At the end, the term is independantly checked (very reliable !)

e Introduction of an assumption (proof tree and term):
NnPHQ Nx:PFu:Q@
rN-ePr=aQ MlM-Xx-u:P—Q
@ Application of an implication:
rN-P—Q TP lr-uv:P—Q TkHv:P
MN-Q lM-wuv:Q@

o Immediate conclusion of a subgoal:

Xavier Rival The Coq Proof Assistant February, 24. 2017 13 / 16

Automation in Coq

So far, we have considered fairly manual tactics...

There are also automated tactics, that typically call an external program

to try to solve a goal, and then constructs a proof term:
@ either verify the proof term afterwards...

@ ... or call a function proved once and for all to build it

Tauto: decides propositional logic

Omega: solves a class of numeric (in)-equalities (see manual)

Xavier Rival The Coq Proof Assistant February, 24. 2017

14 / 16

A glimpse at the tactic language

Most common tactics:

Tactic Effect

intro. Introduce one assumption

intros. Introduce as many assumptions as possible

apply H. Applies assumption H (should be of the form A->B)
elim H. Decomposes assumption H

exact t. Provides a proof term for current sub-goal

trivial. Conclude immediately very simple proofs.
induction t. | Perform induction proof over term t

rewrite H. Rewrite assumption H (should be of the form t0=t1)
tauto. Decision procedure in propositional logic

Do not hesitate to look at the online manual !

Xavier Rival The Coq Proof Assistant February, 24. 2017 15 / 16

A glimpse at the command language

Most common tactics (should be enough for a TD):

Command Meaning

Check t. Prints the type of term t

Print t. Prints the type and definition of term t
Definition u: t := [term]. | Full definition of term u

Lemma t. Start a proof of term t

Theorem t.

Definition t.

Save. Exit proof mode and save proof term

Xavier Rival The Coq Proof Assistant February, 24. 2017 16 / 16

