
Abstract Interpretation IV
Semantics and Application to Program Verification

Antoine Miné

École normale supérieure, Paris
year 2013–2014

Course 12
21 May 2014

Course 12 Abstract Interpretation IV Antoine Miné p. 1 / 67

Overview

Selected advanced topics:

Disjunctive abstract domains

Abstracting arrays

Inter-procedural analyses

Backward analyses

Practical session: help with the project

Course 12 Abstract Interpretation IV Antoine Miné p. 2 / 67

Disjunctive domains

Disjunctive domains

Course 12 Abstract Interpretation IV Antoine Miné p. 3 / 67

Disjunctive domains

Motivation

Remark: most domains abstract convex sets (conjunctions of constraints)

=⇒ ∪] causes a loss of precision!

The need for non-convex invariants

X ← rand(10, 20);
Y ← rand(0, 1);
if Y > 0 then X ← −X ;

• Z ← 100/X

Concrete semantics:

At •, X ∈ [−20,−10] ∪ [10, 20]
=⇒ there is no division by zero

Abstract analysis:

Convex analyses (intervals, polyhedra) will find X ∈ [−20, 20]
(with intervals, [−20,−10] ∪] [10, 20] = [−20, 20])

=⇒ possible division by zero (false alarm)

Course 12 Abstract Interpretation IV Antoine Miné p. 4 / 67

Disjunctive domains

Disjunctive domains

Principle:

generic constructions to lift any numeric abstract domain
to a domain able to represent disjunctions exactly

Example constructions:

powerset completion
unordered “soup” of abstract elements

state partitioning
abstract elements keyed to selected subsets of environments

decision tree abstract domains
efficient representation of state partitioning

path-sensitive analyses
partition with respect to the history of execution

each construction has its strength and weakness
they can be combined during an analysis to exploit the best in each

Course 12 Abstract Interpretation IV Antoine Miné p. 5 / 67

Disjunctive domains Powerset completion

Powerset completion

Given: (E],v, γ,∪],∩],O,S]J stat K)
abstract domain E]
ordered by v, which also acts as a sound abstraction of ⊆ (i.e., ⊆]=v)
with concretization γ : E] → P(E)
sound abstractions ∪], ∩], S]J stat K of ∪, ∩, SJ stat K , and a widening O

Construct: (Ê], v̂, γ̂, ∪̂], ∩̂], Ô, Ŝ]J stat K)

Ê] def
= Pfinite(E]) (finite sets of abstract elements)

γ̂(A])
def
= ∪ { γ(X]) |X] ∈ A] } (join of concretizations)

Example:

using the interval domain for E]

(̂γ{[−10,−5], [2, 4], [0, 0], [2, 3]}) = [−10,−5] ∪ {0} ∪ [2, 4]

Course 12 Abstract Interpretation IV Antoine Miné p. 6 / 67

Disjunctive domains Powerset completion

Ordering

Issue: how can we compare two elements of Ê]?

γ̂ is generally not injective
there is no canonical representation for γ̂(A])

testing γ̂(A]) = γ̂(B]) or γ̂(A]) ⊆ γ̂(B]) is difficult

Example: powerset completion of the interval domain

A] B] C]

A] = {{0} × {0}, [0, 1]× {1}}
B] = {{0} × {0}, {0} × {1}, {1} × {1}}
C] = {{0} × [0, 1], [0, 1]× {1}}
γ̂(A]) = γ̂(B]) = γ̂(C])

B] is more costly to represent: it requires three abstract elements instead of two
C] is a covering and not a partition (red ∩ blue = {0} × {1} 6= ∅)

Course 12 Abstract Interpretation IV Antoine Miné p. 7 / 67

Disjunctive domains Powerset completion

Ordering (cont.)

Solution: sound approximation of ⊆

A] v̂ B] def⇐⇒ ∀X] ∈ A]:∃Y] ∈ B]: X] v Y] (Hoare powerdomain order)

v̂ is a partial order (when v is)

v̂ is a sound approximation of ⊆ (when v is)

(A] v̂ B] =⇒ γ̂(A]) ⊆ γ̂(B]))

testing v̂ reduces to testing v finitely many times

Example: powerset completion of the interval domain

A] B] C]

γ̂(A]) = γ̂(B]) = γ̂(C])

B] v̂ A] v̂ C]

Course 12 Abstract Interpretation IV Antoine Miné p. 8 / 67

Disjunctive domains Powerset completion

Abstract operations

Abstract operators

Ŝ]J stat K A]
def
= { S]J stat K X] |X] ∈ A] }

apply stat on each abstract element independently

A] ∪̂] B] def
= A] ∪ B]

keep elements from both arguments without applying any abstract operation

∪̂] is exact

A] ∩̂] B] def
= {X] ∩] Y] |X] ∈ A], Y] ∈ B] }

∩̂] is exact if ∩] is (as ∪ and ∩ are distributive)

Galois connection:

in general, there is no abstraction function α̂ corresponding to γ̂

Example: powerset completion Ê] of the interval domain E]

given the disc S
def
= { (x , y) | x2 + y2 ≤ 1 }

α(S) = [−1, 1]× [−1, 1] (optimal interval abstraction)
but there is no best abstraction in Ê]

S S

not α̂(S)α(S)

Course 12 Abstract Interpretation IV Antoine Miné p. 9 / 67

Disjunctive domains Powerset completion

Dynamic approximation

Issue: the size |A]| of elements A] ∈ Ê] is unbounded
(every application of ∪̂] adds some more elements)

=⇒ efficiency and convergence problems

Solution: to reduce the size of elements

redundancy removal

simplify(A])
def
= {X] ∈ A] | ∀Y] 6= X] ∈ A]: X] 6v Y] }

(no loss of precision: γ̂(simplify(A])) = γ̂(A]))

collapse: join elements in E]

collapse(A])
def
= {∪] {X] ∈ A] }}

(large loss of precision, but very effective: |collapse(A])| = 1)

partial collapse: limit |A]| to a fixed size k by ∪]
(but how to choose which elements to merge? no easy solution!)

Course 12 Abstract Interpretation IV Antoine Miné p. 10 / 67

Disjunctive domains Powerset completion

Widening

Issue: for loops, abstract iterations (A]n)n∈N may not converge

the size of A]n may grow arbitrarily large

even if |A]n| is stable, some elements in A]n may not converge
(if E] has infinite increasing sequences)

=⇒ we need a widening O

Widenings for powerset domains are difficult to design

Example widening: collapse after a fixed number N of iterations

A]n+1
def
=

{
A]n ∪̂

]
B]

n+1 if n < N

collapse(A]n) O collapse(B]
n+1) otherwise

(this is very näıve, see Bagnara et al. STTT06 for more interesting widenings)

Course 12 Abstract Interpretation IV Antoine Miné p. 11 / 67

Disjunctive domains State partitioning

State partitioning

Principle:

partition a priori E into finitely many sets

abstract each partition separately in E]

Abstract domain:

Given P] ⊆ E] such that:

P] is finite

∪ { γ(X]) |X] ∈ P] } = E
for generally, we have a covering, not a partitioning of E
i.e., we can have X] 6= Y] ∈ P] with γ(X]) ∩ γ(Y]) 6= ∅

Then Ẽ] def
= P] → E]

(representable in memory, as P] is finite)

Course 12 Abstract Interpretation IV Antoine Miné p. 12 / 67

Disjunctive domains State partitioning

Ordering

P1

P2

P3

P4

P5

Example: E] is the interval domain

P] = {P1,P2,P3,P4,P5} where
P1 = [−∞, 0]× [−∞,+∞]
P2 = [0, 10]× [0,+∞]
P3 = [0, 10]× [−∞, 0]
P4 = [10,+∞]× [0,+∞]
P5 = [10,+∞]× [−∞, 0]

X] = [P1 7→ [−6,−5]× [5, 6], P2 7→ ⊥,
P3 7→ [9, 10]× [−∞,−1], P4 7→ ⊥,
P5 7→ [10, 12]× [−3,−1]]

Ẽ] def
= P] → E]

γ̃(A])
def
= ∪ { γ(A](X])) ∩ γ(X]) |X] ∈ P] }

A] ṽ B] def⇐⇒ ∀X] ∈ P]: A](X]) v B](X]) (point-wise order)

α̃(S)
def
= λX] ∈ P].α(S ∩ γ(X]))

(if E] enjoys a Galois connection, so does Ẽ])

Course 12 Abstract Interpretation IV Antoine Miné p. 13 / 67

Disjunctive domains State partitioning

Abstract operators

Abstract operators: point-wise extension from E] to P] → E]

A ∪̃] B
def
= λX] ∈ P].A(X]) ∪] B(X])

A ∩̃] B
def
= λX] ∈ P].A(X]) ∩] B(X])

A Õ B
def
= λX] ∈ P].A(X]) O B(X])

S̃]J e ≤ 0? K A]
def
= λX] ∈ P].S]J e ≤ 0? K A](X])

S̃]J V ← e K A] is more complex
as S]J V ← e K A](X]) may escape X]

example: X ← X + 2

S̃]J V ← e K A]
def
= λX]. ∪] {X] ∩] S]J V ← e K A(Y]) |Y] ∈ P] }

Course 12 Abstract Interpretation IV Antoine Miné p. 14 / 67

Disjunctive domains State partitioning

Example analysis

Example

X ← rand(10, 20);
Y ← rand(0, 1);
if Y > 0 then X ← −X ;

• Z ← 100/X

Analysis:

E] is the interval domain

partition with respect to the sign of X

P]
def
= {X +,X− } where

X + def
= [0,+∞]× Z× Z and X−

def
= [−∞, 0]× Z× Z

at • we find:
X + 7→ [X ∈ [10, 20],Y 7→ [0, 0],Z 7→ [0, 0]]
X− 7→ [X ∈ [−20,−10],Y 7→ [1, 1],Z 7→ [0, 0]]

=⇒ no division by zero

Course 12 Abstract Interpretation IV Antoine Miné p. 15 / 67

Disjunctive domains Binary decision trees

Binary decision trees

Principle: data-structure to compactly represent partitions

Example: boolean partitions

assume that variables have a type: V
def
= Vb ∪ Vn

each V ∈ Vb has value in {0, 1} (boolean variable)

each V ∈ Vn has value in Z (numeric variable)

E ' {0, 1}|Vb| × Z|Vn|

P] def
= { 〈b1, . . . , b|Vb|〉 × Z|Vn| | b1, . . . , b|Vb| ∈ {0, 1} }

a partition corresponds to a precise valuation of all the boolean variables
and no information on the numeric variables

assume that E]n abstracts P(Vn → Z) (numeric domain)

the boolean partitioning domain based on E]n is:

Ẽ] def
= {0, 1}|Vb| → E]n

Course 12 Abstract Interpretation IV Antoine Miné p. 16 / 67

Disjunctive domains Binary decision trees

Binary decision trees (cont.)

Representation: for Ẽ] def
= {0, 1}|Vb| → E]n

binary trees:

nodes are labelled with boolean variables Bi ∈ Vb

two children: Bi = 0 and Bi = 1

leaves are abstract elements in E]n (abstraction of P(Vn → Z))

0

0 0

1

1 1

B1

B2 B2

Course 12 Abstract Interpretation IV Antoine Miné p. 17 / 67

Disjunctive domains Binary decision trees

Reduced binary decision trees

Optimization: similar to Reduced Ordered Binary Decision Diagrams

merge identical sub-trees (memory sharing)

remove nodes if both children are identical

=⇒ we get a directed acyclic graphs

0

0 0

1

1 1

B1

B2 B2

0

B1

B2

1 0

1

if γn : E]n → Z|Vn| is injective and we use memoization
then γ̃(A]) = γ̃(B]) ⇐⇒ A] and B] are physically equal
(i.e., == in OCaml, which is faster to test than structural equality =)

Course 12 Abstract Interpretation IV Antoine Miné p. 18 / 67

Disjunctive domains Binary decision trees

Abstract operations

numeric operations: performed independently on each leaf
(e.g., S̃]J V ← e K reverts to applying S]J V ← e K on each leaf)

boolean operations: manipulate trees

S̃]J Bi ← rand(0, 1) K : merge Bi ’s subtrees recursively
S̃]J Bi = 0? K : set all Bi = 1 branches to ⊥
· · ·

binary operations: ∪̃], ∩̃], Õ, ṽ
first, unify tree structures (unshare trees and add missing nodes)

then, apply the operation pair-wise on leaves

optimization needs to be performed again after each operation
(ensures that abstract elements do not grow too large)

Course 12 Abstract Interpretation IV Antoine Miné p. 19 / 67

Disjunctive domains Binary decision trees

Example analysis

Example

X ← rand(0, 100);
if X = 0 then B ← 0 else B ← 1;
· · ·

• if B = 1 then • Y ← 100/X

Analysis: using the interval domain for E]n
at •, we can infer the invariant:
(B = 0 =⇒ X = 0) ∧ (B = 1 =⇒ X ∈ [1, 100])

at •, we deduce that B = 1 ∧ X ∈ [1, 100]
=⇒ there is no division by zero

Course 12 Abstract Interpretation IV Antoine Miné p. 20 / 67

Disjunctive domains Binary decision trees

More tree-based partitioning

Other tree-based partitioning data-structure

we can extend partition trees in many ways

allow n−array nodes
and partition wrt. abstract values

Example: partitioning integer variables in the interval domain

V1

[1,+∞]

V2

{0}

[−∞,−1]

[0,+∞][−∞,−1]

Course 12 Abstract Interpretation IV Antoine Miné p. 21 / 67

Disjunctive domains Binary decision trees

More tree-based partitioning

partitioning with respect to predicates

Example: linear relations over V
def
= {X ,Y ,Z}

false

false

X ≤ Y

2X ≤ Z 2Y ≤ Z

true false

true

X ,Y

true

the same variables may appear in predicates and in the leaves
=⇒ S]J stat K must generally update both the nodes and the leaves

the set of node predicates may be fixed before the analysis
or chosen dynamically during the analysis

Course 12 Abstract Interpretation IV Antoine Miné p. 22 / 67

Disjunctive domains Path partitioning

Path sensitivity

Principle: partition wrt. the history of computation

keep different abstract elements for different execution paths
(i.e., different branches taken, different loop iterations)

avoid merging with ∪] elements at control-flow joins
(at the end of if · · · then · · · else, or at loop head)

Intuition: as a program transformation

X ← rand(−50, 50);
if X ≥ 0 then

Y ← X + 10
else

Y ← X − 10;
assert Y 6= 0

−→

X ← rand(−50, 50);
if X ≥ 0 then

Y ← X + 10;
assert Y 6= 0

else
Y ← X − 10;
assert Y 6= 0

the assert is tested in the context of each branch
instead of after the control-flow join

the interval domain can prove the right assertion, but not the left one

Course 12 Abstract Interpretation IV Antoine Miné p. 23 / 67

Disjunctive domains Path partitioning

Abstract domain

Formalization: limited hre to if · · · then · · · else

L denote syntactic labels of if · · · then · · · else instructions

history abstraction H
def
= L → {true, false,⊥}

H ∈ H indicates the outcome of the last time we executed each test:

H(`) = true: we took the then branch
H(`) = false: we took the else branch
H(`) = ⊥: we never executed the test

Notes:

H can remember the outcome of several successive tests
`1 : if · · · then · · · else; `2 : if · · · then · · · else

for tests in loops, H remembers only the last outcome
while · · · do ` : if · · · then · · · else

we could extend H to longer histories with H = (L → { true, false,⊥})∗
we could extend H to track loop iterations with H = L → N

Ĕ] def
= H→ E]

use a different abstract element for each abstract history

Course 12 Abstract Interpretation IV Antoine Miné p. 24 / 67

Disjunctive domains Path partitioning

Abstract operators

Ĕ] def
= H→ E]

γ̆(A]) = ∪ { γ(A](H)) |H ∈ H }

v̆, ∪̆], ∩̆], Ŏ are point-wise

S̆]J V ← e K and S̆]J e ≤ 0? K are point-wise

S̆]J ` : if c then s1 else s2 K A] is more complex
we merge all information about `

C] = λH.A](H[` 7→ true]) ∪] A](H[` 7→ false]) ∪] A](H[` 7→ ⊥])

we compute the then branch, where H(`) = true

T ′] = S̆]J s1 K (S̆]J c? K T]) where

T] = λH.C](H) if H(`) = true, ⊥ otherwise

we compute the else branch, where H(`) = false

F ′] = S̆]J s2 K (S̆]J¬c? K F]) where

F] = λH.C](H) if H(`) = false, ⊥ otherwise

we join both branches: T ′] ∪̆] F ′]

the join is exact as ∀H ∈ H: either T ′](H) = ⊥ or F ′](H) = ⊥

=⇒ we get a semantic by induction on the syntax of the original program
Course 12 Abstract Interpretation IV Antoine Miné p. 25 / 67

Disjunctive domains Path partitioning

Complex example

Linear interpolation

X ← rand(TX [0],TX [N]);
I ← 0;
while I < N && X > TX [I + 1] do I ← I + 1;
Y ← TY [I] + (X − TX [I])× TS[I]

Concrete semantics: table-based interpolation based on the value of X

look-up index I in the interpolation table: TX [I] ≤ X ≤ TX [I + 1]

interpolate from value TY [I] when X = TX [I] with slope TS [I]

Analysis: in the interval domain

without partitioning:
Y ∈ [min TY ,max TY] + (X − [min TX ,max TX])× [min TS,max TS]

partitioning with respect to the number of loop iterations:
Y ∈ ∪I∈[0,N] TY [I] + ([0,TX [I + 1]− TX [I])× TS[I]

(more precise as it keeps the relation between table indices)

Course 12 Abstract Interpretation IV Antoine Miné p. 26 / 67

Abstracting arrays

Abstracting arrays

Course 12 Abstract Interpretation IV Antoine Miné p. 27 / 67

Abstracting arrays

Example

Example: increasing subsequence

p[0]← 0; B[0]← A[0];
i ← 1; k ← 1;
while i < N do

if A[i] > B[k − 1] then
B[k]← A[i];
p[k]← i ;
k ← k + 1;

i ← i + 1

Given an array A[0], . . . ,A[N − 1]
the program computes an increasing sub-array B[0], . . . ,B[k − 1]
and the index sequence p[0], . . . , p[k − 1]

Invariants: 1 ≤ k ≤ i ≤ N ∀x < k: B[x] = A[p[x]]
∀x : 0 ≤ p[x] < N ∀x < k − 1: B[x + 1] > B[x]

Course 12 Abstract Interpretation IV Antoine Miné p. 28 / 67

Abstracting arrays

Overview

Syntax and concrete semantics

Non-relational abstract semantics
e.g., ∀i : A[i] ≤ constant

application to interval analysis

Relational (uniform) abstract semantics
e.g., ∀i : A[i] ≤ V

expand and fold operations
application to polyhedral analysis

Non-uniform abstraction
e.g., ∀i : A[i] ≤ i

Course 12 Abstract Interpretation IV Antoine Miné p. 29 / 67

Abstracting arrays Syntax and concrete semantics

Syntax extension

Modified expressions and statements

expr ::= V (scalar access, V ∈ V)

| A[expr] (array access, A ∈ A)

| · · ·
stat ::= V ← expr (scalar update, V ∈ V)

| A[expr]← expr (array update, A ∈ A)

| · · ·

Our language now has two ways to access the memory

V: scalar integer variables (as before)

A: arrays of integer values (new)

arrays are indiced by positive integers
arrays are unbounded (to simplify, we ignore overflows)

=⇒ an array A is similar to a map A : N→ Z

Course 12 Abstract Interpretation IV Antoine Miné p. 30 / 67

Abstracting arrays Syntax and concrete semantics

Concrete semantics

Concrete environments: E def
= P((V ∪ (A× N))→ Z)

ρ ∈ E assigns an integer value to “memory cells” as follows:

ρ(V) for every scalar variable V ∈ V

ρ(A, i) for every array position A ∈ A, i ≥ 0

Concrete semantics:

EJ V K ρ def
= {ρ(V)}

EJ A[e] K ρ def
= { ρ(A, i) | i ∈ EJ e K ρ }

SJ V ← e K R
def
= { ρ[V 7→ v] | ρ ∈ R, v ∈ EJ e K ρ }

SJ A[f]← e K R
def
= { ρ[(A, i) 7→ v] | ρ ∈ R, v ∈ EJ e K ρ, i ∈ EJ f K ρ, i ≥ 0 }

· · ·

Course 12 Abstract Interpretation IV Antoine Miné p. 31 / 67

Abstracting arrays Non-relational abstractions

Summarization abstraction

Goal: reuse existing numeric abstract domains

issue: numeric domains only abstract subsets of Zn, for finite n
solution: reduce E to maps on finite set of abstract variables

Abstract variables: V]
def
= V ∪ A

scalar variables in V are exactly represented in V]

the contents of an array A ∈ A is abstracted with
a single summary variable A (modeling the contents of the whole array)

V] is finite

Summarization Galois Connection:

(P(E),⊆) −−−→←−−−αs

γs

(P(V] → Z),⊆)

αs(R)
def
= { [V 7→ ρ(V),A 7→ ρ(A, ι(A))] | ρ ∈ R, ι ∈ A→ N }

(folds all array elements (A, i) into the abstract variable A)

γs(S)
def
= { ρ | ∀ι ∈ A→ N: [V 7→ ρ(V),A 7→ ρ(A, ι(A))] ∈ S }

(indeed, γs (S) = { ρ |αs ({ρ}) ⊆ S } = ∪ {R |αs (R) ⊆ S })
Course 12 Abstract Interpretation IV Antoine Miné p. 32 / 67

Abstracting arrays Non-relational abstractions

Non-relational abstraction

Reminder: Interval abstraction

P(V] → Z) is abstracted into V] → P(Z) (Cartesian abstraction)

P(Z) is abstracted as an interval in I

(Note: the Cartesian and summarization abstractions commute)

Abstract semantics: in E] def
= V] → I

E]J V K X] def
= X](V)

E]J A[e] K X] def
= X](A) (e is ignored)

S]J V ← e K X] def
= X][V 7→ E]J e K X]]

S]J A[f]← e K X] def
= X][A 7→ X](A) ∪] E]J e K X]]

(f is ignored, we perform a weak update that accumulates values)

assuming X](V) = X](A) = [a, b]:

S]J V ≤ c K X] def
= X][V 7→ [a,min(b, c)]] if a ≤ c, ⊥ otherwise

S]J A[e] ≤ c K X] def
= X] if a ≤ c, ⊥ otherwise

(we test for satisfability but do not refine X](A); the case A[e] ≤ A[f] is similar)

other operations are unchanged, including ∩], ∪], . . .
Course 12 Abstract Interpretation IV Antoine Miné p. 33 / 67

Abstracting arrays Non-relational abstractions

Interval analysis example

Example: increasing subsequence

p[0]← 0; B[0]← A[0];
i ← 1; k ← 1;
while i < N do

if A[i] > B[k − 1] then
B[k]← A[i];
p[k]← i ;
k ← k + 1;

i ← i + 1

Analysis result:

Assuming that N ∈ [N`,Nh], ∀x : A[x] ∈ [A`,Ah], we get:

∀x : p[x] ∈ [0,Nh − 1]

∀x : B[x] ∈ [min(0,A`),max(0,Ah)]

Course 12 Abstract Interpretation IV Antoine Miné p. 34 / 67

Abstracting arrays Relational abstractions

Variable duplication and fold

Reminders: adding and removing regular variables

SJ add V K R
def
= { ρ[V 7→ v] | ρ ∈ R, v ∈ Z }

SJ del V K R
def
= { ρ|dom(ρ)\{V} | ρ ∈ R }

Expanding and folding: model dynamic summarization

SJ expand V → V ′ K R
def
= { ρ[V ′ 7→ v] | ρ ∈ R ∧ ρ[V 7→ v] ∈ R }

SJ fold V ←↩ V ′ K R
def
= { ρ | ∃v : ρ[V ′ 7→ v] ∈ R ∨ ρ[V ′ 7→ ρ(V),V 7→ v] ∈ R }

expand duplicates a variable and its constraints
(1 ≤ V ≤ X =⇒ 1 ≤ V ≤ X ∧ 1 ≤ V ′ ≤ X ; but V = V ′ does not hold!)

fold summarizes V and V ′ into V
(1 ≤ V ≤ X ∧ 2 ≤ V ′ ≤ Y =⇒ 1 ≤ V ≤ X ∨ 2 ≤ V ≤ Y)

fold is an abstraction, expand is its associated concretization:

P(V→ Z) −−−−−−−−−−−−−→−→←−−−−−−−−−−−−−−
SJ fold V←↩V ′ K

SJ expand V→V ′ K
P((V\{V ′})→ Z)

(we have a Galois insertion)

Course 12 Abstract Interpretation IV Antoine Miné p. 35 / 67

Abstracting arrays Relational abstractions

Relational expand and join

Polyhedral abstraction:

expand can be exactly modeled by copying constraints:

S]J expand Va → Vb K {
∑

i αij Vi ≥ βj }
def
=

{
∑

i αij Vi ≥ βj } ∪ {
∑

i 6=a αij Vi + αaj Vb ≥ βj }

join can be approximated using a weak copy:

S]J fold V ←↩ V ′ K X] def
= S]J del V ′ K (X] ∪] S]J V ← V ′ K X])

(assignment that keeps new and old values, instead of replacing old by new)

example: 0 ≤ V ≤ 3 ∧ 10 ≤ V ′ ≤ 13 =⇒ 0 ≤ V ≤ 13
which over-approximates 0 ≤ V ≤ 3 ∨ 10 ≤ V ≤ 13

S]J add V K keeps the constraint set unchanged

S]J del V K projects out V

Course 12 Abstract Interpretation IV Antoine Miné p. 36 / 67

Abstracting arrays Relational abstractions

Relational array abstraction

Goal: abstract P(E) using polyhedra over V]
def
= V ∪ A

Principle: use temporary variables, join and expand

Abstract assignment: S]J A[f]← e K X]

replace each array expression A[expr] in e with a fresh copy of A

we get a new expression e′ and environment X]
1

e.g., replace B[expr] in X], with B′ in X]
1

def
= S]J expand B → B′ K X]

create a new copy A′ of A to hold the result

X]
2

def
= S]J expand A→ A′ K X]

1

assign e′ into A′

X]
3

def
= S]J A′ ← e′ K X]

2

fold A′ back into A
X]

4
def
= S]J fold A←↩ A′ K X]

3

remove all fresh copies of arrays:
S]J del B′ K X]

4

The cases for S]J V ← e K and S]J c? K are similar, and a bit simpler

Course 12 Abstract Interpretation IV Antoine Miné p. 37 / 67

Abstracting arrays Relational abstractions

Polyhedral analysis example

Example: increasing subsequence

p[0]← 0; B[0]← A[0];
i ← 1; k ← 1;
while i < N do

if A[i] > B[k − 1] then
B[k]← A[i];
p[k]← i ;
k ← k + 1;

i ← i + 1

Analysis result:

Assuming that ∀x : A[x] ∈ [A`,Ah], we get:

∀x : 0 ≤ p[x] < N
(which is stronger than ∀k: 0 ≤ p[k] < Nh)

∀x : B[x] ∈ [min(0,A`),max(0,Ah)]
(B ≤ A would mean ∀i , j : B[i] ≤ A[j], which does not hold)

Course 12 Abstract Interpretation IV Antoine Miné p. 38 / 67

Abstracting arrays Non-uniform abstractions

Beyond uniform abstractions

The summarization αs : P(E)→ P(V] → Z) is uniform:
it forgets relations between array element indices and element values

Non-uniform abstraction example: array segmentation

Initialization loop

I ← 0;
while • I < 1000 do

T [I]← 1;
I ← I + 1

we wish to analyze the loop without unrolling

at • we need to express the loop invariant:
∀i < I : T [i] = 1

=⇒ at loop exit, T is initialized until 1000

T [i] 1 [−∞, +∞]

I

[−∞, +∞]

10000

i

abstract domain: partition the array contents into uniform segments
segments have constant or symbolic bounds (0, I , 1000,. . .)
segments have a contents in an abstract domain (intervals,. . .)

Course 12 Abstract Interpretation IV Antoine Miné p. 39 / 67

Inter-procedural analyses

Inter-procedural analyses

Course 12 Abstract Interpretation IV Antoine Miné p. 40 / 67

Inter-procedural analyses

Overview

Syntax and concrete semantics

Semantic inlining
simple and precise
but not efficient and may not terminate

Call-site and call-stack abstraction
terminates even for recursive programs
parametric cost-precision trade-off

Tabulated abstraction
optimal reuse of analysis partial results

Summary-based abstraction
modular bottom-up analysis
leverage relational domains

in general, these different abstractions give incomparable results
(there is no clear winner)

Course 12 Abstract Interpretation IV Antoine Miné p. 41 / 67

Inter-procedural analyses Syntax and concrete semantics

Procedures

Syntax:

F finite set of procedure names

body : F → stat: procedure bodies

main ∈ stat: entry point body

VG : set of global variables

Vf : set of local variables for procedure f ∈ F
procedure f can only access Vf ∪ VG

main has no local variable and can only access VG

stat ::= f (expr 1, . . . , expr |Vf |) | · · ·
procedure call, f ∈ F , setting all its local variables

local variables double as procedure arguments
no special mechanism to return a value (a global variable can be used)

Course 12 Abstract Interpretation IV Antoine Miné p. 42 / 67

Inter-procedural analyses Syntax and concrete semantics

Concrete environments

Notes:

when f calls g , we must remember the value of f ’s locals Vf in the
semantics of g and restore them when returning

several copies of each V ∈ Vf may exist at a given time
(due to recursive calls, cycles in the call graph)

=⇒ concrete environments use per-variable stacks

Stacks: S def
= Z∗ (finite sequences of integers)

push(v , s)
def
= v · s (v , v ′ ∈ Z, s, s′ ∈ S)

pop(s)
def
= s ′ when ∃v : s = v · s ′, undefined otherwise

peek(s)
def
= v when ∃s ′: s = v · s ′, undefined otherwise

set(v , s)
def
= v · s ′ when ∃v ′: s = v ′ · s ′, undefined otherwise

Environments: E def
= (∪f∈F Vf ∪ VG)→ S

for VG , stacks are not necessary but simplify the presentation

traditionally, there is a single global stack for all local variables
using per-variable stacks instead will make the analysis presentation simpler

Course 12 Abstract Interpretation IV Antoine Miné p. 43 / 67

Inter-procedural analyses Syntax and concrete semantics

Concrete semantics

Concrete semantics: on E def
= (∪f∈F Vf ∪ VG)→ S

variable read and update only consider the top of the stack
procedure calls push and pop local variables

EJ V K ρ def
= peek(ρ(V))

SJ V ← e K R
def
= { ρ[V 7→ set(x , ρ(V))] | ρ ∈ R, x ∈ EJ e K ρ }

SJ f (eV1 , . . . , eVn) K R = R3, where:

R1
def
= { ρ[∀V ∈ Vf : V 7→ push(xV , ρ(V))] | ρ ∈ R,∀V ∈ Vf : xV ∈ EJ eV K ρ }

(evaluate each argument eV and push its value xV on the stack ρ(V))

R2
def
= SJ body(f) K R1 (evaluate the procedure body)

R3
def
= { ρ[∀V ∈ Vf : V 7→ pop(ρ(V))] | ρ ∈ R2 } (pop local variables)

initial environment: ρ0
def
= λV ∈ VG .0

(other statements are unchanged)

Course 12 Abstract Interpretation IV Antoine Miné p. 44 / 67

Inter-procedural analyses Semantic inlining

Semantic inlining

Näıve abstract procedure call: mimic the concrete semantics

assign abstract variables to stack positions:

V]
def
= VG ∪ (∪f∈F Vf × N)
V] is infinite, but each abstract environment uses finitely many variables

E]V abstracts P(V→ Z), for any finite V ⊆ V]

V ∈ Vf denotes (V , 0) in V]

push V : shift variables, replacing (V , i) with (V , i + 1), then add (V , 0)
pop V : remove (V , 0) and shift each (V , i) to (V , i − 1)

S]J f (e1, . . . , en) K X] is then reduced to:

X]
1 = S]J push V1; . . . ; push Vn K X] (add fresh variables for Vf)

X]
2 = S]J V1 ← e1; . . . ; Vn ← en K X]

1 (bind arguments to locals)

X]
3 = S]J body(f) K X]

2 (execute the procedure body)

X]
4 = S]J pop V1; . . . ; pop Vn K X]

3 (delete local variables)

Limitations:
does not terminate in case of unbounded recursivity
requires many abstract variables to represent the stacks
procedures must be re-analyzed for every call
(full context-sensitivity: precise but costly)

Course 12 Abstract Interpretation IV Antoine Miné p. 45 / 67

Inter-procedural analyses Semantic inlining

Example

Example

main :
R ← −1;
f (rand(5, 10));
f (80)

f (X) :
R ← 2× X ;
if R > 100 then R ← 0

Analysis using intervals

after the first call to f , we get R ∈ [10, 20]

after the second call to f , we get R = 0

Course 12 Abstract Interpretation IV Antoine Miné p. 46 / 67

Inter-procedural analyses Call-site abstraction

Call-site abstraction

Abstracting stacks: into a fixed, bounded set V] of variables

V]
def
= ∪f∈F {V , V̂ |V ∈ Vf } ∪ VG

two copies of each local variable
V abstracts the value at the top of the stack (current call)
V̂ abstracts the rest of the stack

S]J push V K X] def
= X] ∪] S]J V̂ ← V K X]

S]J pop V K X] def
= X] ∪] S]J V ← V̂ K X]

weak updates, similar to array manipulation
no need to create and delete variables dynamically

assignments and tests always access V , not V̂
=⇒ strong update (precise)

Note: when there is no recursivity, V̂ , push and pop can be omitted

Course 12 Abstract Interpretation IV Antoine Miné p. 47 / 67

Inter-procedural analyses Call-site abstraction

Call-site abstraction

Principle: merge all the contexts in which each function is called

we maintain two global maps F → E]:
C](f): abstracts the environments when calling f
R](f): abstracts the environments when returning from f
(gather environments from all possible calls to f , disregarding the call sites)

during the analysis, when encountering a call S]J body(f) K X]:

we return R](f)
but we also replace C] with C][f 7→ C](f) ∪] X]]

R](f) is computed from C](f) as

R](f) = S]J body(f) K (C](f))

Course 12 Abstract Interpretation IV Antoine Miné p. 48 / 67

Inter-procedural analyses Call-site abstraction

Call-site abstraction

Fixpoint:

there may be circular dependencies between C] and R]

e.g., in f (2); f (3), the input for f (3) depends on the output from f (2)

=⇒ we compute a fixpoint for C] by iteration:

initially, ∀f : C](f) = R](f) = ⊥

analyze main

while ∃f : C](f) not stable
apply widening O to the iterates of C](f)
update R](f) = S]J body(f) K C](f)
analyze main and all the procedures again
(this may modify some C](g))

=⇒ using O, the analysis always terminates in finite time

we can be more efficient and avoid re-analyzing procedures when not needed
e.g., use a workset algorithm, track procedure dependencies, etc.

Course 12 Abstract Interpretation IV Antoine Miné p. 49 / 67

Inter-procedural analyses Call-site abstraction

Example

Example

main :
R ← −1;
f (rand(5, 10));
f (80)

f (X) :
R ← 2× X ;
if R > 100 then R ← 0

Analysis: using intervals (without widening as there is no dependency)

first analysis of main: we get ⊥ (as R](f) = ⊥)

but C](f) = [R 7→ [−1,−1],X 7→ [5, 10]]

first analysis of f : R](f) = [R 7→ [10, 20],X 7→ [5, 10]]

second analysis of main: we get
C](f) = [R 7→ [−1, 20],X 7→ [5, 80]]

second analysis of f : R](f) = [R 7→ [0, 100],X 7→ [5, 80]]

final analysis of main, we find R ∈ [0, 100] at the program end
(less precise than R = 0 found by semantic inlining!)

Course 12 Abstract Interpretation IV Antoine Miné p. 50 / 67

Inter-procedural analyses Call-site abstraction

Partial context-sensitivity

Variants: k−limiting, k is a constant

stack:
assign a distinct variable for the k highest levels of V
abstract the lower (unbounded) stack part with V̂
(more precise than keeping only the top of the stack separately)

context-sensitivity:
each syntactic call has a unique call-site ` ∈ L
a call stack is a sequence of nested call sites: c ∈ L∗
an abstract call stack remembers the last k call sites: c] ∈ Lk

the C] and R] maps now distinguish abstract call stacks
C],R] : Lk → E]
(more precise than a partitioning by function only)

larger k give more precision but less efficiency

Course 12 Abstract Interpretation IV Antoine Miné p. 51 / 67

Inter-procedural analyses Call-site abstraction

Example: context-sensitivity

Example

main :
R ← −1;
`1 : f (rand(5, 10));
`2 : f (80)

f (X) :
R ← 2× X ;
if R > 100 then R ← 0

Analysis: using intervals and k = 1

C](`1) = [R 7→ [−1, 1],X 7→ [5, 10]]
=⇒ R](`1) = [R 7→ [10, 20],X 7→ [5, 10]]

C](`2) = [R 7→ [10, 20],X 7→ [80, 80]]
=⇒ R](`2) = [R 7→ [0, 0],X 7→ [80, 80]]

at the end of the analysis, we get R = 0
(more precise than R ∈ [0, 100] found without context-sensitivity)

Course 12 Abstract Interpretation IV Antoine Miné p. 52 / 67

Inter-procedural analyses Tabulation abstraction

Cardinal power

Principle:

the semantic of a function is SJ body(f) K : P(E)→ P(E)

abstract it as an abstract function in E] ⇀ E]
(we use a partial function as the image of most abstract elements is not useful)

Analysis: tabulated analysis

use a global partial map F] : F × E] ⇀ E]

F] is initially empty, and is filled on-demand

when encountering S]J body(f) K X]

return F](f ,X]) if defined

else, compute S]J body(f) K X], store it in F](f ,X]) and return it

Optimizations: trade precision for efficiency

if X] v Y] and F](f ,X]) is not defined, we can use F](f ,Y]) instead

if the size of F] grows too large, use F](f ,>) instead
(sound, and ensures that the analysis terminates in finite time)

Course 12 Abstract Interpretation IV Antoine Miné p. 53 / 67

Inter-procedural analyses Tabulation abstraction

Example

Example

main :
R ← −1;
f (rand(5, 10));
f (80)

f (X) :
R ← 2× X ;
if R > 100 then R ← 0

Analysis using intervals

F] =
[(f , [R 7→ [−1,−1],X 7→ [5, 10]]) 7→ [R 7→ [10, 20],X 7→ [5, 10]],

(f , [R 7→ [10, 20],X 7→ [80, 80]]) 7→ [R 7→ [0, 0],X 7→ [80, 80]]]

at the end of the analysis, we get again R = 0

(here, the function partitioning gives the same result as the call-site partitioning)

Course 12 Abstract Interpretation IV Antoine Miné p. 54 / 67

Inter-procedural analyses Tabulation abstraction

Dynamic partitioning: complex example

Example: McCarthy’s 91 function

main :
Mc(rand(0,+∞))

Mc(n) :
if n > 100 then r ← n − 10
else Mc(n + 11); Mc(r)

in the concrete, when terminating:
r = n − 10 when n > 101, and r = 91 wen n ∈ [0, 101]

using a widening O to choose tabulated abstract values F](f ,X])
we find: n ∈ [0, 72] ⇒ r = 91

n ∈ [73, 90] ⇒ r ∈ [91, 101]
n ∈ [91, 101] ⇒ r = 91
n ∈ [102, 111] ⇒ r ∈ [91, 101]
n ∈ [112,+∞] ⇒ r ∈ [91,+∞]

(source: Bourdoncle, JFP 1992)

Course 12 Abstract Interpretation IV Antoine Miné p. 55 / 67

Inter-procedural analyses Summary-based abstraction

Summary-based analyses

Principle:

abstract the input-output relation using a relational domain

analyze each procedure out of context
no information about its possible arguments

analyze a procedure given the analysis of the procedures it calls
bottom-up analysis, from leaf functions to main

=⇒ completely modular analysis
(for recursive calls, we still need to iterate the analysis of call cycles, with O)

Analysis:

analyze f with abstract variables V]
f

def
= {V ,V ′ |V ∈ VG ∪ Vf }

V ′ denotes the current value of the variable
V denotes the value of the variable at the function entry

at the beginning of the procedure, start with ∀V ∈ VG ∪ Vf : V = V ′

the analysis updates only V ′, never V
at the end of the procedure, the invariant gives an input-output relation

it summarizes the effect of the procedure, store it as T](f)

S]J body(f) K X] can be computed using T](f) and variable substitution

S]J∀i : del V ′′i K (X][∀i : V ′′i /V ′i] ∩] T](f)[∀i : V ′′i /Vi])

Course 12 Abstract Interpretation IV Antoine Miné p. 56 / 67

Inter-procedural analyses Summary-based abstraction

Example

Example

max(a, b) :
if a > b then r ← a;
else r ← b; c ← c + 1;

main :
x ← [0, 10]; y ← [0, 10];
c ← 0; max(x , y);
r ← r − x

Analysis using polyhedra

the analysis of max gives:

r ′ ≥ a ∧ r ′ ≥ b ∧ c′ ≥ c ∧ c′ ≤ c + 1 ∧ a = a′ ∧ b = b′ ∧ x = x ′ ∧ y = y ′

at main’s call to max

before max : c′ = 0 ∧ x ′ ∈ [0, 10] ∧ y ′ ∈ [0, 10]
applying the summary: c′ ∈ [0, 1] ∧ x ′ ∈ [0, 10] ∧ y ′ ∈ [0, 10] ∧ r ′ ≥ x ′ ∧ r ′ ≥ y ′

at the end of the program, x ∈ [0, 10], y ∈ [0, 10], r ∈ [0, 10], c ∈ [0, 1]

the method requires a relational domain to infer interesting input-output relations
it compensates for the lack of information about the entry point

Course 12 Abstract Interpretation IV Antoine Miné p. 57 / 67

Backward analysis

Backward analysis

Course 12 Abstract Interpretation IV Antoine Miné p. 58 / 67

Backward analysis

Forward versus backward analysis

Example

Y ← 0;
while Y ≤ X do Y ← Y + 1

Forward analysis:

given X ∈ [−10, 10] at the beginning of the program
Y ∈ [0, 11] at the end of the program

Backward analysis:

to have Y ∈ [10, 20] at the end of the program
we must have X ∈ [9, 19] at the beginning of the program

Course 12 Abstract Interpretation IV Antoine Miné p. 59 / 67

Backward analysis

Concrete semantics: forward

SJ stat K : P(E)→ P(E)

SJ skip K R
def
= R

SJ s1; s2 K R
def
= SJ s2 K (SJ s1 K R)

SJ V ← e K R
def
= { ρ[V 7→ v] | ρ ∈ R, v ∈ EJ e K ρ }

SJ c? K R
def
= { ρ ∈ R | true ∈ CJ c K ρ }

SJ if c then s1 else s2 K R
def
= SJ s1 K (SJ c? K R) ∪ SJ s2 K (SJ¬c? K R)

SJ while c do s K R
def
= SJ¬c? K (lfp λI .R ∪ SJ s K (SJ c? K I))

Course 12 Abstract Interpretation IV Antoine Miné p. 60 / 67

Backward analysis

Concrete semantics: backward

←−
S J stat K : P(E)→ P(E)

←−
S J skip K F

def
= F

←−
S J s1; s2 K F

def
=
←−
S J s1 K (

←−
S J s2 K F)

←−
S J V ← e K F

def
= { ρ | ∃v ∈ EJ e K ρ: ρ[V 7→ v] ∈ F }

←−
S J c? K F

def
= { ρ ∈ F | true ∈ CJ c K ρ }

←−
S J if c then s1 else s2 K F

def
=
←−
S J c? K (

←−
S J s1 K F) ∪

←−
S J¬c? K (

←−
S J s2 K F)

←−
S J while c do s K F

def
= lfp λI .

←−
S J¬c? K F ∪

←−
S J c? K (

←−
S J s K I))

note:

statement order is inverted (s2 before s1, s1 before c?, etc.)
←−
S J c? K is unchanged

Course 12 Abstract Interpretation IV Antoine Miné p. 61 / 67

Backward analysis

Concrete semantics: flow intuition

Intuition: information propagation for if · · · then · · · else

if

then

else

then

else

if backward

forwardR

SJ c? K

SJ s1 K

SJ s2 K

∪

SJ¬c? K

←−
S J s2 K

←−
S J s1 K

R∪

←−
S J c? K

←−
S J¬c? K

SJ if c then s1 else s2 K R = SJ s1 K (SJ c? K R) ∪ SJ s2 K (SJ¬c? K R)
←−
S J if c then s1 else s2 K F =

←−
S J c? K (

←−
S J s1 K F) ∪

←−
S J¬c? K (

←−
S J s2 K F)

Course 12 Abstract Interpretation IV Antoine Miné p. 62 / 67

Backward analysis

Core property

Executions

SJ stat K R
set of all possible states at the program end
when starting in a state in R

←−
S J stat K F

set of all the states at the program entry
such that at least one execution ends in a state in F

Correspondence: ι ∈
←−
S J stat K {φ} ⇐⇒ φ ∈ SJ stat K {ι}

Note: trace semantics and trace abstractions
the notion of “program execution” can be formalized as trace semantics:

T
def
= lfpλX .I ∪ { 〈ρ1, . . . , ρn+1〉 | 〈ρ1, . . . , ρn〉 ∈ X ∧ ρn → ρn+1 }

SJ K and
←−
S J K are abstractions that only remember the end or beginning of traces

SJ stat K {ρ} ' { ρ′ | ∃〈ρ1, . . . , ρn〉 ∈ X ∧ ρn: ∈ T , ρ = ρ1, ρ
′ = ρn }←−

S J stat K {ρ′} ' { ρ | ∃〈ρ1, . . . , ρn〉 ∈ X ∧ ρn: ∈ T , ρ = ρ1, ρ
′ = ρn }

Course 12 Abstract Interpretation IV Antoine Miné p. 63 / 67

Backward analysis

Abstraction semantics

Goal: construct
←−
S]J stat K that soundly approximates

←−
S J stat K

We can define, by induction:
←−
S]J skip K F] def

= F]

←−
S]J s1; s2 K F] def

=
←−
S]J s1 K (

←−
S]J s2 K F])

←−
S]J c? K F] def

= S]J c? K F]

←−
S]J if c then s1 else s2 K F] def

=
←−
S]J c? K (

←−
S]J s1 K F]) ∪]

←−
S]J¬c? K (

←−
S]J s2 K F])

←−
S]J while c do s K F] def

= lim λI].I] O (
←−
S]J¬c? K F] ∪]

←−
S]J c? K (

←−
S]J s K I]))

Abstract operators:

we can reuse ∪], O and S]J c? K
only S]J V ← e K needs to be defined on a per-domain basis

Course 12 Abstract Interpretation IV Antoine Miné p. 64 / 67

Backward analysis

Backward assignment

Concrete assignment:

←−
S J V ← e K F

def
= { ρ | ∃v ∈ EJ e K ρ: ρ[V 7→ v] ∈ F }

Abstract assignment examples:

affine assignment in polyhedra
←−
S]J Vj ←

∑
i αi Vi + β K X]

=⇒ substitute Vj with
∑

i αi Vi + β in each constraint
(similar to the computation of weakest preconditions wlp(X ← e,P) = P[e/X])

intervals
←−
S]J V ← V + rand(a, b) K X] = S]J V ← V − rand(a, b) K X]

using substitution is also possible but does not always give interval constraints
we then need to solve or approximate an optimization problem: min V , max V

fall-back (e.g., non-affine assignments in polyhedra)
←−
S]J V ← e K X] def

= S]J V ← [−∞,+∞] K X]

(same fall-back operation as for forward assignment)

Course 12 Abstract Interpretation IV Antoine Miné p. 65 / 67

Backward analysis

Backward-forward combination

Goal: given initial states I and finial states F
consider only executions that start in I and end in F

Application: analysis specialization to remove false alarms

Example

X ← rand(−100, 100);
if X = 0 then X ← 1;

• Y ← 100/X

Analysis: using the interval domain

a forward analysis finds X ∈ [−100, 100] at •
=⇒ false alarm for division by zero

backward analysis from • assuming X = 0
we find ⊥ at the program entry
=⇒ no execution can trigger the division by zero
(we have removed the false alarm)

more complex combinations exist, such as iterated forward and backward analyses

Course 12 Abstract Interpretation IV Antoine Miné p. 66 / 67

Backward analysis

Necessary versus sufficient conditions

Example

Y ← 0; I ← 0;
while I ≤ X do Y ← Y + rand(1, 2); I ← I + 1
assert(Y ∈ [10, 30])

In case of non-determinism,
←−
S J K F gives the initial states such that

at least one execution terminates in F : it is a necessary conditions

We can also consider sufficient conditions
initial states such that all executions terminate in F

Examples: preconditions ensuring the assertion

(strongest) necessary precondition: X ∈ [5, 30]
(weakest) sufficient precondition: X ∈ [10, 15]

Note:
strongest necessary conditions can be over-approximated
weakest sufficient conditions must be under-approximated
=⇒ leads to very different abstract operations

Course 12 Abstract Interpretation IV Antoine Miné p. 67 / 67

	Disjunctive domains
	Powerset completion
	State partitioning
	Binary decision trees
	Path partitioning

	Abstracting arrays
	Syntax and concrete semantics
	Non-relational abstractions
	Relational abstractions
	Non-uniform abstractions

	Inter-procedural analyses
	Syntax and concrete semantics
	Semantic inlining
	Call-site abstraction
	Tabulation abstraction
	Summary-based abstraction

	Backward analysis

