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Overview

Selected advanced topics:

Disjunctive abstract domains

Abstracting arrays

Inter-procedural analyses

Backward analyses

Practical session: help with the project
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Disjunctive domains

Disjunctive domains
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Disjunctive domains

Motivation

Remark: most domains abstract convex sets (conjunctions of constraints)

=⇒ ∪] causes a loss of precision!

The need for non-convex invariants

X ← rand(10, 20);
Y ← rand(0, 1);
if Y > 0 then X ← −X ;

• Z ← 100/X

Concrete semantics:

At •, X ∈ [−20,−10] ∪ [10, 20]
=⇒ there is no division by zero

Abstract analysis:

Convex analyses (intervals, polyhedra) will find X ∈ [−20, 20]
(with intervals, [−20,−10] ∪] [10, 20] = [−20, 20])

=⇒ possible division by zero (false alarm)
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Disjunctive domains

Disjunctive domains

Principle:

generic constructions to lift any numeric abstract domain
to a domain able to represent disjunctions exactly

Example constructions:

powerset completion
unordered “soup” of abstract elements

state partitioning
abstract elements keyed to selected subsets of environments

decision tree abstract domains
efficient representation of state partitioning

path-sensitive analyses
partition with respect to the history of execution

each construction has its strength and weakness
they can be combined during an analysis to exploit the best in each
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Disjunctive domains Powerset completion

Powerset completion

Given: (E],v, γ,∪],∩],O,S]J stat K )
abstract domain E]
ordered by v, which also acts as a sound abstraction of ⊆ (i.e., ⊆]=v)
with concretization γ : E] → P(E)
sound abstractions ∪], ∩], S]J stat K of ∪, ∩, SJ stat K , and a widening O

Construct: (Ê], v̂, γ̂, ∪̂], ∩̂], Ô, Ŝ]J stat K )

Ê] def
= Pfinite(E]) (finite sets of abstract elements)

γ̂(A])
def
= ∪ { γ(X ]) |X ] ∈ A] } (join of concretizations)

Example:

using the interval domain for E]

(̂γ{[−10,−5], [2, 4], [0, 0], [2, 3]}) = [−10,−5] ∪ {0} ∪ [2, 4]
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Disjunctive domains Powerset completion

Ordering

Issue: how can we compare two elements of Ê]?

γ̂ is generally not injective
there is no canonical representation for γ̂(A])

testing γ̂(A]) = γ̂(B]) or γ̂(A]) ⊆ γ̂(B]) is difficult

Example: powerset completion of the interval domain

A] B] C ]

A] = {{0} × {0}, [0, 1]× {1}}
B] = {{0} × {0}, {0} × {1}, {1} × {1}}
C ] = {{0} × [0, 1], [0, 1]× {1}}
γ̂(A]) = γ̂(B]) = γ̂(C ])

B] is more costly to represent: it requires three abstract elements instead of two
C ] is a covering and not a partition (red ∩ blue = {0} × {1} 6= ∅)
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Disjunctive domains Powerset completion

Ordering (cont.)

Solution: sound approximation of ⊆

A] v̂ B] def⇐⇒ ∀X ] ∈ A]:∃Y ] ∈ B]: X ] v Y ] (Hoare powerdomain order)

v̂ is a partial order (when v is)

v̂ is a sound approximation of ⊆ (when v is)

(A] v̂ B] =⇒ γ̂(A]) ⊆ γ̂(B]))

testing v̂ reduces to testing v finitely many times

Example: powerset completion of the interval domain

A] B] C ]

γ̂(A]) = γ̂(B]) = γ̂(C ])

B] v̂ A] v̂ C ]
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Disjunctive domains Powerset completion

Abstract operations

Abstract operators

Ŝ]J stat K A]
def
= { S]J stat K X ] |X ] ∈ A] }

apply stat on each abstract element independently

A] ∪̂] B] def
= A] ∪ B]

keep elements from both arguments without applying any abstract operation

∪̂] is exact

A] ∩̂] B] def
= {X ] ∩] Y ] |X ] ∈ A], Y ] ∈ B] }

∩̂] is exact if ∩] is (as ∪ and ∩ are distributive)

Galois connection:

in general, there is no abstraction function α̂ corresponding to γ̂

Example: powerset completion Ê] of the interval domain E]

given the disc S
def
= { (x , y) | x2 + y2 ≤ 1 }

α(S) = [−1, 1]× [−1, 1] (optimal interval abstraction)
but there is no best abstraction in Ê]

S S

not α̂(S)α(S)
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Disjunctive domains Powerset completion

Dynamic approximation

Issue: the size |A]| of elements A] ∈ Ê] is unbounded
(every application of ∪̂] adds some more elements)

=⇒ efficiency and convergence problems

Solution: to reduce the size of elements

redundancy removal

simplify(A])
def
= {X ] ∈ A] | ∀Y ] 6= X ] ∈ A]: X ] 6v Y ] }

(no loss of precision: γ̂(simplify(A])) = γ̂(A]))

collapse: join elements in E]

collapse(A])
def
= {∪] {X ] ∈ A] }}

(large loss of precision, but very effective: |collapse(A])| = 1)

partial collapse: limit |A]| to a fixed size k by ∪]
(but how to choose which elements to merge? no easy solution!)
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Disjunctive domains Powerset completion

Widening

Issue: for loops, abstract iterations (A]n)n∈N may not converge

the size of A]n may grow arbitrarily large

even if |A]n| is stable, some elements in A]n may not converge
(if E] has infinite increasing sequences)

=⇒ we need a widening O

Widenings for powerset domains are difficult to design

Example widening: collapse after a fixed number N of iterations

A]n+1
def
=

{
A]n ∪̂

]
B]

n+1 if n < N

collapse(A]n) O collapse(B]
n+1) otherwise

(this is very näıve, see Bagnara et al. STTT06 for more interesting widenings)
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Disjunctive domains State partitioning

State partitioning

Principle:

partition a priori E into finitely many sets

abstract each partition separately in E]

Abstract domain:

Given P] ⊆ E] such that:

P] is finite

∪ { γ(X ]) |X ] ∈ P] } = E
for generally, we have a covering, not a partitioning of E
i.e., we can have X ] 6= Y ] ∈ P] with γ(X ]) ∩ γ(Y ]) 6= ∅

Then Ẽ] def
= P] → E]

(representable in memory, as P] is finite)
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Disjunctive domains State partitioning

Ordering

P1

P2

P3

P4

P5

Example: E] is the interval domain

P] = {P1,P2,P3,P4,P5} where
P1 = [−∞, 0]× [−∞,+∞]
P2 = [0, 10]× [0,+∞]
P3 = [0, 10]× [−∞, 0]
P4 = [10,+∞]× [0,+∞]
P5 = [10,+∞]× [−∞, 0]

X ] = [P1 7→ [−6,−5]× [5, 6], P2 7→ ⊥,
P3 7→ [9, 10]× [−∞,−1], P4 7→ ⊥,
P5 7→ [10, 12]× [−3,−1]]

Ẽ] def
= P] → E]

γ̃(A])
def
= ∪ { γ(A](X ])) ∩ γ(X ]) |X ] ∈ P] }

A] ṽ B] def⇐⇒ ∀X ] ∈ P]: A](X ]) v B](X ]) (point-wise order)

α̃(S)
def
= λX ] ∈ P].α(S ∩ γ(X ]))

(if E] enjoys a Galois connection, so does Ẽ])
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Disjunctive domains State partitioning

Abstract operators

Abstract operators: point-wise extension from E] to P] → E]

A ∪̃] B
def
= λX ] ∈ P].A(X ]) ∪] B(X ])

A ∩̃] B
def
= λX ] ∈ P].A(X ]) ∩] B(X ])

A Õ B
def
= λX ] ∈ P].A(X ]) O B(X ])

S̃]J e ≤ 0? K A]
def
= λX ] ∈ P].S]J e ≤ 0? K A](X ])

S̃]J V ← e K A] is more complex
as S]J V ← e K A](X ]) may escape X ]

example: X ← X + 2

S̃]J V ← e K A]
def
= λX ]. ∪] {X ] ∩] S]J V ← e K A(Y ]) |Y ] ∈ P] }
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Disjunctive domains State partitioning

Example analysis

Example

X ← rand(10, 20);
Y ← rand(0, 1);
if Y > 0 then X ← −X ;

• Z ← 100/X

Analysis:

E] is the interval domain

partition with respect to the sign of X

P]
def
= {X +,X− } where

X + def
= [0,+∞]× Z× Z and X−

def
= [−∞, 0]× Z× Z

at • we find:
X + 7→ [X ∈ [10, 20],Y 7→ [0, 0],Z 7→ [0, 0]]
X− 7→ [X ∈ [−20,−10],Y 7→ [1, 1],Z 7→ [0, 0]]

=⇒ no division by zero
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Disjunctive domains Binary decision trees

Binary decision trees

Principle: data-structure to compactly represent partitions

Example: boolean partitions

assume that variables have a type: V
def
= Vb ∪ Vn

each V ∈ Vb has value in {0, 1} (boolean variable)

each V ∈ Vn has value in Z (numeric variable)

E ' {0, 1}|Vb| × Z|Vn|

P] def
= { 〈b1, . . . , b|Vb|〉 × Z|Vn| | b1, . . . , b|Vb| ∈ {0, 1} }

a partition corresponds to a precise valuation of all the boolean variables
and no information on the numeric variables

assume that E]n abstracts P(Vn → Z) (numeric domain)

the boolean partitioning domain based on E]n is:

Ẽ] def
= {0, 1}|Vb| → E]n
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Disjunctive domains Binary decision trees

Binary decision trees (cont.)

Representation: for Ẽ] def
= {0, 1}|Vb| → E]n

binary trees:

nodes are labelled with boolean variables Bi ∈ Vb

two children: Bi = 0 and Bi = 1

leaves are abstract elements in E]n (abstraction of P(Vn → Z))

0

0 0

1

1 1

B1

B2 B2
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Disjunctive domains Binary decision trees

Reduced binary decision trees

Optimization: similar to Reduced Ordered Binary Decision Diagrams

merge identical sub-trees (memory sharing)

remove nodes if both children are identical

=⇒ we get a directed acyclic graphs

0

0 0

1

1 1

B1

B2 B2

0

B1

B2

1 0

1

if γn : E]n → Z|Vn| is injective and we use memoization
then γ̃(A]) = γ̃(B]) ⇐⇒ A] and B] are physically equal
(i.e., == in OCaml, which is faster to test than structural equality =)
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Disjunctive domains Binary decision trees

Abstract operations

numeric operations: performed independently on each leaf
(e.g., S̃]J V ← e K reverts to applying S]J V ← e K on each leaf)

boolean operations: manipulate trees

S̃]J Bi ← rand(0, 1) K : merge Bi ’s subtrees recursively
S̃]J Bi = 0? K : set all Bi = 1 branches to ⊥
· · ·

binary operations: ∪̃], ∩̃], Õ, ṽ
first, unify tree structures (unshare trees and add missing nodes)

then, apply the operation pair-wise on leaves

optimization needs to be performed again after each operation
(ensures that abstract elements do not grow too large)
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Disjunctive domains Binary decision trees

Example analysis

Example

X ← rand(0, 100);
if X = 0 then B ← 0 else B ← 1;
· · ·

• if B = 1 then • Y ← 100/X

Analysis: using the interval domain for E]n
at •, we can infer the invariant:
(B = 0 =⇒ X = 0) ∧ (B = 1 =⇒ X ∈ [1, 100])

at •, we deduce that B = 1 ∧ X ∈ [1, 100]
=⇒ there is no division by zero
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Disjunctive domains Binary decision trees

More tree-based partitioning

Other tree-based partitioning data-structure

we can extend partition trees in many ways

allow n−array nodes
and partition wrt. abstract values

Example: partitioning integer variables in the interval domain

V1

[1,+∞]

V2

{0}

[−∞,−1]

[0,+∞][−∞,−1]
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Disjunctive domains Binary decision trees

More tree-based partitioning

partitioning with respect to predicates

Example: linear relations over V
def
= {X ,Y ,Z}

false

false

X ≤ Y

2X ≤ Z 2Y ≤ Z

true false

true

X ,Y

true

the same variables may appear in predicates and in the leaves
=⇒ S]J stat K must generally update both the nodes and the leaves

the set of node predicates may be fixed before the analysis
or chosen dynamically during the analysis
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Disjunctive domains Path partitioning

Path sensitivity

Principle: partition wrt. the history of computation

keep different abstract elements for different execution paths
(i.e., different branches taken, different loop iterations)

avoid merging with ∪] elements at control-flow joins
(at the end of if · · · then · · · else, or at loop head)

Intuition: as a program transformation

X ← rand(−50, 50);
if X ≥ 0 then

Y ← X + 10
else

Y ← X − 10;
assert Y 6= 0

−→

X ← rand(−50, 50);
if X ≥ 0 then

Y ← X + 10;
assert Y 6= 0

else
Y ← X − 10;
assert Y 6= 0

the assert is tested in the context of each branch
instead of after the control-flow join

the interval domain can prove the right assertion, but not the left one
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Disjunctive domains Path partitioning

Abstract domain

Formalization: limited hre to if · · · then · · · else

L denote syntactic labels of if · · · then · · · else instructions

history abstraction H
def
= L → {true, false,⊥}

H ∈ H indicates the outcome of the last time we executed each test:

H(`) = true: we took the then branch
H(`) = false: we took the else branch
H(`) = ⊥: we never executed the test

Notes:

H can remember the outcome of several successive tests
`1 : if · · · then · · · else; `2 : if · · · then · · · else

for tests in loops, H remembers only the last outcome
while · · · do ` : if · · · then · · · else

we could extend H to longer histories with H = (L → { true, false,⊥})∗
we could extend H to track loop iterations with H = L → N

Ĕ] def
= H→ E]

use a different abstract element for each abstract history
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Disjunctive domains Path partitioning

Abstract operators

Ĕ] def
= H→ E]

γ̆(A]) = ∪ { γ(A](H)) |H ∈ H }

v̆, ∪̆], ∩̆], Ŏ are point-wise

S̆]J V ← e K and S̆]J e ≤ 0? K are point-wise

S̆]J ` : if c then s1 else s2 K A] is more complex
we merge all information about `

C ] = λH.A](H[` 7→ true]) ∪] A](H[` 7→ false]) ∪] A](H[` 7→ ⊥])

we compute the then branch, where H(`) = true

T ′] = S̆]J s1 K (S̆]J c? K T ]) where

T ] = λH.C ](H) if H(`) = true, ⊥ otherwise

we compute the else branch, where H(`) = false

F ′] = S̆]J s2 K (S̆]J¬c? K F ]) where

F ] = λH.C ](H) if H(`) = false, ⊥ otherwise

we join both branches: T ′] ∪̆] F ′]

the join is exact as ∀H ∈ H: either T ′](H) = ⊥ or F ′](H) = ⊥

=⇒ we get a semantic by induction on the syntax of the original program
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Disjunctive domains Path partitioning

Complex example

Linear interpolation

X ← rand(TX [0],TX [N]);
I ← 0;
while I < N && X > TX [I + 1] do I ← I + 1;
Y ← TY [I ] + (X − TX [I ])× TS[I ]

Concrete semantics: table-based interpolation based on the value of X

look-up index I in the interpolation table: TX [I ] ≤ X ≤ TX [I + 1]

interpolate from value TY [I ] when X = TX [I ] with slope TS [I ]

Analysis: in the interval domain

without partitioning:
Y ∈ [min TY ,max TY ] + (X − [min TX ,max TX ])× [min TS,max TS]

partitioning with respect to the number of loop iterations:
Y ∈ ∪I∈[0,N] TY [I ] + ([0,TX [I + 1]− TX [I ])× TS[I ]

(more precise as it keeps the relation between table indices)
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Abstracting arrays

Abstracting arrays
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Abstracting arrays

Example

Example: increasing subsequence

p[0]← 0; B[0]← A[0];
i ← 1; k ← 1;
while i < N do

if A[i ] > B[k − 1] then
B[k]← A[i ];
p[k]← i ;
k ← k + 1;

i ← i + 1

Given an array A[0], . . . ,A[N − 1]
the program computes an increasing sub-array B[0], . . . ,B[k − 1]
and the index sequence p[0], . . . , p[k − 1]

Invariants: 1 ≤ k ≤ i ≤ N ∀x < k: B[x ] = A[p[x ]]
∀x : 0 ≤ p[x ] < N ∀x < k − 1: B[x + 1] > B[x ]
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Abstracting arrays

Overview

Syntax and concrete semantics

Non-relational abstract semantics
e.g., ∀i : A[i ] ≤ constant

application to interval analysis

Relational (uniform) abstract semantics
e.g., ∀i : A[i ] ≤ V

expand and fold operations
application to polyhedral analysis

Non-uniform abstraction
e.g., ∀i : A[i ] ≤ i
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Abstracting arrays Syntax and concrete semantics

Syntax extension

Modified expressions and statements

expr ::= V (scalar access, V ∈ V)

| A[expr ] (array access, A ∈ A)

| · · ·
stat ::= V ← expr (scalar update, V ∈ V)

| A[expr ]← expr (array update, A ∈ A)

| · · ·

Our language now has two ways to access the memory

V: scalar integer variables (as before)

A: arrays of integer values (new)

arrays are indiced by positive integers
arrays are unbounded (to simplify, we ignore overflows)

=⇒ an array A is similar to a map A : N→ Z
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Abstracting arrays Syntax and concrete semantics

Concrete semantics

Concrete environments: E def
= P((V ∪ (A× N))→ Z)

ρ ∈ E assigns an integer value to “memory cells” as follows:

ρ(V ) for every scalar variable V ∈ V

ρ(A, i) for every array position A ∈ A, i ≥ 0

Concrete semantics:

EJ V K ρ def
= {ρ(V )}

EJ A[e] K ρ def
= { ρ(A, i) | i ∈ EJ e K ρ }

SJ V ← e K R
def
= { ρ[V 7→ v ] | ρ ∈ R, v ∈ EJ e K ρ }

SJ A[f ]← e K R
def
= { ρ[(A, i) 7→ v ] | ρ ∈ R, v ∈ EJ e K ρ, i ∈ EJ f K ρ, i ≥ 0 }

· · ·
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Abstracting arrays Non-relational abstractions

Summarization abstraction

Goal: reuse existing numeric abstract domains

issue: numeric domains only abstract subsets of Zn, for finite n
solution: reduce E to maps on finite set of abstract variables

Abstract variables: V]
def
= V ∪ A

scalar variables in V are exactly represented in V]

the contents of an array A ∈ A is abstracted with
a single summary variable A (modeling the contents of the whole array)

V] is finite

Summarization Galois Connection:

(P(E),⊆) −−−→←−−−αs

γs

(P(V] → Z),⊆)

αs(R)
def
= { [V 7→ ρ(V ),A 7→ ρ(A, ι(A))] | ρ ∈ R, ι ∈ A→ N }

(folds all array elements (A, i) into the abstract variable A)

γs(S)
def
= { ρ | ∀ι ∈ A→ N: [V 7→ ρ(V ),A 7→ ρ(A, ι(A))] ∈ S }

(indeed, γs (S) = { ρ |αs ({ρ}) ⊆ S } = ∪ {R |αs (R) ⊆ S })
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Abstracting arrays Non-relational abstractions

Non-relational abstraction

Reminder: Interval abstraction

P(V] → Z) is abstracted into V] → P(Z) (Cartesian abstraction)

P(Z) is abstracted as an interval in I

(Note: the Cartesian and summarization abstractions commute)

Abstract semantics: in E] def
= V] → I

E]J V K X ] def
= X ](V )

E]J A[e] K X ] def
= X ](A) (e is ignored)

S]J V ← e K X ] def
= X ][V 7→ E]J e K X ]]

S]J A[f ]← e K X ] def
= X ][A 7→ X ](A) ∪] E]J e K X ]]

(f is ignored, we perform a weak update that accumulates values)

assuming X ](V ) = X ](A) = [a, b]:

S]J V ≤ c K X ] def
= X ][V 7→ [a,min(b, c)]] if a ≤ c, ⊥ otherwise

S]J A[e] ≤ c K X ] def
= X ] if a ≤ c, ⊥ otherwise

(we test for satisfability but do not refine X ](A); the case A[e] ≤ A[f ] is similar)

other operations are unchanged, including ∩], ∪], . . .
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Abstracting arrays Non-relational abstractions

Interval analysis example

Example: increasing subsequence

p[0]← 0; B[0]← A[0];
i ← 1; k ← 1;
while i < N do

if A[i ] > B[k − 1] then
B[k]← A[i ];
p[k]← i ;
k ← k + 1;

i ← i + 1

Analysis result:

Assuming that N ∈ [N`,Nh], ∀x : A[x ] ∈ [A`,Ah], we get:

∀x : p[x ] ∈ [0,Nh − 1]

∀x : B[x ] ∈ [min(0,A`),max(0,Ah)]
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Abstracting arrays Relational abstractions

Variable duplication and fold

Reminders: adding and removing regular variables

SJ add V K R
def
= { ρ[V 7→ v ] | ρ ∈ R, v ∈ Z }

SJ del V K R
def
= { ρ|dom(ρ)\{V} | ρ ∈ R }

Expanding and folding: model dynamic summarization

SJ expand V → V ′ K R
def
= { ρ[V ′ 7→ v ] | ρ ∈ R ∧ ρ[V 7→ v ] ∈ R }

SJ fold V ←↩ V ′ K R
def
= { ρ | ∃v : ρ[V ′ 7→ v ] ∈ R ∨ ρ[V ′ 7→ ρ(V ),V 7→ v ] ∈ R }

expand duplicates a variable and its constraints
(1 ≤ V ≤ X =⇒ 1 ≤ V ≤ X ∧ 1 ≤ V ′ ≤ X ; but V = V ′ does not hold!)

fold summarizes V and V ′ into V
(1 ≤ V ≤ X ∧ 2 ≤ V ′ ≤ Y =⇒ 1 ≤ V ≤ X ∨ 2 ≤ V ≤ Y )

fold is an abstraction, expand is its associated concretization:

P(V→ Z) −−−−−−−−−−−−−→−→←−−−−−−−−−−−−−−
SJ fold V←↩V ′ K

SJ expand V→V ′ K
P((V\{V ′})→ Z)

(we have a Galois insertion)
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Abstracting arrays Relational abstractions

Relational expand and join

Polyhedral abstraction:

expand can be exactly modeled by copying constraints:

S]J expand Va → Vb K {
∑

i αij Vi ≥ βj }
def
=

{
∑

i αij Vi ≥ βj } ∪ {
∑

i 6=a αij Vi + αaj Vb ≥ βj }

join can be approximated using a weak copy:

S]J fold V ←↩ V ′ K X ] def
= S]J del V ′ K (X ] ∪] S]J V ← V ′ K X ])

(assignment that keeps new and old values, instead of replacing old by new)

example: 0 ≤ V ≤ 3 ∧ 10 ≤ V ′ ≤ 13 =⇒ 0 ≤ V ≤ 13
which over-approximates 0 ≤ V ≤ 3 ∨ 10 ≤ V ≤ 13

S]J add V K keeps the constraint set unchanged

S]J del V K projects out V
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Abstracting arrays Relational abstractions

Relational array abstraction

Goal: abstract P(E) using polyhedra over V]
def
= V ∪ A

Principle: use temporary variables, join and expand

Abstract assignment: S]J A[f ]← e K X ]

replace each array expression A[expr ] in e with a fresh copy of A

we get a new expression e′ and environment X ]
1

e.g., replace B[expr ] in X ], with B′ in X ]
1

def
= S]J expand B → B′ K X ]

create a new copy A′ of A to hold the result

X ]
2

def
= S]J expand A→ A′ K X ]

1

assign e′ into A′

X ]
3

def
= S]J A′ ← e′ K X ]

2

fold A′ back into A
X ]

4
def
= S]J fold A←↩ A′ K X ]

3

remove all fresh copies of arrays:
S]J del B′ K X ]

4

The cases for S]J V ← e K and S]J c? K are similar, and a bit simpler
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Abstracting arrays Relational abstractions

Polyhedral analysis example

Example: increasing subsequence

p[0]← 0; B[0]← A[0];
i ← 1; k ← 1;
while i < N do

if A[i ] > B[k − 1] then
B[k]← A[i ];
p[k]← i ;
k ← k + 1;

i ← i + 1

Analysis result:

Assuming that ∀x : A[x ] ∈ [A`,Ah], we get:

∀x : 0 ≤ p[x ] < N
(which is stronger than ∀k: 0 ≤ p[k] < Nh)

∀x : B[x ] ∈ [min(0,A`),max(0,Ah)]
(B ≤ A would mean ∀i , j : B[i ] ≤ A[j], which does not hold)
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Abstracting arrays Non-uniform abstractions

Beyond uniform abstractions

The summarization αs : P(E)→ P(V] → Z) is uniform:
it forgets relations between array element indices and element values

Non-uniform abstraction example: array segmentation

Initialization loop

I ← 0;
while • I < 1000 do

T [I ]← 1;
I ← I + 1

we wish to analyze the loop without unrolling

at • we need to express the loop invariant:
∀i < I : T [i ] = 1

=⇒ at loop exit, T is initialized until 1000

T [i ] 1 [−∞, +∞]

I

[−∞, +∞]

10000

i

abstract domain: partition the array contents into uniform segments
segments have constant or symbolic bounds (0, I , 1000,. . . )
segments have a contents in an abstract domain (intervals,. . . )
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Inter-procedural analyses

Inter-procedural analyses
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Inter-procedural analyses

Overview

Syntax and concrete semantics

Semantic inlining
simple and precise
but not efficient and may not terminate

Call-site and call-stack abstraction
terminates even for recursive programs
parametric cost-precision trade-off

Tabulated abstraction
optimal reuse of analysis partial results

Summary-based abstraction
modular bottom-up analysis
leverage relational domains

in general, these different abstractions give incomparable results
(there is no clear winner)
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Inter-procedural analyses Syntax and concrete semantics

Procedures

Syntax:

F finite set of procedure names

body : F → stat: procedure bodies

main ∈ stat: entry point body

VG : set of global variables

Vf : set of local variables for procedure f ∈ F
procedure f can only access Vf ∪ VG

main has no local variable and can only access VG

stat ::= f (expr 1, . . . , expr |Vf |) | · · ·
procedure call, f ∈ F , setting all its local variables

local variables double as procedure arguments
no special mechanism to return a value (a global variable can be used)
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Inter-procedural analyses Syntax and concrete semantics

Concrete environments

Notes:

when f calls g , we must remember the value of f ’s locals Vf in the
semantics of g and restore them when returning

several copies of each V ∈ Vf may exist at a given time
(due to recursive calls, cycles in the call graph)

=⇒ concrete environments use per-variable stacks

Stacks: S def
= Z∗ (finite sequences of integers)

push(v , s)
def
= v · s (v , v ′ ∈ Z, s, s′ ∈ S)

pop(s)
def
= s ′ when ∃v : s = v · s ′, undefined otherwise

peek(s)
def
= v when ∃s ′: s = v · s ′, undefined otherwise

set(v , s)
def
= v · s ′ when ∃v ′: s = v ′ · s ′, undefined otherwise

Environments: E def
= (∪f∈F Vf ∪ VG )→ S

for VG , stacks are not necessary but simplify the presentation

traditionally, there is a single global stack for all local variables
using per-variable stacks instead will make the analysis presentation simpler
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Inter-procedural analyses Syntax and concrete semantics

Concrete semantics

Concrete semantics: on E def
= (∪f∈F Vf ∪ VG )→ S

variable read and update only consider the top of the stack
procedure calls push and pop local variables

EJ V K ρ def
= peek(ρ(V ))

SJ V ← e K R
def
= { ρ[V 7→ set(x , ρ(V ))] | ρ ∈ R, x ∈ EJ e K ρ }

SJ f (eV1 , . . . , eVn ) K R = R3, where:

R1
def
= { ρ[∀V ∈ Vf : V 7→ push(xV , ρ(V ))] | ρ ∈ R,∀V ∈ Vf : xV ∈ EJ eV K ρ }

(evaluate each argument eV and push its value xV on the stack ρ(V ))

R2
def
= SJ body(f ) K R1 (evaluate the procedure body)

R3
def
= { ρ[∀V ∈ Vf : V 7→ pop(ρ(V ))] | ρ ∈ R2 } (pop local variables)

initial environment: ρ0
def
= λV ∈ VG .0

(other statements are unchanged)
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Inter-procedural analyses Semantic inlining

Semantic inlining

Näıve abstract procedure call: mimic the concrete semantics

assign abstract variables to stack positions:

V]
def
= VG ∪ (∪f∈F Vf × N)
V] is infinite, but each abstract environment uses finitely many variables

E]V abstracts P(V→ Z), for any finite V ⊆ V]

V ∈ Vf denotes (V , 0) in V]

push V : shift variables, replacing (V , i) with (V , i + 1), then add (V , 0)
pop V : remove (V , 0) and shift each (V , i) to (V , i − 1)

S]J f (e1, . . . , en) K X ] is then reduced to:

X ]
1 = S]J push V1; . . . ; push Vn K X ] (add fresh variables for Vf )

X ]
2 = S]J V1 ← e1; . . . ; Vn ← en K X ]

1 (bind arguments to locals)

X ]
3 = S]J body(f ) K X ]

2 (execute the procedure body)

X ]
4 = S]J pop V1; . . . ; pop Vn K X ]

3 (delete local variables)

Limitations:
does not terminate in case of unbounded recursivity
requires many abstract variables to represent the stacks
procedures must be re-analyzed for every call
(full context-sensitivity: precise but costly)
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Inter-procedural analyses Semantic inlining

Example

Example

main :
R ← −1;
f (rand(5, 10));
f (80)

f (X ) :
R ← 2× X ;
if R > 100 then R ← 0

Analysis using intervals

after the first call to f , we get R ∈ [10, 20]

after the second call to f , we get R = 0
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Inter-procedural analyses Call-site abstraction

Call-site abstraction

Abstracting stacks: into a fixed, bounded set V] of variables

V]
def
= ∪f∈F {V , V̂ |V ∈ Vf } ∪ VG

two copies of each local variable
V abstracts the value at the top of the stack (current call)
V̂ abstracts the rest of the stack

S]J push V K X ] def
= X ] ∪] S]J V̂ ← V K X ]

S]J pop V K X ] def
= X ] ∪] S]J V ← V̂ K X ]

weak updates, similar to array manipulation
no need to create and delete variables dynamically

assignments and tests always access V , not V̂
=⇒ strong update (precise)

Note: when there is no recursivity, V̂ , push and pop can be omitted
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Inter-procedural analyses Call-site abstraction

Call-site abstraction

Principle: merge all the contexts in which each function is called

we maintain two global maps F → E]:
C ](f ): abstracts the environments when calling f
R](f ): abstracts the environments when returning from f
(gather environments from all possible calls to f , disregarding the call sites)

during the analysis, when encountering a call S]J body(f ) K X ]:

we return R](f )
but we also replace C ] with C ][f 7→ C ](f ) ∪] X ]]

R](f ) is computed from C ](f ) as

R](f ) = S]J body(f ) K (C ](f ))
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Inter-procedural analyses Call-site abstraction

Call-site abstraction

Fixpoint:

there may be circular dependencies between C ] and R]

e.g., in f (2); f (3), the input for f (3) depends on the output from f (2)

=⇒ we compute a fixpoint for C ] by iteration:

initially, ∀f : C ](f ) = R](f ) = ⊥

analyze main

while ∃f : C ](f ) not stable
apply widening O to the iterates of C ](f )
update R](f ) = S]J body(f ) K C ](f )
analyze main and all the procedures again
(this may modify some C ](g))

=⇒ using O, the analysis always terminates in finite time

we can be more efficient and avoid re-analyzing procedures when not needed
e.g., use a workset algorithm, track procedure dependencies, etc.
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Inter-procedural analyses Call-site abstraction

Example

Example

main :
R ← −1;
f (rand(5, 10));
f (80)

f (X ) :
R ← 2× X ;
if R > 100 then R ← 0

Analysis: using intervals (without widening as there is no dependency)

first analysis of main: we get ⊥ (as R](f ) = ⊥)

but C ](f ) = [R 7→ [−1,−1],X 7→ [5, 10]]

first analysis of f : R](f ) = [R 7→ [10, 20],X 7→ [5, 10]]

second analysis of main: we get
C ](f ) = [R 7→ [−1, 20],X 7→ [5, 80]]

second analysis of f : R](f ) = [R 7→ [0, 100],X 7→ [5, 80]]

final analysis of main, we find R ∈ [0, 100] at the program end
(less precise than R = 0 found by semantic inlining!)
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Inter-procedural analyses Call-site abstraction

Partial context-sensitivity

Variants: k−limiting, k is a constant

stack:
assign a distinct variable for the k highest levels of V
abstract the lower (unbounded) stack part with V̂
(more precise than keeping only the top of the stack separately)

context-sensitivity:
each syntactic call has a unique call-site ` ∈ L
a call stack is a sequence of nested call sites: c ∈ L∗
an abstract call stack remembers the last k call sites: c] ∈ Lk

the C ] and R] maps now distinguish abstract call stacks
C ],R] : Lk → E]
(more precise than a partitioning by function only)

larger k give more precision but less efficiency
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Inter-procedural analyses Call-site abstraction

Example: context-sensitivity

Example

main :
R ← −1;
`1 : f (rand(5, 10));
`2 : f (80)

f (X ) :
R ← 2× X ;
if R > 100 then R ← 0

Analysis: using intervals and k = 1

C ](`1) = [R 7→ [−1, 1],X 7→ [5, 10]]
=⇒ R](`1) = [R 7→ [10, 20],X 7→ [5, 10]]

C ](`2) = [R 7→ [10, 20],X 7→ [80, 80]]
=⇒ R](`2) = [R 7→ [0, 0],X 7→ [80, 80]]

at the end of the analysis, we get R = 0
(more precise than R ∈ [0, 100] found without context-sensitivity)
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Inter-procedural analyses Tabulation abstraction

Cardinal power

Principle:

the semantic of a function is SJ body(f ) K : P(E)→ P(E)

abstract it as an abstract function in E] ⇀ E]
(we use a partial function as the image of most abstract elements is not useful)

Analysis: tabulated analysis

use a global partial map F ] : F × E] ⇀ E]

F ] is initially empty, and is filled on-demand

when encountering S]J body(f ) K X ]

return F ](f ,X ]) if defined

else, compute S]J body(f ) K X ], store it in F ](f ,X ]) and return it

Optimizations: trade precision for efficiency

if X ] v Y ] and F ](f ,X ]) is not defined, we can use F ](f ,Y ]) instead

if the size of F ] grows too large, use F ](f ,>) instead
(sound, and ensures that the analysis terminates in finite time)
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Inter-procedural analyses Tabulation abstraction

Example

Example

main :
R ← −1;
f (rand(5, 10));
f (80)

f (X ) :
R ← 2× X ;
if R > 100 then R ← 0

Analysis using intervals

F ] =
[ (f , [R 7→ [−1,−1],X 7→ [5, 10]]) 7→ [R 7→ [10, 20],X 7→ [5, 10]],

(f , [R 7→ [10, 20],X 7→ [80, 80]]) 7→ [R 7→ [0, 0],X 7→ [80, 80]]]

at the end of the analysis, we get again R = 0

(here, the function partitioning gives the same result as the call-site partitioning)

Course 12 Abstract Interpretation IV Antoine Miné p. 54 / 67



Inter-procedural analyses Tabulation abstraction

Dynamic partitioning: complex example

Example: McCarthy’s 91 function

main :
Mc(rand(0,+∞))

Mc(n) :
if n > 100 then r ← n − 10
else Mc(n + 11); Mc(r)

in the concrete, when terminating:
r = n − 10 when n > 101, and r = 91 wen n ∈ [0, 101]

using a widening O to choose tabulated abstract values F ](f ,X ])
we find: n ∈ [0, 72] ⇒ r = 91

n ∈ [73, 90] ⇒ r ∈ [91, 101]
n ∈ [91, 101] ⇒ r = 91
n ∈ [102, 111] ⇒ r ∈ [91, 101]
n ∈ [112,+∞] ⇒ r ∈ [91,+∞]

(source: Bourdoncle, JFP 1992)
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Inter-procedural analyses Summary-based abstraction

Summary-based analyses

Principle:

abstract the input-output relation using a relational domain

analyze each procedure out of context
no information about its possible arguments

analyze a procedure given the analysis of the procedures it calls
bottom-up analysis, from leaf functions to main

=⇒ completely modular analysis
(for recursive calls, we still need to iterate the analysis of call cycles, with O)

Analysis:

analyze f with abstract variables V]
f

def
= {V ,V ′ |V ∈ VG ∪ Vf }

V ′ denotes the current value of the variable
V denotes the value of the variable at the function entry

at the beginning of the procedure, start with ∀V ∈ VG ∪ Vf : V = V ′

the analysis updates only V ′, never V
at the end of the procedure, the invariant gives an input-output relation

it summarizes the effect of the procedure, store it as T ](f )

S]J body(f ) K X ] can be computed using T ](f ) and variable substitution

S]J∀i : del V ′′i K (X ][∀i : V ′′i /V ′i ] ∩] T ](f )[∀i : V ′′i /Vi ])
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Inter-procedural analyses Summary-based abstraction

Example

Example

max(a, b) :
if a > b then r ← a;
else r ← b; c ← c + 1;

main :
x ← [0, 10]; y ← [0, 10];
c ← 0; max(x , y);
r ← r − x

Analysis using polyhedra

the analysis of max gives:

r ′ ≥ a ∧ r ′ ≥ b ∧ c′ ≥ c ∧ c′ ≤ c + 1 ∧ a = a′ ∧ b = b′ ∧ x = x ′ ∧ y = y ′

at main’s call to max

before max : c′ = 0 ∧ x ′ ∈ [0, 10] ∧ y ′ ∈ [0, 10]
applying the summary: c′ ∈ [0, 1] ∧ x ′ ∈ [0, 10] ∧ y ′ ∈ [0, 10] ∧ r ′ ≥ x ′ ∧ r ′ ≥ y ′

at the end of the program, x ∈ [0, 10], y ∈ [0, 10], r ∈ [0, 10], c ∈ [0, 1]

the method requires a relational domain to infer interesting input-output relations
it compensates for the lack of information about the entry point
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Backward analysis

Backward analysis
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Backward analysis

Forward versus backward analysis

Example

Y ← 0;
while Y ≤ X do Y ← Y + 1

Forward analysis:

given X ∈ [−10, 10] at the beginning of the program
Y ∈ [0, 11] at the end of the program

Backward analysis:

to have Y ∈ [10, 20] at the end of the program
we must have X ∈ [9, 19] at the beginning of the program
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Backward analysis

Concrete semantics: forward

SJ stat K : P(E)→ P(E)

SJ skip K R
def
= R

SJ s1; s2 K R
def
= SJ s2 K (SJ s1 K R)

SJ V ← e K R
def
= { ρ[V 7→ v ] | ρ ∈ R, v ∈ EJ e K ρ }

SJ c? K R
def
= { ρ ∈ R | true ∈ CJ c K ρ }

SJ if c then s1 else s2 K R
def
= SJ s1 K (SJ c? K R) ∪ SJ s2 K (SJ¬c? K R)

SJ while c do s K R
def
= SJ¬c? K (lfp λI .R ∪ SJ s K (SJ c? K I ))
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Backward analysis

Concrete semantics: backward

←−
S J stat K : P(E)→ P(E)

←−
S J skip K F

def
= F

←−
S J s1; s2 K F

def
=
←−
S J s1 K (

←−
S J s2 K F )

←−
S J V ← e K F

def
= { ρ | ∃v ∈ EJ e K ρ: ρ[V 7→ v ] ∈ F }

←−
S J c? K F

def
= { ρ ∈ F | true ∈ CJ c K ρ }

←−
S J if c then s1 else s2 K F

def
=
←−
S J c? K (

←−
S J s1 K F ) ∪

←−
S J¬c? K (

←−
S J s2 K F )

←−
S J while c do s K F

def
= lfp λI .

←−
S J¬c? K F ∪

←−
S J c? K (

←−
S J s K I ))

note:

statement order is inverted (s2 before s1, s1 before c?, etc.)
←−
S J c? K is unchanged
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Backward analysis

Concrete semantics: flow intuition

Intuition: information propagation for if · · · then · · · else

if

then

else

then

else

if backward

forwardR

SJ c? K

SJ s1 K

SJ s2 K

∪

SJ¬c? K

←−
S J s2 K

←−
S J s1 K

R∪

←−
S J c? K

←−
S J¬c? K

SJ if c then s1 else s2 K R = SJ s1 K (SJ c? K R) ∪ SJ s2 K (SJ¬c? K R)
←−
S J if c then s1 else s2 K F =

←−
S J c? K (

←−
S J s1 K F ) ∪

←−
S J¬c? K (

←−
S J s2 K F )
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Backward analysis

Core property

Executions

SJ stat K R
set of all possible states at the program end
when starting in a state in R

←−
S J stat K F

set of all the states at the program entry
such that at least one execution ends in a state in F

Correspondence: ι ∈
←−
S J stat K {φ} ⇐⇒ φ ∈ SJ stat K {ι}

Note: trace semantics and trace abstractions
the notion of “program execution” can be formalized as trace semantics:

T
def
= lfpλX .I ∪ { 〈ρ1, . . . , ρn+1〉 | 〈ρ1, . . . , ρn〉 ∈ X ∧ ρn → ρn+1 }

SJ K and
←−
S J K are abstractions that only remember the end or beginning of traces

SJ stat K {ρ} ' { ρ′ | ∃〈ρ1, . . . , ρn〉 ∈ X ∧ ρn: ∈ T , ρ = ρ1, ρ
′ = ρn }←−

S J stat K {ρ′} ' { ρ | ∃〈ρ1, . . . , ρn〉 ∈ X ∧ ρn: ∈ T , ρ = ρ1, ρ
′ = ρn }
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Backward analysis

Abstraction semantics

Goal: construct
←−
S ]J stat K that soundly approximates

←−
S J stat K

We can define, by induction:
←−
S ]J skip K F ] def

= F ]

←−
S ]J s1; s2 K F ] def

=
←−
S ]J s1 K (

←−
S ]J s2 K F ])

←−
S ]J c? K F ] def

= S]J c? K F ]

←−
S ]J if c then s1 else s2 K F ] def

=
←−
S ]J c? K (

←−
S ]J s1 K F ]) ∪]

←−
S ]J¬c? K (

←−
S ]J s2 K F ])

←−
S ]J while c do s K F ] def

= lim λI ].I ] O (
←−
S ]J¬c? K F ] ∪]

←−
S ]J c? K (

←−
S ]J s K I ]))

Abstract operators:

we can reuse ∪], O and S]J c? K
only S]J V ← e K needs to be defined on a per-domain basis
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Backward analysis

Backward assignment

Concrete assignment:

←−
S J V ← e K F

def
= { ρ | ∃v ∈ EJ e K ρ: ρ[V 7→ v ] ∈ F }

Abstract assignment examples:

affine assignment in polyhedra
←−
S ]J Vj ←

∑
i αi Vi + β K X ]

=⇒ substitute Vj with
∑

i αi Vi + β in each constraint
(similar to the computation of weakest preconditions wlp(X ← e,P) = P[e/X ])

intervals
←−
S ]J V ← V + rand(a, b) K X ] = S]J V ← V − rand(a, b) K X ]

using substitution is also possible but does not always give interval constraints
we then need to solve or approximate an optimization problem: min V , max V

fall-back (e.g., non-affine assignments in polyhedra)
←−
S ]J V ← e K X ] def

= S]J V ← [−∞,+∞] K X ]

(same fall-back operation as for forward assignment)
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Backward analysis

Backward-forward combination

Goal: given initial states I and finial states F
consider only executions that start in I and end in F

Application: analysis specialization to remove false alarms

Example

X ← rand(−100, 100);
if X = 0 then X ← 1;

• Y ← 100/X

Analysis: using the interval domain

a forward analysis finds X ∈ [−100, 100] at •
=⇒ false alarm for division by zero

backward analysis from • assuming X = 0
we find ⊥ at the program entry
=⇒ no execution can trigger the division by zero
(we have removed the false alarm)

more complex combinations exist, such as iterated forward and backward analyses
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Backward analysis

Necessary versus sufficient conditions

Example

Y ← 0; I ← 0;
while I ≤ X do Y ← Y + rand(1, 2); I ← I + 1
assert(Y ∈ [10, 30])

In case of non-determinism,
←−
S J K F gives the initial states such that

at least one execution terminates in F : it is a necessary conditions

We can also consider sufficient conditions
initial states such that all executions terminate in F

Examples: preconditions ensuring the assertion

(strongest) necessary precondition: X ∈ [5, 30]
(weakest) sufficient precondition: X ∈ [10, 15]

Note:
strongest necessary conditions can be over-approximated
weakest sufficient conditions must be under-approximated
=⇒ leads to very different abstract operations
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