Abstract Interpretation

Semantics and applications to verification

Xavier Rival

Ecole Normale Supérieure

Xavier Rival Abstract Interpretation: Introduction

1/50

Program of this lecture

Studied so far:
@ semantics: behaviors of programs
@ properties: safety, liveness, security...

@ approaches to verification: typing, use of proof assistants, model
checking

Today's lecture: introduction to abstract interpretation
a general framework for comparing semantics
introduced by Patrick Cousot and Radhia Cousot (1977)

@ abstraction: use of a lattice of predicates

@ computing abstract over-approximations, while preserving
soundness

@ computing abstract over-approximations for loops

Xavier Rival Abstract Interpretation: Introduction 2 /50

Abstraction Notion of abstraction

QOutline

o Abstraction
@ Notion of abstraction
@ Abstraction and concretization functions
@ Galois connections

Xavier Rival Abstract Interpretation: Introduction 3 /50

Abstraction Notion of abstraction

Abstraction example 1: signs

Abstraction: defined by a family of properties to use in proofs]

Example:
@ objects under study: sets of mathematical integers

@ abstract elements: signs
Lattice of signs
T
—/(|)\+
N

Note: the order in the abstract lattice corresponds to inclusion...

L denotes only §)
+ denotes any set of positive integers
0 denotes any subset of {0}

— denotes any set of negative integers

e © © ¢ ¢

T denotes any set of integers

Xavier Rival Abstract Interpretation: Introduction 4 / 50

Abstraction Notion of abstraction

Abstraction example 1: signs

Definition: abstraction relation
@ concrete elements: elements of the original lattice (c € P(Z))
@ abstract elements: predicate (a € {4,0,...})

@ abstraction relation: ¢ s a when a describes ¢

Examples:
o {1,2,3,5,7,11,13,17,19,23,.. .} s +
e {1,2,3)5,7,11,13,17,19,23,. ..} Fs T

We use abstract elements to reason about operations:
oifgbs+and cg ks +, then {xo+x1 | x; € ¢i} Fs +
o ifqgks+ and c ks +, then {xo-x1 | xi € ¢i} Fs +
o ifqgks+and a1 ks 0, then {x0-x1 | xi € ci}Fs0
oifgks+and g ks L, then {xo-x1 | xi € ci} ks L

Xavier Rival Abstract Interpretation: Introduction 5/ 50

Abstraction Notion of abstraction

Abstraction example 1: signs

We can also consider the union operation:
o ifcgbs+and ¢; s+, then gUci Fs +
oifcgbs+and cg ks L, then gUci Fs +

But, what can we say about ¢y U ¢i, when ¢ Fs 0 and ¢ s + 7
@ clearly, coUc Fs T...
@ but no other relation holds
@ in the abstract, we do not rule out negative values

We can extend the initial lattice: 7|—

@ > 0 denotes any set of positive or null integers O/ O\> 0

@ < 0 denotes any set of negative or null integers | >< ><
@ £ 0 denotes any set of non null integers - l

o ifcqobs+and ciFs 0, then gUc Fs >0

Xavier Rival Abstract Interpretation: Introduction 6 / 50

Abstraction Notion of abstraction

Abstraction example 2: constants

Definition: abstraction based on constants
@ concrete elements: P(Z)
@ abstract elements: |, T,n where n € Z
(Dt ={L, T}u{n|nez})
C ’ ni|n
@ abstraction relation: ct¢cn <= ¢ C {n}

Abstract reasoning:
o if qgt¢ ng and ¢y ¢ ny, then {ko + ki | ki € i} Fe g+ m

Xavier Rival Abstract Interpretation: Introduction 7 / 50

Abstraction Notion of abstraction

Abstraction example 3: Parikh vector

Definition: Parikh vector abstraction
@ concrete elements: P(A*) (sets of words over alphabet .A)
@ abstract elements: {1, T} U(A — N)
@ abstraction relation: c g ¢ : A = N if and only if:

Vw € c,Va € A, a appears ¢(a) times in w

Abstract reasoning:
@ concatenation:
if ¢o,¢1: A — Nand ¢, c; are such that ¢; -y ¢,

{wo- w1 | w; €ci} g do+ d1

Information preserved, information deleted:
@ very precise information about the number of occurrences
@ the order of letters is totally abstracted away (lost)

Xavier Rival Abstract Interpretation: Introduction

Abstraction Notion of abstraction

Abstraction example 4: non relational abstraction

Definition: non relational abstraction
@ concrete elements: P(X — Y), inclusion ordering
@ abstract elements: X — P(Y), pointwise inclusion ordering
@ abstraction relation: c Fargr @ <= V¢ € ¢, Vx € X, ¢(x) € a(x)

Information preserved, information deleted:
@ very precise information about the image of the functions in ¢

@ relations such as (for given xp,x1 € X, yo,y1 € Y) the following are

lost:
Vo € ¢, Vx € X, d(x0) = ¢(x1)

Vo €c,Vx,x' € X, ¢(x) # yo V o(xX') # n1

Xavier Rival Abstract Interpretation: Introduction 9 /50

Abstraction Notion of abstraction

Notion of abstraction relation

Concrete order: so far, always inclusion
@ the tighter the concrete set, the fewer behaviors

@ smaller concrete sets correspond to more precise properties

Abstraction relation: ¢ F a when ¢ satisfies a

o if ¢g C 1 and ¢ satisfies a, in all our examples, ¢y also satisfies a

Abstract order: in all our examples,

@ it matches the abstraction relation as well:
if ag C a; and c satisfies ag, then ¢ also satisfies a;

@ great advantage: we can reason about implication in the
abstract, without looking back at the concrete properties

We will now formalize this in detail...)

Xavier Rival Abstract Interpretation: Introduction 10 / 50

Abstraction Abstraction and concretization functions

QOutline

o Abstraction
@ Notion of abstraction
@ Abstraction and concretization functions
@ Galois connections

Xavier Rival Abstract Interpretation: Introduction 11 / 50

Abstraction Abstraction and concretization functions

Concretization function

We consider a concrete lattice (C,C) and an abstract lattice (A, C).

So far, we used abstraction relations, that are consistent with orderings:
oV, qqeC,VacA, gCaghgta=—glta
o VceC,Vag,a1 €A, ckaNagla—cka

When we have a ¢ (resp., a) and try to map it into a compatible a (resp. a
c), the abstraction relation is not a convenient tool.

Hence, we shall use adjoint functions between C and A.

Definition: concretization function

Concretization function v : A — C (if it exists) maps abstract a into the
weakest (i.e., most general) concrete c that satisfies a (i.e., c F a).

Note: in common cases, there exists a 7.

Xavier Rival Abstract Interpretation: Introduction 12 / 50

Abstraction Abstraction and concretization functions

Concretization function: a few examples

Signs abstraction: Constants abstraction:
Ys: T +— Z Ye: T — Z
0 +— {0} L — 0

1L — 0

Non relational abstraction:

Wwr: X=PY) — PX=Y)
o — {p: X = Y |¥xe X, ¢(x) € d(x)}

Parikh vector abstraction: exercise!

Xavier Rival Abstract Interpretation: Introduction 13 / 50

Abstraction Abstraction and concretization functions

Abstraction function

Our second adjoint function:

Definition: abstraction function

Abstraction function o : C — A (if it exists) maps concrete c into the
most precise abstract a that soundly describes ¢ (i.e., c - a).

Note: in quite a few cases (including some in this course), there is no «.

Summary on adjoint functions:

@ « returns the most precise abstract predicate that holds true for its
argument
this is called the best abstraction

@ v returns the most general concrete meaning of its argument
hence, is called the concretization

Xavier Rival Abstract Interpretation: Introduction 14 / 50

Abstraction Abstraction and concretization functions

Abstraction: a few examples

Constants abstraction:

1L ifc=0
ac: (cCZ) — n ifc={n}
T otherwise

Non relational abstraction:
ayr: (cC(X=Y)) — (xeX)—={s(x)|¢e€c}

Signs abstraction and Parikh vector abstraction: exercises

Xavier Rival Abstract Interpretation: Introduction

15 / 50

Abstraction Galois connections

QOutline

o Abstraction
@ Notion of abstraction
@ Abstraction and concretization functions
@ Galois connections

Xavier Rival Abstract Interpretation: Introduction 16 / 50

Abstraction Galois connections
Definition

So far, we have:
@ abstraction a: C — A
@ concretization v: A— C
How to tie them together 7
They should agree on a same abstraction relation - !

Definition: Galois connection

A Galois connection is defined by a concrete lattice (C, C), an abstract
lattice (A,C), an abstraction function o : C — A and a concretization
function v : A — C such that:

Vee C,Vac A, a(c)C a<= c C~(a) (<= cFa)

Notation: (C, Q) % (A D)

Note: in practice, we never use F; we use «,~y instead

Xavier Rival Abstract Interpretation: Introduction 17 / 50

Abstraction Galois connections

Example: constants abstraction and Galois connection

We have:
ac(c) = L ife=0 v%(T) — Z
ac(c) = n ifc={n} te(n) — {n}
ac(c) = T otherwise ve(L) — 0
Thus:
o ifc=10,Va, cCrela) ie, cCry(a) < ac(c)=LCa
e if c ={n},

ac{n})=nCc < c=nVc=T < c={n} Cre(a)
@ if ¢ has at least two distinct elements ng, n1, ac(c) = T and
cC ’Yc(a) =a=T,ie,cC Vc(a) S ac(c) =1LCa

Constant abstraction: Galois connection J

c Cye(a) < acg(c) C a, therefore, (P(Z), C) <Z_—CC> (Dg,, 0)

Xavier Rival Abstract Interpretation: Introduction 18 / 50

Abstraction Galois connections
Example: non relational abstraction Galois connection

We have defined:
anr: (cC(X—=Y)) — (x € X) = {o(x) | ¢ € ¢}
WWR: (Pe(X=P(Y)) — {p: X =Y |VxeX, o(x) € d(x)}
Let ce P(X — Y) and ® € (X — P(Y)); then:
anr(c) TP <« Vxe X, ayr(c)(x) C ¢(x)
— VxeX, {o(x)| ¢ e€c}tCd(x)
— Vopec,Vxe X, {o(x)]¢e€c}Cd(x)

— Voec, ¢eywr(P)
= ¢ Cyvr(P)

Non relational abstraction: Galois connection
c Cywvr(a) <= anr(c) C a, therefore,

(P(X = ¥),Q) 5= (X = P(Y),E)

Xavier Rival Abstract Interpretation: Introduction 19 / 50

Abstraction Galois connections

Galois connection properties

Galois connections have many useful properties.

. . . : 2l
In the next few slides, we consider a Galois connection (C, C) == (A, C)
and establish a few interesting properties.

Extensivity, contractivity

@ « oy is contractive: Va€ A, ao~y(a)C a

@ yoais extensive: Vc € C, c Cyoalc)

Proof:

@ let a € A; then, v(a) C «(a), thus a(y(a)) C a
@ let c € C; then, a(c) C a(c), thus ¢ C y(a(a))

Xavier Rival Abstract Interpretation: Introduction 20 / 50

Abstraction Galois connections

Galois connection properties

Monotonicity of adjoints
@ « is monotone

@ 7y is monotone

Proof:

@ monotonicity of a: let ¢y, c; € C such that ¢y C cy;
by extensivity of yo«, ¢1 C y(a(cy)), so by transitivity, ¢g C v(a(c1))
by definition of the Galois connnection, () = a(cy)

@ monotonicity of ~: same principle

Note: many proofs can be derived by duality

If (C,C) &= <— (A,C), then (A, D) &= (C,D)

Xavier Rival Abstract Interpretation: Introduction 21 / 50

Abstraction Galois connections

Galois connection properties

Monotonicity of adjoints
@ O ’Y O =W

® yoaoy=y
@ o~y (resp., yoa) is idempotent, hence a lower (resp., upper) closure
operator
Proof:

® qoyoa =q:
let ¢ € C, then yoa(c) Cyoa(c)
hence, by the Galois connection property, ooy o a(c) C «(c)
moreover, 7y o « is extensive and a monotone, so a(c) C a oy o a(c)
thus, @ oo a(c) = a(c)

@ the second point can be proved similarly (duality); the others follow

Xavier Rival Abstract Interpretation: Introduction 22 / 50

Abstraction Galois connections

Galois connection properties

« preserves least upper bounds

VYeo, a1 € C, O((Co U C1) = Oé(Co) L a(cl)

By duality:

vaO) ay € A7 ’Y(CO I Cl) = ’Y(CO) Ml ’Y(Cl)
Proof:
For all a € A:

alcpUc)C a coUca Cv(a)
0 C~(a) Aa € (a)
alg)Cana(a)C a

alag)Ua(a)C a

1ruy

Note: when C, A are complete lattices, this extends to any family of
elements

Xavier Rival Abstract Interpretation: Introduction 23 / 50

Abstraction Galois connections

Galois connection properties

Uniqueness of adjoints

@ given 7y : C — A, there exists at most one o : A — C such that
(C, C)<—(A C), and, if it exists, a(c) =M{a€ A| c C v(a)}

@ similarly, glvenva A — C, there exists at most one v : C — A such
that (C,C) == (A,C), and it is defined dually

Proof of the first point (the other follows by duality):
we assume that there exist « so that we have a Galois connection and
prove that, a(c) =M{a € A| c C y(a)} for a given c € C.
@ if a € Ais such that ¢ C ~y(a), then a(a) C c thus, a(a) is a lower
bound of {a € A| c C y(a)}.
@ let ag € A be a lower bound of {a€ A| c C y(a)}.
since 7y o «v is extensive, ¢ C y(a(c)) and ac) € {a€ A| c C v(a)}.
hence, ap C a(c)
Thus, a(c) is the leaster upper bound of {a € A | c C ~(a)}

Xavier Rival Abstract Interpretation: Introduction 24 / 50

Abstraction Galois connections

Construction of adjoint functions

The adjoint uniqueness property is actually a very strong property:
@ it allows to construct an abstraction from a concretization

@ ... or to understand why no abstraction can be constructed :-)

Turning an adjoint into a Galois connection (1)

Let (C,C) and (A,C) be two lattices, such that any subset of A as a
greatest lower bound and let v : (A,C) — (C, C) be a monotone function.

Then, the function below defines a Galois connection:

a(c) =M{ac Al c C(a)}

Example of abstraction with no a: when M is not defined, e.g., lattice
of convex polyedra, abstracting sets of points in R2.

Exercise: state the dual property and apply the same principle to the
concretization

Xavier Rival Abstract Interpretation: Introduction 25 / 50

Abstraction Galois connections

Galois connection characterization

A characterization of Galois connections

Let (C,<C) and (A,C) be two lattices, and aw: C — Aand v: A— C be
two monotone functions, such that:

@ oy is contractive
® 7o« is extensive

Then, we have a Galois connection

(€,C) &= (ALC)

Proof:
@ let c € C and a € A such that a(c) C a.
then: y(a(c)) C v(a) (as +y is monotone)
¢ C y(a(c)) (as v o a is extensive)
thus, ¢ C 7(a), by transitivity
@ the other implication can be proved by duality

Xavier Rival Abstract Interpretation: Introduction

26 / 50

Abstract interpretation Abstract computation

QOutline

e Abstract interpretation
@ Abstract computation
@ Fixpoint transfer

Xavier Rival

Abstract Interpretation: Introduction

27 / 50

Abstract interpretation Abstract computation

Constructing a static analysis

We have set up a notion of abstraction:

@ it describes sound approximation of concrete properties with
abstract predicates

@ there are several ways to formalize it (abstraction, concretization...)

@ we now wish to compute sound abstract predicates

In the following, we assume

@ a Galois connection

(C,C) &= (A,C)

[e%

@ a concrete semantics [.], with a constructive definition
i.e., [P] is defined by constructive equations ([P] = f(...)), least
fixpoint formula ([P] = Ifpyf)...

Xavier Rival Abstract Interpretation: Introduction 28 / 50

Abstract interpretation Abstract computation
Abstract transformer
A fixed concrete element ¢y can be abstracted by o(c).

We now consider a monotone concrete function

f:C—=C ft A
@ given ¢ € C, ao f(c) abstracts the image of ¢ by f
@ if c € C is abstracted by a € A, then f(c) is gl a
abstracted by a o f o vy(a):
cCv(a) by assumption ¢ 7 ¢
f(c) C f(v(a)) by monotony of f

a(f(c)) C a(f(y(a))) by monotony of «

Definition: best and sound abstract transformers
o the best abstract transformer approximating f is ff = oo for~y

@ a sound abstract transformer approximating f is any operator
f: A — A, such that ao f oy C % (or equivalently, f oy C o f¥)

Xavier Rival Abstract Interpretation: Introduction 29 / 50

Abstract interpretation Abstract computation

Example: lattice of signs

of:C—C,c—{-n|nec}
o ff=aofory

Lattice of signs: Abstract negation operator:

o+ |-

/N
NV

@ here, the best abstract transformer is very easy to compute

+

el ||+
@,
)

=l

@ no need to use an approximate one

Xavier Rival Abstract Interpretation: Introduction

30 / 50

Abstract interpretation Abstract computation

Abstract n-ary operators

We can generalize this to n-ary operators, such as boolean operators
and arithmetic operators

Definition: sound and exact abstrct operators

Let g : C" — C be a monotone n-ary operator.
Then:

@ the best abstract operator approximating g is defined by:
gh: A" — A
(a0, ---,an-1) — aog(y(ao),---,v(an-1))

@ a sound abstract transformer approximating g is any operator
gTj : A" — A, such that

v(307 o 7an—1) S An7 & O g(r}/(aO)a cee 77(an—1)) E gﬁ(a07 ey an—l)

v

Xavier Rival Abstract Interpretation: Introduction

31/ 50

Abstract interpretation Abstract computation

Example: lattice of signs arithmetic operators

Application:
@ ®:C?— C,(co,c1) > {no+n1|ni€c}
e ®:C%?— C,(co,c1) = {no-ni|ni€c}

Best abstract operators:

(of [L] -JoJ+]T] [& [L][-JO[+][T]
1 1] L] L] L | L 1 1] L] L] L] L
- Ll=1=1T]T = L1+ 0] =T
0 L =10+]T 0 L0000
+ LT+ £ T + Ll =10 4T
T LT T T T T Ly T]0]| T[T

Example of loss in precision:

o {8} € ys(+) and {2} € ys(=)
° @ﬁ(i,:) = T is a lot worse than as(®({8},{-2})) =+

Xavier Rival Abstract Interpretation: Introduction 32 / 50

Abstract interpretation Abstract computation

Example: lattice of signs set operators

Best abstract operators approximating U and N:

(VL[=Jolx[T] [0 [L][-[JO[+][T]
T Ll =Tolx]T N RN I R R I
— =1 =1T T[T — L =1L =
0 ol T[o [T [T 0 T L]olLT]o
+ =TT T1+[T + [L1+ +=
T (T[T [T]T]T T L =lo[+]T

Example of loss in precision:
° V(=) Ur(+) ={neZ|n#0} Cr(T)

Xavier Rival Abstract Interpretation: Introduction 33 / 50

Abstract interpretation Fixpoint transfer

QOutline

e Abstract interpretation
@ Abstract computation
@ Fixpoint transfer

Xavier Rival

Abstract Interpretation: Introduction

34 / 50

Abstract interpretation Fixpoint transfer
Fixpoint transfer
What about loops 7 semantic functions defined by fixpoints ?

Theorem: exact fixpoint transfer

, , . v .
We consider a Galois connection (C, Q) — (A,C), two functions

f:C— Candff:A— Aand two elements ¢g € C, a9 € A such that:

@ f is continuous
o f%is monotone
o aof="floa
® afc) = ap
Then:
@ both f and f* have a least-fixpoint (Tarski's fixpoint theorem)
o a(lfp,,f) = Ifp,, f*

Xavier Rival Abstract Interpretation: Introduction

35 / 50

Abstract interpretation Fixpoint transfer

Fixpoint transfer: proof

o o(lfp,f) is a fixpoint of f* since:

Fia(lfpgf)) = alf(Ifpe,f)) since avo f = floa
= olfp,f) by definition of the fixpoints

e To show that a(lfp,,f) is the least-fixpoint of f¥ we assume that
X is another fixpoint of f# greater than ap and we show that
a(lfp.,f) C X, i.e., that Ifp, f C 4(X).

As Ifp., f = U,en Fd (o), it amounts to proving that
Vne N, Fj(c) € v(X).
By induction over n:
» f%(co) = co, thus a(f%(cp)) = ap C X; thus, f%(cp) € 7(X).
> let us assume that "(co) C (X) and let us show that
" 1(c) C v(X), i.e. that a(f"1(c)) C X:

a(f"™ () = ao f(f"(co)) = F* o af"(co)) C FH(X) = X
as a(f"(co)) E X and f¥ is monotone.

Xavier Rival Abstract Interpretation: Introduction 36 / 50

Abstract interpretation Fixpoint transfer

Constructive analysis of loops

How to get a constructive version of fixpoint transfer ?7

Theorem: fixpoint abstraction

Under the assumptions of the previous theorem, and with the following
additional hypothesis:

@ lattice A is of finite height
We compute the sequence (a,)nen defined by a,41 = a, L f#(a,).
Then, (a,)nen converges and its limit a, is such that o(lfp,) = a.

ot

Proof: exercise.

Note:
@ the assumptions we have made are very restrictive in practice

@ more general fixpoint abstraction methods in the next lectures

Xavier Rival Abstract Interpretation: Introduction 37 / 50

@ Abstraction

g Abstract interpretation

a Application of abstract interpretation

@ Conclusion

Application of abstract interpretation

Comparing existing semantics

© A concrete semantics [P] is given: e.g., big steps operational
semantics

@ An abstract semantics [P]* is given: e.g., denotational semantics

© Search for an abstraction relation between them
e.g., [P]* = a([P]). or [P] S +([P]?)

Examples:
@ finite traces semantics as an abstraction of bi-finitary trace semantics
@ denotational semantics as an abstraction of trace semantics

@ types as an abstraction of denotational semantics
° ...

Payoff:
@ better understanding of ties across semantics
@ chance to generalize existing definitions

Xavier Rival Abstract Interpretation: Introduction 39 / 50

Application of abstract interpretation

Derivation of a static analysis

© Start from a concrete semantics [P]

@ Choose an abstraction defined by a Galois connection or a
concretization function (usually)

© Derive an abstract semantics [P]* such that [P] C v([P]*)

Examples:

@ derivation of an analysis with a numerical lattice (constants,
intervals...)

@ construction of an analysis for a complex programming language

Payoff:
@ the derivation of the abstract semantics is quite systematic

@ this process offers good opportunities for a modular analysis design
There are many ways to apply abstract interpretation.

Xavier Rival Abstract Interpretation: Introduction 40 / 50

Application of abstract interpretation

A very simple language and its semantics

We now apply this to a very simple language, and derive a static analysis

step by step, from a concrete semantics and an abstraction.

@ we assume a fixed set of n integer variables xg, . .

-y Xn—1

@ we consider the language defined by the grammar below:

P = x;=n where n € Z
‘ Xj = Xj + Xk
| xi=xj—x
| % =x%-%
| input(x)
| if(xi > 0) P else P
| while(x; >0)P
@ a state is a vector o = (09g,...,0p-1) € Z"
@ a single initial state ojn = (0,...,0)

Xavier Rival

Abstract Interpretation: Introduction

reading of a positive input

41 / 50

Application of abstract interpretation

Concrete semantics

Concrete semantics
We let [P] : P(Z") — P(Z") be defined by:

[xi=n](S) = {o[i+ n]|oe€S}
[xi=xj+x](S) = {oli<—o0j+0k]|0o€S}
[xi =x; —x£](S) = {oli<0j—0k]|0o€S}
[xi =xj-x](S) = {oli<o0j-0k|0€S}
linput(x))](S) = {oli+n|oceSAn>0}
[if(x; > 0) Py else P1](S) = [Po]({c € S|0o;>0})

U[P]({e €S]0; <0})
[while(x; > 0) P|(S) = {o €lfpsf |0 <0}
where f : S" — [P]({c € S’ | o > 0})

@ given a complete program P, the reachable states are defined by
[PI({oinit})

Xavier Rival Abstract Interpretation: Introduction 42 / 50

Application of abstract interpretation

Abstraction

We compose two abstractions:

@ non relational abstraction: the values a variable may take is
abstracted separately from the other variables

@ sign abstraction: the set of values observed for each variable is
abstracted into the sign lattice

Abstraction
@ concrete domain: (P(Z"), Q)
@ abstract domain: (D, C), where D¥ = (Dg)” and C is the pointwise
ordering
@ Galois connection (P(Z),C) é) (D%, C), defined by

«

a: S +— (as({oo|o€S}),...,as({on-1]0€S}))
v: St — {oc € Z" | Vi, o; € ’yc(S?)}

Xavier Rival Abstract Interpretation: Introduction 43 / 50

Application of abstract interpretation

Computation of the abstract semantics

We search for an abstract semantics [P]* : D — D! such that:
ao[P]=[P[foa

We observe that:
a(S) = (as({oo| o€ S}),..., as({op-1 |0 € S}))
ao[P[(S) = (as({oolo € [PI(S)}),...,as({on-1 |0 € [PI(5)}))

We start with x; = n:
ao [x; = n](S)
= (as({oo |0 € [PI({ali < n] | o € S})}), ..,
as({on-1 | o € [PI({oli <= n] | o € S})}))
(as({o0 | 0 €S}),..., as({on-1]0 € S}))i < as(n)]
a(S)li as(n)]
[xi = n]*(a(S5))
where [xi = n]#(S%) = S*[i < as(n)]

Xavier Rival Abstract Interpretation: Introduction 44 / 50

Application of abstract interpretation

Computation of the abstract semantics

Other assignments are treated in a similar manner:

[xi =% + xJH(SP) = SHi« SF et S

[xi =% —x](S) = Si« S et S]]

[xi =% x](S) = S'i+ S bS]
input(x))[(S) = S¥i + +]

Proofs are left as exercises

Xavier Rival Abstract Interpretation: Introduction

45 / 50

Application of abstract interpretation

Computation of the abstract semantics

We now consider the case of tests:
« 0 [[If(X, > 0) Po else Pl]](S)
= o[Po]({o € S|ai>0}) U [P]({o €S| <0}))
= o[Po]({o € S| >0}) U [PL]({o € S|0i <0}))
as « preserves least upper bounds
= [Po]*(a({o € S| i > 0})) U [Pi]*(a({o € S| 77 < 0}))
= [Po]*(a(S) N T[i + £]) U [Pi]*(a(S))
= [[If(X, > O) Po else Pl]]ﬁ(a(S))

where [if(x; > 0) Py else P1]*(S*) = [Po]*(S* 1 T[i < +]) U [P1]*(S?)
In the case of loops:
[while(x; > 0) P]*(S*) = Ifps: *
where f#: St SELUPIH(S N T[i + +])
Proof: exercise

Xavier Rival Abstract Interpretation: Introduction 46 / 50

Application of abstract interpretation

Abstract semantics

Abstract semantics and soundness
We have derived the following definition of [P]*:

[xi = n]*(S*) = S'[i as(n)]

[xi =% + x]4(S%) = Sii«+ Sf bS]

[xi =% —x](S) = SHi« S} et S]]

[x = x; - x£](S) Sii S @* S

[input(x;)](S) SE[i + 4]
[if(x; > 0) Py else Py[#(S%) [PoJ4(S* M Ti < +]) L [P1]#(S%)
[while(x; > 0) PJ#(S*) = Ifpg:f* where
Fio St SELTPPHS M Ti « +])

Furthermore, for all program P: o o [P] = [P] o «

An over-approximation of the final states is computed by [P]*(T).

Xavier Rival Abstract Interpretation: Introduction 47 / 50

Application of abstract interpretation

Example

Factorial function:

input (xo);
x1 = 1;
xp =1,

while(xg > 0){
X1 = X0 - X1,
X = X0 — X2;

Abstract state before the loop:

(£

Iterates on the loop:

iterate

X0

X1

X2

[+ |+ [+

[+ [+ | =

I+ {14 |~

Abstract state after the loop: (T,+,+)

Xavier Rival

Abstract Interpretation: Introduction

48 / 50

@ Abstraction

9 Abstract interpretation

e Application of abstract interpretation

@ Conclusion

Conclusion

Summary

This lecture:
@ abstraction and its formalization

@ computation of an abstract semantics in a very simplified case

Next lectures:
@ construction of a few non trivial abstractions

@ more general ways to compute sound abstract properties

The project will also allow to practice these notions J

Xavier Rival Abstract Interpretation: Introduction 50 / 50

	Abstraction
	Notion of abstraction
	Abstraction and concretization functions
	Galois connections

	Abstract interpretation
	Abstract computation
	Fixpoint transfer

	Application of abstract interpretation
	Conclusion

