
Semantic Equivalence
Semantics and applications to verification

Xavier Rival

École Normale Supérieure

Xavier Rival Semantic Equivalence 1 / 10

Reasoning on program equivalence

Properties considered in the previous lectures:

Sets of states: absence of runtime errors...

Sets of traces: termination

Sets of sets or traces: security, dependences

In all these cases, only one program is considered.

Today: reasoning about several programs

Kinds of questions we will consider:

Does P and Q have the same behaviors ?

Does P have more behaviors than Q ?

A short introduction to these properties and the verification of a

micro-compiler with Coq

Xavier Rival Semantic Equivalence 2 / 10

Program transformations

Informal definition: program transformation

A program transformation is a partial function, mapping a
program P into another program T (P)

It should preserve some semantic properties of programs

Compilation:

the target code behaviors should match those of the source code

Optimization: the target code may differ strongly from the source,
yet “produce the same observation”

Slicing: the target code should perform the same actions over the
“slicing criterion”

Xavier Rival Semantic Equivalence 3 / 10

A first (and naive) definition of correctness

Correctness by semantic equivalence

Correctness of transformation T writes down as an equivalence of
semantics:

JT (P)K = JPK

Why is it naïve ?

P and T (P) may not be expressed in the same language, and thus
have “comparable” semantics

e.g., if we consider compilation, T (P) is much lower level (machine
language, with registers, etc) than P

Xavier Rival Semantic Equivalence 4 / 10

Limitations (1)

Example: compilation of a simple imperative language

Variables

Syntax:

e ::= v | e+ e | . . .
i ::= x := e;

| if(e ≤ 0) b else b

| while(e ≤ 0) b
b ::= {i; . . . ; i; }

Variables + registers

Program counter

Instructions:

i ::= add rd , rs0, rs1 | li rd , rs0v

| b dst | blt rs0, rs1, dst

| ld [s], rd | st [d], rs

Translation of a simple code fragment

l0 : x = 7;
l1 : y = 8 + x;
l2 : . . .







T
7−→







0 : li r0, 7
1 : st [x], r0
2 : li r0, 8

3 : ld [x], r1
4 : add r1, r0, r1
5 : st [y], r1

Xavier Rival Semantic Equivalence 5 / 10

Limitations (1)

Translation of a simple code fragment:

Translation of a simple code fragment

l0 : x = 7;
l1 : y = 8 + x;
l2 : . . .







T
7−→







0 : li r0, 7
1 : st [x], r0
2 : li r0, 8

3 : ld [x], r1
4 : add r1, r0, r1
5 : st [y], r1

If we attempt at comparing traces point by point:

intermediate assembly points 1, 3, 4 have no counterpart in the

source

registers r0, r1 have no counterpart in the source

A semantic equality is too tight.

Xavier Rival Semantic Equivalence 6 / 10

A second definition of correctness

Fix: apply an observation function to traces

Correctness up to observation

Correctness up to observation O of transformation T writes down as an
equivalence of semantics, after applying O to the semantics:

OJT (P)K = JPK

Example:

O ignores 1, 3, 4 and registers

O maps 0 to l0; 2 to l1 and 5 to l2

Xavier Rival Semantic Equivalence 7 / 10

Limitations (2)

Floating point computations:

source semantics: allows any IEEE-754 compliant rounding mode

target machine semantics: may choose a specific rounding mode

(e.g., before running the program)

all target program behavior are admissible in the source

but not all source behavior occur in the target program

Execution order:

unspecified in the C semantics

chosen by the compiler (different compilers may make different
choices)

A semantic equality is too strong

Xavier Rival Semantic Equivalence 8 / 10

A third definition of correctness

Fix: weaken the previous statement to an inclusion

Correctness as an inclusion

Correctness up to observation O of transformation T writes down as an
inclusion of semantics, after applying O to the semantics:

OJT (P)K ⊆ JPK

In both examples, only an inclusion holds

Xavier Rival Semantic Equivalence 9 / 10

Summary

Correctness relies on comparing executions

This comparison is usually not tight:

◮ up-to observation (abstraction)
intricate aspects of the execution of initial and transformed programs
typically do not match

◮ inclusion (one-way only)
transformed programs often refine the initial one

Xavier Rival Semantic Equivalence 10 / 10

