The Coq Proof Assistant Semantics and applications to verification

Xavier Rival

École Normale Supérieure

Purpose of Coq and principle

Coq is a programming language

- We can define data-types and write programs in Coq
- Language similar to a pure functional language
- Very expressive type system (more on this later)
- Programs can be ran inside Coq
- Programming language of the year ACM Award...

Coq is a proof assistant

- It allows to express theorems and proofs
- It can verify a proof
- It can also infer some proofs or proof steps

Proof search is usually mostly manual and takes most of the time

Overall workfklow

- Define the objects properties need be proved about Data-structures, base types, programs written in the Coq (or vernacular) language
- Write and prove intermediate lemmas
 - ► a theorem is defined by a formula in the Coq language.
 - a proof requires a sequence of tactics applications tactics are described as part of a separate language.
 - ▶ at the end of the proof, a **proof term** is constructed and verified.
- S Write and prove the main theorems
- If needed, extract programs

Two languages: one for definitions/theorems/proofs, one for tactics

In Coq, everything is a term

• The core of Coq is defined by a language of terms

• Commands are used in order to manipulate terms

Examples of terms:

- base values: 0, 1, true...
- types: nat, bool, but also Prop...
- functions: fun (n: nat) => n + 1
- function applications: (fun (n: nat) => n + 1) 8
- logical formulas:

exists p: nat, 8 = 2 * p, forall a b: Prop, a/\b -> a

• complex functions (more on this one later):

Xavier Rival

In Coq, every term has a type

- As observed, types are terms
- Every term also has a type, denoted by term: type
- 0: nat
- nat: Set
- Set: Type
- Type: Type (caveat: not quite the same instance)
- (fun (n: nat) => n + 1): nat -> nat
- more complex types get interesting:

fun (a b : Prop) (H : a $/ \ b) \Rightarrow$

and_ind (fun (HO : a) (_ : b) => HO) H

: forall a b: Prop, a /\ b -> a

Curry-Howard correspondence

The core principle of Coq

- A proof of P can be viewed a term of type P
- A proof of P ⇒ Q can be viewed a function transforming a proof of P into a proof of Q, hence, a function of type P → Q...

Similarity between typing rules and proof rules:

$$\begin{array}{c} \frac{\Gamma, x: P \vdash u: Q}{\Gamma \vdash \lambda x \cdot u: P \longrightarrow Q} \text{ fun} \\ \frac{\Gamma \vdash u v: Q}{\Gamma \vdash u: P \longrightarrow Q} \Gamma \vdash v: P} \text{ app} \end{array} \qquad \qquad \begin{array}{c} \frac{\Gamma, P \vdash Q}{\Gamma \vdash P \Longrightarrow Q} \text{ implic} \\ \frac{\Gamma \vdash Q}{\Gamma \vdash P \Longrightarrow Q} \Gamma \vdash P \end{array} \end{array}$$

Correspondance:

program	proof
type	theorem

Search a proof of
$$P$$

 \equiv search u of type P

Xavier Rival

Defining a term

Two ways:

Define it fully, with its type and its definition

```
Definition zero: nat := 0.
Definition incr (n: nat): nat := n + 1.
```

Provide only its type and search for a proof of it

```
Lemma lzero: nat.
  exact 0.
Save.
Definition lincr: forall n: nat, nat.
  intro. exact (n + 1).
Save.
```

- **Definition**: Definition name u: t := def.
- Proof: Definition name u: t. or Lemma name u: t.

Inductive definition

- A very powerful mechanism
- In Coq, almost everything is actually an inductive definition ... examples: integers, booleans, equality, conjunction...

• Syntax:

Inductive tree : Set :=
 | leaf: tree
 | node: tree -> tree -> tree.

 Induction principles automatically provided by Coq, and to use in induction proofs:

```
tree_ind: forall P : tree -> Prop,
```

P leaf

```
-> (forall t : tree, P t -> forall t0 : tree, P t0
-> P (node t t0))
```

```
-> forall t : tree, P t
```

Recursive functions

- Very natural to work with inductive definitions
- Caveat: must provably terminate this is usually checked with a strict sub-term condition

```
• Syntax:
Fixpoint size (t: tree) : nat :=
    match t with
        | leaf => 0
        | node t0 t1 => 1 + (size t0) + (size t1)
    end.
```

Ill formed definition, rejected by the system (termination issue): Fixpoint f (t: tree): nat := match t with | leaf | node leaf leaf => 0 | node _ _ => f (node leaf leaf) cond Xavier Rival The Cog Proof Assistant 9 / 13

Proving a term

View in proof mode:

a : Prop

- b : Prop
- H : a /\ b
- HO : a
- H1 : b

а

- above the bar: current assumptions
- below the bar: current subgoal (there may be several goals)
- at the end: displays No more subgoals.
- command Save. stores the term.

Progression towards a finished proof:

- based on commands called tactics
- in the background, Coq constructs the proof term

A few tactics, and their effect

- Each tactic performs a basic operation on the current goal
- In the background, Coq constructs the proof term
- At the end, the term is independantly checked (very reliable !)
- Introduction of an assumption (proof tree and term):

$$\frac{\Gamma, P \vdash Q}{\Gamma \vdash P \Longrightarrow Q} \qquad \qquad \frac{\Gamma, x : P \vdash u : Q}{\Gamma \vdash \lambda x \cdot u : P \longrightarrow Q}$$

• Application of an implication:

$$\frac{\Gamma \vdash Q}{\Gamma \vdash P \Longrightarrow Q \quad \Gamma \vdash P} \qquad \qquad \frac{\Gamma \vdash u \ v : Q}{\Gamma \vdash u : P \longrightarrow Q \quad \Gamma \vdash v : P}$$

• Immediate conclusion of a subgoal:

$$\overline{\Gamma, P \vdash P}$$
 $\overline{\Gamma, x : P \vdash x : P}$

A glimpse at the tactic language

Most common tactics:

Tactic	Effect
intro.	Introduce one assumption
intros.	Introduce as many assumptions as possible
apply H.	Applies assumption H (should be of the form A->B)
elim H.	Decomposes assumption H
exact t.	Provides a proof term for current sub-goal
trivial.	Conclude immediately very simple proofs.
induction t.	Perform induction proof over term t
rewrite H.	Rewrite assumption H (should be of the form t0=t1)
tauto.	Decision procedure in propositional logic

Do not hesitate to look at the online manual !

A glimpse at the command language

Most common tactics (should be enough for a TD):

Command	Meaning
Check t.	Prints the type of term t
Print t.	Prints the type and definition of term t
Definition u: t := [term].	Full definition of term u
Lemma t.	Start a proof of term t
Theorem t.	
Definition t.	
Save.	Exit proof mode and save proof term