
The Coq Proof Assistant

Semantics and applications to verification

Xavier Rival

École Normale Supérieure

Xavier Rival The Coq Proof Assistant 1 / 13

Purpose of Coq and principle

Coq is a programming language

We can define data-types and write programs in Coq

Language similar to a pure functional language

Very expressive type system (more on this later)

Programs can be ran inside Coq

Programming language of the year ACM Award...

Coq is a proof assistant

It allows to express theorems and proofs

It can verify a proof

It can also infer some proofs or proof steps

Proof search is usually mostly manual and takes most of the time

Xavier Rival The Coq Proof Assistant 2 / 13

Overall workfklow

1 Define the objects properties need be proved about
Data-structures, base types, programs written in the Coq (or
vernacular) language

2 Write and prove intermediate lemmas
◮ a theorem is defined by a formula in the Coq language.
◮ a proof requires a sequence of tactics applications

tactics are described as part of a separate language.
◮ at the end of the proof, a proof term is constructed and verified.

3 Write and prove the main theorems

4 If needed, extract programs

Two languages: one for definitions/theorems/proofs, one for tactics

Xavier Rival The Coq Proof Assistant 3 / 13

In Coq, everything is a term

The core of Coq is defined by a language of terms

Commands are used in order to manipulate terms

Examples of terms:

base values: 0, 1, true...

types: nat, bool, but also Prop...

functions: fun (n: nat) => n + 1

function applications: (fun (n: nat) => n + 1) 8

logical formulas:
exists p: nat, 8 = 2 * p,
forall a b: Prop, a/\b -> a

complex functions (more on this one later):

fun (a b : Prop) (H : a /\ b) =>

and_ind (fun (H0 : a) (_ : b) => H0) H

Xavier Rival The Coq Proof Assistant 4 / 13

In Coq, every term has a type

As observed, types are terms

Every term also has a type, denoted by term: type

0: nat

nat: Set

Set: Type

Type: Type (caveat: not quite the same instance)

(fun (n: nat) => n + 1): nat -> nat

more complex types get interesting:

fun (a b : Prop) (H : a /\ b) =>

and_ind (fun (H0 : a) (_ : b) => H0) H

: forall a b: Prop, a /\ b -> a

Xavier Rival The Coq Proof Assistant 5 / 13

Curry-Howard correspondence

The core principle of Coq

A proof of P can be viewed a term of type P

A proof of P =⇒ Q can be viewed a function transforming a proof of
P into a proof of Q, hence, a function of type P → Q...

Similarity between typing rules and proof rules:

Γ, x : P ⊢ u : Q

Γ ⊢ λx · u : P −→ Q
fun

Γ,P ⊢ Q

Γ ⊢ P =⇒ Q
implic

Γ ⊢ u v : Q

Γ ⊢ u : P −→ Q Γ ⊢ v : P
app

Γ ⊢ Q

Γ ⊢ P =⇒ Q Γ ⊢ P
mp

Correspondance:

program proof

type theorem

Search a proof of P
≡ search u of type P

Xavier Rival The Coq Proof Assistant 6 / 13

Defining a term

Two ways:

1 Define it fully, with its type and its definition

Definition zero: nat := 0.

Definition incr (n: nat): nat := n + 1.

2 Provide only its type and search for a proof of it

Lemma lzero: nat.

exact 0.

Save.

Definition lincr: forall n: nat, nat.

intro. exact (n + 1).

Save.

Definition: Definition name u: t := def.

Proof: Definition name u: t. or Lemma name u: t.

Xavier Rival The Coq Proof Assistant 7 / 13

Inductive definition

A very powerful mechanism

In Coq, almost everything is actually an inductive definition
... examples: integers, booleans, equality, conjunction...

Syntax:

Inductive tree : Set :=

| leaf: tree

| node: tree -> tree -> tree.

Induction principles automatically provided by Coq, and to use in
induction proofs:

tree_ind: forall P : tree -> Prop,

P leaf

-> (forall t : tree, P t -> forall t0 : tree, P t0

-> P (node t t0))

-> forall t : tree, P t

Xavier Rival The Coq Proof Assistant 8 / 13

Recursive functions

Very natural to work with inductive definitions

Caveat: must provably terminate
this is usually checked with a strict sub-term condition

Syntax:

Fixpoint size (t: tree) : nat :=

match t with

| leaf => 0

| node t0 t1 => 1 + (size t0) + (size t1)

end.

Ill formed definition, rejected by the system (termination issue):

Fixpoint f (t: tree): nat :=

match t with

| leaf | node leaf leaf => 0

| node _ _ => f (node leaf leaf)

end.
Xavier Rival The Coq Proof Assistant 9 / 13

Proving a term

View in proof mode:

a : Prop

b : Prop

H : a /\ b

H0 : a

H1 : b

============================

a

above the bar: current
assumptions

below the bar: current subgoal
(there may be several goals)

at the end: displays
No more subgoals.

command Save. stores the
term.

Progression towards a finished proof:

based on commands called tactics

in the background, Coq constructs the proof term

Xavier Rival The Coq Proof Assistant 10 / 13

A few tactics, and their effect

Each tactic performs a basic operation on the current goal

In the background, Coq constructs the proof term

At the end, the term is independantly checked (very reliable !)

Introduction of an assumption (proof tree and term):

Γ,P ⊢ Q

Γ ⊢ P =⇒ Q

Γ, x : P ⊢ u : Q

Γ ⊢ λx · u : P −→ Q

Application of an implication:

Γ ⊢ Q

Γ ⊢ P =⇒ Q Γ ⊢ P

Γ ⊢ u v : Q

Γ ⊢ u : P −→ Q Γ ⊢ v : P

Immediate conclusion of a subgoal:

Γ,P ⊢ P Γ, x : P ⊢ x : P

Xavier Rival The Coq Proof Assistant 11 / 13

A glimpse at the tactic language

Most common tactics:

Tactic Effect

intro. Introduce one assumption

intros. Introduce as many assumptions as possible

apply H. Applies assumption H (should be of the form A->B)

elim H. Decomposes assumption H

exact t. Provides a proof term for current sub-goal

trivial. Conclude immediately very simple proofs.

induction t. Perform induction proof over term t

rewrite H. Rewrite assumption H (should be of the form t0=t1)

tauto. Decision procedure in propositional logic

Do not hesitate to look at the online manual !

Xavier Rival The Coq Proof Assistant 12 / 13

A glimpse at the command language

Most common tactics (should be enough for a TD):

Command Meaning

Check t. Prints the type of term t

Print t. Prints the type and definition of term t

Definition u: t := [term]. Full definition of term u

Lemma t. Start a proof of term t

Theorem t.

Definition t.

Save. Exit proof mode and save proof term

Xavier Rival The Coq Proof Assistant 13 / 13

