Traces Properties Semantics and applications to verification

Xavier Rival

École Normale Supérieure

Program of this first lecture

Studied so far:

- semantics: operational, denotational...
- typing: "well typed programs do not go wrong"
- proof by Hoare logic: reasoning about programs step by step
- Today's lecture: we look back at program's properties
 - families of properties: what properties can be considered "similar" ? in what sense ?
 - proof techniques:

how can those kinds of properties be established ?

• specification of properties:

are there languages to describe properties ?

- In this lecture we look at trace properties
- A property is a set of traces, defining the admissible executions

Safety properties:

- something (e.g., bad) will never happen
- proof by invariance

Liveness properties:

- something (e.g., good) will eventually happen
- proof by variance

Some interesting program properties do not fit this classification

State properties

As usual, we consider $\mathcal{S} = (\mathbb{S},
ightarrow, \mathbb{S}_\mathcal{I})$

First approach: properties as sets of states

- \bullet a property $\mathcal P$ is a set of states $\mathcal P\subseteq\mathbb S$
- \mathcal{P} is satisfied if and only if all reachable states belong to \mathcal{P} , i.e., $[\![S]\!]_{\mathcal{R}} \subseteq \mathcal{P}$ where $[\![S]\!]_{\mathcal{R}} = \{s_n \in \mathbb{S} \mid \exists \langle s_0, \ldots, s_n \rangle \in [\![S]\!]_{\mathcal{R}}, s_0 \in \mathbb{S}_{\mathcal{I}}\}$

Examples:

• absence of runtime errors:

 $\mathcal{P} = \mathbb{S} \setminus \{\Omega\} \quad \text{where } \Omega \text{ is the error state}$

• non termination (e.g., for an operating system):

$$\mathcal{P} = \{s \in \mathbb{S} \mid \exists s' \in \mathbb{S}, s \to s'\}$$

Second approach: properties as sets of traces

- a property $\mathcal T$ is a set of traces $\mathcal T\subseteq\mathbb S^\infty$
- \mathcal{T} is satisfied if and only if all traces belong to \mathcal{T} , i.e., $[\![S]\!]^{\propto} \subseteq \mathcal{T}$

Examples:

- obviously, state properties are trace properties
- functional properties

e.g., "program ${\it P}$ takes one integer input ${\it x}$ and returns its absolute value"

• termination: $\mathcal{T} = \mathbb{S}^*$ (i.e., the system should have no infinite execution)

Property

Let $\mathcal{P}_0, \mathcal{P}_1 \subseteq \mathbb{S}$ be two state properties, such that $\mathcal{P}_0 \subseteq \mathcal{P}_1$. Then \mathcal{P}_0 is stronger than \mathcal{P}_1 , i.e. if program \mathcal{S} satisfies \mathcal{P}_0 , then it also satisfies \mathcal{P}_1 .

Let $\mathcal{T}_0, \mathcal{T}_1 \subseteq \mathbb{S}$ be two trace properties, such that $\mathcal{T}_0 \subseteq \mathcal{T}_1$. Then \mathcal{T}_0 is stronger than \mathcal{T}_1 , i.e. if program S satisfies \mathcal{T}_0 , then it also satisfies \mathcal{T}_1 .

Proof: straightforward application of the definition of state (resp., trace) properties

Outline

Safety properties

- Informal and formal definitions
- Proof method

2 Liveness properties

- 3 Decomposition of trace properties
- 4 Temporal logic
- 5 Beyond safety and liveness

6 Conclusion

Safety properties

Informal definition: safety properties

A safety property is a property which specifies that some (bad) behavior will never occur

- absence of runtime errors is a safety property ("bad thing": error)
- state properties is a safety property ("bad thing": reaching $\mathbb{S} \setminus \mathcal{P}$)
- non termination is a safety property ("bad thing": reaching a blocking state)
- "not reaching state *b* after visiting state *a*" is a safety property (and not a state property)
- termination is not a safety property

Towards a formal definition

We intend to provide a formal definition of safety.

How to refutate a safety property ?

- \bullet we assume ${\cal S}$ does not satisfy safety property ${\cal P}$
- thus, there exists a counter-example trace

$$\sigma = \langle s_0, \ldots, s_n, \ldots \rangle \in \llbracket S \rrbracket \setminus \mathcal{P};$$

it may be finite or infinite...

- the intuitive definition says this trace eventually exhibits some bad behavior
- thus, there exists a rank $i \in \mathbb{N}$, such that the bad behavior has been observed before reaching s_i
- therefore, trace $\sigma' = \langle s_0, \dots, s_i \rangle$ violates \mathcal{P} , i.e. $\sigma' \not\in \mathcal{P}$
- we remark σ' is finite

A safety property that does not hold can always be refuted with a finite counter-example

Xavier Rival

Limit

Definition: upper closure operator (uco)

Function $\phi : S \to S$ is an **upper closure operator** iff:

• monotone

• extensive:
$$\forall x \in S, x \sqsubseteq \phi(x)$$

• idempotent:
$$\forall x \in S, \ \phi(\phi(x)) = \phi(x)$$

Definition: limit

The limit operator is defined by:

$$\begin{array}{rcl} \mathsf{Lim}: & \mathcal{P}(\mathbb{S}^{\infty}) & \longrightarrow & \mathcal{P}(\mathbb{S}^{\infty}) \\ & X & \longmapsto & X \cup \{\sigma \in \mathbb{S}^{\infty} \mid \forall i \in \mathbb{N}, \ \sigma_{\lceil i} \in X\} \end{array}$$

Operator Lim is an upper-closure operator

Proof: exercise!

Xavier Rival

Prefix closure

We write $\sigma_{\lceil i}$ for the prefix of length *i* of trace σ :

$$\langle s_0, \dots, s_n \rangle_{\lceil 0} = \epsilon \langle s_0, \dots, s_n \rangle_{\lceil i+1} = \begin{cases} \langle s_0, \dots, s_i \rangle & \text{if } i < n \\ \langle s_0, \dots, s_n \rangle & \text{otherwise} \\ \langle s_0, \dots \rangle_{\lceil i+1} = \langle s_0, \dots, s_i \rangle \end{cases}$$

If σ is finite, of length n, $|\sigma|i = \min(n, i)$; if σ is infinite, $|\sigma|i = i$.

Definition: prefix closure

The prefix closure operator is defined by:

$$\begin{array}{rccc} \mathsf{PCI}: & \mathcal{P}(\mathbb{S}^{\infty}) & \longrightarrow & \mathcal{P}(\mathbb{S}^{\star}) \\ & X & \longmapsto & \{\sigma_{\lceil i} \mid \sigma \in X, \, i \in \mathbb{N}\} \end{array}$$

Properties:

- PCI is monotone
- PCI is idempotent, i.e., $PCI \circ PCI(X) = PCI(X)$ Traces Properties

Safety properties: formal definition

An upper closure operator

Operator Safe is defined by Safe = Lim \circ PCI. It is an upper closure operator over $\mathcal{P}(\mathbb{S}^{\infty})$

Proof:

- Safe is monotone as Lim and PCI are
- Safe is extensive; indeed if $X \subseteq \mathbb{S}^{\infty}$ and $\sigma \in X$, we can show that $\sigma \in Safe(X)$:
 - if σ is a finite trace, it is one of its prefixes, so $\sigma \in \mathbf{PCI}(X) \subseteq \mathbf{Lim}(\mathbf{PCI}(X))$
 - if σ is an infinite trace, all its prefixes belong to PCI(X), so $\sigma \in Lim(PCI(X))$

Safety properties: formal definition

Proof (continued):

• Safe is idempotent:

- ► as Safe is extensive and monotone Safe ⊆ Safe ∘ Safe, so we simply need to show that Safe ∘ Safe ⊆ Safe
- ▶ let $X \subseteq S^{\infty}, \sigma \in \mathbf{Safe}(\mathbf{Safe}(X))$; then:

$$\begin{array}{ll} \sigma \in \mathsf{Safe}(\mathsf{Safe}(X)) \\ \Rightarrow & \forall i, \ \sigma_{\lceil i} \in \mathsf{PCI} \circ \mathsf{Safe}(X) \\ \Rightarrow & \forall i, \ \exists \sigma', j, \ \sigma_{\lceil i} = \sigma'_{\lceil j} \land \sigma' \in \mathsf{Safe}(X) \\ \Rightarrow & \forall i, \ \exists \sigma', j, \ \sigma_{\lceil i} = \sigma'_{\lceil j} \land \forall k, \ \sigma'_{\lceil k} \in \mathsf{PCI}(X) \\ \Rightarrow & \forall i, \ \exists \sigma', j, \ \sigma_{\lceil i} = \sigma'_{\lceil j} \land \sigma'_{\lceil i} \in \mathsf{PCI}(X) \\ \Rightarrow & \forall i, \ \exists \sigma', j, \ \sigma_{\lceil i} = \sigma'_{\lceil j} \land \sigma'_{\lceil i} \in \mathsf{PCI}(X) \end{array} \qquad \begin{array}{ll} \text{by def. of } \mathsf{Lim} \\ \text{by def. of } \mathsf{Lim} \\ \text{with } i = j \end{array}$$

★ if σ is finite, we let $i = |\sigma|$, thus j has to be equal to n as well and $\sigma = \sigma'_{\lceil i \rceil} \in \mathbf{PCI}(X)$, thus $\sigma \in \mathbf{Lim}(\mathbf{PCI}(X))$

* if σ is infinte, $|\sigma_{\lceil i}| = i$ and we may let i = k so

$$\forall i, \ \sigma_{\lceil i} = \sigma'_{\lceil i} \in \mathsf{PCl}(X)$$

thus $\sigma \in \text{Lim}(\text{PCI}(X))$

Safety properties: formal definition

Safety: definition

A trace property \mathcal{T} is a safety property if and only if $Safe(\mathcal{T}) = \mathcal{T}$

Theorem

If \mathcal{T} is a trace property, then $Safe(\mathcal{T})$ is a safety property

Proof: straightforward, by idempotence of Safe

Example

We assume that:

- $\mathbb{S} = \{a, b\}$
- T states that a should not be visited after state b is visited; elements of T are of the general form

 $\langle a, a, a, \ldots, a, b, b, b, b, \ldots \rangle$ or $\langle a, a, a, \ldots, a, a, \ldots \rangle$

Then:

- **PCI**(\mathcal{T}) elements are all finite traces which are of the above form (i.e., made of *n* occurrences of *a* followed by *m* occurrences of *b*, where *n*, *m* are positive integers)
- Lim(PCI(T)) adds to this set the trace made made of infinitely many occurrences of a and the infinite traces made of n occurrences of a followed by infinitely many occurrneces of b
- \bullet thus, $\mbox{Safe}(\mathcal{T}) = \mbox{Lim}(\mbox{PCI}(\mathcal{T})) = \mathcal{T}$

Therefore \mathcal{T} is indeed formally a safety property.

State properties are safety properties

Theorem

Any state property is also a safety property.

Proof: Let us consider state property \mathcal{P} . It is equivalent to trace property $\mathcal{T} = \mathcal{P}^{\infty}$:

$$\begin{aligned} \mathsf{Safe}(\mathcal{T}) &= \mathsf{Lim}(\mathsf{PCI}(\mathcal{P}^{\infty})) \\ &= \mathsf{Lim}(\mathcal{P}^{*}) \\ &= \mathcal{P}^{*} \cup \mathcal{P}^{\omega} \\ &= \mathcal{P}^{\infty} \\ &= \mathcal{T} \end{aligned}$$

Therefore \mathcal{T} is indeed a safety property.

Intuition of the formal definition

Operator Safe saturates a set of traces S with

- prefixes
- infinite traces all finite prefixes of which can be observed in S

Thus, if **Safe**(S) = S and σ is a trace, to establish that σ is not in S, it is sufficient to discover a **finite prefix of** σ that cannot be observed in S.

Alternatively, if all finite prefixes of σ belong to S or can observed as a prefix of another trace in S, by definition of the limit operator, σ belongs to S (even if it is infinite).

Thus, our definition indeed captures properties that can be disproved with a counter-example.

Outline

Safety properties

- Informal and formal definitions
- Proof method
- 2 Liveness properties
- 3 Decomposition of trace properties
- 4 Temporal logic
- 5 Beyond safety and liveness
- 6 Conclusion

Proof by invariance

- We consider transition system $S = (S, \rightarrow, S_{\mathcal{I}})$, and safety property \mathcal{T} . Finite traces semantics is the least fixpoint of F_{\star} .
- We seek a way of verifying that S satisfies T, i.e., that $[\![S]\!]^{\propto} \subseteq T$

Principle of invariance proofs

Let \mathbb{I} be a set of finite traces; it is said to be an **invariant** if and only if:

•
$$\forall s \in \mathbb{S}_{\mathcal{I}}, \langle s \rangle \in \mathbb{I}$$

•
$$F_{\star}(\mathbb{I}) \subseteq \mathbb{I}$$

It is stronger than \mathcal{T} if and only if $\mathbb{I} \subseteq \mathcal{T}$.

The "by invariance" proof method is based on finding an invariant that is stronger than \mathcal{T} .

Soundness

Theorem: soundness

The invariance proof method is **sound**: if we can find an invariant for S, that is stronger than T, then S satisfies T.

Proof:

We assume that $\mathbb I$ is an invariant of $\mathcal S$ and that it is stronger than $\mathcal T$, and we show that $\mathcal S$ satisfies $\mathcal T$:

- by induction over *n*, we can prove that $F^n_{\star}(\{\langle s \rangle \mid s \in \mathbb{S}\}) \subseteq F^n_{\star}(\mathbb{I}) \subseteq \mathbb{I}$
- therefore $[\![\mathcal{S}]\!]^{\star} \subseteq \mathbb{I}$
- thus, $Safe(\llbracket S \rrbracket^{\star}) \subseteq Safe(I) \subseteq Safe(\mathcal{T})$ since Safe is monotone
- we remark that $\llbracket \mathcal{S} \rrbracket^{\propto} = \mathsf{Safe}(\llbracket \mathcal{S} \rrbracket^{\star})$
- \mathcal{T} is a safety property so $\mathsf{Safe}(\mathcal{T}) = \mathcal{T}$
- \bullet we conclude $[\![\mathcal{S}]\!]^{\propto} \subseteq \mathcal{T}$, i.e., \mathcal{S} satisfies property \mathcal{T}

Completeness

Theorem: completeness

The invariance proof method is **complete**: if S satisfies T, then we can find an invariant I for S, that is stronger than T.

Proof:

We assume that $[\![\mathcal{S}]\!]^{\propto}$ satisfies $\mathcal{T},$ and show that we can exhibit an invariant.

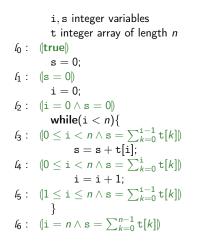
Then, $\mathbb{I} = [\![S]\!]^{\propto}$ is an invariant of S by definition of $[\![.]\!]^{\propto}$, and it is stronger than \mathcal{T} .

Caveat:

- $\bullet \ [\![\mathcal{S}]\!]^{\propto}$ is most likely not a very easy to express invariant
- it is just a convenient completeness argument
- so, completeness does not mean the proof is easy !

Example

We consider the proof that the program below computes the sum of the elements of an array, i.e., when the exit is reached, $s = \sum_{k=0}^{n-1} t[k]$:



Principle of the proof:

- for each program point l, we have a local invariant Il
 (denoted by a logical formula instead of a set of states in the figure)
- the global invariant I is defined by:

$$\mathbb{I} = \{ \langle (\ell_0, m_0), \dots, (\ell_n, m_n) \mid \\ \forall n, m_n \in \mathbb{I}_{\ell_n} \}$$

Outline

Safety properties

2 Liveness properties

- Informal and formal definitions
- Proof method
- 3 Decomposition of trace properties
- 4 Temporal logic
- 5 Beyond safety and liveness

6) Conclusion

Liveness properties

Informal definition: liveness properties

A liveness property is a property which specifies that some (good) behavior will eventually occur.

• termination is a liveness property

"good behavior": reaching a blocking state (no more transition available)

 "state a will eventually be reached by all execution" is a liveness property
 "good behavior": reaching state a

• the absence of runtime errors is not a liveness property

Intuition towards a formal definition

We intend to provide a formal definition of liveness.

How to refutate a liveness property ?

- we consider liveness property \mathcal{T} (think \mathcal{T} is termination)
- ullet we assume ${\mathcal S}$ does **not** satisfy liveness property ${\mathcal T}$
- thus, there exists a counter-example trace $\sigma \in \llbracket S \rrbracket \setminus T$;
- let us assume σ is actually finite... the definition of liveness says some (good) behavior should eventually occur:
 - ▶ how do we know that σ cannot be extended into a trace $\sigma \cdot \sigma'$ that will satisfy this behavior ?
 - maybe that after a few more computation steps, σ will reach a blocking state...

Intuition towards a formal definition

To refutate a liveness property, we need to look at infinite traces.

Example: if we run a program, and do not see it return...

- should we do Ctrl+C and conclude it does not terminate ?
- should we just wait a few more seconds minutes, hours, years ?

Towards a formal definition: we expect any finite trace be in \mathcal{T} as finite executions cannot be used to disprove \mathcal{T}

Definition

Formal definition

Operator Live is defined by $\text{Live}(\mathcal{T}) = \mathcal{T} \cup (\mathbb{S}^{\infty} \setminus \text{Safe}(\mathcal{T}))$. Given property \mathcal{T} , the following three statements are equivalent:

(*i*) Live(
$$\mathcal{T}$$
) = \mathcal{T}

(*ii*)
$$\mathsf{PCI}(\mathcal{T}) = \mathbb{S}^{n}$$

(iii)
$$\mathsf{Lim} \circ \mathsf{PCI}(\mathcal{T}) = \mathbb{S}^{\infty}$$

When they are satisfied, \mathcal{T} is said to be a liveness property

Example: termination

• the property is $\mathcal{T} = \mathbb{S}^{\star}$

(i.e., there should be no infinite execution)

 clearly, it satisfies (*ii*): PCI(T) = S* thus termination indeed satisfies this definition

Proof of equivalence

Proof of equivalence:

• (*i*) implies (*ii*):

we assume that $\text{Live}(\mathcal{T}) = \mathcal{T}$, i.e., $\mathcal{T} \cup (\mathbb{S}^{\infty} \setminus \text{Safe}(\mathcal{T})) = \mathcal{T}$ therefore, $\mathbb{S}^{\infty} \setminus \text{Safe}(\mathcal{T}) \subseteq \mathcal{T}$; let $\sigma \in \mathbb{S}^*$, and let us show that $\sigma \in \text{PCI}(\mathcal{T})$; clearly, $\sigma \in \mathbb{S}^{\infty}$, thus:

- either $\sigma \in \text{Safe}(\mathcal{T}) = \text{Lim}(\text{PCI}(\mathcal{T}))$, so all its prefixes are in $\text{PCI}(\mathcal{T})$ and $\sigma \in \text{PCI}(\mathcal{T})$
- or $\sigma \in \mathcal{T}$, which implies that $\sigma \in \mathsf{PCI}(\mathcal{T})$
- (ii) implies (iii): if $PCI(\mathcal{T}) = \mathbb{S}^*$, then $Lim \circ PCI(\mathcal{T}) = \mathbb{S}^{\infty}$

```
• (iii) implies (i):
if Lim \circ PCI(\mathcal{T}) = \mathbb{S}^{\infty}, then
Live(\mathcal{T}) = \mathcal{T} \cup (\mathbb{S}^{\infty} \setminus (\mathcal{T} \cup \text{Lim} \circ \text{PCI}(\mathcal{T}))) = \mathcal{T} \cup (\mathbb{S}^{\infty} \setminus \mathbb{S}^{\infty}) = \mathcal{T}
```

Example

We assume that:

- $\mathbb{S} = \{a, b, c\}$
- T states that *b* should eventually be visited, after *a* has been visited; elements of T can be described by

 $\mathcal{T} = \mathbb{S}^{\star} \cdot \mathbf{a} \cdot \mathbb{S}^{\star} \cdot \mathbf{b} \cdot \mathbb{S}^{\infty}$

Then \mathcal{T} is a liveness property:

- let $\sigma \in \mathbb{S}^*$; then $\sigma \cdot a \cdot b \in \mathcal{T}$, so $\sigma \in \mathsf{PCI}(\mathcal{T})$
- thus, $\mathsf{PCI}(\mathcal{T}) = \mathbb{S}^{\star}$

A property of **Live**

Theorem

If \mathcal{T} is a trace property, then $Live(\mathcal{T})$ is a liveness property (i.e., operator Live is idempotent).

Proof: we show that $PCI \circ Live(\mathcal{T}) = \mathbb{S}^*$, by considering $\sigma \in \mathbb{S}^*$ and proving that $\sigma \in PCI \circ Live(\mathcal{T})$; we first note that:

$$\begin{array}{lll} \mathsf{PCI} \circ \mathsf{Live}(\mathcal{T}) &=& \mathsf{PCI}(\mathcal{T}) \cup \mathsf{PCI}(\mathbb{S}^{\omega} \setminus \mathsf{Safe}(\mathcal{T})) \\ &=& \mathsf{PCI}(\mathcal{T}) \cup \mathsf{PCI}(\mathbb{S}^{\omega} \setminus \mathsf{Lim} \circ \mathsf{PCI}(\mathcal{T})) \end{array}$$

• if $\sigma \in \mathsf{PCI}(\mathcal{T})$, this is obvious.

• if $\sigma \notin \mathbf{PCI}(\mathcal{T})$, then:

- $\sigma \notin \operatorname{Lim} \circ \operatorname{PCI}(\mathcal{T})$ by definition of the limit
- thus, $\sigma \in \mathbb{S}^{\omega} \setminus \operatorname{\mathsf{Lim}} \circ \operatorname{\mathsf{PCl}}(\mathcal{T})$
- $\sigma \in \mathbf{PCI}(\mathbb{S}^{\omega} \setminus \mathbf{Lim} \circ \mathbf{PCI}(\mathcal{T}))$ as **PCI** is extensive, which proves the above result

Outline

Safety properties

2 Liveness properties

- Informal and formal definitions
- Proof method
- 3 Decomposition of trace properties
- 4 Temporal logic
- 5 Beyond safety and liveness

6) Conclusion

Termination proof with ranking function

- We consider only termination
- We consider transition system $\mathcal{S}=(\mathbb{S},
 ightarrow,\mathbb{S}_\mathcal{I})$, and liveness property \mathcal{T}
- We seek a way of verifying that S satisfies termination, i.e., that $[S]^{\infty} \subseteq S^{\star}$

Definition: ranking function

A ranking function is a function $\phi : \mathbb{S} \to E$ where:

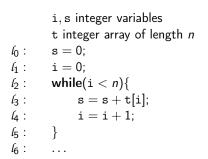
- (E, \sqsubseteq) is a well-founded ordering
- $\forall s_0, s_1 \in \mathbb{S}, \ s_0 \to s_1 \Longrightarrow \phi(s_1) \sqsubset \phi(s_0)$

Theorem

If ${\mathcal S}$ has a ranking function $\phi,$ it satisfies termination.

Example

We consider the termination of the array sum program:



Ranking function:

$$\begin{array}{rccccccc} \phi: & \mathbb{S} & \longrightarrow & \mathbb{N} \\ & (l_0, m) & \longmapsto & 3 \cdot n + 6 \\ & (l_1, m) & \longmapsto & 3 \cdot n + 5 \\ & (l_2, m) & \longmapsto & 3 \cdot n + 4 \\ & (l_3, m) & \longmapsto & 3 \cdot (n - m(\texttt{i})) + 3 \\ & (l_4, m) & \longmapsto & 3 \cdot (n - m(\texttt{i})) + 2 \\ & (l_5, m) & \longmapsto & 3 \cdot (n - m(\texttt{i})) + 1 \\ & (l_6, m) & \longmapsto & 0 \end{array}$$

Proof by variance

- We consider transition system $S = (S, \rightarrow, S_I)$, and liveness property T; infinite traces semantics is the least fixpoint of F_{ω} .
- We seek a way of verifying that S satisfies T, i.e., that $[\![S]\!]^{\propto} \subseteq T$

Principle of variance proofs

Let $(\mathbb{I}_n)_{n\in\mathbb{N}}$, \mathbb{I}_{ω} be elements of \mathbb{S}^{∞} ; these are said to form a variance proof of \mathcal{T} if and only if:

•
$$\mathbb{S}^{\infty} \subseteq \mathbb{I}_0$$

- for all $k \in \{1, 2, \dots, \omega\}$, $\forall s \in \mathbb{S}, \langle s \rangle \in \mathbb{I}_k$
- for all k ∈ {1,2,...,ω}, there exists l < k such that F_ω(I_l) ⊆ I_k
 I_u ⊂ T

Proofs of soundness and completeness: exercise

Outline

- Safety properties
- 2 Liveness properties
- 3 Decomposition of trace properties
 - 4 Temporal logic
 - 5 Beyond safety and liveness
 - 6 Conclusion

Decomposition of trace properties

The decomposition theorem

Theorem

Let $\mathcal{T} \subseteq \mathbb{S}^{\alpha}$; it can be decomposed into the conjunction of safety property Safe(\mathcal{T}) and liveness property Live(\mathcal{T}):

 $\mathcal{T} = \mathsf{Safe}(\mathcal{T}) \cap \mathsf{Live}(\mathcal{T})$

• Reading:

Recognizing Safety and Liveness. Bowen Alpern and Fred B. Schneider. In Distributed Computing, Springer, 1987.

• Consequence of this result:

the proof of any trace property can be decomposed into

- a proof of safety
- a proof of liveness

Proof

- safety part:
 Safe is idempotent, so Safe(*T*) is a safety property.
- liveness part:

Live is idempotent, so $Live(\mathcal{T})$ is a liveness property.

• decomposition:

$$\begin{array}{lll} \mathsf{Safe}(\mathcal{T}) \cap \mathsf{Live}(\mathcal{T}) &=& (\mathbb{S}^{\propto} \setminus \mathsf{Safe}(\mathcal{T}) \cup \mathcal{T}) \cap \mathsf{Safe}(\mathcal{T}) \\ &=& (\mathbb{S}^{\propto} \setminus \mathsf{Safe}(\mathcal{T}) \cap \mathsf{Safe}(\mathcal{T})) \cup (\mathcal{T} \cap \mathsf{Safe}(\mathcal{T})) \\ &=& \mathcal{T} \end{array}$$

Decomposition of trace properties

Example: verification of total correctness

- i, s integer variables t integer array of length n l_0 : s = 0; l_1 : i = 0; l_2 : while(i < n){ l_3 : s = s + t[i]; l_4 : i = i + 1; l_5 : } l_6 : ...
- Property to prove: total correctness
 - the program terminates
 - and it computes the sum of the elements in the array

Application of the decomposition principle

Conjunction of two proofs:

- proved with a ranking function
- Proved with local invariants

Outline

- Safety properties
- 2 Liveness properties
- 3 Decomposition of trace properties
- 4 Temporal logic
 - 5 Beyond safety and liveness
 - 6 Conclusion

Notion of specification languages

- Ultimately, we would like to verify or compute properties
- So far, we simply describe properties with sets of executions or worse, with English / French / ... statements
- Ideally, we would prefer to use a mathematical language for that
 - to gain in concision, avoid ambiguity
 - ► to define sets of properties to consider, fix the form of inputs for verification tools...

Definition: specification language

A **specification language** is a set of terms \mathbb{L} with an interpretation (or semantics)

$$\llbracket . \rrbracket : \ \mathbb{L} \longrightarrow \mathcal{P}(\mathbb{S}^{\infty}) \qquad (\mathsf{resp.}, \ \mathcal{P}(\mathbb{S}))$$

• We are now going to consider specification languages for states, for traces...

Xavier Rival

A state specification language

A first example of a (simple) specification language:

A state specification language

• Syntax: we let terms of $\mathbb{L}_{\mathbb{S}}$ be defined by:

$$p \in \mathbb{L}_{\mathbb{S}} ::= \mathbb{Q} \ell \mid \mathrm{x} < \mathrm{x}' \mid \mathrm{x} < n \mid
eg p' \mid p' \wedge p''$$

• Semantics: $\llbracket p \rrbracket \subseteq \mathbb{M}$ is defined by

Exercise: add =, \lor , \Rightarrow ...

Propositional temporal logic: syntax

We now consider the specification of trace properties

- temporal logic: specification of properties in terms of events that occur at distinct points in the execution of programs (hence, the name "temporal")
- there are many such logics
- we consider a compact one: Pnueli's Propositional Temporal Logic (PTL)

Definition: syntax of PTL

Properties over traces are defined as terms of the form

$$\begin{array}{rcl} t(\in \mathbb{L}_{\mathsf{PTL}}) & ::= & p & \text{state property, i.e., } p \in \mathbb{L}_{\mathbb{S}} \\ & | & t' \lor t'' & \text{disjunction} \\ & | & \neg t' & \text{negation} \\ & | & \bigcirc t' & \text{"next"} \\ & | & t' \mathfrak{U} t'' & \text{"until", i.e., } t' \text{ until } t'' \end{array}$$

Propositional temporal logic: semantics

A "tail" operator $._{i]}$ on traces:

•
$$(\langle s_0, \dots, s_i \rangle \cdot \sigma)_{i|} ::= \sigma$$

• if $|\sigma| < i, \sigma_{i|} = \epsilon$

Semantics of temporal logic formulae:

$$\begin{split} \llbracket p \rrbracket &= \{ s \cdot \sigma \mid s \in \llbracket p \rrbracket \land \sigma \in \mathbb{S}^{\infty} \} \\ \llbracket t_0 \lor t_1 \rrbracket &= \llbracket t_0 \rrbracket \cup \llbracket t_1 \rrbracket \\ \llbracket \neg t_0 \rrbracket &= \mathbb{S}^{\infty} \setminus \llbracket t_0 \rrbracket \\ \llbracket \bigcirc t_0 \rrbracket &= \{ s \cdot \sigma \mid s \in \mathbb{S} \land \sigma \in \llbracket t_0 \rrbracket \} \\ \llbracket t_0 \mathfrak{U} t_1 \rrbracket &= \{ \sigma \in \mathbb{S}^{\infty} \mid \exists n \in \mathbb{N}, \forall i < n, \sigma_i \rbrack \in \llbracket t_0 \rrbracket \land \sigma_n \rbrack \in \llbracket t_1 \rrbracket \} \end{split}$$

Temporal logic

Temporal logic operators as syntactic sugar

Many useful operators can be added:

• Boolean constants:

true ::=
$$(x < 0) \lor \neg (x < 0)$$

false ::= \neg true

• Sometime:

 $\Diamond t ::= \operatorname{true} \mathfrak{U} t$

intuition: there exists a rank n at which t holds

• Always:

$$\Box t ::= \neg(\Diamond(\neg t))$$

intuition: there is no rank at which the negation of t holds

Exercise: what do $\Diamond \Box t$ and $\Box \Diamond t$ mean ?

Examples

We consider the program below:

 $\begin{array}{lll} {\it L}_{0}: & \mbox{int } x = \mbox{input}(); \\ {\it L}_{1}: & \mbox{if}(x < 8) \{ \\ {\it L}_{2}: & x = 0; \\ {\it L}_{3}: & \} \mbox{else } \{ \\ {\it L}_{4}: & x = 1; \\ {\it L}_{5}: & \} \\ {\it L}_{6}: & \hdots \end{array}$

Examples of properties:

• "when l_4 is reached, x is positive"

 $\Box(@\ell_4 \Longrightarrow x \ge 0)$

• "if the value read at point ℓ_0 is negative, and when ℓ_6 is reached, ${\bf x}$ is equal to 0"

$$(@l_1 \land x < 0) \Longrightarrow \square (@l_6 \Longrightarrow x = 0)$$

Xavier Rival

Outline

- Safety properties
- 2 Liveness properties
- 3 Decomposition of trace properties
- 4) Temporal logic
- 5 Beyond safety and liveness

6 Conclusion

Security properties

We now consider other interesting properties of programs, and show that they do not all reduce to trace properties

Security

- collects many kinds of properties
- so we consider just one:

an unauthorized observer should not be able to guess anything about private information by looking at public information

- example: another user should not be able to guess the content of an email sent to you
- we need to formalize this property

A few definitions

Assumptions:

- \bullet we let $\mathcal{S} = (\mathbb{S}, \rightarrow, \mathbb{S}_\mathcal{I})$ be a transition system
- states are of the form $(l, m) \in \mathbb{L} imes \mathbb{M}$
- $\bullet\,$ memory states are of the form $\mathbb{X}\to\mathbb{V}$
- we let $\ell, \ell' \in \mathbb{L}$ (program entry and exit) and $x, x' \in \mathbb{X}$ (private and public variables)

Security property we are looking at

Observing the value of x' at ℓ' gives no information on the value of x at $\ell.$

We consider the **transformer** Φ defined by:

$$\begin{array}{rcl} \Phi: & \mathbb{M} & \longrightarrow & \mathcal{P}(\mathbb{M}) \\ & m & \longmapsto & \{m' \in \mathbb{M} \mid \exists \sigma = \langle (\ell, m), \dots, (\ell', m') \rangle \in \llbracket \mathcal{S} \rrbracket \} \end{array}$$

Non-interference

Definition: non-interference

There is **no interference** between (l, \mathbf{x}) and (l', \mathbf{x}') and we write $(l', \mathbf{x}') \nleftrightarrow (l, \mathbf{x})$ if and only if the following property holds:

$$\begin{array}{l} \forall m \in \mathbb{M}, \forall v_0, v_1 \in \mathbb{V}, \\ \{m'(\mathbf{x}') \mid m' \in \Phi(m[\mathbf{x} \leftarrow v_0])\} = \{m'(\mathbf{x}') \mid m' \in \Phi(m[\mathbf{x} \leftarrow v_1])\} \end{array}$$

Intuition:

- if two observation at point ℓ differ only in the value of x, there is no difference in observation of x' at ℓ'
- in other words, observing x' at l' (even on many executions) gives no information about the value of x at point l...

Non-interference is not a trace property

- we assume $\mathbb{V} = \{0, 1\}$ and $\mathbb{X} = \{x, x'\}$ (store *m* is defined by the pair (m(x), m(x')), and denoted by it)
- we assume L = {l, l'} and consider two systems such that all transitions are of the form (l, m) → (l', m') (i.e., system S is isomorphic to its transformer Φ[S])

$\Phi[\mathcal{S}_0]$:	(0,0)	\mapsto	\mathbb{M}	$\Phi[\mathcal{S}_1]$:	(0,0)	\mapsto	\mathbb{M}
	(0, 1)	\mapsto	\mathbb{M}		(0, 1)	\mapsto	\mathbb{M}
	(1, 0)	\mapsto	\mathbb{M}		(1, 0)	\mapsto	$\{(1,1)\}$
	(1, 1)	\mapsto	\mathbb{M}		(1, 1)	\mapsto	$\{(1,1)\}$

- \mathcal{S}_1 has fewer behaviors than \mathcal{S}_0 : $[\![\mathcal{S}_1]\!]^\star \subset [\![\mathcal{S}_0]\!]^\star$
- $\bullet \ \mathcal{S}_0$ has the non-interference property, but \mathcal{S}_1 does not
- if non interference was a trace property, S_1 should have it (monotony)

Thus, the non interference property is not a trace property

Dependence properties

Dependence property

- many notions of dependences
- so we consider just one:

what inputs may have an impact on the observation of a given output

• Applications:

- reverse engineering: understand how an input gets computed
- slicing: extract the fragment of a program that is relevant to a result
- This corresponds to the negation of non-interference

Interference

Definition: interference

There is **interference** between (l, \mathbf{x}) and (l', \mathbf{x}') and we write $(l', \mathbf{x}') \rightsquigarrow (l, \mathbf{x})$ if and only if the following property holds:

$$\exists m \in \mathbb{M}, \exists v_0, v_1 \in \mathbb{V}, \\ \{m'(\mathbf{x}') \mid m' \in \Phi(m[\mathbf{x} \leftarrow v_0])\} \neq \{m'(\mathbf{x}') \mid m' \in \Phi(m[\mathbf{x} \leftarrow v_1])\}$$

- $\bullet\,$ This expresses that there is at least one case, where the value of x at $\ell\,$ has an impact on that of x' at $\ell'\,$
- It may not hold even if the computation of \boldsymbol{x}' reads $\boldsymbol{x}:$

$$\begin{array}{ll} \ell : & \mathbf{x}' = \mathbf{0} \star \mathbf{x}; \\ \ell' : & \dots \end{array}$$

Interference is not a trace property

- we assume $\mathbb{V} = \{0, 1\}$ and $\mathbb{X} = \{x, x'\}$ (store *m* is defined by the pair (m(x), m(x')), and denoted by it)
- we assume L = {l, l'} and consider two systems such that all transitions are of the form (l, m) → (l', m') (i.e., system S is isomorphic to its transformer Φ[S])
- \mathcal{S}_1 has fewer behavior than \mathcal{S}_0 : $[\![\mathcal{S}_1]\!]^\star \subset [\![\mathcal{S}_0]\!]^\star$
- \mathcal{S}_0 has the interference property, but \mathcal{S}_1 does not
- if interference was a trace property, S_1 should have it (monotony)

Thus, the interference property is not a trace property

Outline

- Safety properties
- 2 Liveness properties
- 3 Decomposition of trace properties
- 4 Temporal logic
- 5 Beyond safety and liveness

Summary

To sum-up:

- trace properties allow to express a large range of program properties
- safety = absence of bad behaviors
- liveness = existence of good behaviors
- trace properties can be decomposed as conjunctions of safety and liveness properties, with dedicated proof methods
- some interesting properties are not trace properties
- notion of specification languages to describe program properties

Next lectures:

- another family of properties: equivalences of programs
- tools to compute proofs of programs