Xavier Rival

Ecole Normale Supérieure



Program of this first lecture

Studied so far:
@ semantics: operational, denotational...
o typing: “well typed programs do not go wrong"

@ proof by Hoare logic: reasoning about programs step by step

Today'’s lecture: we look back at program’s properties

o families of properties:
what properties can be considered “similar” 7 in what sense ?

o proof techniques:
how can those kinds of properties be established ?

o specification of properties:
are there languages to describe properties ?

Xavier Rival Traces Properties 2 /55



A high level overview

@ In this lecture we look at trace properties J

@ A property is a set of traces, defining the admissible executions

Safety properties:
e something (e.g., bad) will never happen

@ proof by invariance

Liveness properties:
@ something (e.g., good) will eventually happen

@ proof by variance

Some interesting program properties do not fit this classification

Xavier Rival Traces Properties 3 /55



State properties

As usual, we consider S = (S, —, S7)

First approach: properties as sets of states

@ a property P is a set of states P C S

@ P is satisfied if and only if all reachable states belong to P, i.e.,
[S]r € P where [S]r = {sn €S| Hs0,---,5n) € [S]r, s €Sz}

Examples:

@ absence of runtime errors:

P =S\ {Q} where Q is the error state
@ non termination (e.g., for an operating system):

P={seS|3eS,s— s}

Xavier Rival Traces Properties

4 /55



Trace properties

Second approach: properties as sets of traces
@ a property T is a set of traces 7 C S*
@ 7T is satisfied if and only if all traces belong to T, i.e., [S][* C T

Examples:
@ obviously, state properties are trace properties

o functional properties
e.g., 'program P takes one integer input x and returns its absolute
value”

@ termination: 7 = S* (i.e., the system should have no infinite
execution)

Xavier Rival Traces Properties 5/ 55



Monotonicity

Property

Let Py, P1 C S be two state properties, such that Py C P;.

Then Py is stronger than Py, i.e. if program S satisfies Py, then it also
satisfies P .

Let 7o, 71 € S be two trace properties, such that 7o C 7;.
Then 7j is stronger than 7y, i.e. if program S satisfies 7, then it also
satisfies 77.

Proof: straightforward application of the definition of state (resp., trace)
properties

Xavier Rival Traces Properties 6 / 55



Safety properties  Informal and formal definitions

QOutline

o Safety properties
@ Informal and formal definitions

@ Proof method

Xavier Rival Traces Properties 7 /55



Safety properties  Informal and formal definitions

Safety properties

Informal definition: safety properties

A safety property is a property which specifies that some (bad) behavior
will never occur

@ absence of runtime errors is a safety property (“bad thing": error)
@ state properties is a safety property (“bad thing": reaching S\ P)

@ non termination is a safety property (“bad thing": reaching a
blocking state)

@ “not reaching state b after visiting state a” is a safety property
(and not a state property)

@ termination is not a safety property

Xavier Rival Traces Properties 8 /55



Safety properties  Informal and formal definitions

Towards a formal definition

We intend to provide a formal definition of safety.
How to refutate a safety property ?
@ we assume S does not satisfy safety property P
@ thus, there exists a counter-example trace
0= 1{(80y-+15n,---) € [S]\P;
it may be finite or infinite...

@ the intuitive definition says this trace eventually exhibits some bad
behavior

@ thus, there exists a rank /i € N, such that the bad behavior has been
observed before reaching s;

o therefore, trace o’ = (s, ..., s;) violates P, i.e. o/ ¢ P

@ we remark o’ is finite

A safety property that does not hold can always be refuted with a
finite counter-example J

Xavier Rival Traces Properties 9 /55



Safety properties  Informal and formal definitions
Limit

Definition: upper closure operator (uco)

Function ¢ : S — S is an upper closure operator iff:
@ monotone
@ extensive: Vx € S, x C ¢(x)
@ idempotent: Vx € S, ¢(o(x)) = ¢(x)

Definition: limit
The limit operator is defined by:

Lim: P(S¥) — P(S™)
X — XU{oeS*|VieN, o; € X}

Operator Lim is an upper-closure operator

Proof: exercise!

Xavier Rival Traces Properties 10 / 55



Safety properties  Informal and formal definitions

Prefix closure

We write o; for the prefix of length i of trace o:

<507'~75n>[0 = €
. <50,...,5,'> if i <n
<507...,5n>]'i+1 - { (s0y-..,5n) otherwise
<50,...>“+1 = <50>"'75i>

If o is finite, of length n, |o|i = min(n,i); if o is infinite, |o]i = i.
Definition: prefix closure

The prefix closure operator is defined by:

PCl: P(S*) — P(S%)
X — {ofilo€X,ieN}

Properties:
@ PCl is monotone
o PCl is idempotent, i.e., PCl o PCI(X) = PCI(X)

Xavier Rival Traces Properties 11 / 55



Safety properties  Informal and formal definitions

Safety properties: formal definition

An upper closure operator

Operator Safe is defined by Safe = Lim o PCI.
It is an upper closure operator over P(S*)

Proof:

@ Safe is monotone as Lim and PCl are
o Safe is extensive; indeed if X C S™ and o € X, we can show that
o € Safe(X):
» if o is a finite trace, it is one of its prefixes, so
o € PCI(X) C Lim(PCI(X))
» if o is an infinite trace, all its prefixes belong to PCI(X), so
o € Lim(PCI(X))

Xavier Rival Traces Properties 12 / 55



Safety properties  Informal and formal definitions

Safety properties: formal definition

Proof (continued):
@ Safe is idempotent:
» as Safe is extensive and monotone Safe C Safe o Safe, so we simply
need to show that Safe o Safe C Safe
» let X C S*, 0 € Safe(Safe(X)); then:

o € Safe(Safe(X))

= Vi, of; € PClo Safe(X) by def. of Lim
= Vi, 3o',j, o5 = o'[j Ao’ € Safe(X) by def. of PCI
= Vi, o', j, o1 =o' AVk, o' € PCI(X) by def. of Lim
= Vi, 30',j, ori =o' Ao’ € PCI(X) with i = j

* if o is finite, we let i = |o]|, thus j has to be equal to n as well and
o = o'r; € PCI(X), thus o € Lim(PCI(X))
* if o is infinte, |or;| = i and we may let i = k so

VI-, 0'(,' - O'I|’,' S PCl(X)
thus o € Lim(PCI(X))

Xavier Rival Traces Properties 13 / 55



Safety properties  Informal and formal definitions

Safety properties: formal definition

Safety: definition
A trace property 7T is a safety property if and only if Safe(7) =T

Theorem
If 7 is a trace property, then Safe(7) is a safety property

Proof: straightforward, by idempotence of Safe

Xavier Rival Traces Properties 14 / 55



Safety properties  Informal and formal definitions

Example

We assume that:
o S={a, b}
@ T states that a should not be visited after state b is visited;
elements of T are of the general form
(a,a,a,...,a,b,b,b,b,...)or (a,a,a,...,3,a,...)
Then:
@ PCI(T) elements are all finite traces which are of the above form (i.e.,
made of n occurrences of a followed by m occurrences of b, where
n, m are positive integers)
e Lim(PCI(7)) adds to this set the trace made made of infinitely many

occurrences of a and the infinite traces made of n occurrences of a
followed by infinitely many occurrneces of b

o thus, Safe(7) = Lim(PCI(T)) =T
Therefore T is indeed formally a safety property.

Xavier Rival Traces Properties 15 / 55



Safety properties  Informal and formal definitions

State properties are safety properties

Theorem
Any state property is also a safety property.

Proof: Let us consider state property P.
It is equivalent to trace property 7 = P:

Safe(7) = Lim(PCI(P%))
= Lim(P*)
— PrUP
— Ppx
= T

Therefore T is indeed a safety property.

Xavier Rival Traces Properties 16 / 55



Safety properties  Informal and formal definitions

Intuition of the formal definition

Operator Safe saturates a set of traces S with
o prefixes

@ infinite traces all finite prefixes of which can be observed in S

Thus, if Safe(S) = S and o is a trace, to establish that o is not in S, it is
sufficient to discover a finite prefix of o that cannot be observed in S.

Alternatively, if all finite prefixes of o belong to S or can observed as a
prefix of another trace in S, by definition of the limit operator, o belongs
to S (even if it is infinite).

Thus, our definition indeed captures properties that can be disproved
with a counter-example.

Xavier Rival Traces Properties 17 / 55



Safety properties  Proof method

QOutline

o Safety properties
@ Informal and formal definitions

@ Proof method

Xavier Rival Traces Properties 18 / 55



Safety properties  Proof method

Proof by invariance

@ We consider transition system S = (S, —,Sz), and safety property T.
Finite traces semantics is the least fixpoint of F,.

@ We seek a way of verifying that S satisfies T, i.e., that [S]>* C T

Principle of invariance proofs

Let T be a set of finite traces; it is said to be an invariant if and only if:
o VseSy, (s) el
o F(I)CI

It is stronger than T if and only if I C 7.

The “by invariance” proof method is based on finding an invariant that is
stronger than 7.

Xavier Rival Traces Properties 19 / 55



Safety properties  Proof method

Soundness

Theorem: soundness

The invariance proof method is sound: if we can find an invariant for S,
that is stronger than 7T, then S satisfies 7.

Proof:

We assume that I is an invariant of S and that it is stronger than 7, and
we show that S satisfies 7

@ by induction over n, we can prove that F]({(s) | s € S}) C F)(I) C1
therefore [S]* C I

thus, Safe([S]*) C Safe(I) C Safe(7) since Safe is monotone

we remark that [S]>* = Safe([S]*)

T is a safety property so Safe(7) =T

we conclude [S]* C T, i.e., S satisfies property 7

e © ¢ ¢ ¢

Xavier Rival Traces Properties 20 / 55



Safety properties  Proof method

Completeness

Theorem: completeness

The invariance proof method is complete: if S satisfies 7, then we can
find an invariant I for S, that is stronger than 7.

Proof:
We assume that [S]* satisfies 7, and show that we can exhibit an
invariant.

Then, I = [S]* is an invariant of S by definition of [.]*, and it is stronger
than 7.

Caveat:
@ [S]™ is most likely not a very easy to express invariant
@ it is just a convenient completeness argument
@ so, completeness does not mean the proof is easy !

Xavier Rival Traces Properties 21 / 55



Safety properties

Example

Proof method

We consider the proof that the program below computes the sum of the
elements of an array, i.e., when the exit is reached, s = Z;ét[k]:

f:
b:

G

i, s integer variables
t integer array of length n
(true)
s =0;
(s =0
i=0;
(i=0As=0)
while(i < n){
(0O<i<nAs=Yi_stlk]
s =s+t[i];
0<i<nAs=>, otk
i=141;
(L<i<nns=3 otk
}

(1=nAs= Y55 oK)

Principle of the proof:

@ for each program point [, we
have a local invariant I;
(denoted by a logical formula
instead of a set of states in the
figure)

@ the global invariant T is
defined by:

I= {<(Q)7 ”’0)7 SR ([IH mn) ‘
Vn, m, € H[n}

Xavier Rival Traces Properties 22 /55



Liveness properties  Informal and formal definitions

QOutline

e Liveness properties
@ Informal and formal definitions
@ Proof method

Xavier Rival Traces Properties 23 / 55



Liveness properties  Informal and formal definitions

Liveness properties

Informal definition: liveness properties

A liveness property is a property which specifies that some (good) behavior
will eventually occur.

@ termination is a liveness property

“good behavior”: reaching a blocking state (no more transition
available)

@ “state a will eventually be reached by all execution” is a liveness
property
“good behavior’: reaching state a

o the absence of runtime errors is not a liveness property

Xavier Rival Traces Properties 24 / 55



Liveness properties  Informal and formal definitions

Intuition towards a formal definition

We intend to provide a formal definition of liveness.

How to refutate a liveness property ?
@ we consider liveness property 7 (think 7 is termination)
@ we assume S does not satisfy liveness property T
o thus, there exists a counter-example trace o € [S]\ T;

@ let us assume o is actually finite...
the definition of liveness says some (good) behavior should eventually
occur:
» how do we know that o cannot be extended into a trace o - ¢’ that will
satisfy this behavior ?
» maybe that after a few more computation steps, o will reach a
blocking state...

Xavier Rival Traces Properties 25 / 55



Liveness properties  Informal and formal definitions

Intuition towards a formal definition

To refutate a liveness property, we need to look at infinite traces. J

Example: if we run a program, and do not see it return...
@ should we do Ctrl+C and conclude it does not terminate ?

@ should we just wait a few more seconds minutes, hours, years ?

Towards a formal definition: we expect any finite trace be in 7
as finite executions cannot be used to disprove T

Xavier Rival Traces Properties 26 / 55



Liveness properties  Informal and formal definitions

Definition

Formal definition

Operator Live is defined by Live(7) =7 U (S* \ Safe(T)). Given
property 7, the following three statements are equivalent:

(i) Live(T)=T
(i) PC(T)=S*
(iii) Lim o PCI(T) = S>
When they are satisfied, 7 is said to be a liveness property

Example: termination
o the property is T = S*
(i.e., there should be no infinite execution)
@ clearly, it satisfies (if): PCI(T) = S*
thus termination indeed satisfies this definition

Xavier Rival Traces Properties

27 / 55



Liveness properties  Informal and formal definitions

Proof of equivalence

Proof of equivalence:
o (i) implies (ii):
we assume that Live(7) =T, i.e.,, T U(S*\ Safe(7T)) =T
therefore, S\ Safe(7) C T;
let o € S*, and let us show that o € PCI(T); clearly, o € S*, thus:
» either o € Safe(7) = Lim(PCI(T)), so all its prefixes are in PCI(T)
and o € PCI(T)
» or o € T, which implies that ¢ € PCI(T)
o (ii) implies (iii):
if PCI(T) = S*, then Lim o PCI(T) = S*
o (iif) implies (i):
if Lim o PCI(T) = S, then
Live(7) =T U(S*\ (T ULimoPCI(T))) =T U(S*\S*) =T

Xavier Rival Traces Properties 28 / 55



Liveness properties  Informal and formal definitions

Example

We assume that:
o S={a,b,c}

@ 7T states that b should eventually be visited, after a has been
visited; elements of T can be described by

T=S"-a-S*-b-S*

Then T is a liveness property:
o letceS* theno-a-beT,soo e PCIT)
@ thus, PCI(T) = S*

Xavier Rival Traces Properties 29 / 55



Liveness properties  Informal and formal definitions

A property of Live

Theorem

If 7 is a trace property, then Live(7) is a liveness property (i.e.,
operator Live is idempotent).

Proof: we show that PClo Live(7) = S*, by considering o € S* and
proving that o € PCl o Live(7T); we first note that:

PCloLive(T) = PCI(T)UPCI(S¥ \ Safe(T))
= PCI(T)UPCI(S* \ Limo PCI(T))

e if o € PCI(T), this is obvious.

e if o ¢ PCI(T), then:
» o ¢ Limo PCI(T) by definition of the limit
» thus, 0 € S¥ \ Lim o PCI(T)

» o € PCI(S“ \ Lim o PCI(T)) as PCl is extensive, which proves the
above result

Xavier Rival Traces Properties 30 / 55



Liveness properties  Proof method

QOutline

e Liveness properties
@ Informal and formal definitions
@ Proof method

Xavier Rival Traces Properties 31 /55



Liveness properties  Proof method

Termination proof with ranking function

@ We consider only termination
@ We consider transition system S = (S, —,Sz), and liveness property 7

@ We seek a way of verifying that S satisfies termination, i.e., that
[[SHO( g S*

Definition: ranking function

A ranking function is a function ¢ : S — E where:
e (E,C) is a well-founded ordering
@ Vso,51 €S, 5o = 51 = &(s51) T d(s0)

Theorem

If S has a ranking function ¢, it satisfies termination.

Xavier Rival Traces Properties 32 /55



Liveness properties  Proof method

Example

We consider the termination of the array sum program:

Ranking function:
i, s integer variables

t integer array of length n ¢: S — N
b s=0; (b,m) — 3-n+6
h : i=0; (4,m) — 3-n+5
b:  while(i < n){ (bym) — 3-n+4
f: s =s+t[i]; (ym) — 3-(n—m(i))+3
b i=i+1; (a,m) > 3-(n—m(i))+2
P (om) +— 3 (n—m(1)+1
s : (lo;m) — 0

Xavier Rival Traces Properties 33 /55



Liveness properties  Proof method

Proof by variance

@ We consider transition system S = (S, —,Sz), and liveness property
T ; infinite traces semantics is the least fixpoint of F,,.

@ We seek a way of verifying that S satisfies T, i.e., that [S]* C T

Principle of variance proofs

Let (I,)nen, L, be elements of S*; these are said to form a variance proof

of T if and only if:
o S*Cy
o forall k€ {1,2,...,w}, Vs €S, (s) € Ix
o forall k € {1,2,...,w}, there exists | < k such that F,(I;) C I,
oI, CT

Proofs of soundness and completeness: exercise

Xavier Rival Traces Properties 34 / 55



o Safety properties

9 Liveness properties

a Decomposition of trace properties
@ Temporal logic

e Beyond safety and liveness

e Conclusion



Decomposition of trace properties

The decomposition theorem

Theorem

Let 7 C S*; it can be decomposed into the conjunction of safety

property Safe(7) and liveness property Live(T):

T = Safe(7) N Live(T)

@ Reading:
Recognizing Safety and Liveness.
Bowen Alpern and Fred B. Schneider.
In Distributed Computing, Springer, 1987.
o Consequence of this result:
the proof of any trace property can be decomposed into

» a proof of safety
» a proof of liveness

Xavier Rival Traces Properties

36 / 55



Decomposition of trace properties

Proof

o safety part:
Safe is idempotent, so Safe(7") is a safety property.

o liveness part:
Live is idempotent, so Live(7) is a liveness property.

@ decomposition:

Safe(7T)NLive(7T) = (S*\ Safe(7)UT)nN Safe(T)
(S \ Safe(7) N Safe(7T)) U (T N Safe(T))
=T

Xavier Rival Traces Properties 37 /55



Decomposition of trace properties

Example: verification of total correctness

i, s integer variables

t integer array of length n Property to prove:
b: s=0 total correctness
[1 : i=0; .
L:  while(i < n){ © the program terminates
b s = s+ t[i]; © and it computes the sum of
f: i=i+41, the elements in the array
b: }
ls:

Application of the decomposition principle
Conjunction of two proofs:
© proved with a ranking function

@ proved with local invariants

Xavier Rival Traces Properties 38 / 55



o Safety properties

9 Liveness properties

e Decomposition of trace properties
@ Temporal logic

e Beyond safety and liveness

e Conclusion



Temporal logic

Notion of specification languages

@ Ultimately, we would like to verify or compute properties

@ So far, we simply describe properties with sets of executions
or worse, with English / French / ... statements
@ Ideally, we would prefer to use a mathematical language for that
» to gain in concision, avoid ambiguity
» to define sets of properties to consider, fix the form of inputs for
verification tools...

Definition: specification language

A specification language is a set of terms L with an interpretation (or
semantics)
[1: L — P(S%) (resp., P(S))

@ We are now going to consider specification languages for states, for
traces...

Xavier Rival Traces Properties 40 / 55



Temporal logic

A state specification language

A first example of a (simple) specification language:

A state specification language
@ Syntax: we let terms of Lg be defined by:

peEls:=0f|x<x|x<n|=p |p AP’
@ Semantics: [p] € M is defined by

[ef] = {/}xM
[x<x] = {({,m)eS|m(x)<m(x)}
[x<n] = {({,m)eS|m(x)<n}
o] = S\ o]
[pAp] = [PIN[F]

Exercise: add =, Vv, =...

Xavier Rival Traces Properties 41 / 55



Temporal logic

Propositional temporal logic: syntax

We now consider the specification of trace properties
@ temporal logic: specification of properties in terms of events that

occur at distinct points in the execution of programs (hence, the name
“temporal”)

@ there are many such logics
@ we consider a compact one: Pnueli’'s Propositional Temporal Logic
(PTL)
Definition: syntax of PTL

Properties over traces are defined as terms of the form

t(e Lpt) == p state property, i.e., p € Lg
| t'vt” disjunction
| -t negation
e ¢ "hext!
|

t's(t”  "until", i.e., t' until t”

Xavier Rival Traces Properties 42 / 55



Temporal logic

Propositional temporal logic: semantics

A “tail” operator .;; on traces:
® ((s0,...,8) 0)yu=o0
o if o] <i,of=c¢

Semantics of temporal logic formulae:

[p] = {s-olselplnoeS¥}
[tova] = [w]ulal]
[-to] = S\ [to]
[Ot] = {s-o|seSAoe]t]}
[tostts] = {o€S*|3neN,Vi<n, oy €[to] Nop € [t1]}

Xavier Rival Traces Properties 43 / 55



Temporal logic

Temporal logic operators as syntactic sugar

Many useful operators can be added:

o Boolean constants:

true 1= (x < 0) V(x < 0)
false ::= —true

@ Sometime:
Ot =trueylt

intuition: there exists a rank n at which t holds

o Always:
Ot = —(0(~t))

intuition: there is no rank at which the negation of t holds

Exercise: what do ()[Jt and [J{ t mean ?

Xavier Rival Traces Properties 44 / 55



Temporal logic
Examples

We consider the program below:

b : intx = input();
G if(x < 8){

b - x=0;

B }else{

ly: x=1;

b: }

l6: ...

Examples of properties:
@ “when [ is reached, x is positive”
0(04 = x> 0)
@ "if the value read at point [ is negative, and when f5 is reached, x is
equal to 0"

(A ANx<0)=[0O(0C = x=0)

Xavier Rival Traces Properties 45 / 55



o Safety properties

9 Liveness properties

e Decomposition of trace properties
@ Temporal logic

a Beyond safety and liveness

e Conclusion



Beyond safety and liveness

Security properties

We now consider other interesting properties of programs, and show that
they do not all reduce to trace properties

Security

@ collects many kinds of properties

@ so we consider just one:

an unauthorized observer should not be able to guess anything
about private information by looking at public information

@ example: another user should not be able to guess the content of an
email sent to you

@ we need to formalize this property

Xavier Rival Traces Properties 47 / 55




Beyond safety and liveness

A few definitions

Assumptions:
o we let S = (S, —,Sz) be a transition system
@ states are of the form (/,m) € L x M
@ memory states are of the form X — V
°

we let [, [’ € L (program entry and exit)
and x,x’ € X (private and public variables)

Security property we are looking at J

Observing the value of x” at [’ gives no information on the value of x at /.

We consider the transformer ® defined by:

o: M — PM)
m +— {m eM|Jo=((l,m),....([",m)) € [S]}

Xavier Rival Traces Properties 48 / 55



Beyond safety and liveness

Non-interference

Definition: non-interference
There is no interference between (/,x) and (/’,x’) and we write
(I',x") 4 (I, x) if and only if the following property holds:
Vm € M,Vvg,v1 €V,
{m/'(x') | m" € ®(m[x + w])} = {m'(x) | M € ®(m[x + w1])}

Intuition:

@ if two observation at point [ differ only in the value of x, there is no
difference in observation of x" at [’

@ in other words, observing x" at [’ (even on many executions) gives no
information about the value of x at point /...

Xavier Rival Traces Properties 49 / 55




Beyond safety and liveness

Non-interference is not a trace property

o we assume V = {0,1} and X = {x,x'} (store m is defined by the pair
(m(x), m(x)), and denoted by it)

@ we assume L = {/, [’} and consider two systems such that all
transitions are of the form (£, m) — ({/, m’)
(i.e., system S is isomorphic to its tranfsormer ®[S])

®[So]: (0,0) — M O[Sy]: (0,0) — M
(0,1) — M (0,1) — M
(1,0) — M (1,0) — {(1,1)}
(1,1) — M (1,1) — {(1,1)}

@ S; has fewer behaviors than Sp: [S1]* € [So]*
@ Sy has the non-interference property, but S; does not
@ if non interference was a trace property, S; should have it (monotony)

Thus, the non interference property is not a trace property J

Xavier Rival Traces Properties 50 / 55



Beyond safety and liveness

Dependence properties

Dependence property
@ many notions of dependences
@ so we consider just one:

what inputs may have an impact on the observation of a given
output

o Applications:

» reverse engineering: understand how an input gets computed
» slicing: extract the fragment of a program that is relevant to a result

@ This corresponds to the negation of non-interference

Xavier Rival Traces Properties 51 / 55



Beyond safety and liveness

Interference

Definition: interference

There is interference between (/,x) and ({/,x’) and we write
(I',x") ~ (I,x) if and only if the following property holds:

dm € M, dvg,v; €V,
{m/(x') | m" € ®(m[x < wo])} # {m'(x) | m" € P(m[x < va])}

@ This expresses that there is at least one case, where the value of x at
[ has an impact on that of x" at [’

@ It may not hold even if the computation of x’ reads x:

[ %X =0x%x;
[

Xavier Rival Traces Properties 52 / 55



Beyond safety and liveness

Interference is not a trace property

o we assume V = {0,1} and X = {x,x'} (store m is defined by the pair
(m(x), m(x)), and denoted by it)

@ we assume L = {/, [’} and consider two systems such that all
transitions are of the form (£, m) — ({/, m’)
(i.e., system S is isomorphic to its tranfsormer ®[S])

®[So]: (0,0) +— M ®[S1]: (0,0) +— {(1,1)}
(0,1) — M 0,1) — {(1,1)}
(1,0) — {(1.1)} (1,0) — {(1,1)}
(1,1) — {(L1)} (1,1) — {1}

@ S; has fewer behavior than Sp: [S1]* C [So]*

@ Sy has the interference property, but S; does not

o if interference was a trace property, S1 should have it (monotony)
Thus, the interference property is not a trace property J

Xavier Rival Traces Properties 53 / 55



0 Safety properties

e Liveness properties

e Decomposition of trace properties
@ Temporal logic

e Beyond safety and liveness

© Conclusion



Conclusion

Summary

To sum-up:
@ trace properties allow to express a large range of program properties
o safety = absence of bad behaviors
o liveness = existence of good behaviors
@ trace properties can be decomposed as conjunctions of safety and
liveness properties, with dedicated proof methods

some interesting properties are not trace properties

@ notion of specification languages to describe program properties

Next lectures:
@ another family of properties: equivalences of programs

@ tools to compute proofs of programs

Xavier Rival Traces Properties 55 / 55



	Safety properties
	Informal and formal definitions
	Proof method

	Liveness properties
	Informal and formal definitions
	Proof method

	Decomposition of trace properties
	Temporal logic
	Beyond safety and liveness
	Conclusion

