
Denotational semantics
Semantics and Application to Program Verification

Antoine Miné

École normale supérieure, Paris
year 2013–2014

Course 2
26 February 2014

Course 2 Denotational semantics Antoine Miné p. 1 / 79

Introduction

Operational semantics (last week)

Defined as small execution steps (transition relation)

over low-level internal configurations (states)

Transitions are chained to define (maximal) traces
possibly abstracted as input-output relations (big-step)

Denotational semantics (today)

Direct functions from programs to mathematical objects (denotations)

by induction on the program syntax (compositional)

ignoring intermediate steps and execution details (no state)

=⇒ Higher-level, more abstract, more modular.
Tries to decouple a program meaning from its execution.
Focus on the mathematical structures that represent programs.
(founded by Strachey and Scott in the 70s: [Scott-Strachey71])

“Assembly”of semantics vs. “Functional programming”of semantics

Course 2 Denotational semantics Antoine Miné p. 2 / 79

Two very different programs

Bubble sort in C
int swapped;

do {

swapped = 0;

for (int i=1; i<n; i++) {

if (a[i-1] > a[i]) {

swap(&a[i-1], &a[i]);

swapped = 1;

}

}

} while (swapped);

Quick sort in OCaml
let rec sort = function

| [] -> []

| a::rest ->

let lo, hi =

List.partition

(fun y -> y < x) rest

in

(sort lo) @ [x] @ (sort hi)

different languages (C / OCaml)

different algorithms (bubble sort / quick sort)

different data-types (array / list)

Can we give them the same semantics?

Course 2 Denotational semantics Antoine Miné p. 3 / 79

Denotation worlds

imperative programs

effect of a program: mutate a memory state
natural denotation: input/output function
D ' memory → memory

challenge: build a whole program denotation
from denotations of atomic language constructs (modularity)

functional programs

effect of a program: return a value

model a program of type a -> b as a function Da → Db,
of type (a -> b) -> c as a function (Da → Db)→ Dc , etc.

challenge: polymorphic or untyped languages

other paradigms: parallel, probabilistic, etc.

=⇒ very rich theory of mathematical structures
(Scott domains, cartesian closed categories, coherent spaces, event structures,
game semantics, etc. We will not present them in this overview!)

Course 2 Denotational semantics Antoine Miné p. 4 / 79

Course overview

Imperative programs
deterministic programs
handling errors
handling non-determinism
meet-over-all-paths vs. fixpoints
modularity
linking denotational and operational semantics

Higher-order programs
monomorphic typed programs: PCF
linking denotational and operational semantics: full abstraction
untyped λ−calculus: recursive domain equations

Practical session
program the denotational semantics
of a simple imperative (non-)deterministic language

Course 2 Denotational semantics Antoine Miné p. 5 / 79

Deterministic imperative programs

Deterministic imperative programs

Course 2 Denotational semantics Antoine Miné p. 6 / 79

Deterministic imperative programs

A simple imperative language: IMP

IMP expressions

expr ::= X (variable)

| c (constant)

| � expr (unary operation)

| expr � expr (binary operation)

variables in a fixed set X ∈ V
constants I

def
= B ∪ Z:

booleans B
def
= { true, false }

integers Z

operations �:
integer operations: +, −, ×, /, <, ≤
boolean operations: ¬, ∧, ∨
polymorphic operations: =, 6=

Course 2 Denotational semantics Antoine Miné p. 7 / 79

Deterministic imperative programs

A simple imperative language: IMP

Statements

stat ::= skip (do nothing)

| X ← expr (assignment)

| stat; stat (sequence)

| if expr then stat else stat (conditional)

| while expr do stat (loop)

(inspired from the presentation in [Benton96])

Course 2 Denotational semantics Antoine Miné p. 8 / 79

Deterministic imperative programs

Expression semantics

EJ expr K : E ⇀ I

environments E def
= V→ I map variables in V to values in I

EJ expr K returns a value in I

⇀ denotes partial functions (as opposed to →)

necessary because some operations are undefined

1 + true, 1 ∧ 2 (type mismatch)

3/0 (invalid value)

defined by structural induction on abstract syntax trees
(next slide)

(when we use the notation XJ y K , y is a syntactic object; X serves to distinguish
between different semantic functions with different signatures, often varying with the
kind of syntactic object y (expression, statement, etc.);
XJ y K z is the application of the function XJ y K to the object z)

Course 2 Denotational semantics Antoine Miné p. 9 / 79

Deterministic imperative programs

Expression semantics

EJ expr K : E ⇀ I

EJ c K ρ def
= c ∈ I

EJV K ρ def
= ρ(V) ∈ I

EJ−e K ρ def
= −v ∈ Z if v = EJ e K ρ ∈ Z

EJ¬e K ρ def
= ¬v ∈ B if v = EJ e K ρ ∈ B

EJ e1 + e2 K ρ
def
= v1 + v2 ∈ Z if v1 = EJ e1 K ρ ∈ Z, v2 = EJ e2 K ρ ∈ Z

EJ e1 − e2 K ρ
def
= v1 − v2 ∈ Z if v1 = EJ e1 K ρ ∈ Z, v2 = EJ e2 K ρ ∈ Z

EJ e1 × e2 K ρ
def
= v1 × v2 ∈ Z if v1 = EJ e1 K ρ ∈ Z, v2 = EJ e2 K ρ ∈ Z

EJ e1/e2 K ρ
def
= v1/v2 ∈ Z if v1 = EJ e1 K ρ ∈ Z, v2 = EJ e2 K ρ ∈ Z \ {0}

EJ e1 ∧ e2 K ρ
def
= v1 ∧ v2 ∈ B if v1 = EJ e1 K ρ ∈ B, v2 = EJ e2 K ρ ∈ B

EJ e1 ∨ e2 K ρ
def
= v1 ∨ v2 ∈ B if v1 = EJ e1 K ρ ∈ B, v2 = EJ e2 K ρ ∈ B

EJ e1 < e2 K ρ
def
= v1 < v2 ∈ B if v1 = EJ e1 K ρ ∈ Z, v2 = EJ e2 K ρ ∈ Z

EJ e1 ≤ e2 K ρ
def
= v1 ≤ v2 ∈ B if v1 = EJ e1 K ρ ∈ Z, v2 = EJ e2 K ρ ∈ Z

EJ e1 = e2 K ρ
def
= v1 = v2 ∈ B if v1 = EJ e1 K ρ ∈ I, v2 = EJ e2 K ρ ∈ I

EJ e1 6= e2 K ρ
def
= v1 6= v2 ∈ B if v1 = EJ e1 K ρ ∈ I, v2 = EJ e2 K ρ ∈ I

undefined otherwise

Course 2 Denotational semantics Antoine Miné p. 10 / 79

Deterministic imperative programs

Statement semantics

SJ stat K : E ⇀ E

maps an environment before the statement
to an environment after the statement

partial function due to

errors in expressions
non-termination

also defined by structural induction

Course 2 Denotational semantics Antoine Miné p. 11 / 79

Deterministic imperative programs

Statement semantics

SJ stat K : E ⇀ E

skip: do nothing

SJ skip K ρ def
= ρ

assignment: evaluate expression and mutate environment

SJX ← e K ρ def
= ρ[X 7→ v] if EJ e K ρ = v

sequence: function composition

SJ s1; s2 K
def
= SJ s2 K ◦ SJ s1 K

conditional

SJ if e then s1 else s2 K ρ
def
=


SJ s1 K ρ if EJ e K ρ = true

SJ s2 K ρ if EJ e K ρ = false

undefined otherwise

(f [x 7→ y] denotes the function that maps x to y , and any z 6= x to f (z))

Course 2 Denotational semantics Antoine Miné p. 12 / 79

Deterministic imperative programs

Statement semantics: loops

How do we handle loops?

the semantics of loops must satisfy:

SJwhile e do s K ρ =
ρ if EJ e K ρ = false
SJwhile e do s K (SJ s K ρ) if EJ e K ρ = true
undefined otherwise

this is a recursive definition, we must prove that:

the equation has solutions

choose the right one

=⇒ we use fixpoints on partially ordered sets

Course 2 Denotational semantics Antoine Miné p. 13 / 79

Deterministic imperative programs

Flat orders and partial functions

...−99 −1 0 1 99

flat ordering (I⊥,v) on I

I⊥
def
= I ∪ {⊥} (pointed set)

a v b
def⇐⇒ a = ⊥ ∨ a = b (partial order)

every chain is finite, and so has a lub t
=⇒ it is a pointed complete partial order (cpo)

⊥ denotes the value “undefined” (v is an information order)

similarly for E⊥
def
= E ∪ {⊥}

note that (E ⇀ E) ' (E → E⊥)

Course 2 Denotational semantics Antoine Miné p. 14 / 79

Deterministic imperative programs

Poset of continuous partial functions

Partial order structure on partial functions (E⊥
c→ E⊥, v̇)

E⊥ → E⊥ extends E → E⊥
domain = co-domain =⇒ allows composition ◦
f ∈ E → E⊥ extended with f (⊥)

def
= ⊥ (strictness)

=⇒ if SJ s K x is undefined, so is (SJ s ′ K ◦ SJ s K)x

such functions are monotonic and continuous
(a v b =⇒ f (a) v f (b) and f (tX) = t { f (x) | x ∈ X })

=⇒ we restrict E⊥ → E⊥ to continuous functions: E⊥
c→ E⊥

point-wise order v̇ on functions
f v̇ g

def⇐⇒ ∀x : f (x) v g(x)

E⊥
c→ E⊥ has a least element: ⊥̇ def

= λx .⊥

by point-wise lub ṫ of chains, it is also complete =⇒ a cpo
ṫ F = λx . t { f (x) | f ∈ F }

Course 2 Denotational semantics Antoine Miné p. 15 / 79

Deterministic imperative programs

Fixpoint semantics of loops

to solve the semantic equation, we use a fixpoint of a functional

we use the least fixpoint (most precise for the information order)

SJwhile e do s K def
= lfp F

where : F : (E⊥ → E⊥)→ (E⊥ → E⊥)

F (f)(ρ) =


ρ if EJ e K ρ = false
f (SJ s K ρ) if EJ e K ρ = true
⊥ otherwise

Theorem

lfp F is well-defined

(remember our equation on SJwhile e do s K ?
it can be rewritten exactly as: SJwhile e do s K = F (SJwhile e do s K))

Course 2 Denotational semantics Antoine Miné p. 16 / 79

Deterministic imperative programs

Fixpoint semantics of loops (proof sketch)

Recall Kleene’s theorem:

Kleene’s theorem

A continuous function on a cpo has a least fixpoint

Actually, we would prove that SJ stat K is both well-defined and continuous
by induction on the syntax of stat:

base cases: SJ skip K and SJX ← e K are continuous

SJ if e then s1 else s2 K : by induction hypothesis

SJ s1; s2 K : by induction and because ◦ respects continuity

F is continuous in (E⊥
c→ E⊥)

c→ (E⊥
c→ E⊥) by hypotheses and because ◦ is

continuous
=⇒ lfp F exists by Kleene’s

lfp F is continuous (simple consequence of Kleene’s proof)

Course 2 Denotational semantics Antoine Miné p. 17 / 79

Deterministic imperative programs

Join semantics of loops

Recall another fact about Kleene’s fixpoints: lfp F =
⊔̇

n∈NF n(⊥̇)

F 0(⊥̇) = ⊥̇ is completely undefined (no information)

F 1(⊥̇)(ρ) =

{
ρ if EJ e K ρ = false
⊥ otherwise

environment if the loop is never entered (partial information)

F 2(⊥̇)(ρ) =

 ρ if EJ e K ρ = false
SJ s K ρ else if EJ e K (SJ s K ρ) = false
⊥ otherwise

environment if the loop is iterated at most once

F n(⊥̇)(ρ)
environment if the loop is iterated at most n − 1 times⊔̇

n∈NF n(⊥̇)

environment when exiting the loop
whatever the number of iterations (total information)

Course 2 Denotational semantics Antoine Miné p. 18 / 79

Deterministic imperative programs

Summary

Rewriting the semantics using total functions on cpos:

EJ expr K : E⊥
c→ I⊥

returns ⊥ for an error or if its argument is ⊥
SJ stat K : E⊥

c→ E⊥
SJ skip K ρ def

= ρ

SJ e1; e2 K
def
= SJ e2 K ◦ SJ e1 K

SJX ← e K ρ def
=

{
⊥ if EJ e K ρ = ⊥
ρ[X 7→ EJ e K ρ] otherwise

SJ if e then s1 else s2 K ρ
def
=

 SJ s1 K ρ if EJ e K ρ = true
SJ s2 K ρ if EJ e K ρ = false
⊥ otherwise

SJwhile e do s K def
= lfp F

where F (f)(ρ) =

 ρ if EJ e K ρ = false
f (SJ s K ρ) if EJ e K ρ = true
⊥ otherwise

Course 2 Denotational semantics Antoine Miné p. 19 / 79

Errors

Errors

Course 2 Denotational semantics Antoine Miné p. 20 / 79

Errors

Error vs. non-termination

In our semantics SJ stat K ρ = ⊥ can mean:

either stat starting on input ρ loops for ever

or it stops prematurely with an error

=⇒ we would like to distinguish these two cases

Solution:

add an error value Ω, distinct from ⊥
propagate it in the semantics, bypassing computations
(no further computation after an error)

Course 2 Denotational semantics Antoine Miné p. 21 / 79

Errors

Expression semantics with errors

We set E⊥,Ω
def
= E ∪ {⊥,Ω}, I⊥,Ω

def
= I ∪ {⊥,Ω}

EJ expr K : E⊥,Ω
c→ I⊥,Ω

EJ e K⊥ def
= ⊥

EJ e KΩ
def
= Ω

if ρ /∈ {Ω,⊥} then

EJV K ρ def
= ρ(V) ∈ I

EJ c K ρ def
= c ∈ I

EJ−e K ρ def
= −v ∈ Z if v = EJ e K ρ ∈ Z

Ω if EJ e K ρ = Ω

EJ e1 + e2 K ρ
def
= v1 + v2 ∈ Z if v1 = EJ e1 K ρ ∈ Z, v2 = EJ e2 K ρ ∈ Z

Ω if {EJ e1 K ρ,EJ e2 K } 6⊆ Z

EJ e1/e2 K ρ
def
= v1/v2 ∈ Z if v1 = EJ e1 K ρ ∈ Z, v2 = EJ e2 K ρ ∈ Z \ {0}

Ω if EJ e1 K ρ /∈ Z ∨ EJ e2 K /∈ Z \ {0}
. . .

(note that x = ⊥ ⇐⇒ EJ e K x = ⊥, x = Ω =⇒ EJ e K x = Ω)

Course 2 Denotational semantics Antoine Miné p. 22 / 79

Errors

Statements semantics with errors

SJ stat K : E⊥,Ω
c→ E⊥,Ω

SJ s K⊥ def
= ⊥

SJ s KΩ
def
= Ω

SJ skip K ρ def
= ρ

SJ s1; s2 K
def
= SJ s2 K ◦ SJ s1 K

SJX ← e K ρ def
=

{
ρ[X 7→ v] if v = EJ e K ρ ∈ I
Ω if EJ e K ρ ∈ Ω

SJ if e then s1 else s2 K ρ
def
=


SJ s1 K ρ if EJ e K ρ = true
SJ s2 K ρ if EJ e K ρ = false
Ω otherwise

Course 2 Denotational semantics Antoine Miné p. 23 / 79

Errors

Statements semantics with errors

SJwhile e do s K def
= lfp F where

F (f)(ρ) =


⊥ if ρ = ⊥
ρ if EJ e K ρ = false
f (SJ s K ρ) if EJ e K ρ = true
Ω otherwise

using the flat ordering a v b ⇐⇒ a = ⊥ ∨ a = b
i.e., Ω is not comparable with elements of E
=⇒ the loop exits immediately at the first error

Several outcome when computing for SJ stat K ρ
ρ′ ∈ E : the program terminates successfully

Ω: the programs terminates with an error

⊥: the program loops forever

Course 2 Denotational semantics Antoine Miné p. 24 / 79

Errors

More on errors

We can also:

distinguish different kinds of errors

tag errors with their location

track more errors

e.g., use of uninitialized variables:

with E def
= V→ (I ∪ {uninit})

Course 2 Denotational semantics Antoine Miné p. 25 / 79

Non-determinism

Non-determinism

Course 2 Denotational semantics Antoine Miné p. 26 / 79

Non-determinism

Why non-determinism?

It is useful to consider non-deterministic programs, to:

model partially unknown environments (user input)

abstract away unknown program parts (libraries)

abstract away too complex parts (rounding errors in floats)

abstract a set of programs as a single one (parametric programs)

Kinds of non-determinism

control non-determinism: stat ::= either s1 or s2

data non-determinism: expr ::= random()
(more general, as we can write if random() = random() then s1 else s2)

Consequence on semantics and verification

the semantics should express all the possible executions
we must verify all the possible executions

Course 2 Denotational semantics Antoine Miné p. 27 / 79

Non-determinism

Modified language

We extend IMP to NIMP, an imperative language with
non-determinism

NIMP expressions

expr ::= X (variable)

| c (constant)

| [c1, c2] (constant interval)

| � expr (unary operation)

| expr � expr (binary operation)

c1 ∈ Z ∪ {−∞}, c2 ∈ Z ∪ {+∞}
[c1, c2] means: a fresh random value between c1 and c2 each time the

expression is evaluated

Question: is [0, 1] = [0, 1] true or false?

NIMP has the same statements as IMP
Course 2 Denotational semantics Antoine Miné p. 28 / 79

Non-determinism

Expression semantics

EJ expr K : E → P(I)

EJV K ρ def
= {ρ(V)}

EJ c K ρ def
= {c}

EJ [c1, c2] K ρ def
= { c ∈ Z | c1 ≤ c ≤ c2 }

EJ−e K ρ def
= {−v | v ∈ EJ e K ρ ∩ Z }

EJ¬e K ρ def
= {¬v | v ∈ EJ e K ρ ∩ B }

EJ e1 + e2 K ρ
def
= { v1 + v2 | v1 ∈ EJ e1 K ρ ∩ Z, v2 ∈ EJ e2 K ρ ∩ Z }

EJ e1/e2 K ρ
def
= { v1/v2 | v1 ∈ EJ e1 K ρ ∩ Z, v2 ∈ EJ e2 K ρ ∩ Z \ {0} }

EJ e1 < e2 K ρ
def
= { true | ∃v1 ∈ EJ e1 K ρ, v2 ∈ EJ e2 K ρ: v1 ∈ Z, v2 ∈ Z, v1 < v2 } ∪

{ false | ∃v1 ∈ EJ e1 K ρ, v2 ∈ EJ e2 K ρ: v1 ∈ Z, v2 ∈ Z, v1 ≥ v2 }
. . .

we output a set of values, to account for non-determinism

we can have EJ e K ρ = ∅ due to errors
(no need for a special Ω nor ⊥ element)

Course 2 Denotational semantics Antoine Miné p. 29 / 79

Non-determinism

Statement semantic domain

Semantic domain:

statements can output sets of statements
=⇒ use E → P(E)

to allow composition, extend it to P(E)→ P(E)

non-termination and errors can be modeled by ∅
(no need for a special Ω nor ⊥ element)

Note:

we could use P(I ∪ {Ω}) and P(E ∪ {Ω}) to distinguish again
non-termination from errors

we won’t, to lighten the presentation, but this is not difficult

Course 2 Denotational semantics Antoine Miné p. 30 / 79

Non-determinism

Statement semantics

SJ stat K : P(E)→ P(E)

SJ skip KR
def
= R

SJ s1; s2 K
def
= SJ s2 K ◦ SJ s1 K

SJX ← e KR
def
= { ρ[X 7→ v] | ρ ∈ R, v ∈ EJ e K ρ }

pick an environment ρ
pick an expression value v in EJ e K ρ
generate an updated environment ρ[X 7→ v]

SJ if e then s1 else s2 KR
def
=

SJ s1 K { ρ ∈ R | true ∈ EJ e K ρ } ∪
SJ s2 K { ρ ∈ R | false ∈ EJ e K ρ }
filter environments according to the value of e
execute both branch independently
join them with ∪

Course 2 Denotational semantics Antoine Miné p. 31 / 79

Non-determinism

Statement semantics

SJwhile e do s KR
def
= { ρ ∈ lfp F | false ∈ EJ e K ρ }

where F (X)
def
= R ∪ SJ s K { ρ ∈ X | true ∈ EJ e K ρ }

Justification: lfp F exists

(P(E),⊆,∪,∩, ∅, E) forms a complete lattice

all semantic functions and F are monotonic and continuous
in fact, they are strict complete join morphisms

SJ s K (∪i∈∆Xi) = ∪i∈∆ SJ s KXi and SJ s K ∅ = ∅
which we write as SJ s K ∈ P(E)

∪→P(E)

it is really the image function of a function in E → P(E)

SJ s KX = ∪ { SJ s K {x} | x ∈ X }

we can apply both Kleene’s and Tarksi’s fixpoint theorems

Course 2 Denotational semantics Antoine Miné p. 32 / 79

Non-determinism

Join semantics of loops

SJwhile e do s KR
def
= { ρ ∈ lfp F | false ∈ EJ e K ρ }

where F (X)
def
= R ∪ SJ s K { ρ ∈ X | true ∈ EJ e K ρ }

(F applies a loop iteration to X and adds back the environments R before the loop)

Recall that lfp F = ∪n∈N F n(∅)
F 0(∅) = ∅

F 1(∅) = R
environments before entering the loop

F 2(∅) = R ∪ SJ s K { ρ ∈ R | true ∈ EJ e K ρ }
environments after zero or one loop iteration

F n(∅) : environments after at most n − 1 loop iterations
(just before testing the condition to determine if we should iterate a n−th time)

∪n∈N F n(∅): loop invariant

Course 2 Denotational semantics Antoine Miné p. 33 / 79

Non-determinism

“Angelic” non-determinism and termination

If stat is deterministic (no [c1, c2] in expressions)

the semantics is equivalent to our semantics on E⊥
c→ E⊥

Justification: ({E ⊆ E | |E | ≤ 1 },⊆,∪, ∅) is isomorphic to (E⊥,v,t,⊥)

In general, we can have several outputs for SJ stat K {ρ} ⊆ E ∪ {Ω}:

∅: the program never terminates at all

{Ω}: the program never terminates correctly

R ⊆ E \ {Ω}: when the program terminates, it terminates correctly,
in an environment in R

=⇒ we cannot express that a program always terminates!

This is called the “Angelic” semantics, useful for partial correctness

Course 2 Denotational semantics Antoine Miné p. 34 / 79

Non-determinism

Side-note on non-determinism and termination

Other (more complex) ways to mix non-termination and
non-determinism exist

Based on distinguishing ∅ and ⊥, and on different order relations v

{0}

∅

{1}

{0, 1}

{1,⊥}

{1}

{0, 1}

∅

{0,⊥}

{0}

{0, 1,⊥}

{⊥}

{1,⊥}

{1}

{0, 1}

{0,⊥}

{0}

{0, 1,⊥}

{⊥}

powerset order mixed order Egli-Milner order
angelic semantics natural semantics natural semantics

(this is a complex subject, we will say no more)

Course 2 Denotational semantics Antoine Miné p. 35 / 79

Path semantics

Path semantics

Course 2 Denotational semantics Antoine Miné p. 36 / 79

Path semantics

Syntax and semantics of control paths

Atomic statements

atomic ::= X ← expr (assignment)

| expr? (boolean filter)

control path: finite sequence of atomic statements

Semantics: �J atomic∗ K : P(E)
∪→ P(E)

�JX ← e KR def
= { ρ[X 7→ v] | ρ ∈ R, v ∈ EJ e K ρ }

�J e? KR def
= { ρ ∈ R | true ∈ EJ e K ρ }

�J ε KR def
= R (empty sequence)

�J a1; a2 K
def
= �J a2 K ◦ �J a1 K (sequence concatenation)

(well defined as ◦ is associative)

extended to sets of paths: �JP KR def
= ∪ {�J p KR | p ∈ P }

Course 2 Denotational semantics Antoine Miné p. 37 / 79

Path semantics

Control paths of a program

From programs to control paths: π : stat → P(atomic∗)

defined by induction:

π(skip)
def
= ε

π(X ← e)
def
= {X ← e }

π(if e ./ 0 then s1 else s2)
def
= ({ e? };π(s1)) ∪ ({¬e? };π(s2)) (branch unzipping)

π(while e ./ 0 do s)
def
= (∪n∈N ({ e? };π(s))n); {¬e? } (loop unrolling)

π(s1; s2)
def
= π(s1);π(s2)

(where the concatenation ; is extended to sets of paths)

π reduces programs to linear sequences of atomic instructions

π(s) is infinite whenever s has loops
but each path in π(s) has finite length

some paths may be unfeasible
(∀R:�J p KR = ∅, e.g., when unrolling a bounded loop too many times)

Course 2 Denotational semantics Antoine Miné p. 38 / 79

Path semantics

Semantic equivalences

Theorem

we have �Jπ(s) K = SJ s K

Proof:
not difficult by structural induction on s
relies on the fact that SJ s K is a strict complete ∪−morphism

Terminology:

�Jπ(s) K is called the meet-over-all-paths semantics

SJ s K is called the fixpoint semantics

Note:
In static analysis, SJ s K : P(E)→ P(E) is replaced with S]J s K : E] → E] on some
abstract poset (E],v]).
S]J s K may not be a complete t] morphism (aka distributive), in which case
�]Jπ(s) K is more precise than S]J s K , but much more difficult to compute as π(s) is
often infinite!

Course 2 Denotational semantics Antoine Miné p. 39 / 79

Path semantics

Application: program transformation

We want to prove that SJ s K = SJ s ′ K
when s ′ is obtained from s by some program transformation

It is sometime easier to prove that �Jπ(s) K = �Jπ(s ′) K

e.g.: loop unrolling
while e do s if e then (s; while e do s) else skip

Course 2 Denotational semantics Antoine Miné p. 40 / 79

Path semantics

Application: parallel programs

Statement extension

stat ::= . . .
| stat || stat (parallel composition)

Intuitive semantics:

s1 || s2 interleaves the executions of s1 and s2

and returns when both are finite

we consider assignments and tests to be atomic

many interleavings are possible =⇒ consider them all!
(non-deterministic control)

Course 2 Denotational semantics Antoine Miné p. 41 / 79

Path semantics

Application: parallel programs

Modeling interleaving: using control paths

we extent π : stat → P(atomic∗) with

π(s1 || s2) = ∪ {mix(p1, p2) | p1 ∈ π(s1), p2 ∈ π(s2) }

where mix is defined by induction on paths length:

mix(p, ε)
def
= mix(ε, p)

def
= p

mix((p; a), (q; b))
def
= (mix((p; a), q); b) ∪ (mix(p; (q, b)); a)

(where a, b ∈ atomic, p, q ∈ atomic∗, and “;” is extended to sets of paths)

�Jπ(s) K is well-defined
but there is no longer a corresponding denotational semantics SJ s K !

(this is a difficult problem to solve)

Course 2 Denotational semantics Antoine Miné p. 42 / 79

Modularity

Modularity

Course 2 Denotational semantics Antoine Miné p. 43 / 79

Modularity

Contexts

Contexts: statements with holes

ctx ::= skip (do nothing)

| X ← expr (assignment)

| ctx ; ctx (sequence)

| if expr then ctx else ctx (conditional)

| while expr do ctx (loop)

| � (hole)

Substitution: ctx[� 7→ stat] ∈ stat, defined by induction (filling holes)

c[� 7→ s]
def
= c for assignments and skip contexts

(c1; c2)[� 7→ s]
def
= c1[� 7→ s]; c2[� 7→ s]

(if e then c1 else c2)[� 7→ s]
def
= if e then c1[� 7→ s] else c2[� 7→ s]

(while e do c)[� 7→ s]
def
= while e do c[� 7→ s]

�[� 7→ s]
def
= s

Course 2 Denotational semantics Antoine Miné p. 44 / 79

Modularity

Semantics of statements with holes

Context semantics: CJ ctx K : (P(E)
∪→ P(E))

∪→ P(E)
∪→ P(E)

' semantics of statements
but parameterized by the semantics of the hole

CJ skip K (H)(R)
def
= R

CJ s1; s2 K (H)
def
= CJ s2 K (H) ◦ CJ s1 K (H)

CJX ← e K (H)(R)
def
= { ρ[X 7→ v] | ρ ∈ R, v ∈ EJ e K ρ }

CJ if e then s1 else s2 K (H)(R)
def
=

CJ s1 K (H)({ ρ ∈ R | true ∈ EJ e K ρ }) ∪
CJ s2 K (H)({ ρ ∈ R | false ∈ EJ e K ρ })

CJwhile e do s K (H)(R)
def
= { ρ ∈ lfp F | false ∈ EJ e K ρ }

where F (X)
def
= R ∪ CJ s K (H)({ ρ ∈ X | true ∈ EJ e K ρ })

CJ� K (H)(R)
def
= H(R)

(H is passed down recursively in CJ c K , and used when encountering �)

Course 2 Denotational semantics Antoine Miné p. 45 / 79

Modularity

Substitution vs. context semantics

Theorem

CJ c K (SJ s K) = SJ c[� 7→ s] K

=⇒ we can exploit this to perform modular reasoning

extract a program part s, s.t. prog = c[� 7→ s]

compute its semantics in isolation: SJ s K
use it as CJ c K (SJ s K) to get SJ prog K

useful if s is repeated often in prog as |c|+ |s| � |prog |

Proof: easy by structural induction on c

Course 2 Denotational semantics Antoine Miné p. 46 / 79

Modularity

Application: first order procedures

Statements

stat ::= skip
| stat; stat
| . . .
| f () (procedure call f ∈ F)

F : set of procedure names
body : F → stat: procedure definition

Assume: no local variables, no recursivity

substitution semantics:
SJ f () K def

= SJ body(f) K , ' procedure inlining

modular semantics:
f 7→ SJ f () K tabulated “bottom-up” on the call graph
(leaf procedures first)

Course 2 Denotational semantics Antoine Miné p. 47 / 79

Modularity

Side-note on local variables

How do we handle local variables?

Assume distinct sets of variables:

global variables: VG

local variables: Vf for each procedure f ∈ F

We need procedure-local environments (scopes) and operators:

∀f ∈ F : Ef
def
= (VG ∪ Ff)→ I

SJ body(f) K : P(Ef)
∪→ P(Ef)

going into the scope of f :

ρ→f
def
= λX ∈ VG ∪ Vf .ρ(X) if X ∈ VG , uninit otherwise

leaving the scope of f :

ρ ./f ρ
′ def

= λX ∈ dom(ρ).ρ′(X) if X ∈ VG , ρ(X) otherwise

Then: SJ f () KR
def
= { ρ ./f ρ

′ | ρ ∈ R, ρ′ ∈ SJ body(f) K {ρ→f } }
Course 2 Denotational semantics Antoine Miné p. 48 / 79

Modularity

Side-note on recursive functions

Context semantics:

SJ stat K : (F → (P(E)
∪→ P(E)))

∪→ P(E)
∪→ P(E)

Assuming the semantics H(f) of each function f is known, we define:

SJ skip K (H)(R)
def
= R

SJ s1; s2 K (H)
def
= SJ s2 K (H) ◦ SJ s1 K (H)

SJX ← e K (H)(R)
def
= { ρ[X 7→ v] | ρ ∈ R, v ∈ EJ e K ρ }

. . .

SJ f () K (H)(R)
def
= H(f)(R)

We must solve the equation ∀f ∈ F : H(f) = SJ body(f) K (H)

=⇒ again, a fixpoint!

we choose H = lfpH where H(F)(f)
def
= SJ body(f) K (F)

Question: what interpretation for ∪̇n∈N Hn(⊥̇)?

Course 2 Denotational semantics Antoine Miné p. 49 / 79

Modularity

Side-note on function returns

How do we handle early return?

Example: (if x > 0 then return); x ← −x

Solution: maintain two environment sets, D and R:

D: environments at current point (direct flow)

R: collected environments at all return encountered (return flow)

Semantics ScJ s K : (P(E)× P(E))→ (P(E)× P(E))

sequential statements update the direct flow only:

ScJX ← e K (D,R)
def
= (SJX ← e KD, R)

returns shift and accumulate the direct flow into the return flow:

ScJ return K (D,R)
def
= (∅, D ∪ R) (empty direct flow after the return)

at a normal function end, collect both flows

if (D′,R′) = ScJ body(f) K (D,R)

then ScJ f () K def
= (D′ ∪ R′, R) (the original return flow is restored)

at control-flow joins, merge both flows (end of tests and loop iterations)

(D,R) t (D′,R′)
def
= (D ∪ D′, R ∪ R′)

=⇒ related to the notion of continuation
Course 2 Denotational semantics Antoine Miné p. 50 / 79

Modularity

Side-note on unstructured jumps

How do we handle unstructured jumps (“gotos”)?

Example: (if x > 0 then gotoA); . . . ; labelA; . . .

Solution: again, continuations!
ScJ s K : (P(E)× (C → P(E)))→ (P(E)× (C → P(E)))

where C is a finite set of goto labels (or break or return points)

ScJ gotoA K (D,C)
def
= (∅, C [A 7→ C(A) ∪ D])

ScJ labelA K (D,C)
def
= (D ∪ C(A), C)

Problem: backward gotos, can be used to simulate loops

Example: labelA; . . . (if x > 0 then gotoA); . . .

Solution: as for loops, use a fixpoint

e.g., assuming that jumps are local to functions, we iterate each function call

ScJ f () K (D,C)
def
= (fst (lfpλ(X ,Y).ScJ body(f) K (D,Y)), C)

(at each iteration, the new continuation Y is reinjected, the direct flow restarts at D;
after stabilization, the direct flow is returned and the original continuation is restored)

Course 2 Denotational semantics Antoine Miné p. 51 / 79

Link between operational and denotational semantics

Link between operational and denotational
semantics

Course 2 Denotational semantics Antoine Miné p. 52 / 79

Link between operational and denotational semantics

Motivation

Are the operational and denotational semantics consistent with
each other?

Note that:

systems are actually described operationally

the denotational semantics is a more abstract representation
(more suitable for some reasoning on the system)

=⇒ the denotational semantics must be proven faithful
(in some sense) to the operational model to be of any use

Course 2 Denotational semantics Antoine Miné p. 53 / 79

Link between operational and denotational semantics

Transition systems for our non-deterministic language

Labelled syntax

`stat` ::= `skip`

| `X ← expr `

| `if expr then `stat else `stat`

| `while `expr do `stat`

| `stat; `stat`

` ∈ L: control labels

statements are decorated with unique control labels ` ∈ L
program configurations in Σ

def
= L × E

(lower-level than E: we must track program locations)

transition relation τ ⊆ Σ× Σ
models atomic execution steps

Course 2 Denotational semantics Antoine Miné p. 54 / 79

Link between operational and denotational semantics

Transition systems for our language

τ is defined by induction on the syntax of statements
(σ, σ′) ∈ τ is denoted as σ → σ′

τ [`1skip`2]
def
= { (`1, ρ)→ (`2, ρ) | ρ ∈ E }

τ [`1X ← e`2]
def
= { (`1, ρ)→ (`2, ρ[X 7→ v]) | ρ ∈ E, v ∈ EJ e K ρ }

τ [`1if e then `2s1 else `3s2
`4]

def
=

{ (`1, ρ)→ (`2, ρ) | ρ ∈ E, true ∈ EJ e K ρ } ∪
{ (`1, ρ)→ (`3, ρ) | ρ ∈ E, false ∈ EJ e K ρ } ∪
τ [`2s1

`4] ∪ τ [`3s2
`4]

τ [`1while `2e do `3s`4]
def
=

{ (`1, ρ)→ (`2, ρ) | ρ ∈ E } ∪
{ (`2, ρ)→ (`3, ρ) | ρ ∈ E, true ∈ EJ e K ρ } ∪
{ (`2, ρ)→ (`4, ρ) | ρ ∈ E, false ∈ EJ e K ρ } ∪ τ [`3s`2]

τ [`1s1; `2s2
`3]

def
= τ [`1s1

`2] ∪ τ [`2s2
`3]

Defines the small-step semantics of a statement

Course 2 Denotational semantics Antoine Miné p. 55 / 79

Link between operational and denotational semantics

Reminder: special states

Given a labelled statement `e s`x and its transition system,
we define:

initial states: I
def
= { (`e , ρ) | ρ ∈ E }

note that σ → σ′ =⇒ σ′ /∈ I

blocking states: B
def
= {σ ∈ Σ | ∀σ′: ∈ Σ, σ 6→ σ′ }

correct termination: OK
def
= { (`x , ρ) | ρ ∈ E }

note that OK ⊆ B

error: ERR
def
= { (`, ρ) | ` 6= `x , ρ ∈ E } ∩ B

B = ERR ∪ OK , ERR ∩ OK = ∅

Course 2 Denotational semantics Antoine Miné p. 56 / 79

Link between operational and denotational semantics

Reminder: maximal trace semantics

Trace: in Σ∞ (finite or infinite sequence of states)

starting in an initial state I

following transitions →
can only end in a blocking state B (traces are maximal)

i.e.: tJ s K = tJ s K ∗ ∪ tJ s K ω where

finite traces:

tJ s K ∗ def
= { (σ0, . . . , σn) | n ≥ 0, σ0 ∈ I , σn ∈ B,∀i < n:σi → σi+1 }

infinite traces:

tJ s K ω def
= { (σ0, . . .) |σ0 ∈ I ,∀i ∈ N:σi → σi+1 }

Course 2 Denotational semantics Antoine Miné p. 57 / 79

Link between operational and denotational semantics

Reminder: from traces to big-step semantics

Big-step semantics: abstraction of traces
only remembers the input-output relations

many variants exist:

“angelic” semantics, in P(Σ× Σ):
AJ s K def

= { (σ, σ′) | ∃(σ0, . . . , σn) ∈ tJ s K ∗:σ = σ0, σ
′ = σn }

(only give information on the terminating behaviors;
can only prove partial correctness)

natural semantics, in P(Σ× Σ⊥):
NJ s K def

= AJ s K ∪ { (σ,⊥) | ∃(σ0, . . .) ∈ tJ s K ω:σ = σ0 }
(models the terminating and non-terminating behaviors;
can prove total correctness)

“demoniac” semantics, in P(Σ× Σ):
DJ s K def

= AJ s K ∪ { (σ, σ′) | ∃(σ0, . . .) ∈ tJ s K ω:σ = σ0, σ
′ ∈ Σ }

(models non-termination as chaos;
cannot prove any property of possibly non-terminating executions)

Example: whileX > 0 doX ← X − [0, 1]

Course 2 Denotational semantics Antoine Miné p. 58 / 79

Link between operational and denotational semantics

From big-step to denotational semantics

The angelic denotational and big-step semantics are isomorphic

SJ s K = α(AJ s K) where

α(X)
def
= λR.{ ρ′ | ρ ∈ R, ((`e , ρ), (`x , ρ′)) ∈ X } (image of a relation)

α−1(Y) = { ((`e , ρ), (`x , ρ′)) | ρ ∈ E, ρ′ ∈ Y ({ρ}) }

Proof idea: by induction on the syntax of s (quite long)

=⇒ our operational and denotational semantics match

Also, the denotational semantics is an abstraction of the natural semantics

(it forgets about infinite computations)

Thesis

All semantics can be compared for equivalence or abstraction

this can be made formal in the abstract interpretation theory

(see [Cousot02])

Course 2 Denotational semantics Antoine Miné p. 59 / 79

Link between operational and denotational semantics

Semantic diagram

traces

transition system

(small step)

statement

natural

big stepdenotational

denotational

world world

operational

τ [s]

AJ s KSJ s K

tJ s K

NJ s K

α

Course 2 Denotational semantics Antoine Miné p. 60 / 79

Link between operational and denotational semantics

Fixpoint formulation

Recall that traces can be expressed as fixpoints:

tJ s K ∗ = (lfp F) ∩ (I Σ∞) (∩(I Σ∞) restricts to traces starting in I)

where F (X)
def
= B ∪ { (σ, σ0, . . . , σn) |σ → σ0 ∧ (σ0, . . . , σn) ∈ X }

tJ s K ω = (gfp F) ∩ (I Σ∞)

where F (X)
def
= { (σ, σ0, . . .) |σ → σ0 ∧ (σ0, . . .) ∈ X }

This also holds for the angelic denotational semantics:

SJ s K = α(lfp F) (α converts relations to functions)

where F (X)
def
= (B × B) ∪ { (σ, σ′′) | ∃σ′:σ → σ′ ∧ (σ′, σ′′) ∈ X }

and many others: natural, denotational, big-stem, denotational,. . .

Thesis

All semantics can be expressed through fixpoints

(again [Cousot02])

Course 2 Denotational semantics Antoine Miné p. 61 / 79

Higher-order programs

Higher-order programs

Course 2 Denotational semantics Antoine Miné p. 62 / 79

Higher-order programs

Monomorphic typed higher order language

PCF language (introduced by Scott in 1969)

type ::= int (integers)

| bool (booleans)

| type → type (functions)

term ::= X (variable X ∈ V)

| c (constant)

| λX type .term (abstraction)

| term term (application)

| Ytype term (recursion)

| Ωtype (failure)

PCF (programming computable functions) is a λ−calculus with:

a monomorphic type system (unlike ML)

explicit type annotations X type , Ytype , Ωtype (unlike ML)

an explicit recursion combiner Y (unlike untyped λ−calculus)

constants, including Z, B and a few built-in functions
(arithmetic and comparisons in Z, if-then-else, etc.)

Course 2 Denotational semantics Antoine Miné p. 63 / 79

Higher-order programs

Semantic domains

What should be the domain of TJ term K ?

Difficulty: term contains heterogeneous objects: constants,

functions, second order functions, etc.

Solution: use the type information

each term m can be given a type typ(m)
use one semantic domain Dt per type t

then TJm K : E → Dtyp(m) where E def
= V→ (∪t∈type Dt)

Domain definition by induction on the syntax of types

Dint
def
= Z⊥

Dbool
def
= B⊥

Dt1→t2

def
= (Dt1

c→ Dt2)⊥

Course 2 Denotational semantics Antoine Miné p. 64 / 79

Higher-order programs

Order on semantic domains

Order: all domains are cpos

Dint
def
= Z⊥, Dbool

def
= B⊥ use a flat ordering

Dt1→t2

def
= (Dt1

c→ Dt2)⊥

with order f v g ⇐⇒ f = ⊥ ∨ (f , g 6= ⊥ ∧ ∀x : f (x) v g(x))

Dt1

c→ Dt2 is ordered point-wise

each domain has its fresh minimal ⊥ element

(to distinguish Ωint→int from λX .intΩint)

we restrict → to continuous functions
(to be able to take fixpoints)

(see [Scott93])

Course 2 Denotational semantics Antoine Miné p. 65 / 79

Higher-order programs

Denotational semantics

Environments: E def
= V→ (∪t∈type Dt)

Semantics: TJm K : E → Dtyp(m)

TJX K ρ def
= ρ(X)

TJ c K ρ def
= c

TJλX t .m K ρ def
= λx .TJm K (ρ[X 7→ x])

TJm1 m2 K ρ
def
= (TJm1 K ρ)(TJm2 K ρ)

TJYt m K ρ def
= lfp (TJm K ρ)

TJΩt K ρ def
= ⊥t

program functions λ are mapped to mathematical functions λ

program recursion Y is mapped to fixpoints lfp

errors and non-termination are mapped to (typed) ⊥
we should prove that TJm K is indeed continuous (by induction) so that lfp
exists, and also that TJm1 K is indeed a function (by soundness of typing)

Course 2 Denotational semantics Antoine Miné p. 66 / 79

Higher-order programs

Operational semantics

Operational semantics: based on the λ−calculus

states are terms: Σ
def
= term

transition is reduction:
(λX t .m1) m2 → m1[X 7→ m2] (λ−reduction)

Ωt → Ωt (failure)

Yt m→ m (Yt m) (iteration)

plus c1 c2 → (c1 + c2) (arithmetic)

if true m1 m2 → m1 (if-then-else)

if false m1 m2 → m2 (if-then-else)

m1 → m′1
m1 m2 → m′1 m2

(context rule)

. . .

big-step semantics m ⇓: maximal reductions

m ⇓ = m′
def⇐⇒ m→∗ m′∧ 6 ∃m′′: m′ → m′′

(PCF is deterministic)

Course 2 Denotational semantics Antoine Miné p. 67 / 79

Higher-order programs

Links between operational and denotational semantics

How do we check that operational and denotational semantics match?

check that they have the same view of “semantically equal programs”

denotational way: we can use TJm1 K = TJm2 K

we need an operational way to compare functions
comparing the syntax is too fine grained,

Example: (λX int.0) 6= (λX int.minus 1 1), but they have the same denotation

Observational equivalence: observe terms in all contexts

contexts c: terms with holes �
c[m] term obtained by substituting m in hole

ground is the set of terms of type int or bool

term equivalence ≈:
m1 ≈ m2

def⇐⇒ (∀c: c[m1] ⇓ = c[m2] ⇓ when c[m1] ∈ ground)

(don’t look at a function’s syntax, force its full evaluation and look at the value result)

Course 2 Denotational semantics Antoine Miné p. 68 / 79

Higher-order programs

Full abstraction

Full abstraction: ∀m1,m2: m1 ≈ m2 ⇐⇒ TJm1 K = TJm2 K

Unexpected result: for PCF, ⇐ holds (adequacy), but not ⇒!

(full abstraction concept introduced by Milner in 1975, proof by Plotkin 1977)

Compare with: IMP, NIMP are fully abstract

∀s1, s2 ∈ stat: SJ s1 K = SJ s2 K ⇐⇒ ∀c: AJ c[s1] K = AJ c[s2] K

Intuitive explanation:

Domains such as Dt1→t2 contain many functions, most of them do not correspond to
any program (this is expected: many functions are not computable).

The problem is that, if m1,m2 have the form λX t1→t2 .m, TJm1 K = TJm2 K imposes
TJm1 K f = TJm2 K f for all f ∈ Dt1→t2 , including many f that are not computable.

It is actually possible to construct m1, m2 where TJm1 K f 6= TJm2 K f only for some
non-program functions f , so that m1 ≈ m2 actually holds

Two solutions come to mind:

enrich the language to express more functions in Dt1→t2

restrict Dt1→t2 to contain less non-program objects

Fruitful but complex research topic. . .

Course 2 Denotational semantics Antoine Miné p. 69 / 79

Higher-order programs

Full abstraction

Example: the parallel or function por

por(a)(b)
def
=


true if a = true ∨ b = true

false if a = false ∧ b = false

⊥ otherwise

por can observe a and b concurrently, and return as soon as one returns true

compare with sequential or , where ∀b: or(⊥)(b) = ⊥

We have the following non-obvious result:

por cannot be defined in PCF

(por is a parallel construct, PCF is a sequential language)

PCF+por is fully abstract

(see [Ong95], [Winskel97] for references on the subject)

Course 2 Denotational semantics Antoine Miné p. 70 / 79

Recursive domain equations

Recursive domain equations

Course 2 Denotational semantics Antoine Miné p. 71 / 79

Recursive domain equations

Untyped higher order language

λ−calculus (with arithmetic)

term ::= X (variable X ∈ V)

| c (constants)

| λX .term (abstraction)

| term term (application)

| Ω (failure)

we can write truly polymorphic functions:
e.g., λX .X

(in PCF we would have to choose a type: int→ int or bool→ bool or
(int→ int)→ (int→ int) or . . .)

no need for a recursion combinator Y
(we can define Y

def
= λF .(λX .F (X X))(λX .F (X X)), not typable in PCF)

operational semantics based on reduction similar to PCF

denotational semantics also similar to PCF, but. . .

Course 2 Denotational semantics Antoine Miné p. 72 / 79

Recursive domain equations

Domain equations

How to choose the domain of denotations TJm K ?

we need a unique domain D for all terms
(no type information to help us)

λX .X is a function
=⇒ it should have denotation in (X → Y)⊥ for some X ,Y ⊆ D

λX .X is polymorphic; it accepts any term as argument
=⇒ D ⊆ X ,Y

We have a domain equation to solve:

D ' (Z ∪ B ∪ (D → D))⊥

Problem: no solution in set theory
(D → D has a strictly larger cardinal than D)

Course 2 Denotational semantics Antoine Miné p. 73 / 79

Recursive domain equations

Inverse limits

Given a fixpoint domain equation D = F (D)
we construct an infinite sequence of domains:

D0
def
= {⊥}

Di+1
def
= F (Di)

We require the existence of continuous retractions:

γi : Di
c→ Di+1 (embedding)

αi : Di+1
c→ Di (projection)

αi ◦ γi = λx .x (Di ' a subset of Di+1)

γi ◦ αi v λx .x (Di+1 can be approximated by Di)

This is denoted: D0 −−−→←−−−
γ0

α0 D1 −−−→←−−−
γ1

α1 · · ·

Inverse limit: D∞
def
= { (a0, a1, . . .) | ∀i : ai ∈ Di ∧ ai = α(ai+1) }

(infinite sequences of elements; able to represent an element of any Di)

Course 2 Denotational semantics Antoine Miné p. 74 / 79

Recursive domain equations

Inverse limits

Inverse limits: D∞
def
= { (a0, a1, . . .) | ∀i : ai ∈ Di ∧ ai = α(ai+1) }

Theorem

D∞ is a cpo and F (D∞) is isomorphic to D∞

Application to λ−calculus

If we restrict ourself to continuous functions

retractions can be computed for F (D)
def
= (Z ∪ B ∪ (D c→ D))⊥

=⇒ we found our semantic domain!

(pioneered by [Scott-Strachey71], see [Abramsky-Jung94] for a reference)

Course 2 Denotational semantics Antoine Miné p. 75 / 79

Recursive domain equations

Restrictions of function spaces

The restriction to continuous functions seems merely technical
but there are some valid justification:

all the denotations in IMP, NIMP, PCF were continuous
(this appeared naturally, not as an a priori restriction)

intuitively, computable functions should at least be monotonic
recall that v is an information order

a function cannot give a more precise result with less information

e.g.: if f (a) = ⊥ for some a 6= ⊥, then f (⊥) = ⊥

continuity is also reasonable
given a problem on an infinite data set S

computers can only process finite parts Si of S

continuity ensures that the solution of S is contained in that of all Si

e.g.: if 0 v 1 v · · · v ω and ∀i < ω: f (i) = 0, then f (ω) should also be 0

Course 2 Denotational semantics Antoine Miné p. 76 / 79

Recursive domain equations

Data-types

Solution domains of recursive equations can also give the semantics of a
variety of inductive or polymorphic data-types

Examples:

integer lists:
D = ({empty} ∪ (Z×D))⊥

pairs:
D = (Z ∪ (D ×D))⊥
(allows arbitrary nested pairs, and also contains trees and lists)

records:
D = (Z ∪ (N→ D))⊥
(fields are named by integer position)

sum types:
D = (Z ∪ ({1} × D) ∪ ({2} × D))⊥
(we “tag” each case of the sum with an integer)

Course 2 Denotational semantics Antoine Miné p. 77 / 79

Recursive domain equations

Bibliography

Courses and references on denotational semantics:

[Benton96] P. N. Benton. Semantics of programming languages In University of
Cambridge, 1996.

[Winskel97] G. Winskel. Lecture notes on denotational semantics. In University of
Cambridge, 1997.

[Schmidt86] D. Schmidt. Denotational semantics. A methodology for language
development. In Allyn and Bacon, 1986.

[Abramsky-Jung94] S. Abramsky and A. Jung. Domain theory. In Handbook of Logic
in Computer Science, Clarendon Press, Oxford, 1994.

Course 2 Denotational semantics Antoine Miné p. 78 / 79

Recursive domain equations

Bibliography

Research articles and surveys:

[Scott-Strachey71] D. Scott and C. Strachey. Toward a mathematical semantics for
computer languages. In Oxford Programming Research Group Technical Monograph.
PRG-6. 1971.

[Scott93] D. Scott. A type-theoretical alternative to ISWIM, CUCH, OWHY. In TCS,
121(1–2):411–440, 1993.

[Cousot02] P. Cousot. Constructive design of a hierarchy of semantics of a transition
system by abstract interpretation. In TCS, 277(1–2):47–103, 2002.

[Ong95] C.-H. L. Ong. Correspondence between operational and denotational
semantics: the full abstraction problem for PCF In Oxford University, 1995.

Course 2 Denotational semantics Antoine Miné p. 79 / 79

	Deterministic imperative programs
	Errors
	Non-determinism
	Path semantics
	Modularity
	Link between operational and denotational semantics
	Higher-order programs
	Recursive domain equations

