Operational Semantics Semantics and applications to verification

Xavier Rival

École Normale Supérieure

Program of this first lecture

Operational semantics

Mathematical description of the execution of programs

- a model of programs: transition systems
 - definition, a small step semantics
 - a few common examples
- 2 trace semantics: a families of big step semantics
 - finite and infinite executions
 - fixpoint-based definitions
 - notion of compositional semantics

Outline

- 1 Transition systems and small step semantics
 - Definition and properties
 - Examples
- 2 Traces semantics
- Summary

Definition

We will characterize a program by:

- states: photography of the program status at an instant of the execution
- execution steps: how do we move from one state to the next one

Definition: transition systems (TS)

A transition system is a tuple $(\mathbb{S}, \rightarrow)$ where:

- S is the set of states of the system
- \bullet $\to \subseteq \mathcal{P}(\mathbb{S} \times \mathbb{S})$ is the transition relation of the system

Note:

• the set of states may be infinite

Transition systems: properties of the transition relation

A deterministic system is such that a state fully determines the next state

$$\forall s_0, s_1, s_1' \in \mathbb{S}, \ (s_0 \to s_1 \land s_0 \to s_1') \Longrightarrow s_1 = s_1'$$

Otherwise, a transition system is non deterministic, i.e.:

$$\exists s_0, s_1, s_1' \in \mathbb{S}, \ s_0 \rightarrow s_1 \land s_0 \rightarrow s_1' \land s_1 \neq s_1'$$

Notes:

- transition relation → defines atomic execution steps;
 it is often called small-step semantics or structured operational semantics
- steps are discrete (not continuous)
 to describe both discrete and continuous behaviors, we would need to look at hybrid systems (beyond the scope of this lecture)

Xavier Rival Operational Semantics 5 / 50

Transition systems: special states

Initial / **final** states:

we often consider transition systems with a set of initial and final states:

- a set of initial states $\mathbb{S}_{\mathcal{I}} \subseteq \mathbb{S}$ denotes states where the execution should start
- a set of final states $\mathbb{S}_{\mathcal{F}}\subseteq\mathbb{S}$ denotes states where the execution should reach the end of the program

When needed, we add these to the definition of the transition systems $((\mathbb{S}, \rightarrow, \mathbb{S}_{\mathcal{I}}, \mathbb{S}_{\mathcal{F}}).$

Blocking state (not the same as final state):

- a state $s_0 \in \mathbb{S}$ is **blocking** when it is the origin of no transition: $\forall s_1 \in \mathbb{S}, \ \neg(s_0 \to s_1)$
- example: we often introduce an error state (usually noted Ω to denote the erroneous, blocking configuration)

Xavier Rival Operational Semantics 6 / 50

Outline

- 1 Transition systems and small step semantics
 - Definition and properties
 - Examples
- 2 Traces semantics
- Summary

Finite automata as transition systems

We can clearly formalize the word recognition by a finite automaton using a transition system:

- ullet we consider automaton $\mathcal{A}=(\mathit{Q},\mathit{q}_{\mathrm{i}},\mathit{q}_{\mathrm{f}},
 ightarrow)$
- a "state" is defined by:
 - the remaining of the word to recognize
 - ▶ the automaton state that has been reached so far

thus,
$$\mathbb{S} = Q \times L^*$$

ullet the transition relation o of the transition system is defined by:

$$(q_0, aw) o (q_1, w) \iff q_0 \overset{\mathsf{a}}{ o} q_1$$

• the initial and final states are defined by:

$$\mathbb{S}_{\mathcal{I}} = \{ (q_{\mathbf{i}}, w) \mid w \in L^{\star} \}$$
 $\mathbb{S}_{\mathcal{F}} = \{ (q_{\mathbf{f}}, \epsilon) \}$

Pure λ -calculus

A bare bones model of functional programing:

λ -terms

The set of λ -terms is defined by:

$$t, u, \dots ::= x$$
 variable $\lambda x \cdot t$ abstraction $t u$ application

β -reduction

- $(\lambda x \cdot t) u \rightarrow_{\beta} t[x \leftarrow u]$
- if $u \to_{\beta} v$ then $\lambda x \cdot u \to_{\beta} \lambda x \cdot v$
- if $u \rightarrow_{\beta} v$ then $u t \rightarrow_{\beta} v t$
- if $u \rightarrow_{\beta} v$ then $t u \rightarrow_{\beta} t v$

The λ -calculus defines a transition system:

- $\mathbb S$ is the set of λ -terms and \to_{β} the transition relation
- \rightarrow_{β} is non-deterministic; example ? though, ML fixes an execution order
- ullet given a lambda term t_0 , we may consider $(\mathbb{S}, o_{eta}, \mathbb{S}_{\mathcal{I}})$ where $\mathbb{S}_{\mathcal{I}} = \{t_0\}$
- blocking states are terms with no redex $(\lambda x \cdot u) v$

A MIPS like assembly language: syntax

We now consider a (very simplified) assembly language

- machine integers: sequences of 32-bits (set: \mathbb{B}^{32})
- instructions are encoded over 32-bits (set: $\mathbb{I}_{\mathrm{MIPS}}$) and stored into the same space as data (i.e., $\mathbb{I}_{\mathrm{MIPS}} \subseteq \mathbb{B}^{32}$)

Memory configurations

- program counter pc current instruction
- general purpose registersr₀...r₃₁
- main memory (RAM) mem : Addrs $\rightarrow \mathbb{B}^{32}$ where Addrs $\subseteq \mathbb{B}^{32}$

Instructions

```
i ::= (\in \mathbb{I}_{\mathrm{MIPS}})
                 add r_d, r_{s0}, r_{s1}
                                                  addition
                                                   add. v \in \mathbb{B}^{32}
                 addi \mathbf{r}_d, \mathbf{r}_{s0}, v
                                                   subtraction
                 sub \mathbf{r}_d, \mathbf{r}_{s0}, \mathbf{r}_{s1}
                 b dst
                                                   branch
                                                   cond. branch
                 blt \mathbf{r}_{s0}, \mathbf{r}_{s1}, dst
                                                   relative load
                 Id \mathbf{r}_d, o, \mathbf{r}_x
                                                   relative store
                 st \mathbf{r}_d, o, \mathbf{r}_x
v, dst, o \in \mathbb{B}^{32}
```

A MIPS like assembly language: states

Definition: state

A state is a tuple (pc, ρ, μ) which comprises:

- a program counter value $pc \in \mathbb{B}^{32}$
- a function mapping each general purpose register to its value $\rho:\{0,\ldots,31\} o\mathbb{B}^{32}$
- ullet a function mapping each memory cell to its value $\mu: \mathbf{Addrs} o \mathbb{B}^{32}$

What would a dangerous state be?

- writing over an instruction
- reading or writing outside the program's memory
- ⇒ we cannot fully formalize these yet... as we need to formalize the behavior of each instruction first

Xavier Rival Operational Semantics 11 / 50

A MIPS like assembly language: transition relation

We assume a state $s = (pc, \rho, \mu)$ and that $\mu(pc) = i$; then:

• if $i = \text{add } r_d, r_{s0}, r_{s1}$, then:

$$s \rightarrow (\rho c + 4, \rho [d \mapsto (\rho(s0) + \rho(s1))], \mu)$$

• if $i = addi r_d, r_{s0}, v$, then:

$$s \rightarrow (pc + 4, \rho[d \mapsto (\rho(s0) + v)], \mu)$$

• if $i = \operatorname{sub} \mathbf{r}_d, \mathbf{r}_{s0}, \mathbf{r}_{s1}$, then:

$$s \rightarrow (\rho c + 4, \rho [d \mapsto (\rho(s0) - \rho(s1))], \mu)$$

• if $i = \mathbf{b} \ dst$, then:

$$s \rightarrow (dst, \rho, \mu)$$

A MIPS like assembly language: transition relation

We assume a state $s=(pc, \rho, \mu)$ and that $\mu(pc)=i$; then:

• if $i = \mathbf{blt} \; \mathbf{r}_{s0}, \mathbf{r}_{s1}, dst$, then:

$$s
ightarrow \left\{ egin{array}{ll} (extit{dst},
ho, \mu) & ext{if }
ho(extit{s0}) <
ho(extit{s1}) \ (extit{pc} + 4,
ho, \mu) & ext{otherwise} \end{array}
ight.$$

• if $i = \operatorname{Id} \mathbf{r}_d, o, \mathbf{r}_x$, then:

$$s \to \left\{ \begin{array}{ll} (\rho c + 4, \rho[d \mapsto \mu(\rho(x) + o)], \mu) & \text{if } \mu(\rho(x) + o) \text{ is defined} \\ \Omega & \text{otherwise} \end{array} \right.$$

• if $i = \operatorname{st} \mathbf{r}_d, o, \mathbf{r}_x$, then:

$$s \to \left\{ \begin{array}{ll} (\rho c + 4, \rho, \mu[\rho(x) + o) \mapsto \rho(d)]) & \text{if } \mu(\rho(x) + o) \text{ is defined} \\ \Omega & \text{otherwise} \end{array} \right.$$

Xavier Rival Operational Semantics 13 / 50

A simple imperative language: syntax

We now look at a more classical **imperative language** (intuitively, a bare-bone subset of C):

- variables X: finite, predefined set of variables
- ullet labels \mathbb{L} : before and after each statement
- values \mathbb{V} : $\mathbb{V}_{\mathrm{int}} \cup \mathbb{V}_{\mathrm{float}} \cup \dots$

Syntax

```
\begin{array}{lll} e & ::= & v \in \mathbb{V}_{\mathrm{int}} \cup \mathbb{V}_{\mathrm{float}} \cup \ldots \mid e+e \mid e*e \mid \ldots & \mathrm{expressions} \\ c & ::= & \mathsf{TRUE} \mid \mathsf{FALSE} \mid e < e \mid e = e & \mathsf{conditions} \\ i & ::= & x := e; & \mathsf{assignment} \\ & \mid & \mathsf{if}(c) \ b \ \mathsf{else} \ b & \mathsf{condition} \\ & \mid & \mathsf{while}(c) \ b & \mathsf{loop} \\ b & ::= & \{i; \ldots; i; \} & \mathsf{block}, \ \mathsf{program}(\mathbb{P}) \end{array}
```

Xavier Rival Operational Semantics 14 / 50

A simple imperative language: states

A **non-error state** should fully describe the configuration at one instant of the program execution:

• the memory state defines the current contents of the memory

$$m \in \mathbb{M} = \mathbb{X} \longrightarrow \mathbb{V}$$

- the control state defines where the program currently is
 - analoguous to the program counter
 - ▶ can be defined by adding labels $\mathbb{L} = \{l_0, l_1, \ldots\}$ between each pair of consecutive statements; then:

$$\mathbb{S} = \mathbb{L} \times \mathbb{M} \uplus \{\Omega\}$$

or by the program remaining to be executed; then:

$$\mathbb{S} = \mathbb{P} \times \mathbb{M} \uplus \{\Omega\}$$

A simple imperative language: semantics of expressions

- The semantics [e] of expression e should evaluate each expression into a value, given a memory state
- Evaluation errors may occur: division by zero... error value is also noted Ω

Thus: $\llbracket e \rrbracket : \mathbb{M} \longrightarrow \mathbb{V} \uplus \{\Omega\}$

Definition, by induction over the syntax:

where $\underline{\oplus}$ is the machine implementation of operator \oplus , and is Ω -strict, i.e., $\forall v \in \mathbb{V}, \ v \oplus \Omega = \Omega \oplus v = \Omega$.

Xavier Rival Operational Semantics 16 / 50

A simple imperative language: semantics of conditions

- The semantics [c] of condition c should return a boolean value
- It follows a similar definition to that of the semantics of expressions: $[c]: \mathbb{M} \longrightarrow \mathbb{V}_{bool} \uplus \{\Omega\}$

Definition, by induction over the syntax:

Xavier Rival Operational Semantics 17 / 50

A simple imperative language: transitions

We now consider the transition induced by each statement.

Case of assignment $l_0: x = e$; l_1

- if $\llbracket \mathbf{e} \rrbracket(m) \neq \Omega$, then $(l_0, m) \rightarrow (l_1, m[\mathbf{x} \leftarrow \llbracket \mathbf{e} \rrbracket(m)])$
- if $[e](m) = \Omega$, then $(l_0, m) \rightarrow \Omega$

Case of condition $l_0 : if(c)\{l_1 : b_t l_2\}$ else $\{l_3 : b_f l_4\} l_5$

- if [c](m) = TRUE, then $(l_0, m) \rightarrow (l_1, m)$
- if [c](m) = FALSE, then $(l_0, m) \rightarrow (l_3, m)$
- if $\llbracket c \rrbracket(m) = \Omega$, then $(l_0, m) \to \Omega$
- $\bullet \ (\mathit{l}_{2},\mathit{m}) \rightarrow (\mathit{l}_{5},\mathit{m})$
- \bullet $(l_4, m) \rightarrow (l_5, m)$

A simple imperative language: transitions

Case of loop l_0 : while $(c)\{l_1:b_t\ l_2\}\ l_3$ • if [c](m)= TRUE, then $\{(l_0,m)\to (l_1,m)\ (l_2,m)\to (l_1,m)\}$ • if [c](m)= FALSE, then $\{(l_0,m)\to (l_3,m)\ (l_2,m)\to (l_3,m)\}$ • if $[c](m)=\Omega$, then $\{(l_0,m)\to\Omega\ (l_2,m)\to\Omega$

Case of $\{l_0 : i_0; l_1 : ...; l_{n-1}i_{n-1}; l_n\}$

• the transition relation is defined by the individual instructions

Extending the language with non-determinism

The language we have considered so far is a bit **limited**:

- it is deterministic: at most one transition possible from any state
- it does not support the input of values

Changes if we model non deterministic inputs...

... with an input instruction:

- i ::= ... | x := input()
- \$\ell_0: x := input(); \ell_1 generates transitions

$$\forall v \in \mathbb{V}, (l_0, m) \rightarrow (l_1, m[x \leftarrow v])$$

one instruction induces non determinism

... with a random function:

- e ::= ... | x := rand()
- expressions have a non-deterministic semantics:

$$\begin{split} \llbracket \mathbf{e} \rrbracket : \mathbb{M} &\to \mathcal{P} (\mathbb{V} \uplus \{\Omega\}) \\ & \llbracket \mathsf{rand}() \rrbracket (m) = \mathbb{V} \\ & \llbracket \mathbf{v} \rrbracket (m) = \{\mathbf{v}\} \\ & \llbracket \mathbf{c} \rrbracket : \mathbb{M} &\to \mathcal{P} (\mathbb{V}_{\mathrm{bool}} \uplus \{\Omega\}) \end{split}$$

all instructions induce non determinism

Semantics of real world programming languages

C language:

- several norms: ANSI C'99, ANSI C'11, K&R...
- not fully specified:
 - undefined behavior
 - implementation dependent behavior: architecture (ABI) or implementation (compiler...)
 - unspecified parts: leave room for implementation of compilers and optimizations
- formalizations in HOL (C'99), in Coq (CompCert C compiler)

OCaml language:

- more formal...
- ... but still with some unspecified parts, e.g., execution order

Xavier Rival Operational Semantics 21 / 50

Outline

- Transition systems and small step semantics
- Traces semantics
 - Definitions
 - Finite traces semantics
 - Fixpoint definition
 - Compositionality
 - Infinite traces semantics
- Summary

Execution traces

- So far, we considered only states and atomic transitions
- We now consider program executions as a whole

Definition: traces

- A finite trace is a finite sequence of states s_0, \ldots, s_n , noted $\langle s_0, \ldots, s_n \rangle$
- An **infinite trace** is an infinite sequence of states $\langle s_0, \ldots \rangle$

Besides, we write:

- S* for the set of finite traces
- \mathbb{S}^{ω} for the set of infinite traces
- $\mathbb{S}^{\infty} = \mathbb{S}^{*} \cup \mathbb{S}^{\omega}$ for the set of finite or infinite traces

Operations on traces: concatenation

Definition: concatenation

The concatenation operator · is defined by:

$$\langle s_0, \dots, s_n \rangle \cdot \langle s'_0, \dots, s'_{n'} \rangle = \langle s_0, \dots, s_n, s'_0, \dots, s'_{n'} \rangle$$

$$\langle s_0, \dots, s_n \rangle \cdot \langle s'_0, \dots \rangle = \langle s_0, \dots, s_n, s'_0, \dots \rangle$$

$$\langle s_0, \dots, s_n, \dots \rangle \cdot \sigma' = \langle s_0, \dots, s_n, \dots \rangle$$

We also define:

- the empty trace ϵ , neutral element for \cdot
- the length operator |.|:

$$\begin{cases}
|\epsilon| &= 0 \\
|\langle s_0, \dots, s_n \rangle| &= n+1 \\
|\langle s_0, \dots \rangle| &= \omega
\end{cases}$$

Comparing traces: the prefix order relation

Definition: prefix order relation

Relation \prec is defined by:

$$\langle s_0, \dots, s_n \rangle \prec \langle s'_0, \dots, s'_{n'} \rangle \iff \begin{cases} n \leq n' \\ \forall i \in \llbracket 0, n \rrbracket, s_i = s'_i \end{cases}$$
$$\langle s_0, \dots \rangle \prec \langle s'_0, \dots \rangle \iff \forall i \in \llbracket 0, n \rrbracket, s_i = s'_i$$
$$\langle s_0, \dots, s_n \rangle \prec \langle s'_0, \dots \rangle \iff \forall i \in \llbracket 0, n \rrbracket, s_i = s'_i \end{cases}$$

Proof: straightforward application of the definition of order relations

Outline

- 1 Transition systems and small step semantics
- Traces semantics
 - Definitions
 - Finite traces semantics
 - Fixpoint definition
 - Compositionality
 - Infinite traces semantics
- Summary

Semantics of finite traces

We consider a transition system $\mathcal{S} = (\mathbb{S}, \rightarrow)$

Definition

The finite traces semantics $[S]^*$ is defined by:

$$[\![S]\!]^* = \{\langle s_0, \ldots, s_n \rangle \in \mathbb{S}^* \mid \forall i, s_i \to s_{i+1}\}$$

Example:

- contrived transition system $S = (\{a, b, c, d\}, \{(a, b), (b, a), (b, c)\})$
- finite traces semantics:

Interesting subsets of the finite trace semantics

We consider a transition system $S = (S, \rightarrow, S_{\mathcal{I}}, S_{\mathcal{F}})$

• the initial traces, i.e., starting from an initial state:

$$\{\langle s_0,\ldots,s_n\rangle\in \llbracket\mathcal{S}\rrbracket^\star\mid s_0\in\mathbb{S}_\mathcal{I}\}$$

• the traces reaching a blocking state:

$$\{\sigma \in [\![\mathcal{S}]\!]^* \mid \forall \sigma' \in [\![\mathcal{S}]\!]^*, \sigma \prec \sigma' \Longrightarrow \sigma = \sigma'\}$$

• the traces ending in a final state:

$$\{\langle s_0,\ldots,s_n\rangle\in [\![\mathcal{S}]\!]^{\star}\mid s_n\in\mathbb{S}_{\mathcal{F}}\}$$

Example (same transition system, with $\mathbb{S}_{\mathcal{I}} = \{a\}$ and $\mathbb{S}_{\mathcal{F}} = \{c\}$):

• traces from an initial state ending in a final state:

$$\{\langle a, b, \ldots, a, b, a, b, c \rangle\}$$

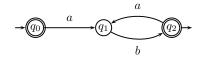
Example: finite automaton

We consider the example of the previous course:

$$L = \{a, b\} \qquad Q = \{q_0, q_1, q_2\}$$

$$q_i = q_0 \qquad q_f = q_2$$

$$q_0 \stackrel{a}{\rightarrow} q_1 \qquad q_1 \stackrel{b}{\rightarrow} q_2 \qquad q_2 \stackrel{a}{\rightarrow} q_1$$



Then, we have the following traces:

$$\tau_{0} = \langle (q_{0}, ab), (q_{1}, b), (q_{2}, \epsilon) \rangle
\tau_{1} = \langle (q_{0}, abab), (q_{1}, bab), (q_{2}, ab), (q_{1}, b), (q_{2}, \epsilon) \rangle
\tau_{2} = \langle (q_{0}, ababab), (q_{1}, babab), (q_{2}, abab), (q_{1}, bab) \rangle
\tau_{3} = \langle (q_{0}, abaaa), (q_{1}, baaa), (q_{2}, aaa), (q_{1}, aa) \rangle$$

Then:

- τ_0, τ_1 are initial traces, reaching a final state
- τ_2 is an initial trace, and is not maximal
- \bullet τ_3 reaches a blocking state, but not a final state

Example: λ -term

We consider λ -term $\lambda y \cdot ((\lambda x \cdot y)((\lambda x \cdot x \cdot x)(\lambda x \cdot x \cdot x)))$, and show two traces generated from it (at each step the reduced lambda is shown in red):

$$\tau_{0} = \langle \lambda y \cdot ((\lambda x \cdot y)((\lambda x \cdot x \cdot x)(\lambda x \cdot x \cdot x))) \\ \lambda y \cdot y \rangle$$

$$\tau_{1} = \langle \lambda y \cdot ((\lambda x \cdot y)((\lambda x \cdot x \cdot x)(\lambda x \cdot x \cdot x))) \\ \lambda y \cdot ((\lambda x \cdot y)((\lambda x \cdot x \cdot x)(\lambda x \cdot x \cdot x))) \\ \lambda y \cdot ((\lambda x \cdot y)((\lambda x \cdot x \cdot x)(\lambda x \cdot x \cdot x))) \rangle$$

Then:

- \bullet au_0 is a maximal traces; it reaches a final state (no more reduction can be done)
- τ_1 can be extended for arbitrarily many steps; the second part of the course will study infinite traces

Example: imperative program

Similarly, we can write the traces of a simple imperative program:

- very precise description of what the program does...
- ... but quite cumbersome

Outline

- 1 Transition systems and small step semantics
- Traces semantics
 - Definitions
 - Finite traces semantics
 - Fixpoint definition
 - Compositionality
 - Infinite traces semantics
- Summary

Towards a fixpoint definition

We consider again our contrived transition system

$$S = (\{a, b, c, d\}, \{(a, b), (b, a), (b, c)\})$$

Traces by length:

i	traces of length <i>i</i>
0	ϵ
1	$\langle a \rangle, \langle b \rangle, \langle c \rangle, \langle d \rangle$
2	$\langle a,b \rangle, \langle b,a \rangle, \langle b,c \rangle$
3	$\langle a, b, a \rangle, \langle b, a, b \rangle, \langle a, b, c \rangle$
4	$\langle a, b, a, b \rangle, \langle b, a, b, a \rangle, \langle b, a, b, c \rangle$

Like the automaton in lecture 1, this suggests a least fixpoint definition: traces of length i + 1 can be derived from the traces of length i, by adding a transition

Trace semantics fixpoint form

We define a semantic function, that computes the traces of length i+1 from the traces of length i (where $i \ge 1$):

Finite traces semantics as a fixpoint

Let $\mathcal{I} = \{\epsilon\} \uplus \{\langle s \rangle \mid s \in \mathbb{S}\}.$

Let F_{\star} be the function defined by:

$$F_{\star}: \mathcal{P}(\mathbb{S}^{\star}) \longrightarrow \mathcal{P}(\mathbb{S}^{\star})$$

$$X \longmapsto X \cup \{\langle s_0, \dots, s_n, s_{n+1} \rangle \mid \langle s_0, \dots, s_n \rangle \in X \land s_n \to s_{n+1} \}$$

Then, F_{\star} is continuous and thus has a least-fixpoint greater than \mathcal{I} ; moreover:

$$\mathsf{lfp}_{\mathcal{I}} F_\star = \llbracket \mathcal{S}
rbracket^\star = igcup_{n \in \mathbb{N}} F_\star^n(\mathcal{I})$$

Fixpoint definition: proof (1), fixpoint existence

First, we prove that F_{\star} is **continuous**.

Let $\mathcal{X} \subseteq \mathcal{P}(\mathbb{S}^*)$ and $A = \bigcup_{X \in \mathcal{X}} X$. Then:

$$F_{\star}(\bigcup_{X \in \mathcal{X}} X)$$

$$= A \cup \{\langle s_{0}, \dots, s_{n}, s_{n+1} \rangle \mid (\langle s_{0}, \dots, s_{n} \rangle \in \bigcup_{X \in \mathcal{X}} X) \land s_{n} \rightarrow s_{n+1} \}$$

$$= A \cup \{\langle s_{0}, \dots, s_{n}, s_{n+1} \rangle \mid (\exists X \in \mathcal{X}, \langle s_{0}, \dots, s_{n} \rangle \in X) \land s_{n} \rightarrow s_{n+1} \}$$

$$= A \cup \{\langle s_{0}, \dots, s_{n}, s_{n+1} \rangle \mid \exists X \in \mathcal{X}, \langle s_{0}, \dots, s_{n} \rangle \in X \land s_{n} \rightarrow s_{n+1} \}$$

$$= (\bigcup_{X \in \mathcal{X}} X) \cup (\bigcup_{X \in \mathcal{X}} \{\langle s_{0}, \dots, s_{n}, s_{n+1} \rangle \mid \langle s_{0}, \dots, s_{n} \rangle \in X \land s_{n} \rightarrow s_{n+1} \})$$

$$= \bigcup_{X \in \mathcal{X}} (X \cup \{\langle s_{0}, \dots, s_{n}, s_{n+1} \rangle \mid \langle s_{0}, \dots, s_{n} \rangle \in X \land s_{n} \rightarrow s_{n+1} \})$$

$$= \bigcup_{X \in \mathcal{X}} F_{\star}(X)$$

Function F_{\star} is \cup -complete, hence continuous.

As $(\mathcal{P}(\mathbb{S}^*), \subseteq)$ is a CPO, the continuity of F_* entails the existence of a least-fixpoint (Kleene theorem); moreover, it implies that:

$$\mathsf{Ifp}_{\mathcal{I}}F_{\star} = \bigcup_{n \in \mathbb{N}} F_{\star}^{n}(\mathcal{I})$$

Xavier Rival **Operational Semantics** 35 / 50

Fixpoint definition: proof (2), fixpoint equality

We now show that $[S]^*$ is equal to $fp_T F_*$, by showing the property below, by induction over *n*:

$$\forall k \leq n, \ \langle s_0, \ldots, s_k \rangle \in F_{\star}^n(\mathcal{I}) \iff \langle s_0, \ldots, s_k \rangle \in [\![S]\!]^{\star}$$

• at rank 0, only traces of length 1 need be considered:

$$\langle s \rangle \in [\![\mathcal{S}]\!]^\star \quad \Longleftrightarrow \quad s \in \mathbb{S} \\ \quad \Longleftrightarrow \quad \langle s \rangle \in F^0_\star(\mathcal{I})$$

• at rank n+1, and assuming the property holds at rank n (the equivalence is obvious for traces of length 1):

Trace semantics fixpoint form: example

Example, with the same simple transition system $\mathcal{S} = (\mathbb{S}, \rightarrow)$:

- $S = \{a, b, c, d\}$
- ullet o is defined by a o b, b o a and b o c

Then, the first iterates are:

$$\begin{array}{lll} F^0_\star(\mathcal{I}) &=& \{\epsilon,\langle a\rangle,\langle b\rangle,\langle c\rangle,\langle d\rangle\} \\ F^1_\star(\mathcal{I}) &=& F^0_\star(\mathcal{I}) \cup \{\langle b,a\rangle,\langle a,b\rangle,\langle b,c\rangle\} \\ F^2_\star(\mathcal{I}) &=& F^1_\star(\mathcal{I}) \cup \{\langle a,b,a\rangle,\langle b,a,b\rangle,\langle a,b,c\rangle\} \\ F^3_\star(\mathcal{I}) &=& F^2_\star(\mathcal{I}) \cup \{\langle b,a,b,a\rangle,\langle a,b,a,b\rangle,\langle b,a,b,c\rangle\} \\ F^4_\star(\mathcal{I}) &=& F^3_\star(\mathcal{I}) \cup \{\langle a,b,a,b,a\rangle,\langle b,a,b,a,b\rangle,\langle a,b,a,b,c\rangle\} \\ F^5_\star(\mathcal{I}) &=& \dots \end{array}$$

• the traces of $[S]^*$ of length n+1 appear in $F_*^n(\mathcal{I})$

Outline

- 1 Transition systems and small step semantics
- Traces semantics
 - Definitions
 - Finite traces semantics
 - Fixpoint definition
 - Compositionality
 - Infinite traces semantics
- 3 Summary

Notion of compositional semantics

The traces semantics definition we have seen is global:

- the whole system defines a transition relation
- we iterate this relation until we get a fixpoint

Though, a modular definition would be nicer, to allow reasoning on program fragments, or derive properties of a program from properties of its pieces...

Can we derive a more modular expression of the semantics?

Notion of compositional semantics

Observation: programs often have an inductive structure

- λ -terms are defined by induction over the syntax
- imperative programs are defined by induction over the syntax
- there are exceptions: our MIPS language does not naturally look that way

Definition: compositional semantics

A semantics [.] is said to be **compositional** when the semantics of a program can be defined as a function of the semantics of its parts, i.e., When program π writes down as $C[\pi_0, \ldots, \pi_k]$ where π_0, \ldots, π_k are its components, there exists a function F_C such that $\llbracket \pi \rrbracket = F_C(\llbracket \pi_0 \rrbracket, \dots, \llbracket \pi_k \rrbracket)$, where F_C depends only on syntactic construction F_C .

Case of a simplified imperative language

Case of a sequence of two instructions $b \equiv l_0 : i_0; l_1 : i_1; l_2$:

This amounts to concatenating traces of $[i_0]^*$ and $[i_1]^*$ that share a state in common (necessarily at point ℓ_1).

Cases of a condition, a loop: similar

- by concatenation of traces around junction points
- by doing a least-fixpoint computation over loops

We can provide a compositional semantics for our simplified imperative language

Case of a λ -term $t = (\lambda x \cdot u) v$:

- executions may start with a reduction in u
- \bullet executions may start with a reduction in v
- executions may start with the reduction of the head redex
- ullet an execution may mix reductions steps in u and v in an arbitrary order

No nice compositional trace semantics of λ -calculus...

Outline

- Transition systems and small step semantics
- Traces semantics
 - Definitions
 - Finite traces semantics
 - Fixpoint definition
 - CompositionalityInfinite traces semantics
- Infinite traces semantics
- Summary

Non termination

Can the finite traces semantics express non termination?

Consider the case of our contrived system:

$$S = \{a, b, c, d\}$$
 $(\rightarrow) = \{(a, b), (b, a), (b, c)\}$

- this system clearly has non-terminating behaviors: it can loop from a to b and back forever
- the finite traces semantics does show the existence of this cycle as there exists an infinite chain of finite traces for the prefix order ≺:

$$\langle a, b \rangle, \langle a, b, a \rangle, \langle a, b, a, b \rangle, \langle a, b, a, b, a \rangle, \ldots \in [S]^*$$

• though, the existence of this chain is not very obvious

Thus, we now define a semantics made of infinite traces

Semantics of infinite traces

We consider a transition system $\mathcal{S} = (\mathbb{S}, \rightarrow)$

Definition

The infinite traces semantics $[S]^{\omega}$ is defined by:

$$[\![S]\!]^{\omega} = \{\langle s_0, \ldots \rangle \in \mathbb{S}^{\omega} \mid \forall i, \, s_i \to s_{i+1}\}$$

Infinite traces starting from an initial state (considering $S = (S, \rightarrow, S_T, S_T)$):

$$\{\langle s_0,\ldots\rangle\in \llbracket\mathcal{S}\rrbracket^\omega\mid s_0\in\mathbb{S}_\mathcal{I}\}$$

Example:

contrived transition system defined by

$$S = \{a, b, c, d\}$$
 $(\rightarrow) = \{(a, b), (b, a), (b, c)\}$

the infinite traces semantics contains exactly two traces

$$\llbracket \mathcal{S} \rrbracket^{\omega} = \{ \langle a, b, \dots, a, b, a, b, \dots \rangle, \langle b, a, \dots, b, a, b, a, \dots \rangle \}$$

Fixpoint form

Can we also provide a fixpoint form for $[S]^{\omega}$?

Intuitively, $\langle s_0, s_1, \ldots \rangle \in [\![S]\!]^\omega$ if and only if $\forall n, s_n \to s_{n+1}$, i.e.,

$$\forall n \in \mathbb{N}, \ \forall k \leq n, \ s_k \to s_{k+1}$$

Let F_{ω} be defined by:

$$\begin{array}{ccc} F_{\omega}: & \mathcal{P}(\mathbb{S}^{\omega}) & \longrightarrow & \mathcal{P}(\mathbb{S}^{\omega}) \\ & X & \longmapsto & \{\langle s_0, s_1, \dots, s_n, \dots \rangle \mid \langle s_1, \dots, s_n, \dots \rangle \in X \land s_0 \to s_1\} \end{array}$$

Then, we can show by induction that:

$$\sigma \in \llbracket \mathcal{S} \rrbracket^{\omega} \iff \forall n \in \mathbb{N}, \ \sigma \in F_{\omega}^{n}(\mathbb{S}^{\omega}) \\ \iff \bigcap_{n \in \mathbb{N}} F_{\omega}^{n}(\mathbb{S}^{\omega})$$

Fixpoint form of the semantics of infinite traces

Infinite traces semantics as a fixpoint

Let F_{ω} be the function defined by:

$$\begin{array}{ccc} F_{\omega}: & \mathcal{P}(\mathbb{S}^{\omega}) & \longrightarrow & \mathcal{P}(\mathbb{S}^{\omega}) \\ & X & \longmapsto & \{\langle s_0, s_1, \dots, s_n, \dots \rangle \mid \langle s_1, \dots, s_n, \dots \rangle \in X \land s_0 \to s_1\} \end{array}$$

Then, F_{ω} is \cap -continuous and thus has a greatest-fixpoint; moreover:

$$\mathsf{gfp}_{\mathbb{S}^\omega} F_\omega = \llbracket \mathcal{S}
rbracket^\omega = \bigcap_{n \in \mathbb{N}} F_\omega^n(\mathbb{S}^\omega)$$

Proof sketch:

- the \cap -continuity proof is similar as for the \cup -continuity of F_*
- by the dual version of Kleene's theorem, $\mathbf{gfp}_{\mathbb{S}^{\omega}}F_{\omega}$ exists and is equal to $\bigcap_{n\in\mathbb{N}} F_{\omega}^{n}(\mathbb{S}^{\omega})$, i.e. to $[S]^{\omega}$ (similar induction proof)

Fixpoint form of the infinite traces semantics: iterates

Example, with the same simple transition system:

- $S = \{a, b, c, d\}$
- \bullet \to is defined by $a \to b$, $b \to a$ and $b \to c$

Then, the first iterates are:

$$\begin{array}{lll} F^{0}_{\omega}(\mathbb{S}^{\omega}) & = & \mathbb{S}^{\omega} \\ F^{1}_{\omega}(\mathbb{S}^{\omega}) & = & \langle a,b\rangle \cdot \mathbb{S}^{\omega} \cup \langle b,a\rangle \cdot \mathbb{S}^{\omega} \cup \langle b,c\rangle \cdot \mathbb{S}^{\omega} \\ F^{2}_{\omega}(\mathbb{S}^{\omega}) & = & \langle b,a,b\rangle \cdot \mathbb{S}^{\omega} \cup \langle a,b,a\rangle \cdot \mathbb{S}^{\omega} \cup \langle a,b,c\rangle \cdot \mathbb{S}^{\omega} \\ F^{3}_{\omega}(\mathbb{S}^{\omega}) & = & \langle a,b,a,b\rangle \cdot \mathbb{S}^{\omega} \cup \langle b,a,b,a\rangle \cdot \mathbb{S}^{\omega} \cup \langle b,a,b,c\rangle \cdot \mathbb{S}^{\omega} \\ F^{4}_{\omega}(\mathbb{S}^{\omega}) & = & \dots \end{array}$$

Intuition

- at iterate n, prefixes of length n+1 match the traces in the infinite semantics
- only $\langle a, b, \ldots, a, b, a, b, \ldots \rangle$ and $\langle b, a, \ldots, b, a, b, a, \ldots \rangle$ belong to all iterates

Outline

- 1 Transition systems and small step semantics
- 2 Traces semantics
- **3** Summary

Summary

We have discussed:

- small-step / structural operational semantics: individual program steps
- big-step / natural semantics: program executions as sequences of transitions
- their fixpoint definitions and properties

Next lectures:

- another family of semantics, more compact and compositional
- semantic program and proof methods