
Softw Syst Model manuscript No.
(will be inserted by the editor)

Static Analysis by Abstract Interpretation of Embedded
Critical Software

Julien Bertrane · Patrick Cousot · Radhia Cousot · Jérôme Feret ·
Laurent Mauborgne · Antoine Miné · Xavier Rival

Received: date / Revised version: date

Abstract Formal methods are increasingly used to en-

sure the correctness of complex critical embedded soft-

ware systems. We show how sound semantic static anal-

yses based on Abstract Interpretation may be used to

check properties at various levels of a software design:

from high level models to low level binary code. After a

short introduction to the Abstract Interpretation the-

ory, we present a few current applications: checking for

run-time errors in synchronous and parallel embedded

applications at the C level, translation validation from

C to assembly, and analyzing SAO models of communi-

cating synchronous systems with imperfect clocks. We

conclude by briefly proposing some requirements to ap-

ply Abstract Interpretation to modeling languages such

as UML.

keywords: Abstract interpretation, Critical software,
Embedded systems, Static analysis, System design, Sys-

tem modeling, System verification.

1 Introduction

Ensuring the correctness of software systems consti-

tutes a large part of software development budgets. It is

Julien Bertrane · Patrick Cousot · Radhia Cousot · Jérôme
Feret · Antoine Miné · Xavier Rival
Équipe CNRS-ENS-INRIA Sémantique et Interprétation
Abstraite. Département d’informatique, École normale
supérieure, 45 rue d’Ulm, F-75230 Paris Cedex 05, France.
E-mail: firstname.lastname@ens.fr

Laurent Mauborgne
Fundación IMDEA Software Facultad de Informática (UPM),
office 3312, Campus Montegancedo 28660-Boadilla del Monte,
Madrid, Spain. E-mail: laurent.mauborgne@imdea.org

Patrick Cousot
Courant Institute of Mathematical Sciences, New York Uni-
versity, 251 Mercer Street, New York, N.Y., USA.

a
V

i
d

t

i
o
n

a

l

S
A
O

B

N
I

code

execution

generation

compilation

C

test

translation

validation

modeling

static analysis

static analysis

static analysis

Fig. 1 Example workflow for designing an embedded appli-
cation.

particularly important for critical embedded systems,

such as found in automotive, aerospace, and medical

applications, as the slightest programming “bug” may

have a catastrophic financial and even human cost. In

this article, we build a case for using static analysis

based on Abstract Interpretation to help ensuring soft-

ware correctness.

We illustrate a possible use for static analysis in

Fig. 1. In this drastically simplified workflow inspired

from a real industrial case [41], an engineer (not neces-

sarily a programmer) models a control system using the

SAO graphical language, a precursor and similar tool as

2 Julien Bertrane et al.

j

Switch

-

a b

i

z-1
Unit delay

z-1

B

+
++

t

x(n)

Unit delay

Switch

Switch

Fig. 2 A second-order digital filter specified in Simulink.

SCADE [20] — a Simulink
TM

fragment similar to SAO

is also shown in Fig. 2. It is then automatically trans-

lated to the C programming language and then com-

piled to produce the actual binary software executed by

the device. Validation includes testing, which requires

executing (part of) the binary with some monitoring

and is able to check a wide range of properties (includ-

ing functional ones) but is costly and never achieves

a full coverage of all possible executions (path- and

data-coverage). Formal methods can also be employed.

In particular, semantic-based static analysis, which al-

ways terminates and covers all executions, albeit in an

over-approximated way. For example it can detect dead

code (never executed) or dead data structures (con-

structed but never used) but cannot always prove their

absence. As another example, it can prove that some

code is free from arithmetic and memory overflow er-

rors, but cannot always prove their presence (reported

alarms may be actual errors or spurious alarms due to

over-approximation). Static analysis can be applied at

many levels: machine-readable specification, program

source, or binary. The higher level the better, as it pro-

vides purer information to the tool and its feedback

is easier to understand and act upon for the designer.

However, higher levels abstract away some aspects of

computations, which makes it impossible to check some

properties of actual executions. For instance, SAO and

SCADE have real arithmetics and do not specify how

actual numerical computations are performed nor the

type of numbers, so that a static analysis of numeric

overflows (as done by Astrée [1,17,9], Sec. 3) or of

the precision of floating-point computations (as done

by Fluctuat [24]) must be done at the C level or below

— a static analysis of real expressions at the SCADE

level may however be used to determine its numerically

most precise float compilation to C [29]. Likewise, nei-

ther SAO nor C make any guarantee about the worst-

case execution time, so, such an analysis (as done by

AbsInt’s aiT [26]) is done at the binary level and for

a specific processor. Nevertheless, some properties can

only be checked at the model level. For instance, a SAO

model can be enriched with non-software elements, such

as real-time clocks and communication lines with de-

lays, to enable a static analysis taking physical time

into account (Sec. 6). Finally, static analysis can also

improve the confidence in compilers and code genera-

tors: translation validation (Sec. 5) can check whether

the source and binary are equivalent, at least with re-

spect to a class of properties, so that the analysis for

such properties at a higher level needs not be redone at

the lowest level (which is often more difficult).

Ideally, a static analyzer should extract automati-

cally precise properties from a complete mathematical

specification of the analyzed system. Most properties

are however undecidable, so, we resort to abstraction,

i.e. the analyzer explores machine-representable super-

sets of actual behaviors of the system using tractable al-

gorithms. As a consequence, the analyzer may consider

spurious behaviors and miss properties, but the analy-

sis is sound: all the properties that are found (absence

of run-time errors, worst-case execution time, etc.) are

indeed true for all executions. A specificity of static

analysis is that it works directly on the concrete system

that is input to compilers or code generators, and the

abstracted system is derived automatically according

to built-in abstraction mechanisms. No abstract system

need to be provided — which would be time consuming

and pose the question of whether it indeed corresponds

to the concrete one. We use the Abstract Interpretation

framework [13], a general theory of the approximation

of semantics, to design static analyzers that are sound

by construction. There is no silver bullet: each static

analyzer should be tailored to a specific class of proper-

ties and programs to achieve both precision (low rate of

missed properties) and efficiency. Thankfully, Abstract

Interpretation provides a growing library of ready-to-

use abstractions, and the mean to design new ones in a

principled way.

After a short formal introduction to Abstract In-

terpretation theory (Sec. 2), this article describes more

informally several static analysis applications: checking

for run-time errors in critical embedded synchronous C

software with Astrée (Sec. 3), ongoing extensions to

parallel embedded software (Sec. 4), translation valida-

tion from C to assembly (Sec. 5), and analyzing com-

municating synchronous systems with imperfect clocks

(Sec. 6). Section 7 concludes and suggests the applica-

tion of Abstract Interpretation to modeling languages

such as UML.

2 Abstract Interpretation

We provide a succinct introduction to Abstract Inter-

pretation. More details are provided e.g. in [7].

http://www.astree.ens.fr/
http://www.astree.ens.fr/

Static Analysis by Abstract Interpretation of Embedded Critical Software 3

2.1 Small-Step Operational Semantics

In order to analyze the behavior of the executions of a

computer system, we start by providing a model of com-

putations, that is, an operational semantics. An exam-

ple of operational semantics for UML-Statecharts would

be [5].

Such an operational semantics of a given program

can be described as a transition system 〈S, I, E , t〉. S is

a set of states, including initial states I ⊆ S and bad or

erroneous states E ⊆ S. t ⊆ S×S is a transition relation

between a state s ∈ S and its possible successors: for

any state s′ ∈ S, t(s, s′) is true if, and only if, s′ is a

potential successor of s. The blocking states have no

successor B , {s ∈ S | ∀s′ ∈ S : ¬t(s, s′)}.

2.2 Big-Step Operational Semantics

The big-step operational semantics of 〈S, I, E , t〉 is 〈S,
I, E , t?〉 where t? ,

⋃
n>0 t

n is the reflexive transitive

closure of t,1 t0 , 1S , {〈s, s〉 | s ∈ S} is the identity

relation on S, tn+1 , tn ◦ t where ◦ is the composition

of relations.2

We have t? = T (t?) where T (r) , 1S ∪ r ◦ t since a

state s′ is reachable from s in n > 0 steps if and only

if n = 0 and s = s′ or n > 0 and s′ is reachable from

a successor of s in n − 1 steps. Moreover, if T (r) =

1S ∪ r ◦ t ⊆ r then t? ⊆ r. It follows that t? = lfp
⊆
T ,

by definition of the ⊆-least fixpoint lfp
⊆
T of T .3

Because all non-trivial properties of programs are

undecidable, t? = lfp
⊆
T is not computable for infinite

state transition systems 〈S, I, E , t〉 (except for trivial

programs t and specifications E).

2.3 Specification

A typical verification problem is to prove that no exe-

cution starting in an initial state can reach a bad state

(e.g. where the next execution step would raise an er-

ror). The correctness condition is ∀s ∈ I : ∀s′ ∈ S :

t?(s, s′) =⇒ s′ 6∈ E that is no state s′ reachable from

the initial states is a bad state. For example, E can

be the set of blocking states in order to specify the

1 It follows that t?(s, s′) = ∃n > 0 : ∃s0, . . . , sn : s = s0 ∧
t(s0, s1) ∧ . . . ∧ t(sn−1, sn) ∧ sn = s′, including the case s = s′

for n = 0.
2 ◦ is the composition of relations that is r1 ◦ r2 , {〈x,

x′′〉 | ∃x′ : 〈x, x′〉 ∈ r1 ∧ 〈x′, x′′〉 ∈ r2}.
3 The v-least fixpoint lfp

v
f of an increasing map f on a

poset partially ordered by v is defined by f(lfp
v
f) = lfp

v
f

and f(x) = x implies lfp
v
f v x.

absence of deadlocks. Error-freedom can also be writ-

ten R ⊆ S \ E where R , {s′ | ∃s ∈ I : t?(s, s′)} is

the set of states reachable from the initial states and

X \ Y , {x ∈ X | x 6∈ Y }.
Define F (X) , I ∪ post[t]X where post[r]X ,

r(X) , {s′ | ∃s ∈ X : r(s, s′)} is the image of the set

X by the relation r. We have F ∈ ℘(S) → ℘(S)4 is

additive5 hence strict6 and increasing.7 We have R =

F (R) since a state is reachable iff it is an initial state or

the successor of a reachable state. If F (X) ⊆ X then X

contains the initial states I and, transitively, any of its

successors, so, R ⊆ X. This implies that R = lfp
⊆
F ,

which is not computable either.

2.4 Abstraction

2.4.1 Intervals

Let us start with the simple example of abstracting a

set V ⊆ Z of integers (e.g. the set of possible values

of an integer variable) by an interval of values αi(V) ,
[minV,maxV] (where minZ , max ∅ , −∞ and maxZ
, min ∅ , +∞). In particular, for the empty set ∅,
αi(∅) = [+∞,−∞]. In general, this is obviously an

over-approximation since the interval αi(V) may con-

tain spurious values not in V . So from z 6∈ αi(V) we

can conclude z 6∈ V whereas knowing that z ∈ αi(V) in

the abstract, we do not know whether z ∈ V or z 6∈ V
in the concrete since z might be a spurious value. The

concretization is γi([`, h]) , {z ∈ Z | ` 6 z 6 h}. Let

us define the abstract domain of intervals V]i , {[`, h] |
` ∈ Z∪{−∞}∧h ∈ Z∪{+∞}∧ ` 6 h}∪{[+∞,−∞]}.
We have ∀V ∈ ℘(Z) : ∀[`, h] ∈ V]i : αi(V) ⊆ [`, h] ⇐⇒
V ⊆ γi([`, h]) and so, by definition, the pair 〈αi, γi〉 is

a Galois connection,8 written 〈℘(Z), ⊆〉 −−−→←−−−
αi

γi 〈V]i , ⊆〉.

2.4.2 Cartesian Abstraction

A set V ⊆ Zn of vectors of n > 1 integer values (e.g. the

set of possible values of n integer variables) can be ab-

stracted by projection along each component αC(V) ,∏n
i=1{z | ∃z1, . . . , zi−1, zi+1, . . . , zn ∈ Z : 〈z1, . . . , zi−1,

z, zi+1, . . . , zn〉 ∈ V }. The concretization is γC(〈V1,

4 ℘(X) = {Y | Y ⊆ X} is the set of all subsets Y of a set X.
5 F is additive iff F (

⋃
i∈∆Xi) =

⋃
i∈∆ F (Xi).

6 F is strict whenever F (∅) = ∅.
7 F is increasing whenever X ⊆ Y implies F (X) ⊆ F (Y).
8 By definition, 〈C, �〉 −−−→←−−−α

γ
〈A, v〉 if and only if 〈C, �〉 and

〈A, v〉 are posets, α ∈ C → A, γ ∈ A → C and ∀x ∈ C, y ∈
A : α(x) v y ⇐⇒ x � γ(y). ⇐= implies soundness in that y
is an abstract over-approximation of the concrete x and =⇒
implies that α(x) is the best abstraction of x in that it is more
precise than any other sound abstraction y.

4 Julien Bertrane et al.

AIAA Infotech@Aerospace 2010, Atlanta, georgia, 04/20/2010 © P Cousot et Al.2 2 2

Fig. 3 A set and its interval and octagonal abstractions.

. . . , Vn〉) , {〈z1, . . . , zn〉 |
∧n
i=1 zi ∈ Vi} so that

〈℘(Zn),⊆〉 −−−−→←−−−−
αC

γC 〈℘(Z)n, ⊆̇〉 where ⊆̇ is the componen-

twise ordering.9 Composed with the interval abstrac-

tion, this specifies the interval analysis of [13] such that

αi◦C(V) , 〈αi(V1), . . . , αi(Vn)〉 where 〈V1, . . . , Vn〉 ,
αC(V) which implies 〈℘(Zn), ⊆〉 −−−−−→←−−−−−

αi◦C

γi◦C 〈V]i
n
, ⊆̇〉.

This abstraction forgets about relationships between

values of variables (such as whether variables have equal

values). To keep relations between values X, Y , . . . of

numerical variables, more refined abstractions must be

used such as octagons [34] that infer relations of the

form ±X ± Y ≤ c (where c is a constant automatically

inferred by the static analysis), see Fig. 3.

2.4.3 Transformers

Transformers, that is, relations between states, can also
be abstracted. Consider for example the abstraction of
a relation r ⊆ S × S by its right image αI(r) , r(I) ,
post[r]I , {x′ | ∃x ∈ I : r(x, x′)} of a given set I ⊆ S
(e.g. of initial states). For example, the reachable states
of 〈S, I, E , t〉 are R = αI(t?) so reachability is an
abstraction of the big-step semantics. We have:

αI(r) ⊆̇ R
⇔ {x′ | ∃x ∈ I : r(x, x′)} ⊆ R Hdef. αII
⇔ ∀x′ ∈ S : (∃x ∈ I : r(x, x′)) =⇒ x′ ∈ R Hdef. ⊆I
⇔ ∀x′ ∈ S : ∀x ∈ I : r(x, x′) =⇒ x′ ∈ R HgeneralizationI
⇔ ∀x, x′ ∈ S : r(x, x′) =⇒ (x ∈ I =⇒ x′ ∈ R) Hdef. =⇒ I
⇔ r ⊆ {〈x, x′〉 | x ∈ I =⇒ x′ ∈ R} Hdef. ⊆I
⇔ r ⊆ γI(R)

Hby defining γI(R) , {〈x, x′〉 | x ∈ I =⇒ x′ ∈ R}I

which is the characteristic property of the Galois con-

nection 〈℘(S × S), ⊆〉 −−−→←−−−
αI

γI 〈℘(S), ⊆〉.

2.4.4 Fixpoint Abstraction

For reachability, we have R = αI(t?) = αI(lfp
⊆
T) =

lfp
⊆
F so that the abstraction αI(lfp

⊆
T) of the con-

crete fixpoint lfp
⊆
T can be calculated as an abstract

fixpoint lfp
⊆
F not referring to the concrete world at

all. This follows from a general result sketched below
and the observation that:

9 The componentwise ordering is: 〈V1, . . . , Vn〉 ⊆̇ 〈V ′1, . . . ,
V ′n〉 if and only if

∧n
i=1(Vi ⊆ V ′i).

αI ◦ T (r)

= αI(1S ∪ r ◦ t) Hdef. ◦ and T I
= αI(1S) ∪ αI(r ◦ t) Hdef. αII
= I ∪ {x′ | ∃x ∈ I : (r ◦ t)(x, x′)} Hdef. 1S and αII
= I ∪ {x′ | ∃x ∈ I : ∃x′′ : r(x, x′′) ∧ t(x′′, x′)} Hdef. ◦I
= I ∪ {x′ | ∃x′′ ∈ {x′′ | ∃x ∈ I : r(x, x′′)} : t(x′′, x′)} Hdef. ∃,
∈I

= I ∪ {x′ | ∃x′′ ∈ αI(r) : t(x′′, x′)} Hdef. αII
= I ∪ post[t](αI(r)) Hdef. post[t]I
= F ◦ αI(r) Hdef. F and ◦I

The above calculus also shows how to calculate the

abstract transformer F from the concrete transformer

T , which is the idea of the calculational design of static

analyzers [12].

More generally, under suitable hypotheses of exis-

tence of joins in posets and fixpoints [13,12], if f ∈
C → C, 〈C, �〉 −−−→←−−−α

γ
〈A], v〉 and f] ∈ A] → A] satisfy

α ◦ f = f] ◦ α, then α(lfp
�
f) = lfp

v
f].

Faced with undecidable problems, α(lfp
�
f) is of-

ten non-computable, in which case it must be over-

approximated α(lfp
�
f) v lfp

v
f], which follows from

the local condition α ◦ f v̇ f] ◦ α.10 This is the case

for example for interval analysis [13].

2.4.5 Fixpoint Approximation

Under suitable hypotheses of existence of joins in posets

and fixpoints [13,12], fixpoints can be computed itera-

tively. For example, R =
⋃
n F

n(∅)11 with the intu-

ition that the reachable states are reachable in either

0, 1, 2, . . . , n, . . . computation steps. However, in gen-

eral, convergence of the iterates to a fixpoint may re-

quire infinitely many iterations (for undecidable prob-

lems) or suffer a combinatorial explosion in time and

memory (for finite but complex problems). But for rare

cases where the fixpoint can be computed directly (e.g.

by elimination), convergence must in general be ac-

celerated, e.g. using a widening O [13] at the preju-

dice of precision. A näıve example of widening for in-

tervals is [`i, hi]O[`i+1, hi+1] , [if `i+1 < `i then −
∞ else `i, if hi+1 > hi then +∞ else hi] so that unsta-

ble bounds are pushed to infinity, which enforces rapid

although imprecise convergence. A narrowing can then

be used to remove some of the infinite bounds [13].

2.4.6 Design of a Static Analyzer

The design of a static analyzer for a (specification or

programming) language starts with the definition of its

10 The pointwise ordering is f v̇ g if and only if ∀x : f(x) v
g(x).
11 The powers of a function f are: f0 is the identity, f1 , f ,
and fn+1 = f ◦ fn.

Static Analysis by Abstract Interpretation of Embedded Critical Software 5

semantics and the properties of interest for each pro-

gram of the language, often in the form of fixpoints

lfp
�
F corresponding to an abstraction of the notion

of computation (e.g. reachability). F is then designed

by induction on the language syntax. Then, an abstrac-

tion α is defined, which is a complex task, hence must

be done by composition of simpler abstractions, us-

ing standard composition methods such as the reduced

product α(X) ,
∧m
i=1 αi(X) combining different ab-

stractions αi(X) [14] and standard abstractions (some

already implemented in libraries [31]). The static ana-

lyzer is then designed by induction on the language syn-

tax. It reads a program, computes the abstract trans-

former F] (designed to satisfy α ◦ F v F] ◦ α) for

that program, and over-approximates the abstract fix-

point lfp
v
F] by an iterative computation with conver-

gence acceleration with widening/narrowing. This en-

sures that the result A (e.g. an abstract invariant for

reachability) is sound (i.e. α(lfp
�
F) v lfp

v
F] v A).

The result A is then used for verification purposes (e.g.

to prove the absence of run-time errors).

3 Checking Run-Time Errors in Embedded

Synchronous Software with Astrée

We now describe a first concrete application of Ab-

stract Interpretation: the static analyzer Astrée [8]

that checks for run-time errors in embedded C programs

and has been successfully used in aeronautics [19] and

aerospace [10]. Astrée started in 2001 as an academic

project [17] and is now a mature tool industrialized by

AbsInt Angewandte Informatik GmbH [1].

3.1 Analyzed Software

Astrée accepts a fairly large subset of C, excluding dy-

namic memory allocation, recursion, and parallelism,

that are often unused (even forbidden) in embedded

code. The language syntax and concrete semantics are

based on the C99 norm [30], supplemented with the

IEEE 754-1985 norm [27] for floating-point computa-

tions. However, the C99 norm leaves many aspects of

the semantics unspecified and lets implementations de-

cide. As embedded software are rarely strictly conform-

ing but rely instead on platform-specific features, As-

trée also takes them into account and provides options

for the user to tune some semantic aspects (e.g. the bit-

size, alignment, and byte order of data-types) to fit its

application.

Programs analyzed by Astrée should be stand-

alone, i.e. have no undefined symbols. In particular, if

the program uses a library, then its source code must be

provided to Astrée as well. Alternatively, one can pro-

vide a stub for undefined functions instead of an actual

implementation, which is particularly useful when only

a specification of the function is known. Stubs gener-

ally provide only pre- and post-conditions on the func-

tion arguments and return values, abstracting away the

actual computation. Moreover, as programs generally

run within an environment and typically fetch exter-

nal data (e.g. sensor values) through memory-mapped

registers, Astrée allows specifying memory locations

as “volatile” with a range of expected values (or possi-

bly the full range of the type, including special NaN or

±∞ float values). The analysis naturally considers all

possible sequences of inputs in the specified ranges.

Although Astrée accepts a large variety of C codes,

it cannot analyze most of them precisely and efficiently.

It is mainly specialized, by its choice of abstractions,

to analyze control / command synchronous programs

automatically generated from higher level specifications

(e.g. as in Fig. 2). Once generated, such codes have the

following structure:

initialize state variables

loop for 10 h

read inputs from sensors

update state and compute outputs

write outputs to actuators

wait for next clock tick (10 ms)

The read, update, and write instructions may be scat-

tered in the source code by the code generator or encap-

sulated within functions. Such codes also feature a very

large number of global variables representing the cur-

rent state. They are generally numeric intensive, featur-

ing much floating-point computations. There are, how-

ever, few nested loops and, except for the outer loop

running for a very long time, inner loops generally have

a fixed, small number of iterations. Finally, such codes

are often generated from instancing a limited number

of macros, and feature few, recurring code patterns.

3.2 Astrée usage

The usage of Astrée is depicted in Fig. 4. Astrée

takes as argument the set of C source files (after prepro-

cessing by a standard C preprocessor) and an optional

configuration file describing the range of volatile vari-

ables. Astrée then computes an abstraction of the se-

mantics of the program, leading to over-approximated

invariants. It emits an alarm whenever the computed

semantics leads to a run-time error. It can also output

the computed invariants for selected variables and pro-

gram points, which is useful to understand the origin

of alarms.

http://www.astree.ens.fr/
http://www.astree.ens.fr/
http://www.astree.ens.fr/
http://www.astree.ens.fr/
http://www.astree.ens.fr/
http://www.astree.ens.fr/
http://www.astree.ens.fr/
http://www.astree.ens.fr/
http://www.astree.ens.fr/
http://www.astree.ens.fr/
http://www.astree.ens.fr/
http://www.astree.ens.fr/
http://www.astree.ens.fr/
http://www.astree.ens.fr/

6 Julien Bertrane et al.

Astrée

− alarms

− invariants

(environment

 configuration)

C sources

(preprocessed)

Fig. 4 Input and output of Astrée.

C99 parser
↓

linker
↓

constant propagation & simplification
↓

automatic parametrization
↓

static analysis (Fig. 6)

Fig. 5 Astrée phases.

The errors checked by Astrée correspond to op-

erations that are either undefined on the user-chosen

platform (e.g. out-of-bound array accesses) or have un-

intended results (e.g. wrap-around after integer over-

flows). The property to verify (absence of run-time er-

rors) is thus implicit and derived from the program’s

own source. More precisely, Astrée checks overflows

in unsigned and signed integer arithmetics and casts,

divisions by zero, infinities and not a number special

floating-point values (caused by overflows and invalid
operations), out-of-bound array accesses, invalid uses of

pointers (dereferencing NULL, dangling, out-of-bound,

or misaligned pointers), and failure of user-specified as-

sertions (using a construct similar to the C function

assert).

Astrée does not stop at the first error it encounters

but instead continues the analysis for all executions that

have a well-defined semantics (e.g. for integer overflows

with wrap-around, but not for divisions by zero). Thus,

if there are no alarms, or if all executions leading to

an alarm can be proved by other means to be spurious,

then the program is indeed free from run-time errors.

3.3 Design of Astrée

Similarly to a compiler, Astrée operates in several

phases (Fig. 5). The source files are first parsed and

transformed into an internal, graph-based, explicitly

typed representation. They are then linked together,

iterator
↓

trace abstract domain (§ 3.3.5)
↓

memory abstract domain (§ 3.3.4)
↓

pointer abstract domain (§ 3.3.3)
↓

reduced product (§ 3.3.2) of
numerical abstract domains (§ 3.3.1)

×

tttttt
JJJJJJJ

octagons ×

tttttt
EEEEE

filters ×

~~
~~

~

decision
trees

��

intervals

intervals

Fig. 6 Hierarchy of abstractions in Astrée.

resolving undefined symbols. A fast intra-procedural

analysis performs constant propagation and eliminates

unused variables in order to simplify the program before

more costly phases. A simple syntax-based heuristics

detects which parts of the program and which variables

would benefit from a higher precision (such as relational

or disjunctive analyses).

After these simple and fast phases, the actual static

analysis starts. The analysis is performed as an inter-

pretation in the abstract: an iterator traverses the pro-
gram by structural induction on its syntax, iterating

loops and stepping into functions, to collect an abstrac-

tion of all possible execution traces. As a result, the

analysis is fully flow and context sensitive. The termi-

nation is guaranteed by the use of widening operators O
[13] to accelerate loops and by the absence of recursion.

The abstraction computation is performed using ab-

stract domains, which are modules providing a family

of abstract properties together with a machine repre-

sentation and algorithms to manipulate them accord-

ing to the semantics of basic program instructions (as-

signments, tests, control-flow joins, etc.). The abstrac-

tion used in Astrée is composed of several abstract

domains organized as shown in Fig. 6. Some abstract

domains are parametrized by other abstract domains

(shown using the ↓ symbol in the figure), while others

are combined through a reduced product (shown as ×
in the figure) which is a generic way to represent con-

junctions of heterogeneous properties (Sec. 3.3.2). The

http://www.astree.ens.fr/
http://www.astree.ens.fr/
http://www.astree.ens.fr/
http://www.astree.ens.fr/
http://www.astree.ens.fr/
http://www.astree.ens.fr/
http://www.astree.ens.fr/
http://www.astree.ens.fr/
http://www.astree.ens.fr/

Static Analysis by Abstract Interpretation of Embedded Critical Software 7

if (X > Y) X = Y;

/* X ≤ Y */

if (Y <= 10) {
/* X ≤ 10 */

}

x = 10;

for (i=0; i<1000; i++) {
/* x ≤ i+ 10 */

if (...) x++;

if (...) x = 0;

}
/* 0 ≤ x ≤ 1010 */

Fig. 7 Two programs benefiting from the octagon domain.

rest of the section presents a selection of the domains

available in Astrée.

3.3.1 Numerical Abstract Domains

A numerical abstract domain focuses on properties of

the integer and floating-point variables of the program.

There exist many general-purpose domains, with vari-

ous expressiveness and cost versus precision trade-offs.

Astrée implement several of them (e.g. interval, oc-

tagon, and decision tree domains). Additionally, As-

trée implements some specific-purpose domains spe-

cially designed to handle the kinds of computations

found in embedded control / command software (e.g.

digital filter, arithmetic-geometric progression, quater-

nion domains).

Interval Domain. Most run-time errors considered by

Astrée (with the exception of divisions by zero) can

be eliminated by inferring precise bounds on variables.

Hence, Astrée implements the classic interval domain

able to express and infer such bounds (see Sec. 2.4.1

and [13]). In floating-point arithmetics, the soundness

with respect to all rounding modes is guaranteed by

simply rounding upper bounds towards +∞ and lower
bounds towards −∞. To obtain an efficient implemen-

tation that scales up to thousands of variables and mil-

lions of lines of code, environments mapping variables

to intervals are stored in functional maps with shar-

ing based on balanced binary trees. Indeed, such data-

structures enjoy a constant-time copy and a very fast

component-wise join operator (in time k log n, where k

is the number of variables that actually differ in both

environments and n is the total number of variables),

compared to a linear cost for plain arrays.

Octagon Domain. In order to infer precise bounds, it

is often necessary to infer locally much stronger prop-

erties. Consider, for instance, the program on the left

of Fig. 7, that computes the minimum of X and Y

into X, and then branches when Y is less than 10. An

interval analysis would only be able to discover that

Y ≤ 10 after the test Y<=10. To discover that, addi-

tionally, X ≤ 10, it is necessary to infer and use the

relation X ≤ Y . Another example is the case of the

b = (x >= 6);

...

if (b) y = 10 / (x-4);

Fig. 8 Program benefiting from the decision tree domain.

B

C C

X X X

YYY

0

0 0

1

11

Fig. 9 Example decision tree, with boolean variables B and
C, and numerical variables X and Y.

loop on the right of Fig. 7. It is necessary to infer the

loop invariant x ≤ i+ 10 to deduce that, when the loop

ends, x ≤ 1010. Both cases require relational proper-

ties, which cannot be expressed in a domain using the

Cartesian abstraction (Sec. 2.4.2) such as the interval

domain.

The octagon domain, proposed in [34], is a relational

domain able to infer conjunctions of constraints of the

form ±X ± Y ≤ c. It is a restriction of the polyhe-

dra12 domain [18]. Octagons are based on a matrix rep-

resentation with quadratic memory cost, and shortest-

path closure algorithms with cubic time cost. Hence,

octagons are much more efficient than general polyhe-

dra (which have an exponential cost). Moreover, the oc-

tagon domain can easily be implemented using floating-

point arithmetics by rounding towards +∞ (as it only

manipulates upper bounds). It is sufficient to precisely

analyze both programs in Fig. 7.

Despite being more efficient than polyhedra, a cubic

cost is still too high to scale up to thousands of vari-

ables. Hence, Astrée does not try to relate all vari-

ables at once in a single large octagon, but considers

instead a collection of small octagons. The static set of

octagons is determined by the automatic parametriza-

tion preceding the analysis (Fig. 5) in a simple way:

variables used together in the same or in nearby lin-

ear expressions (say, within the same syntactic block)

are put in the same octagon. This yields a number of

octagons linear in the code size, each packing few vari-

ables (from two to a dozen), and so, the overall time

and memory cost is linear in the program size.

Decision Tree Domain. The interval and octagon do-

mains can only represent convex sets of points, which

is not precise enough to handle disjunctive properties,

12 The name “octagon” comes from the shape of such re-
stricted polyhedra in two dimensions.

http://www.astree.ens.fr/
http://www.astree.ens.fr/
http://www.astree.ens.fr/
http://www.astree.ens.fr/
http://www.astree.ens.fr/
http://www.astree.ens.fr/
http://www.astree.ens.fr/

8 Julien Bertrane et al.

float I[2], O[2];

while (1) {
X = input();

if (init()) { O[0] = X; P = X; I[0] = X; }
else

P = 0.4677826 * X

- 0.7700725 * I[0] + 0.4344376 * I[1]

+ 1.5419 * O[0] - 0.6740477 * O[1];

I[1] = I[0]; I[0] = X;

O[1] = O[0]; O[0] = P;

}

Fig. 10 Second order filter example.

such as case analyses or boolean reasoning, nor to ex-

press the absence of division by zero. Consider, for in-

stance the program of Fig. 8, where the truth value of

a numerical predicate x >= 6 is stored into a boolean

b, which is used later in the program. In order to prove

that there is no division by zero in 10 / (x-4), it

is necessary to infer and use the disjunctive predicate

(b = 1 ∧ x ≥ 6) ∨ (b = 0 ∧ x < 6) (in C, booleans are

simply integers, and a predicates returns either 0, for

false, or 1, for true).

In Astrée, such properties are encoded by a deci-

sion tree where internal nodes denote boolean variables

(with a branch for each value, zero and one) and leaves

store arbitrary abstract properties of one or several nu-

merical variables. An example is shown in Fig. 9. Such

trees bear some resemblance with classic BDDs [11] and

enjoy similar sharing properties. The decision tree do-

main is parametrized by the choice of a domain for

leaves (e.g. the interval domain), a set of boolean vari-

ables, and a set of numerical variables. As for octagons,

we do not use a single large tree, but many small trees,

where the set of variables is fixed by a heuristics occur-
ring before the static analysis, so that the overall cost

is still linear in the size of the program. This heuristics

collects sets of related booleans and numerical variables

using a simple and approximate dependency analysis.

Filter Domain. A first example of application domain

specific abstraction is the digital filter abstract domain.

Digital filters often appear in control / command em-

bedded software to smooth the stream of values input

by sensors. Figure 2 presents an example second or-

der digital filter as programmed by an engineer using

Simulink and Fig. 10 shows one possible generated code.

It implements a recurrence relation where, at each clock

tick, a new output P is computed as a linear combina-

tion of the last three inputs, X, I[0], and I[1], and the

last two previously computed outputs, O[0] and O[1]

(except for the reinitialization case where the output is

set to the input). Figure 11 plots an example behavior

and hints at the form of the invariant we seek, which is

an ellipse aligned on the first bisector. Such a quadratic

Fig. 11 Typical behavior of a second order digital filter. One
axis shows the current output O[0], and the other shows the
previous one O[1].

invariant is out of reach of the interval and octagon do-

mains.

Astrée implements a specific domain, the digital

filter domain [21], that is able to detect recurrence re-

lations denoting filters, and synthesize a quadratic in-

variant from the recurrence coefficients and a bound

on the input. Often, the filter depends on the value of

the input at several successive iterations. A simple solu-

tion would be to abstract these contributions as a single

global interval. However, it often occurs that the various

contributions of an input read at a given iteration par-

tially cancel each others. This is for instance the case in

Fig. 10, as the coefficient of I[0] has a sign which is the

oposite of the one of both X and I[1]. To exploit this,
the digital filter domain performs a formal unrolling

of the recurrence relation, up to a limited number of

iterations. The residue is generally a small fraction of

the bound of the input, which provides an increase in

precision. Lastly, by linearity, the overall contribution

of this residue along the iterations of the filter, can be

abstracted by using quadratic inequalities.

Arithmetic-Geometric Progression Domain. The arith-

metic-geometric progression domain [22] is another do-

main for non-linear properties, able to infer invariants of

the form: X ≤ α(1+β)clock. Such invariants correspond

to slowly diverging computations such as, for instances,

an assignment X = X + ε or X = (1 + ε)X performed at

each clock tick. Given a bound on the number of clock

ticks (i.e. a bound on the execution time), it is possible

to derive a bound on X. Such slowly diverging computa-

tions occur in our target programs due to the slow accu-

mulation of floating-point rounding errors throughout

the whole execution. The values ε and ε are very small:

http://www.astree.ens.fr/
http://www.astree.ens.fr/

Static Analysis by Abstract Interpretation of Embedded Critical Software 9

float Q[4], R[4];

int i;

float norm =

sqrt(Q[0] * Q[0] + Q[1] * Q[1] +

Q[2] * Q[2] + Q[3] * Q[3]);

assert(norm >= 0.1);

for (i=0; i<4; i++)

R[i] = Q[i] / norm;

/* ∀i, R[i] ∈ [−1− ε, 1 + ε] */

Fig. 12 Quaternion normalization.

they correspond respectively to the absolute error on

denormalized floating-point numbers and the relative

error on normalized numbers (respectively 10−45 and

10−5 for 32-bit floating-point numbers), and so, there

is generally no actual overflow, even after hours of un-

interrupted computation.

Quaternion Domain. Embedded space software make a

large use of quaternions, in particular in attitude con-

trol, as they provide a convenient way to represent and

manipulate orientations in a three dimensional space.

Quaternions are represented as four numbers (a rota-

tion axis and an angle), and feature mathematical op-

erators (+, −, ×, /, conjugate, norm) with natural al-

gebraic properties. Quaternion computations are gen-

erally performed on normalized quaternions, which im-

plies that all components are in [−1, 1], avoiding any

risk of overflow. However, because quaternions are im-

plemented using floating-point arithmetics with round-

ing errors, the norm is never exactly one. Moreover,

to avoid any drift of the quaternion components, the

quaternions need to be re-normalized periodically, us-

ing for instance the algorithm presented Fig. 12. To

prove that a program is free from overflow, a static

analyzer must first prove that, after normalization, all

components are in [−1− ε, 1 + ε] (where ε accounts for

rounding errors during the normalization step), and so,

must embed some knowledge of quaternion arithmetics

[10]. This is quite difficult because the computations are

highly non-linear, and a single quaternion operation is

split into a sequence of many floating-point operations

on distinct variables representing quaternion compo-

nents. Thus, Astrée uses a special quaternion abstract

domain to detect which tuples of variables form quater-

nions, track their norm, infer which quaternion opera-

tions are performed based on sequences of operations

on individual components, and deduce precise bounds

for all the components.

3.3.2 Reduced Product

Astrée employs dozens of numerical abstract domains,

a few of the most important ones being presented above.

Each program instruction is executed by each domain,

so that the actual invariant inferred by the analyzer is

the conjunction of the invariants found by each domain.

Additionally, Astrée implements a powerful commu-

nication framework [16] which allows domains to inter-

act and improve each other. A domain can then benefit

from the information from other domains to refine its

abstract element (this is called a reduction) or improve

its predicate transformer. More precisely, although each

abstract domain has its private representation of ab-

stract properties, it also has access to a common, pub-

lic language of predicates understood by all domains, as

well as functions to request and export such predicates.

Consider, for instance, the case of interval informa-

tion. It can be expressed by several domains but, for

efficiency reasons, only the interval domain keeps an

information on all variables at all time. Thus, when the

octagon domain encounters an expression where only

some of the variables are actually kept in the octagon,

it needs to remove missing variables, replacing them

with an interval, before processing the expression. It

broadcasts a request for interval information, which is

answered by the interval domain (and possibly other

domains as well). Dually, when the octagon domain in-

fers a bound on some variable that required non-trivial

computations on relational properties, it broadcast this

information. The interval domain, among others, will

use this information to refine its abstract state and im-

prove all its future computations.

For efficiency reasons, the predicate language is lim-

ited to a few predicates of interest by several domains,

and the domains are very parsimonious in the informa-

tion they communicate (a fully reduced product would

not scale given the amount of information inferred by

the many domains). However, the framework is easily

extensible, so that new reductions can be added to the

analyzer as needed.

3.3.3 Pointer Abstract Domain

Even in the absence of dynamic memory allocation,

pointers and pointer arithmetics are widely used in em-

bedded software. Astrée supports pointers using a

straightforward and low-level semantics [33]: a pointer

in the concrete semantics is simply a symbolic integer

composed of a variable or function name (the base),

and an optional integer byte displacement from the base

address (the offset). A set of pointer values is then ab-

stracted as a set of bases and a synthetic integer offset

variable. Astrée implements a pointer abstract do-

main that is actually a domain functor taking as ar-

gument an arbitrary (reduced product of) numerical

abstract domain(s) and adds support for pointers. The

http://www.astree.ens.fr/
http://www.astree.ens.fr/
http://www.astree.ens.fr/
http://www.astree.ens.fr/
http://www.astree.ens.fr/

10 Julien Bertrane et al.

pointer domain maintains the set of bases associated to

each pointer, and delegates the abstraction of offsets to

the underlying numerical domains. In particular, when

using relational numerical domains, this allows the in-

ference of relations between pointer offsets, and between

pointer offsets and integer variables (e.g. between i and

p in a loop such as for (i=0;i<10;i++) p++;). Like-

wise, pointer-related operators in expressions are han-

dled in two steps: the pointer domain computes the ef-

fect of the operator on pointer bases to update its inter-

nal representation, and it translates pointer arithmetics

into byte-based offset arithmetics to be handled by the

underlying numerical domain. Delegating the abstrac-

tion of pointer offsets to numerical domains requires the

addition of numerical domains specially adapted to off-

sets, such as the congruence domain [25] that can infer

properties of the form X ∈ aZ+ b, necessary to express

pointer alignment constraints.

3.3.4 Memory Abstract Domain

In addition to numerical and pointer variables, the C

language features aggregates: structures, unions, and

arrays. Astrée thus features a specific memory struc-

ture abstract domain [33] to handle these data-types.

It is a functor that decomposes aggregate variables into

collections of independent scalar variables, called cells,

and hands them down to an underlying domain of nu-

merical and pointer values. Given a program statement

to execute, the memory domain must break down ag-

gregate accesses into cell-level accesses (which requires

some cooperation with numerical and pointer domains

to evaluate array index and pointer offset expressions).

Astrée cannot rely on the static type of variables to

generate its cell map because, in the presence of pointer

casts and type-punning, any memory location can be

accessed dynamically with an arbitrary type. Thus, cells

are managed dynamically and created on demand. More-

over, to handle C union types in a sound way, the mem-

ory domain must cope with cells denoting overlapping

memory locations. When modifying a cell, it takes care

to also update all overlapping ones, thus maintaining

for underlying domains the illusion that cells are ac-

tually unrelated. Finally, the memory domain embeds

some form of abstraction for arrays, which can be repre-

sented in either a field sensitive way (using distinct cells

for each array element) or a field insensitive way (using

a single cell representing the join of all array elements).

3.3.5 Trace Partitioning Abstract Domain

The decision tree numerical domain presented above

provided a first example of disjunctive properties. It

float x,r;

const float tx[N] = { ... }, ty[N] = { ... };
assert(x >= t[0] && x <= t[N-1]);

for (i=0; i<N-1; i++)

if (x <= tx[i+1]) break;

r = ty[i] +

(ty[i+1]-ty[i]) * (x-tx[i]) / (tx[i+1]-tx[i]);

Fig. 13 Linear interpolation example.

partitioned the value of a set of variables with respect

to the value of a few boolean variables at the current

program location. The trace partitioning domain [44]

is another example, using a different partitioning crite-

rion: it performs case analysis with respect to an ab-

straction of the history of computation.

Consider, for instance, the program Fig. 13 that im-

plements a simple linear interpolation. First, a loop lo-

cates the input x within a sorted array tx of values

and computes i such that tx[i] ≤ x ≤ tx[i + 1]. Then,

the interpolated value is computed as a combination of

ty[i] and ty[i + 1]. Inferring a precise bound on r re-

quires inferring the complex relation (i = 0∧ t[0] ≤ x ≤
t[1]) ∨ (i = 1 ∧ t[1] ≤ x ≤ t[2]) ∨ · · · holding before the

assignment into r. The problem is, however, much sim-

pler if, instead of looking for an invariant holding for all

execution traces reaching the assignment, we perform a

case analysis on the history of the computation: if the

loop iterated n times, then i = n ∧ t[n] ≤ x ≤ t[n+ 1].

The assignment into r is then performed for each case n

before the results are merged, hence achieving a limited

form of path sensitivity. The trace partitioning domain

formalizes this intuition, grouping execution traces ac-

cording to criteria such as the number of iterations per-

formed by a loop and which branches of tests where

executed. It is implemented as a functor that lifts any

abstraction of states to an abstraction of traces.

In order to scale up to programs of large size, it

is important to limit the trace partitioning to small

portions of code. These are computed by an automatic

parametrization heuristic preceding the analysis, which

performs an approximate dependency analysis of tests

and assignments.

3.4 Ensuring Efficiency and Precision

A key to the efficiency of Astrée is its parsimonious

and localized use of carefully limited abstract domains.

First, we chose less expensive domains instead of more

expressive ones (e.g octagonal invariants versus polyhe-

dral, ellipses aligned on the first bisector versus polyno-

mials). Moreover, expensive domains (such as octagons,

decision trees, and trace partitioning) are only used on

selected few variables or code portions. Finally, domains

http://www.astree.ens.fr/
http://www.astree.ens.fr/
http://www.astree.ens.fr/

Static Analysis by Abstract Interpretation of Embedded Critical Software 11

only communicate a selected portion of the information

they infer to other domains.

A key to the precision of Astrée is its design by

refinement, which is made easy by its very modular de-

sign. We actually started from a simple interval-based

analyzer and improved it until it reached zero alarms

on a first family of realistic code [8], then considered

other, more complex, codes. When encountering a new

kind of codes, the analysis generally terminates quickly

but with some false alarms, which must be investigated

by hand to find the cause of imprecision. The analy-

sis can then be improved in various ways, from eas-

iest and most common, to more time consuming but

thankfully seldom required. Often, it is sufficient to

tune some parameters of the abstractions that are ex-

posed through around 150 command-line options (such

as iteration strategies, domain aggressiveness, pack size,

etc.), which any trained end-user can do. When As-

trée already contains a domain able to infer the miss-

ing information, a solution is to update the automatic

parametrization of variable packs and code portions

where the domain is activated — this happened, in par-

ticular, once while analyzing programs in the same ap-

plication domain but with a new code generator [7]. The

regularity of automatically generated code is very help-

ful to design robust full-scale automatic parametriza-

tion heuristics by generalisation of test cases. When

the information is inferred but fails to be exploited,

new reductions between domains can be added. These

two cases require minor modifications to the analyzer

source. When all fails, it is always possible to design

and implement a new abstract domain focusing on the

missing properties, but this is a research-grade activ-

ity. This last case happened when extending Astrée

from aeronautic to space applications [10]: the later re-

quired a domain to handle quaternion computations,

which were absent in the former application.

3.5 Applications

A first application of Astrée was the proof of absence

of run-time errors in two families of industrial embed-

ded avionic control / command software generated from

SAO specifications [19]. Programs in the first family

have around 100 K code lines and 10 K global vari-

ables (half of which are floats) and can be analyzed in

around 2 h on a 64-bit 2.66 GHz intel workstation us-

ing a single core. Programs in the second family control

more modern systems and are both more complex and

larger: up to 1 M code lines. They are analyzed in 50 h.

Both analyses give zero false alarm.

A second application was the analysis of space soft-

ware [10] or, more precisely, a 14 K lines C code gen-

erated from a SCADE [20] model designed by Astrium

ST. After a specialization required by a change of ap-

plication domain and code generator, the code could be

analyzed in 1 h, with zero false alarm.

Since its industrialization by AbsInt, Astrée is be-

ing adapted to handle code generated by dSPACE Tar-

getLink (a popular code generator for MATLAB, Simu-

link and Stateflow) with encouraging preliminary re-

sults [32].

4 Checking Run-Time Errors in Parallel

Embedded Software

Parallel programs are now ubiquitous, and modern pro-

gramming languages (such as Java [23]) have been de-

signed with built-in concurrency support, while older

ones (such as C and C++) can access parallel features

through the use of libraries (such as POSIX threads

[28]). Embedded critical software are not immune to

this trend. For instance, in the context of Integrated

Modular Avionics (IMA), there is a tendency to re-

place a physical network of intercommunicating pro-

cessors, running a single application each, with a single

application running several threads in a shared mem-

ory. Achieving a good coverage when testing such sys-

tems is even more difficult than for sequential ones due

to a combinatorial explosion in the number of possible

interleavings of thread executions. Formal methods lim-

iting interleavings to a fixed, small number of context

switches, such as [40], can also miss bugs. On the other

hand, it has been shown in [15] that Abstract Inter-

pretation techniques could be applied to describe and

abstract the semantics of parallel programs, paving the
way for sound and efficient static analyses.

We now present on-going research ([7, § IV], [35]) on

Thésée, an extension of Astrée that checks run-time

errors in parallel programs.

4.1 Target Programs

We focus on applications for embedded real-time op-

erating systems. Our main target is avionic applica-

tions running under an ARINC 653 operating system [3]

(Aeronautical Radio Inc.’s Avionics Application Stan-

dard Software Interface). Such applications are com-

posed of several threads that communicate implicitly

through a shared memory, and explicitly through syn-

chronisation objects provided by the OS: events, sem-

aphores, message queues, blackboards, etc. We assume

the same restrictions as in Astrée: we analyze C pro-

grams without dynamic memory allocation nor recur-

sion. We also forbid the dynamic creation of threads

http://www.astree.ens.fr/
http://www.astree.ens.fr/
http://www.astree.ens.fr/
http://www.astree.ens.fr/
http://www.astree.ens.fr/
http://www.astree.ens.fr/
http://www.astree.ens.fr/
http://www.astree.ens.fr/

12 Julien Bertrane et al.

and synchronisation objects. These are created solely

during an initialization phase, and are thus fixed be-

fore entering the parallel execution mode.

Another feature of our target programs is that all

threads have fixed, distinct priorities. Due to the real-

time nature of the operating system, thread priorities

are enforced strictly: a thread that is runnable (i.e. not

waiting for a semaphore or some external event) can-

not be preempted by a lower priority thread — this

is in contrast to desktop and server schedulers, where

lower priority tasks always get to run, even when higher

priority ones are not blocked. Moreover, we focus on

programs where all threads are scheduled on the same

execution core, excluding true parallelism. This means

that the runnable thread of highest priority is always

the only one to run. This property permits the imple-

mentation of a form of mutual exclusion based on prior-

ities instead of semaphores. Note that a lower priority

thread can still be preempted at any point by a higher

priority thread that becomes runnable asynchronously

(e.g. due to an external event or a timeout), and so,

the number of possible interleavings authorized by a

real-time scheduler is still very high.

We focus on proving the same properties as in As-

trée: the absence of arithmetic and memory errors.

Additionally, we report data-races (i.e. write / write

and read / write accesses by two threads to the same

shared memory location without enforcing mutual ex-

clusion). However, we do not check deadlocks nor un-

bounded priority inversions; by construction, these can-

not occur in our target programs (all blocking prim-

itives have a timeout). Finally, other parallelism haz-

ards, such as bounded priority inversions, livelocks, or

starvation, which are much more complex to detect, are

not considered.

4.2 Semantics and Abstractions

Our prototype, Thésée, is based on Astrée and in-

herits all of its abstract domains. It features also two

additional domains as well as an extra iterator, which

are sketched in Fig. 14 and described below.

4.2.1 Interference Semantics

For efficiency reasons, it is not possible to consider ex-

plicitly all interleavings of threads. Thus, we use an

idea dating back to early proof methods for parallel

programs [38], i.e. the decomposition of the global pro-

gram invariant into a local invariant at each program

point of each thread (similar to the kind of invariants

inferred by Astrée) and a global interference property

parallel iterator
↓

iterator
↓

trace abstract domain
↓

scheduler partitioning domain

↓
memory abstract domain
↓ ↓

interference pointer domain
domain ↓

...
(Fig. 6)

Fig. 14 Hierarchy of abstractions in Thésée. Abstractions
added compared to Astrée are shown in boldface.

describing the effect on a given thread of all the other

threads.

In the concrete, an interference is a triple (t,X, v),

indicating that the thread t can set the variable X to

the value v. A set of interferences is then abstracted by

mapping each pair (t,X) to an abstract set of values

(e.g. an interval). Interferences are thus non-relational

and flow-insensitive. The memory abstract domain of

Sec. 3.3.4 is modified to apply, when analyzing a given

thread, a given abstraction of interferences to variables

appearing in expressions. The modified expressions are

passed down to underlying domains, that do not need

further change to handle interferences. The memory do-

main also enriches the current thread’s abstract inter-

ferences based on values assigned to variables. Given

an abstract interference, it is then possible to analyse

a single thread using Astrée’s flow and context sensi-

tive iterator to compute its local abstract invariants and

collect new abstract interferences. To take into account

the interferences between all threads in a sound way,

we use a parallel iterator that reanalyzes all threads,

starting from an initially empty abstract interference,

until interferences stabilize. A widening O is used to en-

sure that the parallel iterations terminate in few steps,

so that the overall analysis is slower than a sequential

program analysis by a small factor only.

This interference semantics is an abstraction of the

interleavings of all threads, as proved in [35]. More-

over, it is also sound with respect to weakly consis-

tent memory models [2]. In particular, it takes into ac-

count the optimizations and program transformations

that are performed by processors and compilers, and

that may expose behaviors not corresponding to any

interleaving of threads.

http://www.astree.ens.fr/
http://www.astree.ens.fr/
http://www.astree.ens.fr/
http://www.astree.ens.fr/
http://www.astree.ens.fr/
http://www.astree.ens.fr/

Static Analysis by Abstract Interpretation of Embedded Critical Software 13

4.2.2 Scheduler Partitioning

To achieve a good precision, it is also necessary to take

into account the scheduler, which restricts the set of

possible thread interleavings. For instance, it enforces

mutual exclusion (two threads cannot lock the same

semaphore) and thread priorities (a low priority thread

cannot preempt a higher priority runnable thread). A

concrete model of the ARINC 653 scheduler [3] that

keeps track the state of threads and synchronization

objects is developed in [35].

It is important to note that interesting scheduling

properties, such as mutual exclusion, relate the control

point of two threads. Thus, they cannot be expressed in

a thread analysis that treats the effect of other threads

in a flow insensitive way. Our solution is to partition

the invariants (thread local invariants and thread inter-

ferences) with respect to an abstraction of the sched-

uler state. In particular, we distinguish the interferences

performed by a thread when it owns a given lock and

when it does not. When analyzing another thread, we

partition the local invariant with respect to the same

criterion. Then, the local invariants where the lock is

owed by the analyzed thread is only influenced by in-

terferences where the lock is not owned by the interfer-

ing thread. Another useful partitioning criterion is the

ability to be preempted by another thread and involves

thread priorities.

4.3 Preliminary Results

Our target parallel application is a large avionic soft-

ware consisting of 1.6 M lines of C code and 15 threads.

It runs under an ARINC 653 real-time OS [3]. The

code is quite complex as it mixes string formatting,

list sorting, network protocols, and automatically gen-

erated synchronous logic. The program was completed

with a 2 500 line hand-written model of the ARINC

653 OS implementing the various API calls, in C en-

riched with analyzer-specific intrinsics (for locking and

unlocking semaphores, etc.).

The analysis currently takes 14h on our 2.66 GHz

64-bit intel server using one core. An important result

is that only four iterations are required to stabilize ab-

stract interferences. Moreover, the number of required

abstract scheduler partitions is quite low (52 partitions

for interferences and 4 partitions for local invariants),

and so, the analysis is memory efficient. The analysis

generates around 7600 alarms. This high number is un-

derstandable: Thésée is naturally tuned for control /

command software as it inherits abstract domains from

Astrée, but the analyzed program is not limited to

control / command processing. We plan to reduce the

number of alarms in future work.

5 Translation Validation

The analysis described in Sec. 3 is performed at the

source level, thus its results hold true at the assembly

level only if the compilation of the C code is semanti-

cally correct. Indeed, if the compiler is incorrect, then

the assembly code may contain bugs that could cause

runtime errors: for instance, if an arithmetic expression

is compiled in an incorrect manner, the assembly code

may compute results that violate the invariants com-

puted at the source level. In some application domains,

such as avionics, certification rules state that the devel-

opment process should be certified and that the final

version of the software should be certified [4]. From this

point of view, the analysis of the C code cannot be con-

sidered a sufficient guarantee, as the use of an incorrect

compiler may ruin the whole certification effort.

Certification processes such as DO 178 B [4] also re-

quire each development step be documented, so that it

can be verified correct at a later stage (either formally,

or by manual inspection). From the certification point

of view, compilation can also be considered a develop-

ment step in itself. Therefore, certification in avionic

systems puts a lot of emphasis on the verification of

program translation stages.

An alternative technique would consist in certify-

ing only the final code, and designing analysis tools

that should be run on the compiled program. While

an analysis of the target code is adequate for some ap-

plications such as worst-case execution time [26], higher

level properties such as the absence of run-time errors

are easier to reason about at the C level, since many

simple C operations turn into complex pieces of assem-

bly code, as in the case of floating point conversions or

code in which the notion of error has disappeared (such

as memory accesses). Thus, it is preferable to exploit

the results obtained at the source level in order to cope

with the target code certification in a more efficient way.

A first approach relies on the translation of invari-

ants obtained in Sec. 3 into assembly level properties,

which can be checked using an independent analysis.

The advantage of this technique is that the low-level

analysis only needs to verify invariants; the harder part

(which consists in inferring them) can be carried out

at the source level, using an analyzer such as Astrée.

Proof carrying codes [36] were a first implementation

of that idea, where properties to be tracked are related

to the security of web services. It was later extended to

work with Abstract Interpretation based static analy-

ses [42]. This approach allows proving that the assembly

http://www.astree.ens.fr/
http://www.astree.ens.fr/

14 Julien Bertrane et al.

code enjoys some good properties, such as the absence

of runtime errors. However, it does not provide a proof

that the compilation is correct. This approach is also

hard to implement and hard to get to scale up, as the

analysis of low level operations is often complex.

A second technique proceeds by an automatic proof

of equivalence (also known as translation validation) of

both programs. This idea was initially proposed for syn-

chronous languages [39] and later extended to languages

like C [37,43]. The proof of equivalence is automatic:

in [39], it is performed by a model checker whereas

[43] relies on a theorem prover developed specifically

for program equivalence checking. The algorithms pre-

sented in [37] and [43] proved to be scalable and exten-

sible to rather large classes of compilation algorithms

(even though they were developed for some specific

compiler). This technique allows tackling both certifica-

tion requirements of [4]: first, when the proof of equiv-

alence succeeds, it means the results of the source code

analysis applies to the target level; secondly, it also al-

lows to document and verify a compilation stage in the

development.

Note that translation validation is actually closely

linked to the proof of absence of run-time errors at

the source level: indeed, semantic equivalence can only

be guaranteed on safe executions, whereas unsafe runs

typically have undefined semantics. Indeed, the C 99

standard [30] leaves many behaviors undefined, when a

program performs an incorrect operation. Such a situa-

tion cannot be accounted for in the equivalence checking

phase, and the translation validator will always try to

check that the target code behaves as specified in the

source code, when the source code defines a valid be-

havior. Therefore, translation validation should always

be run after an analysis tool like Astrée achieved a

proof of absence of run-time errors in the source code.

Both techniques can be formalized in the Abstract

Interpretation framework [43], since the compiler se-

mantic effect can be modeled as a classic fixpoint trans-

fer, where C computation steps are translated into as-

sembly computation steps. Such a formalization allows

the translation certification to interface well with the C

code analysis, and also to reuse components of transla-

tion validators and invariant translators to certify the

compilation of other languages, or when the compila-

tion includes optimization stages. This formalization re-

lies on the following principle: compilation should be

expected to preserve the overall structure of programs,

while modifying the representation of data, and the na-

ture of small steps; therefore, before reasoning about

compilation, one should abstract away the aspects of

program behaviors that are not preserved, and focus

on the “stable” part of the program semantics. This

can be achieved using abstraction functions, that will

take the standard semantics JPsourceK (resp., JPtargetK)
of the source program Psource (resp., assembly program

Ptarget) into an abstract semantics OBSJPsourceK and

OBSJPtargetK, where only behaviors that are preserved

by the compilation are observable. Typically, at the as-

sembly level, the state at intermediate control points

and the values stored in temporary registers will not

be observable, as they do not correspond to anything

in the source program semantics. Conversely, when a

compiler determines that a variable is dead and dis-

cards it, it should be erased from the source semantics,

as it will not be possible to relate it to anything in the

assembly. Then, the equivalence between the “observa-

tional semantics” boils down to a simpler relation. This

situation is described in the diagram below.

Psource
compilation //

��

Ptarget

��
JPsourceK

αsource

��

JPtargetK

αtarget

��
OBSJPsourceK ks +3 OBSJPtargetK

This diagram allows to clearly specify the compilation

verification tools. An invariant translator should exploit

the equivalence to translate invariants in a sound man-

ner, thus it can only translate invariants that are more

abstract than the observational semantics of choice. A

translation validator should perform equivalence check-

ing at the observational semantics level.

In general, the choice of the observational semantics

is not unique. Depending on the level of granularity of

the observation, the equivalence under consideration is

more or less tight, which may make it more or less useful

and easier or harder to verify.

The Lcertify tool was developed as a library of

data-structures and algorithms for translation valida-

tion, following the framework exposed in [43]. It comes

with a C front-end, but can also be used with a custom

front-end, adapted to a user-specific imperative lan-

guage, as used for some applications. At the assembly

level, it takes 32-bit PowerPC binaries. It can certify

the compilation of industrial-size codes in a few min-

utes including disassembly. It operates on a rather low

level of observation, and will establish the correctness

of the target code with respect to the source level on a

per source statement basis. This makes the property it

verifies very precise.

http://www.astree.ens.fr/

Static Analysis by Abstract Interpretation of Embedded Critical Software 15

6 Imperfectly-Clocked Synchronous Systems

6.1 Proving Temporal Specifications

The analysis presented in Sec. 5 allows binaries ob-

tained through the process explained in Fig. 1 to be

proved safe with respect to specifications expressed at

the C language level or at the assembly language level.

This is a huge part of the control units of embedded

systems which is then certified. On the other hand,

the temporal specifications are rather expressed at a

higher level, where the synchrony hypothesis and the

syntax make them easier to define and read. This is

also the right level for studying the redundancy added

to systems in order for them to gain robustness to hard-

ware failures. Indeed, some hardware characteristics are

still present, like clocks and communication channels.

As many systems are designed in a distributed way,

these systems are in fact asynchronous. Having multi-

ple clocks implies studying the desynchronizations re-

sulting from the little imperfections of each clock. Sim-

ilarly, the delays in communication channels, although

usually bounded, cannot yet be considered as null or

even constant, which leads to unexpected behaviors.

However, these systems are not arbitrary asynchro-

nous systems but rather imperfectly-clocked systems.

Their behaviors are expected to be close enough to

those of an ideal synchronous systems in order to sat-

isfy the desired specification. This has to be proved

using the information about their physical clocks and

their communication channels. For example, a typical

hypothesis for an imperfect clock is that its period (the

time between two consecutive clock ticks) is equal to

some fixed value δ with a possible imprecision of x%.

This may enable the computation of the minimum and

maximum number of cycles that may happen during a

given time interval.

The case of redundant sub-systems is particular.

The whole system is made safer by detecting the fail-

ures of one of the redundant units and by considering

only the results of other equivalent units. Of course an

automatic static analyzer should not trust this state-

ment but has to prove it. We thus developed abstract

domains based on the information we have from high

level code (similar to UML views). These abstractions

used during the development told us that in order to

minimize disagreements between redundant units, the

designer used strategies developed by the synchronous

language community to stabilize the values (eliminat-

ing unstable ones) and perform votes on several cycles.

We therefore do not try to detect which strategy is used

in the system we analyze, yet our analyzer is designed

so that it is very precise for these stabilized values and

is also able to study dependencies on previous cycles.

This is an example of how to extract information from

the development process without trusting it excessively,

since this information is only used as a hint to analyze

lower level code that is actually going to be executed.

We now show how to perform this temporal analysis.

6.2 Continuous-Time Semantics

We consider a continuous-time semantics since it al-

lows abstract domains to compute a more precise fix-

point abstracting this semantics than with a discrete

semantics. This is because the mathematical properties

of continuous spaces are richer than those of discrete

ones, and maybe also because these systems are actu-

ally designed in a continuous world through differential

equations.

In this semantics, it is for example easy to define the

consequence of a small imperfection in the delay along

a communication channel. If this delay belongs to the

time interval [α;β] then if a message with value x is

sent at time t, it is known that the value x is received

between time t+ α and t+ β. This is the basis for our

first Temporal Abstract Domain.

6.3 Temporal Abstract Domains

6.3.1 Abstract Constraints

By defining an universal constraint on a time interval

[a; b] and a boolean x, denoted ∀〈a; b〉 : x, we can de-

scribe signals that take the value x during the whole

time interval [a; b]. Similarly, an existential constraint,

denoted ∃[a; b] : x, describes signals that take the value

x at least once during [a; b]. This abstract information

can be propagated abstractly in an efficient way. For ex-

ample, the effect of a negation operation on a ∀〈a; b〉 : x

signal turns it into ∀〈a; b〉 : ¬x. Indeed, if you compute

repeatedly and instantaneously the negation of a con-

tinuous signal that is always equal to x between time a

and b, the result is clearly always equal to ¬x between

time a and b.

In a more complex example, a communication chan-

nel transmitting information in a serial way with at

least α and at most β delay, submitted with a ∃[a; b] : x

constraint results in ∃[a + α; b + β] : x. The cost for

propagating this abstract information is therefore of

only two additions for each constraint, thus linear in

the size of the initial set of constraints.

By considering conjunctions of these elements, we

may express temporal properties. This abstract domain

16 Julien Bertrane et al.

thus plays a similar role as the one of the interval do-

main presented in Sec. 2 for the analysis of the code of

one unit only.

6.3.2 Stability Domain

The Changes Counting Domain is the second Temporal

domain. It was designed in order to discover automati-

cally the properties of stability of some of the values in

some units of the system and if possible to bound the

variability of whole units of the embedded system.

For example, the data received from sensors is often

stabilized in order to eliminate dubious values. The unit

in charge of making the value changes smoother can for

example be implemented in a synchronous language as

the following node where nmin is a stability parameter:

stab (x:int)

if x unchanged since last cycle

then

if counter c reaches nmin

then

return x

else

increment c;

return previous stable value

else

initialize counter c;

return previous stable value

The Changes Counting Domain has to find in an

automatic and safe way that the output of the unit

containing this code does not change more than once

during each time interval of width nmin. Even if the an-

alyzer is not extracting this value nmin directly from the

code, this stability property is then much easier to dis-

cover in the code at this level than, for example, in the

C code that could be generated from this synchronous

program.

Another domain, expressing and proving additional

quantitative temporal properties, such as average val-

ues, is proposed in [6].

6.3.3 Reduced Product

The temporal aspect does not only enable proving tem-

poral properties, but also allows the automatic defini-

tion of a reduced product [14], the time becoming a

common language between the domains.

For example, in Fig. 15, the upper part describes

two abstract constraints ∃[b; c] : x and ∀[d; f] : x. How-

ever, we assume that the time area between them is

covered by an abstract value changes bound that en-

sures that between time a and e, at most one value

change occurs, and we have a < b < c < d < e < f .

width= δ.

.

.

.

.

.

:x :x

:x

value chng 1

t=e

t=d t=ft=ct=b

t=a

a b c d e f time

Fig. 15 Example of reduced product between temporal do-
mains.

There are consequently only two possibilities between

c and d: either there is no value change or there is one

value change. Having one value change is actually not

possible. Indeed, if there is at least one value change

between b and c, then there are at least two, since, at

some time t ∈ [b; c], the value has to be ¬x, because at

time d, it has to be x. Then, at some point t′ between

c and d, the value has to be x, which makes two value

changes: one between t′ and t, and one between t and d.

This is excluded. As a consequence, the two constraints

may be rewritten as ∀[c; f] : x.

The use of several temporal abstract domains thus

makes the analysis more precise and more likely to

prove the temporal specification.

6.4 Implementation and Experiments

Relaxing the synchrony hypothesis allows the certifica-

tion of a bigger subset of the whole embedded system, at

the price of a much more complex analysis that actually

depends on the imprecision of the clocks and the com-

munication systems. A prototype static analyzer has

been developed according to these ideas and was able

to prove some temporal properties of redundant SAO

systems with a voting system arbitrating among them.

Furthermore, when the analyzer cannot prove the spec-

ification, looking at the abstract fixpoint is sometimes

sufficient to devise an erroneous trace. When this is

not the case, it may be due false alarms that might

be removed by creating more precise abstract domains.

Incidentally, by trying the prototype on systems with

different parameters, interesting information can be ob-

tained, such as the minimal synchrony for the stabiliza-

tion of the values read by sensors such that the specifi-

cation is proved.

Static Analysis by Abstract Interpretation of Embedded Critical Software 17

7 Conclusion

The development of critical embedded systems is often

made following the V-Model paradigm. This paradigm

states that the development can be separated into two

distinct branches. The earlier starts with the definition

of the purpose of the systems, turns them into spec-

ifications, and results in the writing of the low-level

code that will be executed in the automated system.

The later branch is assumed to be the integration of all

the implemented subsystems, and the verifications and

tests of the final system.

It is furthermore often suggested that a member of

the development of the system belongs exclusively to

one of the two branches, with the idea that if he be-

longs to the earlier design branch, he would validate it

during the second branch. As soon as automatic and

formal verifications are made, this argument cannot be

considered as valid anymore. We propose however an

analysis framework which is mainly based on the later

branch. It is crucial to choose at which level an analysis

has to be made. The reason for this may be syntactic: in

low level code, some syntactic elements like variables or

time, are not available, and consequently specifications

on them cannot even be expressed.

Furthermore, some complex properties are difficult

to prove when their purpose is not clearly known. This

apparently violates the principle of separation of the

two branches of V-model. Suppose, however, that the

analysis designer is aware that some technique (say, dig-

ital filtering) is used by high level code in order to reach

a complex property. A specialized domain, only know-

ing the kind of technique used may discover by itself

that the ranges of coefficients used in the filter actu-

ally satisfy the desired property without contradicting

the V-model. Similarly, a domain may implement the

discovery of a proof that a property only holds if vari-

ables are stable enough in the system, and discover and

prove the minimal stability for that without knowing

the stability value that the designers chose.

Finally, the multiple levels of the earlier branch of

development also give a chance to choose one level for

the specifications of the systems and translations to

other levels may be themselves validated so that the

final level (binary) is certified.

Some automatic transformations have been devel-

oped and proved correct by scientists and engineers,

like automatic duplication of units for a safer redundant

system satisfying the same specifications as the initial

system when there is no hardware failure, and still func-

tional in case of the failure of a single unit. Yet most

of these automatic transformations require hypotheses

that are not checked automatically, which on big sys-

tems cannot be considered as safe. Therefore, analyzing

the high level code where this automatic transforma-

tions have not been performed is crucial in proving the

specifications of the final system.

The use in UML of successive as well as indepen-

dent abstracted views of the system being designed

does actually reinforce the safety of the whole devel-

opment process by providing simplified yet safe over-

approximations of the final system. In the same way,

performing several static analyses at several levels of

the development process makes the certification easier

and covers more cases.

All this is however possible only if each level has

a formal semantics. We are therefore very interested

in the high level becoming more and more formal. It

would also be of high benefit if the transformation of

the code from one level to a lower one were performed

automatically, since it eases the discovery of correspon-

dences between the two levels and the translation of the

abstract property found at a higher level to lower ones.

We have thus shown that static analysis by Abstract

Interpretation can be applied from the design to the im-

plementation of software systems. Each level of descrip-

tion of the system must be checked, and the translation

from one level to another one must be validated, since

the different levels can significantly differ in their de-

scription of the target system.

A modeling language like UML describes nothing

more that different abstractions of the target system,

at different levels of abstraction, and so, Abstract In-

terpretation is certainly applicable both to formalize

these abstractions and to develop static analysis tech-

niques at each level of abstraction. However, model-
ing languages are usually not formalized and subject to

multiple, if not contradictory, interpretations. As with

any formal method, the first task towards the use of

Abstract Interpretation on UML would therefore be to

provide a rigorous mathematical definition of the mean-

ing of the data, business, object, and component model-

ing, and their diagramatic representations. It will then

be possible to define in what sense modeling languages

do abstract the design process and ultimately the target

system. Then, the development of tools, going beyond

mere syntactic checks, will be possible.

Acknowledgements We thank Isabelle Perseil for her kind
invitation to the UML&FM 2010 workshop.

References

1. AbsInt, Angewandte Informatik GmbH: Astrée run-time
error analyzer. http://www.absint.com/astree/

http://www.absint.com/astree/

18 Julien Bertrane et al.

2. Adve, S.V., Gharachorloo, K.: Shared memory consis-
tency models: A tutorial. IEEE Comp. 29(12), 66–76
(1996)

3. Aeronautical Radio, Inc. (ARINC): ARINC 653. http:

//www.arinc.com/

4. Technical Commission on Aviation, R.: DO-178B. Tech.
rep., Software Considerations in Airborne Systems and
Equipment Certification (1999)

5. von der Beeck, M.: A formal semantics of UML-RT.
In: O.Nierstrasz, J. Whittle, D. Harel, G. Reggio (eds.)
Model Driven Engineering Languages and Systems, 9th
International Conference, MoDELS 2006, Genova, Italy,
October 1-6, 2006, Proceedings, LNCS, vol. 4199, pp.
768–782. Springer (2006)

6. Bertrane, J.: Proving the properties of communicating
imperfectly-clocked synchronous systems. In: K. Yi (ed.)
Proceedings of the Thirteenth International Symposium
on Static Analysis (SAS 06), LNCS, vol. 4134, pp. 370–
386. Springer, Seoul (2006)

7. Bertrane, J., Cousot, P., Cousot, R., Feret, J.,
Mauborgne, L., Miné, A., Rival, X.: Static analysis and
verification of aerospace software by abstract interpreta-
tion. In: AIAA Infotech@Aerospace (I@A 2010), AIAA-
2010-3385, pp. 1–38. AIAA (American Institute of Aero-
nautics and Astronautics) (2010)

8. Blanchet, B., Cousot, P., Cousot, R., Feret, J.,
Mauborgne, L., Miné, A., Monniaux, D., Rival, X.: De-
sign and implementation of a special-purpose static pro-
gram analyzer for safety-critical real-time embedded soft-
ware, invited chapter. In: T. Mogensen, D. Schmidt,
I. Sudborough (eds.) The Essence of Computation: Com-
plexity, Analysis, Transformation. Essays Dedicated to
Neil D. Jones, LNCS 2566, pp. 85–108. Springer (2002)

9. Blanchet, B., Cousot, P., Cousot, R., Feret, J.,
Mauborgne, L., Miné, A., Monniaux, D., Rival, X.: A
static analyzer for large safety-critical software. In: Proc.
ACM SIGPLAN ’2003 Conf. PLDI, pp. 196–207. ACM
Press, San Diego (2003)

10. Bouissou, O., Conquet, E., Cousot, P., Cousot, R., Feret,
J., Goubault, E., Ghorbal, K., Lesens, D., Mauborgne,
L., Miné, A., Putot, S., Rival, X., Turin, M.: Space soft-
ware validation using abstract interpretation. In: Proc.
of the Int. Space System Engineering Conference, Data
Systems In Aerospace (DASIA’09), pp. 1–7. ESA publi-
cations, Istanbul, Turkey (2009)

11. Bryant, R.: Graph-based algorithms for boolean function
manipulation. IEEE Trans. Computers C-35(8) (1986)

12. Cousot, P.: The calculational design of a generic abstract
interpreter. In: M. Broy, R. Steinbrüggen (eds.) Calcu-
lational System Design. NATO ASI Series F. IOS Press,
Amsterdam (1999)

13. Cousot, P., Cousot, R.: Abstract interpretation: a uni-
fied lattice model for static analysis of programs by con-
struction or approximation of fixpoints. In: Conf. Rec.
of the 4th ACM Symp. on Principles of Programming
Languages (POPL’77), pp. 238–252 (1977)

14. Cousot, P., Cousot, R.: Systematic design of program
analysis frameworks. In: Conference Record of the Sixth
Annual ACM SIGPLAN-SIGACT Symposium on Prin-
ciples of Programming Languages, pp. 269–282. ACM
Press, San Antonio, Texas (1979)

15. Cousot, P., Cousot, R.: Invariance proof methods and
analysis techniques for parallel programs. In: Automatic
Prog. Construction Techniques, chap. 12, pp. 243–271.
Macmillan, New York, NY, USA (1984)

16. Cousot, P., Cousot, R., Feret, J., Mauborgne, L., Miné,
A., Monniaux, D., Rival, X.: Combination of abstractions

in the Astrée static analyzer. In: M. Okada, I. Satoh
(eds.) Proc. of the 11th Annual Asian Computing Science
Conference (ASIAN’06), LNCS, vol. 4435, pp. 272–300.
Springer, Tokyo, Japan (2006)

17. Cousot, P., Cousot, R., Feret, J., Mauborgne, L., Miné,
A., Rival, X.: The Astrée static analyzer. http://www.

astree.ens.fr
18. Cousot, P., Halbwachs, N.: Automatic discovery of lin-

ear restraints among variables of a program. In: Conf.
Rec. of the 5th Annual ACM SIGPLAN-SIGACT Symp.
on Principles of Programming Languages (POPL’78), pp.
84–97. ACM Press, Tucson, USA (1978)

19. Delmas, D., Souyris, J.: Astrée: from research to in-
dustry. In: G. Filé, H. Riis-Nielson (eds.) Proc. of the
14th Int. Static Analysis Symposium (SAS’07), LNCS,
vol. 4634, pp. 437–451. Springer, Kongens Lyngby, Den-
mark (2007)

20. Esterel Technologies: Scade suiteTM, the standard for
the development of safety-critical embedded software in
the avionics industry. http://www.esterel-technologies.
com/

21. Feret, J.: Static analysis of digital filters. In: D. Schmidt
(ed.) Proc. of the 13th European Symp. on Programming
Languages and Systems (ESOP’04), LNCS, vol. 2986, pp.
33–48. Springer (2004)

22. Feret, J.: The arithmetic-geometric progression abstract
domain. In: R. Cousot (ed.) Proc. of the 6th Int. Conf.
on Verification, Model Checking and Abstract Interpreta-
tion (VMCAI’05), LNCS, vol. 3385, pp. 42–58. Springer,
Paris, France (2005)

23. Gosling, J., Joy, B., Steele, G., Bracha, G.: The Java Lan-
guage Specification, third edn. Addison Wesley (2005)

24. Goubault, E.: Static analyses of floating-point opera-
tions. In: Proc. of the 8th Int. Static Analysis Symposium
(SAS’01), LNCS, vol. 2126, pp. 234–259. Springer (2001)

25. Granger, P.: Static analysis of arithmetical congruences.
Int. J. Comput. Math. 30(3 & 4), 165–190 (1989)

26. Heckmann, R., Ferdinand, C.: Worst-case execution time
prediction by static program analysis. In: Proc. of the
18th Int. Parallel and Distributed Processing Symposium
(IPDPS’04), pp. 26–30. IEEE Computer Society (2004)

27. IEEE Computer Society: IEEE standard for binary
floating-point arithmetic. Tech. rep., ANSI/IEEE Std.
745-1985 (1985)

28. IEEE Computer Society, The Open Group: Portable op-
erating system interface (POSIX) - application program
interface (API) amendment 2: Threads extension (C lan-
guage). Tech. rep., ANSI/IEEE Std. 1003.1c-1995 (1995)

29. Ioualalen, A.: SARDANA: an abstract interpretation
based tool for Optimization of numerical expressions in
LUSTRE programs. In: Tools for Automatic Program
AnalysiS (TAPAS 2010), Perpignan, France (2010)

30. ISO/IEC JTC1/SC22/WG14 Working Group: C stan-
dard. Tech. Rep. 1124, ISO & IEC (2007)

31. Jeannet, B., Miné, A.: Apron: A library of numerical ab-
stract domains for static analysis. In: Computer Aided
Verification (CAV’09), LNCS, vol. 5643, pp. 661–667
(2009)

32. Kästner, D., Wilhelm, S., Nenova, S., Cousot, P., Cousot,
R., Feret, J., Mauborgne, L., Miné, A., Rival, X.: Astrée:
Proving the absence of rutime errors. In: Proc. of Em-
bedded Real-Time Software and Systems (ERTS’10), pp.
1–5. Toulouse, France (2010). (to appear)

33. Miné, A.: Field-sensitive value analysis of embedded C
programs with union types and pointer arithmetics. In:
Proc. of the ACM SIGPLAN-SIGBED Conf. on Lan-
guages, Compilers, and Tools for Embedded Systems
(LCTES’06), pp. 54–63. ACM Press (2006)

http://www.arinc.com/
http://www.arinc.com/
http://www.astree.ens.fr
http://www.astree.ens.fr
http://www.esterel-technologies.com/
http://www.esterel-technologies.com/

Static Analysis by Abstract Interpretation of Embedded Critical Software 19

34. Miné, A.: The octagon abstract domain. Higher-Order
and Symbolic Computation 19, 31–100 (2006)

35. Miné, A.: Static analysis of run-time errors in embedded
critical parallel C programs. In: Proc. of the 20th Eu-
ropean Symposium on Programming (ESOP’11), LNCS.
Springer, Saarbrücken, Germany (2011). To appear

36. Necula, G.C.: Proof-Carrying Code. In: Proceedings of
the 24th ACM SIGPLAN-SIGACT Symposium on Prin-
ciples of Programming Langauges (POPL ’97), pp. 106–
119. Paris (1997)

37. Necula, G.C., Lee, P.: The Design and Implementation
of a Certifying Compiler. In: Proc. of the Conference
on Programming Languages, Design and Implementation
(PLDI’98), pp. 333–344. ACM Press, Montréal, Canada
(1998)

38. Owicki, S., Gries, D.: An axiomatic proof technique for
parallel programs I. Acta Informatica 6(4), 319–340
(1976)

39. Pnueli, A., Shtrichman, O., Siegel, M.: Translation Val-
idation for Synchronous Languages. In: ICALP’98, pp.
235–246. Springer-Verlag (1998)

40. Qadeer, S., Rehof, J.: Context-bounded model checking
of concurrent software. In: TACAS’05, LNCS, vol. 3440,
pp. 93–107. Springer (2005)

41. Randimbivololona, F., Souyris, J., Baudin, P., Pacalet,
A., Raguideau, J., Schoen, D.: Applying formal proof
techniques to avionics software: A pragmatic approach.
In: Proc. of the World Congress on Formal Meth-
ods (FM’99), LNCS, vol. 1709, pp. 1798–1815. Springer
(1999)

42. Rival, X.: Abstract interpretation-based certification of
assembly code. In: L.D. Zuck, P.C. Attie, A. Cortesi,
S. Mukhopadhyay (eds.) VMCAI, LNCS, vol. 2575, pp.
41–55. Springer (2003)

43. Rival, X.: Symbolic transfer functions-based approaches
to certified compilation. In: Conf. Rec. of the 31st Annual
ACM SIGPLAN-SIGACT Symp. on Principles of Pro-
gramming Languages (POPL’04), pp. 1–13. ACM Press,
Venice, Italy (2004)

44. Rival, X., Mauborgne, L.: The trace partitioning abstract
domain. ACM Trans. Program. Lang. Syst. 29(5) (2007)

Julien Bertrane is a Teaching Assis-
tant (ATER) at the Computer Science

Departement of the École Normale Su-
périeure, Paris, France. He received his
PhD from École Polytechnique in France.
His research focuses on Abstract Inter-
pretation applied to the static analysis
of embedded system and, in particular,
to their temporal specifications. He de-
veloped Abstract Domains dedicated to

temporal analysis.

PLACE
PHOTO
HERE

Patrick Cousot

PLACE
PHOTO
HERE

Radhia Cousot

Jérôme Feret is a Junior Researcher
(CR1) at the French National Institute
for Research in Computer Science and
Control (INRIA), in the project-team “Ab-
straction” which is hosted at the Com-
puter Science Department of the École
Normale Supérieure, Paris, France. He
received his PhD from École Polytech-
nique in France. His research focuses on
the static analysis of programs or mod-

els by the means of Abstract Interpretation. He is interested
in the certification of mobile systems and critical embedded
software, and in the static analysis of biological systems.

PLACE
PHOTO
HERE

Laurent Mauborgne

20 Julien Bertrane et al.

Antoine Miné is a Junior Researcher
at Centre National de la Recherche Sci-
entifique and at the Computer Science
Departement of the École Normale Su-
périeure, Paris, France. He received his
PhD from École Polytechnique in France.
His research interests include the theory
of Abstract Interpretation and its appli-
cations to static analysis, with a focus on
numeric properties and the safety prop-

erties of synchronous and parallel embedded critical software.

Xavier Rival is a Junior Researcher (CR1)
at INRIA Rocquencourt, and at the Com-
puter Science Department of the École
Normale Supérieure, Paris, France, and
a part-time Asistant Professor at École
Polytechnique, France. He received his
PhD from École Polytechnique in France.
His reserach focuses on the static analy-
sis of programs by Abstract Interpreta-
tion, on the design of symbolic abstract

domains, and on the verification of program transformations.

	Introduction
	Abstract Interpretation
	Checking Run-Time Errors in Embedded Synchronous Software with Astrée
	Checking Run-Time Errors in Parallel Embedded Software
	Translation Validation
	Imperfectly-Clocked Synchronous Systems
	Conclusion

