
Experiments with Finite Tree Automata in Coq
�

Xavier Rival
��� �

Jean Goubault-Larrecq
��� �

�
GIE Dyade, INRIA Rocquencourt

�
Ecole Normale Supérieure

�
LSV, ENS Cachan

Domaine de Voluceau B.P. 105 45, rue d’Ulm 61, av. du président-Wilson
78153 Le Chesnay Cedex 75005 Paris 94235 Cachan Cedex

France France France

Abstract. Tree automata are a fundamental tool in computer science. We report
on experiments to integrate tree automata in Coq using shallow and deep reflec-
tion techniques. While shallow reflection seems more natural in this context, it
turns out to give disappointing results. Deep reflection is more difficult to apply,
but is more promising.

1 Introduction

Finite-state automata, and more generally tree automata [7], are of fundamental impor-
tance in computer science [12], and in particular in hardware or software verification.
One particular domain of interest to the authors is cryptographic protocol verification,
where tree automata [13] and slight extensions of them [9] have been used with suc-
cess. In this domain in particular—but this is already true to some extent in verification
in general—it is important to document the process by which verification is deemed to
be complete, as well as to be able to convince any third party that the result of verifica-
tion is correct. Both goals can be achieved by producing a formal proof in some trusted
proof assistant. Our aim in this paper is to report on experience we gained in producing
formal proofs of correctness of computations on tree automata in Coq [1]. As we shall
see, there are many possible approaches to this apparently simple problem, and several
unexpected pitfalls to each.

We survey related work in Section 2, recall the features of Coq that we shall use
in Section 3, and give a short introduction to finite tree automata in Section 4. We
study the most promising technique to check tree automata computations done by an
external tool in Coq, namely shallow reflection, in Section 5. Rather surprisingly, this
yields disastrous performance. We discuss reasons for this failure at the end of this
section. This prompts us to investigate deep reflection in Section 6: in deep reflection,
the algorithms themselves are coded, proved, and run in the target proof assistant. While
this is a complex task to engage in, and seems to provide little return on investments,
it is worthwhile to investigate, considering the results of Section 5. We shall see in
Section 6 that this actually yields encouraging results. We conclude in Section 7.

	
This work was done as part of Dyade, a common venture between Bull S.A. and INRIA.

2 Related Work

There does not seem to have been any work yet on integrating automata-theoretic tech-
niques with proof assistants. In general, however, augmenting the capabilites of proof
assistants by external tools is now standard. This is shallow reflection, where the exter-
nal tool constructs a trace of its verification, which can then be checked by the machin-
ery of the given proof assistant. For instance, this is how Harrison [10, 11] integrates
computations done by an external binary decision diagram package, resp. an imple-
mentation of Stålmarck’s algorithm into HOL. Similarly, the model-checker of Yu and
Luo [17] outputs a proof that can be checked by Lego.

Shallow reflection has many advantages. First, it is a safe way to extend the capabil-
ities of proof assistants in practice, as the core of the proof assistant is not modified or
enriched in any way: the proof assistant still only trusts arguments it (re)checks. Second,
the external tool can be swapped for another, provided the new one is instrumented to
output traces that the proof assistant can still check. This is important for maintenance,
where tools can be optimized or upgraded easily enough, with only an instrumentation
effort. Third, it is much easier to check a series of computations done by an external
algorithm

�
that to prove that

�
itself is correct.

However, some applications seem to require the latter, where algorithm
�

itself is
coded, proved and run inside the proof assistant. This approach is called deep reflection,
and was pioneered in [16, 3]. In Coq, one first application is Boutin’s Ring tactic [2]
deciding equalities in the theory of rings, mixing shallow and deep reflection. One of
the largest deep reflection endeavours is certainly the work by Verma et al. [15], where
binary decision diagrams are integrated in Coq through total reflection. In the last two
cases, total reflection was called for, as traces produced by external tools would have
grown far too much to be usable in practice: this is the case for binary decision diagrams,
as Harrison shows [10]. Total reflection can roughly be thought as “replacing proofs in
the logic by computations”, and will be described in more detail in Section 3.

3 A Short Tour of Coq

Coq is a proof assistant based on the Calculus of Inductive Constructions (CIC), a type
theory that is powerful enough to formalize most of mathematics. It properly includes
higher-order intuitionistic logic, augmented with definitional mechanisms for induc-
tively defined types, sets, propositions and relations. CIC is also a typed � -calculus,
and can therefore also be used as a programming language. We describe here the main
features of Coq that we shall need later.

Among the sorts of CIC are ������� , the sort of all propositions, and 	�
�� , the sort of
all specifications, programs and data types. What it means for ���
��� to be the sort of
propositions is that any object �������
��� (read: � of type ���
���) denotes a proposition,
i.e., a formula. In turn, any object ����� is a proof � of � . A formula is considered
proved in Coq whenever we have succeeded to find a proof of it. Proofs are written, at
least internally, as � -terms, but we shall be content to know that we can produce them
with the help of tactics, allowing one to write proofs by reducing the goal to subgoals,
and eventually to immediate, basic inferences.

2

Similarly, any object � � 	�
�� denotes a data type, like the data type � of natural
numbers, or the type ����� of all functions from naturals to naturals. Data types can,
and will usually be, defined inductively. For instance, the standard definition of � in
Coq is by giving its two constructors � ��� and 	 ������� ; that is, as the smallest
containing 	 �
� and such that 	���
�� ��� for any
 ��� . In particular, every natural
number must be of the form 	�������� 	������������ � , which is expressed by Peano’s induction
principle.

If � � 	
�� , and � ��� , we say that � is a program of type � . Programs in Coq are
purely functional: the language of programs is based on a � -calculus with variables,
application ��� of � to � , abstraction � � ���! � (the function mapping each � of type � to
�), case splits (e.g., "$#&%
&%'
 �)(*	,+.-0/ 	���12�3+54�1
�687 either returns - if
29�� , or
4�1 if
 is of the form 	��:10�), and functions defined by structural recursion on their last
argument. For soundness reasons, Coq refuses to accept any non-terminating function.
In fact, Coq refuses to acknowledge any definition of a recursive function that is not
primitive recursive, even though its termination might be obvious.

In general, propositions and programs can be mixed. We shall exploit this in a very
limited form: when � and ��; are programs (a.k.a., descriptions of data), then �<9 �=;
is a proposition, expressing that � and �=; have the same value. Deep reflection can
then be implemented as follows: given a property > �?�@� ���
��� , write a program
� ���<�BA � �$C deciding > (where A � �$C is the inductive type of Booleans). Then prove
the correctness lemma D�� �'�FE��3�:���G9 ���IH
<�J>K�:��� . To show >K�:L$� , apply the
correctness lemma: it remains to prove that �3�:L$�!9 ���)H

 . If this is indeed so, one call
to the Reflexivity tactic will verify that the left-hand side indeed reduces to ���)H

 ,
by computing with program � . At this point, the proof of >K��L$� will be complete.

Not only data structures, but also predicates can be defined by induction. This cor-
responds to the mathematical practice of defining the smallest set or relation such
that a number of conditions are satisfied. For instance, we may define the binary re-
lation M on natural numbers as having constructors C
 6 �ND�
 �O�PE&
BMQ
 and
C�
 	 �=D�
�RS1 ���TE�
UMV1W�X
UM 	��:10� . This defines it as the smallest binary re-
lation such that
YMZ
 for all
Y[\� (the C
 6 clause) and such that whenever
]M^1 ,
then
ZM_1a`cb (the C�
 	 clause). Note that the constructors C
 6 and C
 	 play the
role of clause names, whose types are Horn clauses. (In Prolog notation, they would be

�MF
 and
TM 	���12�,de
�MP1 .) It is in fact useful to think of inductively defined
predicates as sets of Horn clauses, a.k.a. pure Prolog programs.

4 Tree Automata

A signature f is a collection of so-called function symbols 4 , together with natural
numbers
 called arities. In this paper, we shall always assume that f is finite. The
set �O�gfhRSij� of first-order terms, a.k.a. trees, over the signature f with variables in i
is defined inductively by: �][k�l�mfhRSin� for every �o[Yi , and 4p��� � R�������RS��q8� for every

 -ary function symbol 4 and every � � R������rRs� q [c�l�mfhRSin� . Elements of �l�gfhRut�� are
called ground terms over f . Note that there is a ground term over f if and only if f
contains at least one constant, i.e., one v -ary function symbol. In the sequel, we shall
assume f fixed.

3

Tree automata are finite data structures that represent possibly infinite sets of terms,
the so-called regular tree languages. (As in [7], we only consider languages of finite
terms. For more information on regular infinite term languages, see [14].) Tree au-
tomata generalize ordinary (word) finite-state automata, where the word L � L � ����� L)q is
represented as the linear term L � ��L � ������� �:L�q � � �s������� �s� , where L � , L � , . . . , L�q are unary
(arity b) function symbols and � is a distinguished end-of-word constant.

There are many ways in which tree automata, not to mention regular tree languages,
can be described [7]. While they are all equivalent in theory, the precise choice of data
structure weighs heavily on algorithms working on them. We define:

Definition 1 (Tree Automata). A tree automaton
�

is a tuple ��� R � R��*� , where � is a
finite set of so-called states � , ���	� is the subset of final states, and � is a finite set of
transitions 4p�:� � R�������R ��q8�!�Q� , where 4 is an
 -ary function symbol, and � � , . . . , ��q , �
are states in � .

A ground term � is recognized at � in
�

if and only if the judgment
���
��:��Rs�S� is
derivable in the system whose rules are:

���
���� � Rs� � � ������
���
I�:� q RS� q � ��
���
��

���
I�:��R 4p�:� � R�������RS� q �s�

where 4p��� � R�������R ��q8�3�B� ranges over � . The term � is recognized by
�

if and only if it
is recognized at some final state (in �).

It might seem curious that tree automata do not have any initial states. Their roles
are taken up by nullary transitions. Consider for example the automaton of Figure 1(a).
The state ��������� (resp. ��� � �����������) recognizes even natural numbers (resp. lists of even
natural numbers). Transitions are represented by arrows labeled by a constructor. Then
the constant term � is recognized at ��������� by following the nullary transition �U�
��������� . Note also that we have transitions of arity more than b : consider the transition� ��6�%)�����������8Rs��� � � � - ��������� � ��� � ��� - ������� pictured around the � ��6�%8� R � label in the upper
right. The circled state � � � ��� - ������� is the only final state.

A classic alternate description of tree automata is through the use of rewrite sys-
tems [5]: tree automata are then rewrite systems consisting of rules of the form
4p�:� � R�������R � q �j� � , where the states � � , . . . , � q , � are constants outside the signa-
ture f . Then a ground term � over f is recognized by a tree automaton if and only if �
rewrites to some �O[� . This representation of tree automata recognizes terms bottom-
up. For example, the term � ��6�%$� 	�� 	��g���S� RS6"! CI� is recognized by the automaton of Fig-
ure 1(a) by the rewrite sequence � � 6�%�� 	�� 	������s� R�6"!�CI� � � ��6�%)� 	�� 	��:� ������� �S� RS6"! CI�h�� ��6�%)� 	��:��#%$�$I� RS6"! CI�2� � � 6�%��:���������$R�6"!�CI�0� � ��6�%)�����������$Rs��� � ��� - ���������0� ��� � � � - ������� . In
general, we may decide to recognize terms bottom-up or top-down, and while this
makes no difference in theory, this does make a difference when considering deter-
ministic tree automata [7]. In the sequel, we shall only consider non-deterministic tree
automata, allowing us to avoid the bottom-up/top-down dilemma.

Another, perhaps less well-known data structure for representing tree automata is as
sets of first-order Horn clauses [6, 4]. Each state � is translated to a unary predicate >'& —
think of >(&����S� meaning “ � is recognized at state � ”—while transitions 4p��� � R������rR � q �3�
� are translated to clauses of the form >)& ��4p�:� � R�������Rs� q �s� d >*&,+���� � �rR������rR >*&�- �:� q � ,

4

qeven

qodd

qlist−even

S (_)

0
cons (_, _)

nilS (_)

(a) Lists of even natural num-
bers

0

S (_) S (_)

S (_)

q10

cons (_, _) cons (_, _)

nil

q2 q3

q4 q5

q6

q7

S (_)

(b) One element lists containing � or ������� ,�	�	

Fig. 1. Tree automata

and recognizability of � means derivability of the empty clause from the goal that is
the disjunction of all >(&����S� , �\[� . It turns out that this representation is particularly
attractive in Coq, where sets of first-order Horn clauses can be thought as particular
inductive predicates (see Section 3).

In proof assistants that include a programming language, typically a form of � -
calculus as in Coq or HOL, an alternate representation is as a recognizer function—
rather than as an axiomatized predicate. That is, we may define
 ��
�����RS�S� by primitive
recursion on � by
 ��
�����R 4p�:� � R������rRs� q �S���9�
������ & + ������� � & -���� & ������� q "! �
���
I�:� RS� � . This
will actually be our first choice in Section 5. The example of Figure 1(a), for instance,
becomes:

���
��:� � � � � - ������� RS�S�#�9 $% &(' �)H

 if �39^6"!�C

���
��:� ��� ��� Rs� � �*)
���
���� � � ��� - ��� ��� Rs� � � if �39 � ��6�%��:� � Rs� � �+ #C%�
 otherwise

(1)

 ��
���� ������� RS�S�#�9 $% & ' �)H

 if ��9c	

���
��:��#%$�$8Rs� � � if ��9 	���� � �+ #C%�
 otherwise

(2)

���
I�:� #%$�$ RS�S�#�9-,
���
I�:� ��� ��� Rs� � � if �39 	��:� � �+ #�C8%�
 otherwise
(3)

Interpreting these equations as rewrite rules from left to right, we recognize� ��6�%)� 	�� 	������S�rR�6"!�C�� by the computation:
���
I�:��� � ��� - �������$R � ��6�%$� 	�� 	��g���S� RS6"! C��S� 9

���
I�:���������$R 	�� 	��g���S�S��)
���
��:��� � � � - �������$R�6"!�CI� 9
 ��
������������8R 	�� 	��g���S�S�.) ' �)H

 9

���
I�:��#%$�$8R 	��g�)�s�/) ' �)H
 9
���
I�:����� ���$Ru�)�0) ' �IH
^9 ' �)H
1) ' �)H
 , which is clearly
provable. Note in passing that this recognizes terms top-down.

Many standard operations are computable on tree automata. Computing an automa-
ton recognizing the intersection or the union of two languages given by automata can be
done in polynomial (near-quadratic) time and space. Similarly, testing whether an au-
tomaton recognizes no term—the emptiness test—takes polynomial time. On the other
hand, computing an automaton recognizing the complement of the language recognized

5

by a given automaton
�

requires exponential time, as do testing whether
�

recognizes
all terms—the universality test—, or whether all terms recognized by

�
are recognized

by another automaton—the inclusion test. In implementations, the latter operations all
require constructing a deterministic bottom-up automaton recognizing the same terms
as

�
, explicitly or implicitly, and this takes exponential time and space.

In this paper, we shall only be interested in polynomial time algorithms such as
computing intersections and unions, and testing for emptiness. This allows us to only
work with non-deterministic automata, therefore keeping our algorithms simple. More
to the point, it turns out that this is essentially all we need in applications like [9], where
non-deterministic top-down automata are used (we need to make these algorithms work
on automata of up to 300 states). Note that, then, we may always assume that there is
exactly one final state in � , which we call the final state.

We shall also consider polynomial-time optimizations that aim at reducing the size
of automata while keeping the languages they recognize intact. Such optimizations are
important in practice, since the complexity of operations on automata are primarily
functions of their sizes. Particularly useful optimizations are:

– Removal of empty states: say that �j[� is empty in
�

if and only if no ground
term is recognized at � . Such states, together with transitions incident with � , can
be removed from

�
without changing the language it recognizes. Empty states are

frequently created in computing intersections of automata, notably.
– Removal of non-coaccessible states: say that �^[� is coaccessible in

�
if and

only if we can reach � by starting from a final state and following transitions back-
wards. Removing non-coaccessible states and transitions between them leaves the
language recognized by the automaton unchanged.

There are many other possible optimizations, e.g., merging states recognizing the same
languages, erasing transitions 4p��� � R�������Rs� q ���B� in the presence of 4p��� ;� R�������Rs� ;q �3�5�
where a polynomial-time sufficient inclusion test ensures that all terms recognized at �
are recognized at � ; , bNM��?M^
 , and so on.

5 Shallow Reflection

We start with a shallow reflection embedding of tree automata in Coq, where automata
are described by mutually recursive functions
���
��:��R � . Such automata are not first-
class citizens in Coq: the external tool that computes on tree automata has to output
corresponding definitions of
���
I�:��R � functions for Coq, as well as expected properties
about them, and proofs of these properties. (Automata will be first-class citizens in the
deep reflection approach of Section 6.) This is in contrast with [10, 11, 17], where ob-
jects residing in the proof assistant are exported to the external tool, the latter computes
on them, then produces a proof back for the proof assistant to check. Here the objects of
interest, namely tree automata, are generated by and reside in the external tool, which
also computes on them and feeds the proof assistant corresponding definitions, state-
ments of correctness lemmata, and proofs of these lemmata.

While this is not as general as one may wish, this is exactly what we would want
to check computations done in a tool such as CPV [9]: while CPV generates automata

6

during the course of its verification process, an instrumented version of CPV will output
their definitions to Coq, as well as correctness lemmata and proof scripts. The final Coq
file will then validate the whole series of computations done by CPV.

5.1 Instrumenting Automaton Subroutines

Let us consider an example. Assume CPV calls its automaton intersection subroutine
on the automata of Figure 1(a) and Figure 1(b). These automata have been produced
by earlier computations. Our first change to the subroutines is to have them name the
automata they produce, and output corresponding Coq functions. In particular, before
the intersection subroutine is called, the input automata have received names, say � and�

, and corresponding recursive functions ��
 � � � of type �

����j� ���
��� are defined
for every automaton name � and every state � of � : �

 � � �$���S� returns ' �IH
 if and
only if � is recognized at state � in � . For example, the Coq function corresponding to
the automaton

�
of Figure 1(b) is:

�

 � � ���)���S� �9 $% & � �

 � � � � ��� � �*) ��
 � � � � �:� � �s���
� �

 � � ��)��� � �*) ��
 � � � � �:� � �s� if �39 � ��6�%)��� � RS� � �+ #$C8%�
 otherwise

�

 � � � � ���S� �9 , �

 � � � � ��� � � if �39 	��:� � �+ #$C8%
 otherwise
�����

where the ellipsis abbreviates five other equalities. The definition of �

 � � � follows
easily from Equations (1)–(3). Note that this also requires the instrumented CPV tool
to first output the definition of an inductive type �

��
� of all terms, with constructors
� � �

���� , 6"!�C ���

���� , 	 � �

���� � ��
���� , � � 6�% � �

���� � �

���� � �

���� .

Intersection is usually computed by a product construction, where states in the in-
tersection automaton are in one-to-one correspondence with pairs of states of � and

�
.

(This is certainly so in CPV.) We now instrument the intersection subroutine so that it
keeps track of this mapping. For example, assume that the intersection subroutine com-
putes the automaton of Figure 2, claiming it to be the intersection of � and

�
. We have

labeled each state in such a way that pairs of states are obvious, e.g., state � ������� � 	 is the
state that recognizes exactly those terms that are recognized at state � ��� ��� in � and at
state � 	 in

�
. Note that all pairs are not represented: the CPV library does not compute

non-coaccessible states, and eliminates empty states like ��������� � � .
Next, we instrument the intersection subroutine so that it generates the correctness

lemma:

D�� ����
���� E ��
 � " � � q���
 ���S��� + �

 � � � � q���
 ���S�*) �

 � � � � q���
 ���S� (4)

where � � q���
 is the name of the final state in each automaton: � � � ��� - ������� � � for " , � � � � � - �������
for � , ��� for

�
.

Finally, we let the intersection subroutine output a proof of the correctness
lemma (4). It is interesting to examine how we might prove it in the case of the
example " 9���� �

. This can only be proved by structural induction on the term � .

7

0

S (_)

cons (_, _)

qlist−even, 7

qeven, 4

qodd, 5

qeven, 6

q

qeven, 5

qodd, 6

qlist−even, 3S (_)

S (_)S (_)

S (_) S (_)

odd, 4 nil

Fig. 2. Automaton recognizing one-element lists of � � � � , �1�	

However, we need to generalize the lemma first. Indeed, if � 9 � ��6�%)��� � RS� � � , then the
body of (4) simplifies (by reduction in the � -calculus) to � �

 � " ����� ��� � 	 ��� � ��)
��
 � " ��� � � � - ������� � � �:� � �s� � + � �

 � � ���������8��� � �) �

 � � ��� � ��� - ��� ���8�:� � �s�)
�S� �

 � � � � �:� � �) �

 � � � � ��� � �S� �j� �

 � � � 	 �:� � �*) �

 � � � � ��� � �S�S� . This in turn
obtains from the equivalences:

�

 � " � ������� � 	I��� � ���*+ �

 � � � ������� ��� � �) �

 � � ��	���� � �
�

 � " � � � ��� - ������� � � ��� � ���*+ �

 � � � � � ��� - ������� ��� � �) �

 � � � � ��� � �+ #$C8%�
 �*+ �

 � � � ������� ��� � �) �

 � � � � ��� � �

where the latter expresses that there is no term recognized both at state ��������� in � and
at state � � in

�
—note that there is no state ��������� � � in " : it was empty, so was deleted.

However, proving (4) by induction does not generate these equivalences, and we have
to prove the conjunction of (4) and the above equivalences (at least) simultaneously.

In general it is necessary to generalize (4) to the conjunction of 1
 statements,
where 1 is the number of states in � and
 is the number of states in

�
: for each state

� in � and each state ��� in
�

, either there is a corresponding state � � in " and we
generate �

� , the conjunct �

 � " � �)���S� �*+ �

 � � � ���S�0) �

 � � ���I���S� , or there is

none and, if the intersection subroutine is correct, no term is recognized both at � and
at ��� , so we generate �

� , the conjunct

+ #$C8%
 � + �

 � � � �:�S�) �

 � � ���I���S� . We let
the instrumented intersection subroutine generate the generalized correctness lemma
D�� ����
���� E � � � �

� .

The proof script of the generalized correctness lemma is actually obvious, and is
the same for all possible automata: do an induction on � ; on all generated subgoals,
compute, i.e., simplify as much as possible (use the Simpl tactic of Coq). All gener-
ated subgoals, if valid, are then provable using only rules of propositional logic (even
intuitionistic): so use the Tauto tactic, which finds precisely such proofs. The proof of
(4) is generated from the generalized correctness lemma using Tauto again.

Instrumenting the union subroutine is either similar (in tools that work on deter-
ministic bottom-up automata, where union is computed by a similar product construc-
tion), or simpler. In the case of CPV, which works on non-deterministic top-down au-
tomata, this is definitely simpler: computing the union of two automata with disjoint

8

sets of states amounts to generating a new final state �I; , and generating new transitions
4p�:� � R�������R � q � ��� ; for each transition 4p�:� � R�������Rs� q �K�X� in either input automaton
such that � was final. It follows that the correctness lemma for unions only requires a
case analysis, and no induction, and that it needs no prior generalization.

Instrumenting the emptiness test is also easy. Given an automaton " , either it is
empty, and because CPV eliminates empty states, its corresponding function in Coq is
the constant function

+ #$C8%�
 , so there is nothing to prove (in general, a polynomial-time
emptiness test should be run in the automaton library to get this information); or it is not
empty, and we instrument the code to output a witness � , i.e. a term � that is recognized
by " . We then let the code output a non-emptiness lemma ��� ����
����KE �

 � " � � q ��
S���S� ,
and its proof: exhibit � , simplify, call Tauto.

5.2 Experimental Evaluation

The approach of Section 5.1 has several nice features. It is easy to instrument almost
any automaton library to get similar results; we may choose to change or upgrade the
automaton library, and this only requires modifying the instrumentation code; finally,
the generated Coq proofs are short and do not depend on the automata we compute on.

However, as is apparent from the discussion on instrumenting intersection in Sec-
tion 5.1, this approach generates huge generalized correctness lemmata. It is therefore
necessary to evaluate the approach on a few practical examples. To test it, we used the
signature � , 	 , 6 !�C , � ��6�% as above; we generated automata

� q recognizing the lists of
natural numbers whose elements are all congruent to
���b modulo
 .

� q has
0`cb
states and
0`�� transitions and contains only one cycle of length
 . We then let Coq
check proofs as generated by the method of Section 5.1, computing unions and inter-
sections of automata

� q . All tests were done on a Pentium Celeron 400Mhz notebook
with 128 MO RAM running Linux 2.2.13.

As far as unions are concerned, we check unions of
� q and

� q�� � for various
values of
 : this involves generating the automata, lemmata stating that all automata
are not empty, the correctness lemma, and their proofs. The resulting automaton has�
0`	� states; we sum up the times taken by Coq to do the whole verification of one
instance (parsing, type-checking, checking non-emptiness and correctness proofs), the
times taken to check the correctness lemma alone, and memory usage:

n 10 20 30 40 50 60 70 80
states 24 44 64 84 104 124 144 164
total check (s.) 4 9 19 33 59 84 126 181
correctness (s.) 1 2 3 4 5 7 8 9
memory (Mb.) 7.5 8 9 10 12 14 17 18

Notice that checking that unions are computed correctly takes negligible time compared
to parsing plus checking non-emptiness. This is to be expected, as checking unions only
involves a case analysis and no induction.

We conducted exactly the same test with intersection. The results, as the reader may
see, are extremely disappointing. When
 9�b , checking takes
 s. and � Mb; �
� s. and� � Mb when
n9 � ; �$b�� s. and ��
 Mb when
n9�� ; we ran out of memory when
n9�� .

9

Both checking time and space increase quickly. This is clearly due to the large size of
generalized correctness lemma : the size of the formula is in � ��
 � � so we get � subgoals
of size � �:
 � � during the induction proof where � is the number of constructors in f .

Although we might think that this is also aggravated by the relative inefficiency of
Tauto, experience in replacing Tauto by more elementary tactics did not increase
performance by any significant amount. Logical connecters (conjonction and disjonc-
tion) are not primitive in Coq (they are inductively defined) thus the decomposition of
hypotheses we have to process in order to prove the subgoals using elementary tactics
takes a significant time.

As mentioned in Section 4, tree automata can also be represented as sets of Horn
clauses of a particular format, and sets of Horn clauses are naturally encoded in Coq
as inductive predicates. It was suggested by C. Paulin-Mohring and B. Werner that this
format usually has distinctive advantages over recursive functions as in Section 5.1:
the main one is that induction and case analysis proofs only consider cases that actu-
ally happen. For example, if a state has two incoming transitions, the corresponding
inductive predicate will have two clauses, even though terms might be built on more
constructors (4 in our examples). In the encoding using recursive functions, any switch
on the shape of terms actually always compiles to a
 -way switch, where
 is the num-
ber of constructors.

However, this alternate implementation of tree automata also turned out to be disap-
pointing, as experience with hand-generated examples demonstrated. Compared to the
technique of Section 5.1, proof scripts are harder to generate. In principle, it is enough
to use the Auto resolution tactic instead of Tauto; however the use of conjunctions) and disjunctions � foils this strategy: in Coq, conjunctions and disjunctions are not
primitive and need to be decomposed by some other mechanism. The crucial point how-
ever is that checking proofs, in particular for intersection, in this new scheme is only
roughly twice as fast as with the scheme of Section 5.1, and uses as much memory.

6 Deep Reflection

As said in Section 3, deep reflection means implementing tree automata and operations
on them in Coq’s � -calculus, and proving the correctness of the latter in Coq. However,
tree automata may be represented in several different ways, so one first contribution
here is the choice of a workable data structure for tree automata in Coq (Section 6.1).
A compromise will be found between efficiency of algorithms and simplicity of proofs
(rather long). We shall describe the computation of unions, intersections, and removal
of empty and non-coaccessible states in Sections 6.2, 6.3 and 6.4 respectively. This will
be rather cursory, and we shall only stress salient features.

6.1 Data Structures

We have chosen to represent tree automata as top-down non-deterministic tree au-
tomata. Previous experience with CPV [9] indicates that this is probably one of the
simplest possible implementations. Such automata are described as a table mapping
each state � to the set of possible transitions reaching � . This set is itself organized as

10

a table mapping each function symbol 4 labeling such a transition to the set of lists
� � � R�������Rs� q of states such that 4p��� � R�������Rs� q � ��� is a transition. Note that all lists in a
given set have the same length
 .

To represent tables, we use the map library of [8]. This provides a data type #)7 of
addresses, a.k.a. keys, and a type constructor �8#�� , such that �8#������&� is the type of maps
over � , i.e., tables mapping keys to objects of type � . The implementation of maps over
� is an efficient binary trie representation, where addresses are essentially finite lists
of bits, or alternatively natural numbers in binary. The map library provides functions
such as �8#�����
�� to fetch the object associated with a given key—or return the constant� 	 ��� if there is none—, and �8# ���)H�� to produce a new map obtained from a given map
1 by adding a binding from a given key L to a given object � , erasing any possible
preexisting binding to L . We shall simply write 4p�:L$� to denote �8#�����
�����4�RsL$� when it is
defined, i.e., does not return

� 	 ��� .
This is used to define pre-automata as objects of type �$#�� � % �$� mapping states � to

elements of % � ; the latter map function symbols of arity
 to sets of lists of states of
length
 , as indicated above. Since maps only take addresses, i.e., elements of #)7 as
indices, this requires us to encode states as addresses, as well as function symbols.

In particular, we define terms, of inductive type �

���� with one constructor #���� �
#I7\� �

����kC !I% �\� �

����jC !)% � , where �

����jC !)% � is defined simultaneously as the
type of finite lists of terms. For example, 4p�:� � R������rRs� q � is coded as #������g4�R�� � � R�������Rs� q � .
Each function symbol 4 � #)7 has an arity; this is summed up in a signature f , i.e., a
map from function symbols 4 to their arities, of type �8# ���:�3� .

Returning to pre-automata, the only remaining difficulty is to represent sets of lists
of states of length
 . The standard way to represent finite sets with maps is to encode
them as elements of �8# � �	��� , where � is a one-element type. However, this only al-
lows us to encode sets of addresses, and while states are addresses, lists of states are
not. Since addresses are natural numbers, it is in principle feasible to encode lists of
addresses as natural numbers, solving this conundrum. However, this solution is com-
plex, not particularly efficient in practice, and hard to reason about formally. Instead,
we create a new data structure to represent sets of lists of states of length
 as binary
trees whose nodes are labeled with states: each branch in the tree is taken to denote the
list of all states labeling nodes to the left of which the branch goes, provided it is of
length
 . Formally, the type ���

 � C !)% � of sets of lists of states is the inductive type
with two constructors ���

 � � ��6�% ��#)7G� ���

 � C !)% �G� ���

 � C !)% �G� ���

 � C !)% �
and ���

 �
 � ����
 � ����
 � C !)% � . The formal semantics � � ��� �q of �
� � ���

 � C !)% � as
a set of lists of length
 is defined by: � � ����
 �
 � ����
 �� �9���� 	� ; � � ���

 �
 � ����
� q�� � �9 t ;
� � ���

 � � ��6�% ������ ��/�9 t ; � � ���

 � � � 6�% ����� q�� � �9�� � � � �
�3/��
�p[o� � � q����j� � �� q�� � , where
� � ��� is the list obtained from � by adding � in front.

Recall that, then, % � �9��8#���� ����
 � C !)% �$� and the type of pre-automata is
���

)7 �8#0�9��8# � � % �$� . Tree automata, of type 7 �$# , are pairs of a pre-automaton

�
and

a state, taken to be the final state. They are well-formed w.r.t. a signature f provided
the following conditions hold:

1. each state � is mapped to a map
� �:� � from function symbols 4 to sets of lists of

length
 , where
29cf ��4 � is the arity of 4 ;

11

2. for every state � , every function symbol 4 , every list � � � R������rRs� q ?[� �:� ����4 � , � is
in the domain of

�
for every � , bNM��?M
 (no dangling pointers);

3. Similarly, the final state is in the domain of
�

.

Conditions 1–3 are necessary to establish the correctness of operations in the following.
In particular, Condition 1 is crucial to be able to give a semantics to ���

 � C !)% � s.

The semantics of tree automata is defined by mutually inductive predicates
��
 � ����
)7 �8# � ���

)7 �$#P� #)7 � �

����a� ���
� � (recognizing a term at a given
state), �

 � % � � ����
)7 �8#c� % �F� �

��
�V� ���
� � (recognizing a term at a state
given by its set of incoming transitions), �

 � ���

 � C !I% � �����

)7 �$#K� ���

 � C !)% �h�
��
���� C !)% �*� ���
��� (recognizing a list of terms at a list of states in some set of lists of
states), where �

 � ���

)7 �8#$� � Rs��RS�S� provided

� �:� � is defined and �

 � % ��� � R � ��� � Rs�S� ;
where �

 � % ��� � RS� � RS�S� provided �B9 # ��� ��4�R � � � R������rRS� q �� , � �$��4 � is defined and
��
 � ����
 � C !)% ��� � Rs� ���g4 � R � � � R������rRs� q � ; finally, �

 � ���

 � C !I% ��� � R ����
 �
 �
����
&R � �� ,
��
 � ����
 � C !)% ��� � R ���

 � � ��6�%)����R � R � �rRS� � �l� �g� provided either ��
 � ����
)7 �8#$� � Rs��Rs�S�
and ��
 � ���

 � C !)% ��� � R � RS� ��� , or �

 � ���

 � C !I% ��� � R � RS� � � � ��� .

6.2 Implementing Union

Computing unions is done by the algorithm used in CPV, described in Section 5.1: gen-
erate a new final state � ; , and generate new transitions 4p��� � R�������R � q � � � ; for each
transition 4p��� � R������rR � q �,� � in any of the input automata

�
or

�
where � was final.

However, this is only correct provided
�

and
�

have disjoint sets of states. In imple-
mentations like CPV, states are memory locations pointing to maps of type % � , and dis-
jointness is not required for correctness, as any state common to both automata points to
the same sub-automaton. The latter condition is hard to ensure (we might have modeled
a full store as in [15], but this looked like overkill), while the disjointness condition is
simpler to implement in the representation of Section 6.1: therefore, in Coq, we first
copy each input automaton by adding a v bit in front of any address in

�
(i.e., changing

� into
� �) and a b bit in front of any address in

�
(i.e., changing � into

� � `ob), then add
a new final state and all relevant incoming transitions.

We prove that this algorithm is correct: the term � is recognized by the union of two
well-formed automata if and only if � is recognized by one or the other, by structural
induction on � . That the input automata are well-formed (Conditions 1–3) is needed
in the proof. Condition 1 is needed to give a meaning � � �
� q to ���

 � C !)% � s

� �:� ����4 � ,
where
 is the arity of 4 . Conditions 2 and 3 are needed to give meaning to the set
of all transitions 4p�:� � R�������R � q � � � where � is given. We also prove that the union of
two well-formed automata is again well-formed, one condition at a time. Notice that we
never had to impose any well-formedness condition on terms, only on automata.

6.3 Implementing Intersection

Intersection of two automata
�

and
�

is trickier. The standard product construction
consists in generating new states ����Rs��;�� that are in one-to-one correspondence with
pairs of states � of

�
and � ; of

�
. There is a transition 4p���:� � Rs� ;� �rR�������R��:� q Rs� ;q �s� �

�:��Rs� ;�� in the computed intersection automaton � if and only if 4p��� � R�������Rs� q �O� � is

12

a transition in
�

and 4p�:� ;� R�������R � ;q �l� � ; is a transition in
�

, and the final state of �
is ��� � q ��
 Rs� ;� q���
 � , where � � q���
 is final in

�
and � ;� q���
 is final in

�
. Our first problem

here is that states ����Rs� ; � should be of type #)7 , so we need a one-to-one mapping from
pairs of addresses to addresses. There are several solutions to this. The one we choose
is one of the simplest, and also of the most efficient to compute: looking at � and �); as
sequences of bits, we interleave them to get �:��Rs��;�� . For example, if � is b�v�v&b�v in binary
and � ; is b�b v8b , then �:��Rs� ;�� is b v�v&b�v8bIb�vIv8b .

Linking in such an explicit way the states �:��Rs��;�� to � and � ; , i.e., making sure that
we can get back � and � ; easily from ����Rs� ; � without the help of any outside machinery
is a great help in proofs of correctness. The construction of the intersection automaton
� is then direct: generate all states ����Rs� ; � , and add transitions as specified above. This
involves quite many nested structural inductions, though: we have to induct on the tries
that encode the pre-automata

�
and

�
, then on the tries that encode transitions with

symbol function 4 , for each 4 in each of the two input automata, then induct on two
���

 � C !)% � s. It then turns out that the intersection construction applied to two automata
indeed computes the intersection, provided Condition 1 is satisfied; this is proved by
structural induction on the terms fed to each automaton. Finally, we prove that the
intersection construction preserves well-formedness, as expected.

Nonetheless, this intersection construction is naive: it generates many empty or non-
coaccessible states. To correct this, it is common practice to only generate states ����Rs�);��
by need. Intuitively, generate ��� � q���
SRs� ;� q���
 � ; then, for each 4 , for each pair of transi-
tions 4p��� � R�������R � q �?�5� � q ��
 in

�
and 4p�:� ;� R������rRs� ;q �?�B� ;� q���
 in

�
, generate the states

�:� � Rs� ;� � , . . . , �:� q Rs� ;q � (observe that they may fail to be new), and recurse. Note that this
is not well-founded induction, and a loop-checking mechanism has to be implemented:
when some state �:��Rs� ;�� is required that has already been generated, stop recursing. Cod-
ing such an algorithm in Coq, and above all proving it, is daunting—recall that the naive
algorithm already requires 6 nested inductions. Thus, we have refrained from doing so.

6.4 Removing Empty and Non-Coaccessible States

Instead, we have implemented algorithms to delete empty and non-coaccessible states
as separate functions. This is already rather involved, as this involves some form of
loop-checking. First, we observe that, from the logical point of view, recursing with
loop checks is just an implementation of a least fixpoint computation. For example,
define the set

���
of non-void states of

�
as the smallest such that for every tran-

sition 4p��� � R������rR � q � � � such that � � R�������Rs� q [��� , then �Z[��� . While this is
naturally coded in Coq as an inductive predicate, such a predicate does not lend it-
self to computation. To compute

���
, we must instead compute the least fixpoint of

the function ��� mapping any set � of states to ��� ���3���9�� � � �k/ 4p�:� � R�������Rs��q8�,�
� transition in

� R � � [�pR������rR ��qj[��� . We then prove that both definitions are equiv-
alent, by well-founded induction on the definition of the non-vacuity predicate in one
direction, and by Tarskian fixpoint induction in the other direction.

This however requires that we develop a Tarskian theory of fixpoints of mono-
tonic functions over complete lattices—at least over complete Boolean lattices of fi-
nite height. Indeed, subsets of a given set of states � of cardinality
 form a Boolean
lattice of height
 . In Coq, we represent subsets of � as objects of type �$#�� � A ���$C�� ,

13

constrained to have � as domain. We show in Coq that this can be given the structure of
a complete Boolean lattice of cardinality

� q and height
 , taking as ordering 1@M��!1 ;
if and only if 1k�:� �!MZ1 ; �:� � for every � [� , where M is the ordering ($#$C8%
 M � �)H

in A � �$C . Independently, we show in Coq that, for every complete lattice

�
of height
 ,

with bottom element � , for every monotonic 4 � � � �
, 4 q ��� � is the least fixpoint of

4 . This is especially convenient for computation, as 4 q ��� � can be defined by structural
recursion on
 in Coq, while general fixpoints cannot be defined as recursive functions.

Summing up, we obtain a function that computes the set of non-void states of a
given automaton, together with a proof of its correctness. Observing now that a state
� is non-void if and only if it is non-empty, where a state � of

�
is non-empty if and

only if there is a term � recognized at � in
�

, we deduce that the automaton
�

obtained
from

�
by only keeping non-void (a.k.a, non-empty) states has the same semantics as�

. Therefore, composing empty states removal with the naive intersection algorithm
yields another correct intersection algorithm. (The empty state removal algorithm is
actually slightly trickier, in that it also removes transitions 4p��� � R�������R � q �*� � where
at least one � , bYM � M�
 , is empty, even when � is non-empty; and also in that it
does not remove the final state, even if it is empty. These considerations complicate the
algorithm and the proofs, but are not essential to the present discussion.)

Removal of non-coaccessible states is coded, proved and applied to intersection
in a similar way. In both the non-emptiness and non-coaccessibility cases, the precise
correctness theorems proved rest on input automata being well-formed; we also show
that these removal algorithms preserve well-formedness.

6.5 Experimental Evaluation

It is interesting to evaluate how deep reflection works in practice, and whether it yields
any significant advantage over shallow reflection (Section 5.2). We report on times and
memory consumed for operations of union, intersection, and removal of useless states.
Noticing that useless state removal is slow, we also include measures of efficiency for
removal by shallow reflection (see below). We also compare these results, obtained by
running our algorithms inside Coq’s � -calculus, with results obtained by running the
OCaml program that one gets by Coq’s extraction feature. While efficiency depends on
many parameters (number of states, number of transitions, maximal arity of function
symbols), we have decided to focus on evaluating the algorithms on the same examples
as in Section 5.2 for the sake of comparison (this also tests how the algorithms fare in
the presence of cycles), and examples featuring large transition tables. Tests were run
on the same Pentium Celeron notebook with 128 Mb RAM.

Results on the cyclic examples
� q of Section 5.2 are as follows:

 b v b � � v ��v ��v ��v�v
����
	� q�� � q�� � v&� � �$� �
I� v&� ���8� �
I� bI� b��&� �
I� b�� ��b)� � � � � � � �&� � �I� �8b�� �&� � �I� b � v�v� q � � q�� � � � v �&� � � � ��� � �8� � � � b v8�
&� ��
I� � � � b)� � ��� � � � v
t -removal b�v��&� �$� � �I� � � �8� �&� � ��� � � � � � �
t -check �8� b
�� v&� � �
8�
 �
� v&� ��
 � bI� ����bI� v���� � �I� ���&� v
� � � ����� � �)� � � � v
Results are in the form �r�:10� where times � are in seconds, and memory sizes 1 are
in megabytes. The last column reports the largest
 for which computation ran in the

14

available 128 Mb plus 200 Mb swap space, without a time limit. (But times are only re-
ported for cases where swap usage is negligible.) The t -removal row measures the time
to remove empty states from automata computed in the second row. The t -check row
measures the efficiency of the following procedure: instead of computing the fixpoint���

in Coq, let an external tool written in OCaml do it and feed it to Coq; then Coq
checks that

���
indeed is a fixpoint, and removes all empty states. Reported measures

are �
� �����3�:10� , where � is time to remove empty states given
���

, ����� is the time to
check that

���
is a fixpoint, and 1 is the amount of memory used. Although the last

two rows report on computations done on
� q � � q�� � , times do not include intersec-

tion computation times. Note that input automata and
� q � � q�� � have � ��
�� states and

transitions, while all others have � �:
 � � states and transitions.
Clearly, intersections are costly, but empty state removal is even costlier. Here shal-

low reflection helps (last row). Also, results are much better than with a wholly shallow
reflection approach (Section 5.2), but not quite usable: CPV [9] typically needs to han-
dle automata of 200–300 states.

Comparatively, the extracted OCaml code computes unions up to
F95b � v&Rsv�vIv ,
intersections up to
n9��)v�v . It is roughly at least �Iv�v times faster and consumes about
b�v�v times less memory, although it is hard to draw a comparison: there are too few val-
ues of
 for which both Coq computations succeed and OCaml times are measurable at
all. Note that the extracted OCaml code would in general be able to deal with automata
of the size that CPV generates. We believe that this vindicates using compiled OCaml
code as a reduction machine inside Coq, instead of the current � -calculus interpreter.

In a second series of tests, we worked with automata
� q on a signature with one

constant � and one binary function symbol � , so that terms are just binary trees;
� q

has
 `�b states � q 	 , v M �2M
 , that recognizes trees with � occurrences of � , and the
final state is � qq . � q has b'`
3��
0`cb � � � transitions, and is therefore dense. Tests (see
table below) are similar to the ones above, except we test intersections by computing� q � � q on two disjoint copies of

� q —testing
� q � � q�� � would result in an empty

automaton. Note that unions have � �:
�� states and � ��
 � � transitions, while intersections
have � �:
 � � states and � ��
�
 � transitions.

 � b v b�� � � � v b�v�v� q � � q�� � v8� � �&� �
)� bI� � �$� �IvI� � � �
��� � � � �8� ��
&� � � � � �&� ��� ��vI�?b���
���b v�vI�� q � � q � � �
��� �8b � � �8� �&� ��vI� b �
&� � � � � � �
t -check v&� � �
� v8� ��
&� � � �pb �&� � �
�8� b ��� �
I�
 � � � �$b � � �8� �8b � � � �

Again, OCaml is �IvIv –
�v�v times faster, and uses negligible memory compared to Coq.

7 Conclusion

We have presented two ways to formally verify tree automata computations in a
proof assistant like Coq. The surprising conclusion is that the most promising method,
checking computations by shallow reflection, gives disastrous results. On the con-
trary, deep reflection works much better—with a zest of shallow reflection for useless
state removal—, up to the point that an extracted OCaml version—hence a certified
algorithm—tackles computation on tree automata of sizes comparable to those dealt in

15

a realistic cryptographic protocol verification application. These sizes are modest, still,
and more work remains to be done. In particular, computing states of intersection au-
tomata by need instead as eagerly, as we did, is required. However, this is definitely a
lot of work—our naive, deep reflection implementation and proofs already take about
b �&R v�vIv lines of Coq—and doing so involves implementing unbounded recursion with
loop checks, i.e., computing least fixpoints, which we have seen was inefficient in Coq.
Replacing the � -calculus interpreter of Coq by a machine that would compile � -terms
to OCaml and run the compiled code also appears as a good way to gain efficiency.

References

1. B. Barras, S. Boutin, C. Cornes, J. Courant, J.-C. Filliâtre, E. Giménez, H. Herbelin, G. Huet,
C. Muñoz, C. Murthy, C. Parent, C. Paulin-Mohring, A. Saibi, and B. Werner. The Coq proof
assistant reference manual: Version 6.3.1. Technical report, INRIA, France, 1999.

2. S. Boutin. Using reflection to build efficient and certified decision procedures. In M. Abadi
and T. Ito, editors, TACS’97. Springer-Verlag LNCS 1281, 1997.

3. R. Boyer and J. S. Moore. Metafunctions: Proving them correct and using them efficiently
as new proof procedures. In The Correctness Problem in Computer Science. Acad. Press,
1981.

4. W. Charatonik and A. Podelski. Set-based analysis of reactive infinite-state systems. In
B. Steffen, editor, TACAS’98, pages 358–375. Springer Verlag LNCS 1384, 1998.

5. H. Comon, M. Dauchet, R. Gilleron, F. Jacquemard, D. Lugiez, T. Sophie, and M. Tom-
masi. Tree automata techniques and applications. Available at http://www.grappa.
univ-lille3.fr/tata, 1997.

6. L. Fribourg and M. Veloso Peixoto. Automates concurrents à contraintes. Technique et
Science Informatique, 13(6):837–866, 1994.

7. F. Gécseg and M. Steinby. Tree languages. In G. Rozenberg and A. Salomaa, editors,
Handbook of Formal Languages, volume 3, pages 1–68. Springer Verlag, 1997.

8. J. Goubault-Larrecq. Satisfiability of inequality constraints and detection of cycles
with negative weight in graphs. Part of the Coq contribs, available at http://
pauillac.inria.fr/coq/contribs/graphs.html, 1998.

9. J. Goubault-Larrecq. A method for automatic cryptographic protocol verification. In
FMPPTA’2000, pages 977–984. Springer Verlag LNCS 1800, 2000.

10. J. Harrison. Binary decision diagrams as a HOL derived rule. The Computer Journal,
38:162–170, 1995.

11. J. Harrison. Stålmarck’s algorithm as a HOL derived rule. In J. von Wright, J. Grundy, and
J. Harrison, editors, TPHOL’96, pages 221–234. Springer Verlag LNCS 1125, 1996.

12. J.-P. Jouannaud. Rewrite proofs and computations. In H. Schwichtenberg, editor, Proof
and Computation, volume 139 of NATO series F: Computer and Systems Sciences, pages
173–218. Springer Verlag, 1995.

13. D. Monniaux. Abstracting cryptographic protocols with tree automata. In SAS’99, pages
149–163. Springer-Verlag LNCS 1694, 1999.

14. W. Thomas. Automata on infinite objects. In J. van Leeuwen, editor, Handbook of Theoreti-
cal Computer Science, chapter 4, pages 133–191. Elsevier Science Publishers B. V., 1990.

15. K. N. Verma, J. Goubault-Larrecq, S. Prasad, and S. Arun-Kumar. Reflecting BDDs in Coq.
In ASIAN’2000, pages 162–181. Springer Verlag LNCS 1961, 2000.

16. R. W. Weyhrauch. Prolegomena to a theory of mechanized formal reasoning. Artifical
Intelligence, 13(1, 2):133–170, 1980.

17. S. Yu and Z. Luo. Implementing a model checker for LEGO. In J. Fitzgerald, C. B. Jones,
and P. Lucas, editors, FME’97, pages 442–458. Springer-Verlag LNCS 1313, 1997.

16

