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Abstract. We present a method for analyzing assembly
programs obtained by compilation and checking safety
properties on compiled programs. It proceeds by an-
alyzing the source program, translating the invariant
obtained at the source level and then by checking the
soundness of the translated invariant with respect to the
assembly program. This process is especially adapted to
the certification of assembly or other machine-level kinds
of programs. Furthermore, the success of the invariant
checking enhance the level of confidence in the results
of both the compilation and the static analysis. From
the practical point of view, our method is generic in
the choice of an abstract domain for representing sets of
stores and the process does not interact with the compi-
lation itself. Hence, a certification tool can be interfaced
with an existing analyzer and designed so as to work with
a class of compilers which do not need to be modified.
Last, a prototype was implemented in order to validate
the approach.

Keywords: Static program analysis; Certified compila-
tion; Abstract Interpretation.

1 Introduction

Critical software is concerned with safety; hence, various
static analysis methods have been developed and are ap-
plied to critical programs. However, these methods are
usually applied to the source program and the source
analysis may not be considered a trustable proof given
the compiler may be incorrect and the compiled program
may not be safe even if the source analysis succeeds in
proving safety. Indeed modern compilers turn out to be
very complex due to the size of their source code and to
their perpetual evolution (for instance, the code of the
current versions of gcc amounts to about 500 000 lines).

Therefore, most critical applications like avionics require
the certification of the form of the program which is ac-
tually executed, i.e. the assembly code itself.

Moreover, the safety properties of interest usually
concern the very execution of the program; hence, check-
ing it on the compiled program (i.e. the version that is
actually executed) yields more trustable proofs of safety.
For instance, the semantics of errors is defined at the ma-
chine level first. The memory access errors (out-of-bound
array index or void pointer dereference in C programs)
are the source language counterpart for some assembly
errors (attempt to access a wrong part of memory). If we
prove that a source C program does not yield any mem-
ory access error, then we can deduce that a compiled
form of this program is memory safe only under some
additional assumptions, i.e. mainly that the program is
compiled in a correct way for some definition of “correct”
which should be made explicit and that the memory allo-
cation is done at the assembly level in a safe way, which
should also be made explicit. Furthermore, the nature
of the undesirable behaviors may be compiler or even
architecture dependent, as is the case for overflows: The
size of registers depends on the target processor and the
way integer data types are compiled affects the overflows
that occur in the compiled program (this is especially
true for data types that do not correspond to the size of
registers like short integer data types). Languages like C
leave many error cases as unspecified in order to let the
compiler implementator free when designing more op-
timizations: For example, an out-of-bound array index
in a C program results in an undefined behavior, which
may be an immediate error or a wrong, yet continued
execution. Therefore, checking safety properties at the
assembly level is noticeably advantageous — in particu-
lar when dealing with highly critical software.

As a way to achieve that, we may envisage certify-
ing the assembly program directly. However, analyzing
directly and efficiently precise high-level properties of
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assembly programs may be quite difficult due to a loss
of structure at compile time. In particular, the control
structure of assembly programs is based on gotos, which
are much more complicated to analyze than loops. Static
analysis methods for improving speed and precision ap-
ply in an easier way to well-structured loops than general
control flow graphs. Furthermore, the data structures
(like arrays, records or enums) are translated into more
complicated assembly structures since everything turns
into a sequence of memory cells and low-level details
should be taken into account (as memory cells align-
ments). In the other hand, the formal (semi-automatic)
proof of a full C compiler cannot be envisaged on ac-
count of the work task that would be involved in such
a project and because any modification or evolution of
the compiler would make the proof out-of-date (prov-
ing a commercial compiler is not a realistic solution).
The last limitation also applies to a system that would
translate a proof of safety at compile time.

The solution proposed here is to analyze the source
version of the program using an automatic tool and to
derive automatically a “candidate invariant” for the as-
sembly program. This invariant is obtained by trans-
lating the source invariant thanks to some information
about the way the program is compiled (in most cases,
this additional information can be found in the de-
bugging information provided by the compiler, which
describes the correspondence between source and tar-
get variables and program points). Then, an automatic
tool checks that the candidate invariant is semantically
sound: it is an upper-approximation of the set of reach-
able states of the program. If the program P, is obtained
by compiling the program Ps the method proceeds as fol-
lows: A source analyzer generates an invariant P for the
source program and an external tool derives the candi-
date invariant P.; then an assembly checker attempts to
prove that the property P. holds for the program P..
Afterwards, the property P. can be used for verifying
that P, satisfies the desired safety properties. It can be
noticed that this approach allows to take benefit from
existing fast and precise source analyzers (like those of
[BCC*02,BCC*03]). Our method does not require the
instrumentation of the compiler; in case the debugging
information format is standard, we can even consider de-
signing a tool that would translate invariants for certify-
ing assembly programs produced by a class of compilers.
Moreover, we need to cope with the specificities of as-
sembly programs for the checking of invariants only and
not for their inference. When the checking succeeds, the
translated invariant can be considered correct under only
one assumption: The checker must be correct. Therefore
the security level achieved by this approach is the same
as those of a direct analysis of the assembly code. More-
over the success of the checking entails a correctness re-
sult about the compilation: The target program presents
similar behaviors as the source program (in the abstract
semantics point of view). In the other hand the method is

incomplete: A failure of the invariant checking does not
entail that the compiler is buggy; it may be due to a loss
of precision at the translation time or at the checking
time. The approach proposed here is formalized inside
the Abstract Interpretation frameworks [CC77,CCT79)],
which provides an integrated view in a single framework
of both static analysis [Cou81,BCC*03] and program
transformations [CCO02] (hence, compilation). Further-
more, we validated our approach by designing a proto-
type aimed at checking the absence of runtime errors and
undefined behaviors in PowerPC assembly programs ob-
tained by compiling realistic C programs. Our choice of
the C language was justified by the use of this language
in safety critical systems.

Plan. Section 2 presents preliminaries and describes the
source and the assembly languages which are considered
in the following of the paper. We formalize the compila-
tion correctness in Section 3. Section 4 describes a class
of static analyses practically large enough for answer-
ing most of the safety questions about imperative source
programs and shows how an invariant can be derived at
the assembly level from a source invariant. Section 5 dis-
cusses the problem of checking the translated invariant
independently of the source analysis. We detail the prac-
tical problems that arise when checking the invariant at
the assembly level in Section 6. The prototype we imple-
mented is described in Section 7. Section 8 concludes.

Related work. Most attempts to proving formally a com-
piler concentrated on rather high-level languages and
byte code assembly languages [Str02] or to toy compilers
written for that purpose [Ber98]. The lack of automa-
tion of theorem provers severely limits the possibility of
proving large programs in general and compilers in par-
ticular.

Among direct static analyses of assembly programs,
we can cite the determination of properties about the
cache usage (cache misses and cache hits) presented in
[AFMW96], the analysis of pipeline behavior of [TF9§]
and the combination of these two analyses in [TEWO00]:
Precise information could be inferred about the worst
case execution time of assembly programs by taking into
account many complex aspects of the architecture. How-
ever, we are not aware of any example of direct analysis
for high-level properties at the assembly level.

The idea to translate at compile time semantic in-
formation about the source program into information
about the assembly program was developed in the Proof-
Carrying Code approach described in [Nec97, App01]. In
this approach an untrusted compiler is supposed to pro-
vide annotations with the assembly code it produces.
Before it executes the target program, the code con-
sumer generates Verification Conditions so as to check
that the assembly program does not violate the safety
policy and attempts to prove it using the annotations
supplied by the compiler. If it succeeds then the assem-
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bly code obeys the safety policy and can be executed
safely. The compiler of [NL98] implements this method-
ology: In this case, the compiler annotations are type
information.

A Typed Intermediate Language (TIL) was proposed
in [MTC*96, TMC"96] as a means to keep information
about source ML programs in order to make further op-
timizations possible and trustable. Basically, well-typed
programs should not produce certain types of errors (the
memory allocation should be safe). This methodology
was extended to a Typed Assembly Language (TAL) in
[MCG™99]: The purpose of this work was also to de-
sign a safe compiler for a type-safe subset of C. However
changing to a safe subset of the C language is not always
possible in the case of embedded systems. Furthermore,
enforcing safety through typing systems may turn out
somewhat difficult in some cases: In particular, handling
overflows is not very natural in the context of typing
systems. Last, the implementation of a specific certify-
ing compiler involves a sizeable task.

Another approach to certified compilation proceeds
by proving the correctness of each compilation sepa-
rately. When a program P; is compiled into a program
P,, an external tool generates proof obligations so as to
prove that P, is equivalent to P for some definition of “is
equivalent to”. This method known as Translation Vali-
dation was pioneered by [PSS98], and then implemented
in [Nec00] and extended in [ZPFGO02]. Translation Val-
idation provides proofs of compilation correctness for
a rather concrete semantic interpretation of programs.
However the goal of this approach is not to produce
safety proofs for assembly programs.

Our work on Invariant Translation was developed in
a previous contribution [Riv03]. The purpose is to trans-
late abstract invariants computed at the source level, us-
ing static analyzers which are similar to those presented
in [BCCT02,BCC*03] in order to derive proofs of safety
for compiled programs in the context of critical embed-
ded systems. The Invariant Translation also yields a kind
of abstract proof for the compilation: In case it succeeds,
it proves that compilation preserves some abstract prop-
erty of the source program. Yet, it is less adapted to
proving a strong operational equivalence between source
and target programs than Translation Validation: The
latter operates at a rather concrete semantic level; hence,
it aims at proving a stronger equivalence.

2 Preliminaries and Notations

This section presents some basic notations we use in the
following; it also introduces the syntax and semantics
of the typical source and assembly languages which we
consider along the paper.

2.1 Mathematical Common Notations

We write Z for the set of positive and negative integers
(zZ ={...,-1,0,1,...}) and B for the set of booleans:
B = {7,F}, where T and F respectively denote true
and false.

When necessary, we write {2 for erroneous behaviors.
If € is a set, we write £y, for the set EU{2} (for instance,
Zg, Bg).

When taking overflows into account, we will write
Z° for the set of machine representable integers {n €
Z | Nmin < 1 < Npax} where Npin and Nyax are the
smallest and the biggest representable integers.

In the following, if £ is a set, we will write P(E) for
the set of the subsets of £ (P() = {X | X C &}). If
Zo, ..., &, are elements of £, then we write (xq,...,x,)
for the finite sequence composed by these elements (a
sequence is a function from an interval of integers start-
ing from 0 like {0,1,...,n} to a set £). The set of finite
sequences of elements of £ is denoted by £*.

If £ and F are sets, then we write £ — F for the
set of functions from &€ to F. If f € &€ — F, then we
let f denote the function defined by f : P(€) — P(F);
X — {f(z) | € X}. Furthermore, if C is an order
relation over F, then the pointwise extension of C to
£ — F is denoted by E We recall that a lattice is an
ordering (£,C) with a minimal and a maximal element
and with a binary lower upper bound operator and a
binary greater lower bound operator. In case any subset
of £ has a greater lower bound and a lower upper bound,
we say that (£,C) is a complete lattice.

We sometimes use the lambda notation to denote
functions: Az € £.e simply stands for the function & —
F, x—e.

2.2 Abstract Interpretation and Program
Transformations

Abstract Interpretation [CC77,CC79] was developed as
a way of deriving relationships between different seman-
tics so as to provide approximate but computable an-
swers to undecidable or costly problems. The approxi-
mations preserve logical soundness. An abstract seman-
tics is often less expressive than the standard seman-
tics; hence, considering abstract properties may induce
a loss of precision (some properties cannot be deduced
or stated any more), but reasoning in the abstract is still
sound (furthermore, it should be computer tractable).
In practice, the concrete semantics [P] provides the
most precise description of the behavior of P. It is
generally defined as an element of a complete lattice
(D,C). An abstract domain is simply another complete
lattice (D¥,C). A Galois connection between the con-
crete domain D and the abstract domain D! is a pair
of functions a : D — D! ~ : D! — D such that
Vo € D,y € D*, a(r) Cy < x C y(y). The intuitive
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meaning of x C ~(y) is that y is a sound abstract ap-
proximation of the concrete property x; i.e. the concrete
property x entails the abstract property y. The abstract
semantics «([P]) of the program P will be denoted by
[P]F.

If (o, 7y) is a Galois connection, we will write D %

D!, In some cases, this formalization of abstraction does
not apply. In particular, the existence of an abstraction
function a may not be achieved in case some concrete
element does not enjoy a “best abstract property”. For
instance a disk does not have a best abstract approxi-
mation in the domain of polyhedra [CH78]: The abstrac-
tion relation between the domain P(R?) and the domain
of convex polyhedra features no abstraction function «
(only a concretization v can be defined). Other (more
general) ways of formalizing the notion of abstraction
can be found in [CC92|; however, we consider in this
paper Galois connection-based abstract interpretations
only for the sake of simplicity.

The semantics [P] can in general be defined as the
least fixpoint of a monotone semantic function F' in the
lattice D. Provided there exists a monotone abstract se-
mantic function F* such that F¥oa = oo F the abstract
semantics can also be expressed as a least fixpoint 1fp F'*
in the complete lattice D¥ as shown by the fixpoint trans-
fer theorem of [Tar55]. However, in most cases, the ab-
stract semantics itself is not computable either because
the iteration is infinite or because F* is not computable
or just because there is no function satisfying the above
equality. Then a sound approximation of [P]* is derived
by computing the least fixpoint of a computable func-
tion F* such that « o F C F* o o or by using a widening
operator or by applying both techniques.

Furthermore, Abstract Interpretation proved useful
in studying program transformations [CCO02]. Formal-
izing a program transformation ¢ defined syntactically
proceeds by defining suitable semantic observations [.]¢
and [.J¢ of the standard semantics for source [.]s and
target programs [.]J:, which should express the proper-
ties preserved by the transformation ¢. In most cases,
these observational semantics can be defined as abstrac-
tions of the standard semantics: [B;]9 = a;([P;];) for
i € {s,t}. Hence the correctness of the transformation
boils down to P, = t(Ps) = a([P]:) = as([Ps]s)
where = corresponds to some kind of bijection. In this
context, relating semantics in hierarchies of abstract in-
terpretations [Cou97] is particularly useful.

We formalize both static analysis and compilation in
the Abstract Interpretation framework first, and then we
state our methodology in this framework.

2.8 Programs, Semantics

In this paper, we consider imperative programming lan-
guages only. An ezecution state is a pair (I, p) where [ is
a program point (or label) and p is a store. A program is

defined by the data of a set of labels, a set of stores and
a transition relation which specifies the way one steps
from a state to another state:

Definition 1 (Transition system associated to a
program). Let R be a set of values for variables. The
transition system associated to a program P is a tuple
(Lp,Vp,ip,—p) where:

. Lp is the set of labels of P;

. Vp is the set of memory locations of P; the cor-
responding set of stores Vp — R is denoted by
Sp; the set of states for program P is denoted by
Ep = Lp X SP

. ip is the entry program point of P: It is the label any
execution of P starts at;

. (—p) C Epx Ep is the transition relation of P. Intu-
itively, (I, p) —p (', p') means that if an execution of
P reaches point [ with store p, then it may continue
at point I with store p’.

Note that a program point is not necessarily a syntactic
program point: In case of procedural programs, a label [
would define a pair (k,ls) where x is a stack and I is a
syntactic program point.

In general, we add an error state denoted by {2 to the
set of states of transition systems: Ep = {2} ULp x Sp.
No transition starts from (2 given this state is blocking,
so (—p) € (Ep\{$2}) x Ep.

An execution trace of a program is a finite sequence of
states, starting at the entry program point and such that
one steps from a state to the next one according to the
transition relation. The trace corresponding to the se-
quence of states ey, .. ., e, is noted {(eq, . .., e,). One can
remark that our presentation allows non-determinism
since — p is a relation (in the deterministic case, it would
turn into a function). The semantics of a program P is
the set of the execution traces of P. It is formally defined
as follows:

Definition 2 (Semantics of a program). The con-
crete semantic function of the program P is the function
Fp defined by:

Fp : P(E%) — P(ES)
X U {<(l0;p0)7"'7(ln;pn)7(ln+1apn+1)>
| <(ZO; pO)v tey (ln; pn)> eX
/\(l"apn) —P (ln+1,pn+1)}
U{{(ir,p)) | p € Sp}

Then, the semantics of the program P is the least-
fixpoint of Fp:
c
[P] = 1lps Fp
Note that the operator F'p is continuous, hence the least-
fixpoint exists and can be written as follows:

lfp; Fp = | J FR(0)
neN

(in other words the computation of the fixpoint does not
require a transfinite iteration)
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Lvi=z (z € X) | z[E] (z€X)

E u=n (n€Z° | Lv
| E+E|E—E|E+E | E/E

C :==true | false | -C | CAC
| CVC|E==E |E<E

S ==Lv:=E | if(C)BelseB | while(C)B
== {8;...; 8}

Fig. 1. A simple imperative language

2.4 A Simple Imperative Language

We present here the source language we consider in the
following. The grammar is given on figure 1. It features
integer variables and arrays, simple assignments, condi-
tionals and loops. A memory location v € V is either
a variable or an array cell. We write X for the set of
objects (arrays and integer variables). Expressions have
integer type; hence, we consider that R = Z°.
The semantics of expressions and conditions are de-

fined as follows:

Ve €E, [e] € (V—Z°) — Z

VeecC, [c] €Bgo —P(V — Z°)

Intuitively, the semantics of an expression maps a store
to a value or to the error constant {2 in case an error
happens when the expression is evaluated. It relies on a
definition of an interpretation & : Z%, x Z9, — Z%, for the
operator & € {+, —,, /}. The interpretation & of the
operator @ is assumed to be 2-strict: Vv € Zg, vd2 =
N&v = 2 (intuitively, an error is always propagated).
The interpretations of the binary operators are supposed
to handle error cases as division by 0 and overflows: For
instance, /(v,0) = +(Nmax, 1) = 2. The semantics of
expressions is defined by induction on the syntax as fol-
lows (p denotes an environment, = a variable, ¢ an array
of length n; e, e1 denote expressions):

[n](p)

(p
g (¢ [[eol(p)]) if 0 < [eo](p)
tlleo it 0 < [eg <n
[#leoll(p) = ?Z ’ otherwise ’
[eo & ex](p) = ([0l (p), [e1](p)) & € {+,—*,/}
Accommodating non-determinism would require consid-
ering sets of values instead of values here.
The semantics of a condition ¢ maps a value b € By,
to the set of stores in which the condition c evaluates to b.
The usual interpretations of the logical and comparison
operators are lifted to f2-strict interpretations. As for
the expressions, the semantics of conditions is defined
by induction on the syntax. We give only a few cases (cg
and ¢; denote conditional expressions):

[true](T)=V —Z

p(z)

—

[true](F) = [true](2) =0
[co A er](T) = [eo(T) N [er](7)
[co A er](F) = [eo](F) N [ed](F) U [eol(T) N [er](F)

U [eo]l(F) N [ea](7)

[co A ea](£2) = [eo] (£2) U [er] (£2)

We suppose that each statement s is associated to a la-
bel I (which intuitively denotes the program point right
before the statement s). The transition system of a pro-
gram P is defined by the set of labels associated to the
statements of P and by the transition relation defined
below by considering all the statements in P:

- Case of an assignment [ : t[eg] :=eq;1’ : ... (where t
is an array of size n):

- if feo](p) # $2 and [ea](p) # £2 and 0 < [eo](p) <

n, then:

(L, p) =p (', plt [[eol (p)] — [ex](p)])

. else,
(l,p) —p 22

An affectation to a variable is similar.

- Case of a conditional [ : if(c) {l; : By; l}}else{ls :
By; }}, U
p € [(T) = (I,p) =P (It; p)
p € [e)(F) = (L,p) —p (I, p)
p () = (,p) —r 2

(I, p) —p (I',p) where I E{lg,l}}

- Case of a loop I : while(c) {l; : By;l}}; U :
pe [[CH(T) = (lvp) —P (lbap)
p € c(F) = {,p) —p (I',p)
pe[d(2) = (l.p) —p 2
(ly,p) —p (1, p)

This language could be extended to a procedural sub-
set of the C language very easily. The definition of the
semantics would be similar (labels would include a call-
ing context as mentioned in section 2.3). The extension
to non-determinism would also be trivial.

2.5 A Simple Assembly Language

This subsection describes the simple (yet realistic) as-
sembly language, we consider in this paper. It corre-
sponds to a (very) simplified model of the assembly lan-
guage of the PowerPC processor [Mot97] (the prototype
presented in section 7 was designed for the real PowerPC
execution model).

The simplified execution model features a given num-
ber of integer registers denoted by rg, ..., ry, and access
to memory with integer addresses. An assembly program
is a sequence of labeled instructions (we simply define
the label of an instruction as the value of the program
counter before this instruction is executed). The syntax
of instructions is given on figure 2.

As in many processors, a conditional branching is de-
composed in several steps: The comparison instruction
sets the value of a so-called “condition register” cr (pos-
sible values for cr are LT, EQ and GT: LT means “less
than”; EQ means “equal”’; GT means “greater than”);
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n € Z°
c € {,<,=,#,>,>}
v € {ro,...,rN}UZ°
op = add | sub | mul | div
I := loadro, n(v)
| storerg, n(v)
| lirg, n
| opro, r1, 2 | mr ro, r1
| emp ro, 1
| be(e)l|bl

Fig. 2. A simple assembly language

the conditional branching instruction directs the execu-
tion according to the condition register value. We write
C for the set {LT, EQ, GT}. Hence, we consider here the
set of values R = Z° UC.

The address of a variable x stored in the memory is
denoted by z. We write M{n} for the memory cell of
address n, where n € N. As is the case for many real ar-
chitectures, memory access proceeds by relative address-
ing: The instruction load rg, n (v) loads the content of
the memory cell of address n + v into the register rg.

The transition system associated to a program P is
defined by the labels of all the instructions of the pro-
gram and the transition relation defined below by con-
sidering all the instructions in the program (1,1’,1",...
denote program points):

- the “load integer” instruction ! : 1i rq, n; !’

loads the integer n into the register ro:

(l,p) —P (llvp[rO — n])

- the “load” instruction [ : load rg, z (v); I’ : ... loads
the content of the memory cell of address z + v (v is
either an integer constant or the content of a register)
if 4+ v is a valid address (if not, it fails):

. If z + v is a valid address, then:

(l,p) =p (I plro — p(M{z + v})])

. If z + v is not a valid address, then:
(L,p) =p 12

- the “store” instruction ! : store rg, z (v); I
stores the content of the register rg into the memory
cell of address x4 v if z + v is a valid address (if not,
it fails):

. If z + v is a valid address, then:

(I, p) —=p (I, pIM{z + v} « p(r0)])

. If z + v is not a valid address, then:

(L,p) =p 12

- the “move register” instruction [ : mr ro, 1 : I’ : ..
copies the content of the register ry into the reglbter
Iry:

(1, p) —p (I', plro « p(r1)])

- the “compare” instruction [ : cmp rg, r1; ' : ... com-
pares the content vy of the register ry with the con-
tent v1 of the register ry; if vg < v1, then the value
of the condition register is set to LT; if vg = vy, then
the value of the condition register is set to EQ; if
vy > v1, then the value of the condition register is
set to GT:

if p(ro) < p(r1) then, (I, p)
if p(ro) = p(r1) then, (I, p)
if p(ro) > p(r1) then, (I,p)

- the “conditional branching” instruction [ : be(<
) U"; 1" : ... branches to " or to the next instruc-
tion depending on the value stored in the condition
register (the case of be(c) I” where ¢ is any condition
is similar):

(1, pler — L)

P
P (I, pler — BQ))
P (I, pler — GTI)

[

if p(cr) = LT then, (L, p) —p (", p)
if p(CI') € {EQa GT} then? (l7p) —-P (l/ap)
- the “branching” instruction [ : b 1”; !’ : ... branches

to label I":
(l7p) —P (l//ap)

- the “addition” instruction ! : add rg, ry, ro; I/
adds the content of the registers r1 and ro; then, if
no error occurs, it stores the result into the register
ro; in case an error occurs (i.e. the result is {2) the
operation instruction evaluates to the error state:

I F(p(r1), p(r2)) # £2, then:

(L,p) =p (I, plro = +(p(r1), p(r2))])
- If F(p(r1), p(r2)) = £2, then:
(lvp) —p (2

The case of the other arithmetic instructions mul,
sub, div is similar. Note that the interpretations
of the arithmetic operators are the same as for the
source language of section 2.4.

This simple assembly language could be extended to
handle procedures. Then, we would have to extend the
assembly model by taking into account the execution
stack. Some extra instructions would allow to update
the stack at the function calls and returns.

3 Compilation as a Program Transformation

This section attempts to formalize the compilation of a
source program Py into an assembly program P,. This is
achieved by defining a suitable observational semantics
for source and target programs, which states an equiva-
lence between them.
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3.1 Intuition about Compilation

The purpose here is to state how we expect source and
compiled programs to be related: Indeed, proving prop-
erties about compiled programs from properties of source
programs requires a notion of “correct compilation”. In-
tuitively, both programs should carry out the same com-
putations, that is the execution traces of both programs
should be isomorphic. We consider here the case of im-
perative source programming languages.

We assume that the program P is compiled into the
program P,.. If the compilation is correct and if the ex-
ecution of a statement in P starting at a state (s, ps)
ends in a state (17, p.), then there should exist two states
(I¢, pe) and (I, pl.) in the compiled program that are re-
spectively “related” to (I5, ps) and (1%, p.) and such that
(Ie, pe) — (1%, plL) in one or several assembly execution
steps. Similarly, any sequence of execution of the com-
piled program should have a counterpart in the source
program. Describing the link between the executions of
both programs is the purpose of this section.

The relation between program points of “related
states” states some kind of equivalence between the con-
trol structures of both programs. The relation between
stores of “related states” asserts that some source and as-
sembly memory locations are in correspondence; hence,
they should store the same value —modulo some con-
vention about the machine representation of the source
values.

For instance, in the case of the example given on fig-
ure 3, the assembly counterpart for the source variable
x is the memory cell of address z, whereas the registers
have no source counterpart. The assembly program point
1§ corresponds to the source program point /5 (and the
same for the other pairs of program points listed on fig-
ure 3(c)), whereas some assembly program points have
no source counterpart: For example, the label I{ cannot
be mapped to any point in the source program. At the
semantics level, the compilation of P, into P, is correct
for this mapping of the source and assembly program
points and memory locations. The correctness of com-
pilation expresses for instance that, if  has value v at
point [§ for some execution o, of Ps, then there exists
some execution o, of P, which reaches point [§ and such
that the value contained in x at this point is equal to v.
Furthermore, o, and o, present the same transitions:
If o5 steps forward from the state (I§,[x — v]) to the
program point (5 (i.e. o5 enters the loop), then o, car-
ries out a corresponding step (or sequence of steps) from
(14, .., + v]) to Ig; hence, it proceeds through the ex-
ecution path (15,15,1%,12,1%) (i.e. it does not follow the
branching to {;).

In general one source statement is compiled into a
sequence of assembly statements; therefore some inter-
mediate program points in the assembly program do not
enjoy a counterpart in the source, as remarked above
in the case of the example. Similarly some memory lo-

cations of the assembly program do not correspond to
any memory location of the source program as is the
case of the registers. Furthermore, some basic compiler
optimizations may remove dead code or dead variables;
hence, some source program points or memory locations
may not have a counterpart in the compiled program.

Consequently, the relation between the source and
the compiled program can only be formulated on a “re-
stricted” form of the semantics, which ignores some parts
of the computation. We detail in the following subsec-
tion the observational semantics we will use in order to
define the correctness of compilation.

3.2 Observational Semantics

We consider here a program P defined by the labeled
transition system (Lp,Vp,ip,—p) and by the set of
variables Vp. The notions presented here will be instan-
tiated to both source and assembly programs in the fol-
lowing.

Let L'y € Lp and V5 C Vp be “restricted” sets of
program points and memory locations. The set L5 intu-
itively represents the program points we want to observe;
similarly, V5 stands for the set of memory locations we
want to keep. Furthermore, the notation S} stands for
Vi — R; it denotes the set of the stores which assign
a value to the memory locations in L. We first define
projections for stores and for program points; then, the
observational semantics will be defined as the projection
of all the traces of [P].

Store restriction. The store projection operator ¢ maps
a store p € Sp to a “restricted store” p’ € Sp:

(;5:513 —>S}Tp
p +—p = AIxeVip(x)

Trace restriction to a set of program points. The trace
projection operator ® forgets about the states (I, p) such
that [ does not belong to L', and applies the store pro-
jection operator to the stores of the remaining states.
The states ([, p) such that [ belongs to L, are kept in
the same order as they appear in the original sequence.
More formally, @ is defined as follows:

D (Lp X Sp)* — (LT}; X S}’D)*
If o = {(lo,p0)s-- -, (ln, pn)), then (o) = o’ where:

o = <(lk0,¢(pk0)), ceey (lkm)¢(pkm))>
{koy....km}={i| (0<i<n)A(; € L}p)}

We envisage here a trace of the example assembly
program of figure 3(b):

Ezample 1. As the mapping presented in figure 3(c) sug-
gests, we choose LT = {18,15,1,1,,1%,} and V| = {z}.
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Vi, = {a} Ve, = {z} . Program points:
. IPlB 1§ :1ire, 0 1§ : load rg, z (0) Iy «—— 18
0 - — Uy a a . s a
s . 1 : store rg, z (0) 19: 1irg, 1 ;7 «— 15
éi Whllxe(.w_z 3_0(1)) { 13 : load ro, z (0) l§ : add r2, 1o, 11 I35 «— 1§
lz ) T ’ 1§ : 1irq1, 100 1§ : store rz, z(0) 15 «— 15
3 - a a a s a
s . lg : cmp 10, T1 1o :bl3 i — I
i + {end of the program) 1§ :bc(>) Iy %1 : (end of the program) . Memory locations: x «— z

(a) Source program Ps

(b) Assembly program P,

(c¢) Relation

Fig. 3. An example of compilation

Let o, represent the very beginning of an execution of
P,:

( (1§, [z = v,10 /> vo,11 > V1, ...]),
(14, [z — v,t9 — 0,11 — v1,...]),
(13,[z +— 0,19 — 0,11 — vy, ...]))

Then, &(0q) = ((Ig, [z — v]), (1, [z — 0])).

The following definition introduces both the obser-
vational semantics of the program P and the operator
that is used to compute it from [P]:

The obser-
vational abstraction operator o’ is ®. In other words,
VE e P((Lp x Sp)*), a" (&) ={P(t) | t € £}. The obser-
vational semantics [P], of the program P is defined by
[Pl = o™ ([PD).

As noted by the proposition below, the operator o"
is an abstraction operator:

Definition 3 (Observation operator).

Proposition 1 (Observation abstraction). The op-
erator o defines a Galois connection

r

~
B((Lp x Sp)*") === B((Lp x 53)%)
«

Straightforward: We are in presence of complete lattices;
«” is monotone, hence, it determines uniquely the con-
cretization operator 74" so as to define a Galois connec-
tion. 0O

Intuitively, if £ € P((Lp x S%)*), then 4" (€) denotes
the set of all the traces o of elements of Lp x Sp such
that the restriction of o belongs to &.

3.8 Correctness of Compilation

In this subsection, we consider a source program P, and
an assembly program P,. We suppose they are defined
by two labeled transition systems (L, Vs,is,—s) and
(La, Vayia,—a). Our goal here is to formalize what a
correct compilation of P into P, is. We consider first the
case of a simple compilation as opposed to an optimizing
compilation. The case of more involved transformations
is evoked afterwards.

We assume that we are given four sets L, C Ly,
Ll C Ly, V] C Vi and V] C V, that define the pro-
gram points and the memory locations of both programs

which can be related (the notations S] = V" — R are
also used in the following). More precisely, we suppose
that two bijections m; : L, — LI and 7, : V] — V" are
defined. These bijections denote the correspondence be-
tween source and assembly program points and memory
locations of both programs that are related as sketched
in section 3.1:

. my(zs) = x4 expresses the fact that the memory lo-
cation x, stores a value equal to the value stored in
Zs at corresponding program points (modulo a cor-
respondence between source and assembly represen-
tation of data types, which we ignore here);

. m, defines a store mapping m : ST — S 7w(p) =
pom,t;

. m(ls) = l, means that a source state like (s, ps) is
related to an assembly state like (I4,p,) and con-
versely (where the correspondance between py and
Pq is determined by 7).

We can introduce a trace mapping operator now:

I (L < 59 — (Lg x 55)*
<(ZOa pO)v KRR (lna pn)> U <(7Tl (ZO)7 Ts (pO))a R
(m1(ln), 75 (Pn)))

The sets L7 and V! (resp. L! and V) define obser-
vation abstractions as in section 3.2. For instance, we
write o (resp. 7%) for the abstraction (resp. concretiza-
tion) function associated to the definition of the obser-
vational semantics of source programs. The compilation
of P, into P, is said to be correct if and only if the
restricted semantics of both programs are in bijection:

Definition 4 (Correctness of compilation). The
compilation ¢ of Ps; into P, is correct with respect to
the mapping (7, 7,) if and only if the following holds:

H([Ps]r) = [Pl
This situation can be depicted by the diagram below:

Pi——— [Fs] —— [Ps]»
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Example 2. We continue here the example of figure 3.
The restricted sets are:

‘/ST = {33} Lg = LS = {187 falSa 3712}
Vi =A{z}  Lg ={16,15,15, 1%, 111}

The bijections m; and m, are defined on figure 3(c). The
compilation of P into P, is correct with respect to these
mappings (in the sense of definition 4).

Furthermore, the assembly trace o, of example 1 is
related to the following source trace o, (i.e. II(05) = 04):

Os = <(l(SJﬂ [CC = U]),( f; [CC = 0])>

Extraction of the mappings m, and ;. In general the
bijections 7, and m; can be found in the output of the
compiler. Indeed, most commonly used compilers pro-
vide auxiliary information for the sake of debugging.
The mappings between program points and memory lo-
cations are among these “debugging information”. Con-
sequently, the use of these mappings should not be pro-
hibitive in practice.

At the beginning of this subsection, we restricted to
non-optimizing compilation; we give here a few hints
about how to handle optimizations:

Remark 1 (Optimizations). Handling compiler opti-
mizations generally requires to integrate it right at the
compilation correctness definition level:

- As mentioned above, code or variable elimination
based optimizations are handled by choosing 75 and
7 so as to get rid of the removed entities. So, defini-
tion 4 is general enough to deal with these optimiza-
tions.

Many optimizations that change the structure of pro-
grams can also be handled in this framework by defin-
ing program points in a non syntactic way. For in-
stance in case of an unrolling of a loop L, a syntactic
program point = of the source program in the loop
L is mapped to two points in the assembly program:
One for odd iteration numbers and one for even itera-
tion numbers. Handling this optimization reduces to
splitting = into two program points Toqq and Teyen-
Hence, loop unrolling-based optimizations would re-
quire definition 4 to be extended to a more general
definition that would allow the control structure of
the source program to be unfolded.

Remark 2 (Practical variables mapping). In practice,
the definition of the variable mapping m, turns out to
be more involved. Indeed, the source variables (hence,
the source and assembly memory locations) have a re-
stricted scope. Consequently, the relation between source
and assembly memory locations depends on the program
point. We assume in this paper that all the variables have
a global scope and that m, does not depend on the pro-
gram point. Handling procedures requires solving this
kind of technical issues.

The formalization of compilation presented above is
equivalent to the approach of [ZPFGO02]. It is also compa-
rable to formalizations based on simulation techniques.
However, we believe that the advantage of formalizing
compilation inside the Abstract Interpretation frame-
work is to bring both static analysis and compilation
into a single framework, which makes reasoning about
the process more simple, especially if we wish to ex-
tend it to optimizations. The observation abstractions
considered in section 3.2 are simple projections; how-
ever, considering simple projection would not allow to
generalize our presentation in order to deal with opti-
mizations. Indeed, in the optimizing compilation case,
the observations abstraction may have to be replaced
by more complex operators (which would not be mere
projections any more) and further developments would
require to be extended accordingly.

4 Static Analysis and Invariant Translation

We consider now static analysis as a way of soundly ap-
proximating the possible behaviors of programs (more
precisely, an abstract semantics is defined and then we
compute a sound over-approximation of it). Then, we
consider a “correct compilation” (in the sense of the
previous section), and we show how to deduce abstract
properties of the compiled program from abstract prop-
erties of the source program.

4.1 Abstract Domain and Static Analysis

We introduce here a class of static analyses, practically
large enough to answer most questions of interest about
the behavior of programs (like runtime errors detection).
Let P be a program defined by a labeled transition sys-
tem (Lp,Vp,ip,—p) (the corresponding set of stores is
denoted by Sp = Vp — R). We suppose that an abstract
domain D? is given for representing sets of stores:

(P(Sp), ©) == (DA, C)

The abstract semantics of a program is a function that
maps a program point to the abstraction of the set of
stores which can be encountered at this point in a trace
of the program:

Definition 5 (Abstract semantics). The trace ab-
straction is defined as follows:

at :P((Lp x Sp)*) — (Lp — D¥)
VE C (Lp X SP)*, Vil € Lp,
(@)D =c{p| (... (Lp)...) €E})
The abstract semantics of P is defined by:
[P = o' ([P])

The function of defines a Galois connection:
(P((Lp x Sp)*),C) == (Lp — D*,C)

(same argument as in the case of proposition 1). O
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Static analysis. In most cases, the abstract semantics
[P]* is not exactly computable; hence we compute an
over-approximation of it by using a sound abstract se-
mantic function Flﬁg : (Lp — D% — (Lp — D*%) (the
soundness of the abstract semantic function boils down
toatoFp C F}ﬁD oat) and a widening operator V in order
to enforce convergence [CCT9.

In the following we call invariant an element of the
lattice (Lp — D¥,C). A sound invariant for the program
P is an invariant I such that [P]* C I; it provides a
sound over-approximation of the set of reachable states
of the program. Hence, static analysis computes a sound
invariant for the program.

The definition of a sound abstract semantic func-
tion requires a few abstract operators to be introduced
first. For instance, the two following abstract operators
are sufficient to build an abstract semantic function for
the programs written in the simple language of section
2.3 (the corresponding operators for the simple assembly
language of section 2.4 will be designed in a very similar
way in section 6.1):

- Assignment: the assign operator is defined by:
assign : Lv x E x D¥ — D#

Intuitively, it evaluates an l-value, an expression and
operates the assignment in the abstract domain; in
case the l-value does not evaluates into a single mem-
ory location but to a set of memory locations, the
assign operator carries out a “may assign”. The
soundness of this operator can be stated as follows:

Vp € Sp, Vpt € D¥, Viv € Lv, Ve € E,
p €V (p*) = p' € v*(assign(lv, e, p?))

where p' = p[[iv](p) < [€](p)] (the substitution op-
erator also takes possible “may affect” into account).
- Guard: The guard operator is defined by:

guard : B x ¢ x D — D!

Intuitively, it inputs a boolean b, a condition ¢ and
an abstraction of a set of stores p* and determines
a superset of the stores abstracted by p* such that ¢
evaluates to b. Hence, the soundness of guard boils
down to:

Vp € Sp, Vp* € D¥ Vb€ B, Ve e€C,
(p € [](b) A p€*(p") = p € 7*(guard(b, c, p*))

The abstract semantic function associated to the pro-
gram P can be defined by considering the abstract trans-
fer functions corresponding to all the statements in the
program. More precisely, we write ¢;; for the abstract
transfer function corresponding to the transition [ — I’.
It should achieve the following soundness property:

Vp,p' € Sp, Vp* € D¥,

0 S

In case ¢ is not defined explicitly below, then
b = \p* € D L:

- Case of an assignment [ : lv := eq; 1

b1 (p) = assign(lv, e, p*)

- Case of a conditional [ : if(c){l; : Byli}else{l; :
Byl U
P (pﬁ) = guard(7,c, pﬁ)
¢l;lf (pﬁ) = guard(]_—7 &) pﬁ)
duy 1 () = o
bv, v (pF) = pF

- Case of a loop I : while(c) {ly : Bp;lp}; 1" : ...

11, (") = guard(T, ¢, pf)
(z)l,l’ (pu) = guard(Fy C, pﬁ)
¢y 1(pF) = pf

Fig. 4. Abstract semantic function FFu,

In other words, the abstract transfer function computes
an over approximation of the set of stores at point I’
which can be reached by following the transition | — I’
starting from a given set of stores at point [. In case
program traces cannot step from [ to I’, ¢y = A\pf €
D*. L.

The definition of all the abstract transfer functions
for the program P proceeds by considering all the state-
ments in the program as shown on figure 4.

The abstract semantic function mimics one execu-
tion step at the abstract level by applying the abstract
transfer functions to the local invariants:

Fﬁ, :(Lp — Dﬁ) — (Lp — Dﬁ)
if | =ip, then: FL(I)(I) =T
if 1 # ip, then: Fp(I)(1) = |ycp, dva(I())

This definition of F* ensures soundness, since af o Fp T
F }ﬁ, oat.

Extensions. The extension of such an analysis to a pro-
cedural language would not be difficult since it only
requires to extend the notion of program point in or-
der to enclose an execution stack. If recursion is not
allowed (which is the case in many critical embedded
systems), then the execution stack can be represented
exactly at the abstract semantics level (a program point
corresponds to a syntactic program point and a unique
stack). On the contrary, if recursion is allowed, then an
abstraction of sets of stacks must be defined in order to
preserve the computer tractability (a label should rep-
resent a syntactic program point and a subset of the set
of the stacks which may occur at this point).

In the following we will consider the case of the in-
tervals domain only (D approximates the values of the
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variables with intervals); however, the abstract domain
D* can be considered a parameter: It may be instanti-
ated with other domains like affine equalities [Kar76],
constants [Cou99] or octagons [Min01].

Last, we can remark that a control-based partition-
ing strategy similar to those described in [HT98]) can be
used, in order to express more precise properties about
programs. Then, a finite partition of the set of control
paths ending in [ is given for each program point and
the abstract semantics of the program inputs both a
program point and an element of the partition attached
to this point and outputs an abstraction of the corre-
sponding set of stores. This approach would require the
extension of definition 5; however, this extension would
be trivial.

Aspects of program certification. A large part of pro-
gram certification consists in proving safety properties.
For instance, the goal of runtime errors detection is to
show that a program will not abort because of an il-
legal operation [BCCt02,BCC*T03]. Program certifica-
tion proceeds by checking that the set of concrete val-
ues represented by the abstract invariant cannot lead
to an error (which is sound but obviously incomplete).
For instance, if we discover an invariant I J [P]* for
a program P and in the case P contains the statement
1:Ali] :=10/v;l' : ... (where A is an array of size na
and v a variable), we would have to check:

. the correctness of the array assignment: Vp €
~¥5(I(1)), 0 < p(i) < na (no out-of-bound array ac-
cess);

. the correctness of the division: Vp € v*(I(1)), 0 &
p(v) (no divide by 0 error).

An example analysis. Given Sp = Vp — Z°, we envis-
age here a simple interval analysis. The Galois connec-

tion (P(Sp), C) === (D*,C) is defined by:

D =Vp — ({L}U{[a,b] | a,b € Z° a <b})
and:
a®(P) =L
VE C Sp such that £ # 0, Vx € Vp,

a*(€)(x) = [min{p(x) | p € £}, max{p(x) | p € £}]

(L) =0
Vpt € D, v*(pf) =
{(Az € Vpu,) | Vo € Vp, Tmin < Uy < Tmax
where p*(2) = [Tmin, Tmax) }

The transfer functions and the complete domain defini-
tion are trivial and can be found in [Cou99].

FEzample 8. The most precise sound invariant for pro-
gram P, is displayed in the table below. One can remark
that a simple interval analyzer would discover this in-
variant exactly.

Program point [ | [P]¥(I)(x)
ZS [Nrnin; Nrnax]
5 [0,100]
5 [0,99]
s 1,100]
5 [100, 100]

4.2 Invariant Translation

In this subsection, we use the same notations for a source
program P and for an assembly program P, as we did
in section 3.3. The compilation of Py into P, is supposed
correct in the sense of definition 4 (the mappings for the
program points, the variables and the stores m;, 7, and
ms are also defined in the same way as in section 3.3).
Furthermore, we assume that V; = V; for the sake of
simplicity (the general case will be treated in the follow-
ing subsections). We also make the assumption that an
abstract interpretation is defined for the source program
P,: D! denotes the abstract domain for representing sets
of source stores (the corresponding Galois connection is
defined by the pair of functions (af,~f)). Moreover, we
assume that I € (Ls — D%) is a sound invariant for the
source program (i.e: [P]t C I,). We write &, and &,
for the trace restriction operators (defined as in section
3.2). The store restriction operators are denoted by ¢,
and ¢g.

Let Is € L] and I, = m(ls).

Let 0o = (..., (la,Pa),---) € [Pa]- The correctness
of the compilation of Py into P, entails that 7 ([Ps])r) =
[P.]r; consequently, there exists a trace o, € [Ps] such
that IT(®s(0s)) = Pol0q). Since l, € L, o5 is of the
form
s (Lsyps)s o)

os=1{(...

and @a(pa) = s (ds(ps))-

Hence, ps = ¢s(ps) = da(pa) © mo-

The soundness of the invariant I entails that ps €
73(I,(1)). Consequently, ¢, (pa) o m € 3(L,(1,)).

At this point we have shown the proposition:

[P,]¥ C I,
la = 7Tl(ls)
(.., Ua,pa),---) €P]

This proposition sketches how an abstract property for
the assembly program can be derived from an abstract
invariant of the source program, even if it does not lead
to an explicit soundness statement like p, € ~5(p)
where pf is an element of a suitable abstract domain:

= ¢a(pa) o ™y € V5 (Ls(ls)).

(P(V, — R),C) == (D%, C)

aa

In the following, the design of a translated invariant is
done in two steps: A “restricted abstract semantics” is
first defined, which is both an abstraction of the obser-
vational semantics of section 3.2 and of the abstract se-
mantics underlying static analysis (section 4.1); then the
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T

[P] —— [P].

[P —— [Pl

Fig. 5. Abstractions of the standard semantics

translator is defined as a function which inputs a source
restricted abstract semantics and outputs an assembly
restricted abstract semantics.

4.8 Abstract Semantics and Observation

In this subsection, we use the same notations as in sec-
tion 4.1: We consider a program P and we suppose that
an abstract interpretation of the sets of stores of P is
given and extended to an abstract semantics for P. The
purpose of this subsection is to show how a new abstract
semantics can be defined in order to represent sets of pro-
jected stores (i.e. subsets of V5 — R) as shown on figure
5. We describe here an effective way to define [P]%, at¢
and a"°.

Forget operator. An operator forget : Vp x Df — D?
inputs a variable z € Vp and an abstract value pf and
outputs a new abstract value p’* which does not take
into account the variable x by forgetting about any in-
formation concerning to this variable. The soundness of
a forget operator is stated as follows:

Vo € Vp, ¥p,p' € Sp, Vpt € Dt
(Vy € Vp, y 2= p(y) = p'(y)) =
p €7°(p*) = p' € y*(forget(z, p*))

Furthermore, a forget operator should be idempotent:

Vz € Vp, Vp* € D,
forget(z, forget(z, p*)) = forget(z, p¥).

Indeed, forgetting twice about the constraints on vari-
able z yields the same result as forgetting about them
only once.

The definition of such an operator is trivial for most
domains: forget(z,p?) basically removes all the con-
straints on variable . In most cases (domains of inter-
vals, octagons, linear equalities...), the forget operator
achieves the following exactness condition (the domain
of polyhedra achieves a similar property despite it does
not enjoy an abstraction function):

Vr € Vp, VX C Sp,
forget(z,a®(X)) =
a’({p e Sp|Ipe,
Vy Ve, y#x=ply) =r'u)})

In the following, all the forget operators we consider are
supposed to be exact and idempotent.

Such an operator can be straightforwardly extended
to an operator on sets of variables (forgetting about a
set of variables amounts to forgetting about all of them
in any order).

Last, note that forget(Vp \ Vp,p*) in fact corre-
sponds to an element of a “restricted abstract domain”
D"* which defines a Galois connection with P(S%):

sr

(B(S7),C) == (D".C)

This domain can be defined as follows:

Definition 6 (Restricted abstract domain). The
restricted abstract domain is defined by:

D" = {forget(Vp \ V3, pf) | p* € D'}
Moreover, if X € P(S}),
0*7(X) = forget(Vp \ Vi, a*({p € Sp | 6(p) € X))

For instance, in the case of the interval domain seen
in section 4.1, forget(Vp \ V3, p*) is a function from
Vp to intervals which maps any variable that does not
belong to V} to the “top” interval [Nmin, Nmax]. Con-
sequently, an abstract value of D™ is isomorphic to a
function from V} to intervals.

Towards a more adapted abstract semantics. At this
point a new abstract semantics can be defined, which
takes into account the variables of V5 only (and imple-
ments the diagram of figure 5):

Definition 7 (Restricted abstract semantics). Let
"¢ be the function defined by:

a": (Lp — D*) — (L} — D)
I — M € L. (forget(Vp \ V5, 1(1)))

The restricted abstract semantics [P]% of the program P
is defined by

[PI: = o"*([P])

As shown by the (trivial) following proposition, the
restricted abstract semantics is an abstraction of the
“standard” abstract semantics [P]*:

Proposition 2. The function o"¢ is the abstraction
function of a Galois connection

(Lp — D} C) &= (L} — D"*,C)

[0}

Straightforward. 0O
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Observation and restricted abstract semantics. The re-
stricted abstract semantics [P]% can also be seen as an
abstraction of the observational semantics introduced in
section 3.2 in order to define the correctness of compila-
tion:

Proposition 3. Let o¢ be the function defined by anal-
ogy with ot by:

o P((L} x Sp)) — (L — D)
VE C (L% x SB)*, Vi € Lk,
o (€)1 =a"({p] (.-, (), ) € ED)

This function is the abstraction function of a Galois con-
nection

tc
C) == (Lp — D"™,0)
«

(P((Lp x Sp)");

Furthermore,

OétcOO[T:OéTcOOé

Hence, [P]% = ot*([P],).

t

Let £ C (Lp X Sp)* and [ € L.

at¢oa”(E)(1)
=a"({p|(...(L,p),...) €a”"(E)})
=a"({p[(....(L,p),...) €{P(0) |0 € E}})
=a({o(p) [ (... (L,p),...) €&}

= forget(Vp \.VIS,
a*({p | #(p) € {6(0) | (.-, (L, p)s-.) € EFD))
= forget(Vp \ V5,
o*({p|3p € Sp, (...
Ay € Ve, p(y) =p'(y)}))
= forget(Vp \ VZ,
forget(Vp \ V5,
a*({p € Sp | {oos(p),...) €ED))
since forget is exact
— forget(Ve \ Vi, a*({p| (..., (L, p)....) € €}))
since forget is idempotent

= a0 at(€)()

O
At this point, we have introduced three abstractions
of the standard concrete semantics [P], shown on the
diagram of figure 5:

- [P]- is the observational semantics (correctness of
compilation is expressed with respect to it);

- [P]* underlies static analysis;

- [P]¢ is an abstraction of these two semantics (intu-
itively, the dual of a reduced product).

In other words analyzing the program and then restrict-
ing the results of the analysis by forgetting the abstract
store at some program points and the information about
some store locations amounts to first restricting the sets
of program points and of locations and then abstracting
traces.

4.4 Invariant Translation Correctness

In this section, we consider a source program P, and
an assembly program P, as in section 4.2. We assume
that the compilation of P into P, is correct, hence m,,
s, m and IT are defined as in section 3.3. All the nota-
tions of section 4.2 apply; however, the assumption that
VI =V, is relaxed. An abstract domain D% (resp. D) is
defined for the source program (resp. the assembly pro-
gram). The link between both domains is made explicit
in the following. A forget operator is defined both at
the source and at the assembly level; furthermore, re-
stricted abstract domains are defined as in the previous
subsection and are denoted by D’* and D*.

Invariant translation. An invariant translation proce-
dure is based on a function which maps an abstract value
pt € DT to an abstract value p, € D%, and which is an
abstract counterpart for ms. Let wg be such a function.

Definition 8 (Sound abstract translation opera-
tor). The abstract store translation function 7f is sound
if and only if a%" o 7Ty C 7l 0 7.
Furthermore, 7! is ezact if and only if 5" o 7, =
ﬂ.)i ek
S s

The notion of sound abstract translation operator
introduced in definition 8 operates the invariant transla-
tion sketched in section 4.2: If pf is a sound approxima-
tion of a set £ of source restricted stores, then 7%(p?) is
a sound approximation of the set of assembly restricted
stores 75(&).

Once an abstract translation operator Wg is given, an
abstract invariant translation operator IT! can be de-
fined as follows:

It : (L, — Dr%) — (L — DI¥)
I — Ma € Ly (wh(I(m (la))))

If 7f is sound, then a!¢ o IT C IT# o . In this case, we
say that IT* is sound. Similarly, if 7% is exact, then the
equality holds and IT* is said to be exact.

The soundness of an abstract translation operator
is defined with respect to a correct compilation since it
involves the mapping operators m, and ;.

In practice, the domains D”* and D’* are similar: If
the first is an interval domain, then so is the second.
Hence, the design of a sound abstract translation op-
erator is straightforward and completely guided by the
variables mapping 7,. Moreover, 7! is always exact and
monotone in practice. The definition of IT* is also com-
pletely determined by the translation information since
it is based on the function 7r§ and on the program points
mapping 7.

Correctness. At this point, we can state the soundness
of the method: If we use a sound source analyzer, a cor-
rect compiler and a sound invariant translator, the pro-
cess yields a safe invariant for the compiled program.
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Theorem 1 (Invariant translation correctness). If
the compilation of Ps into P, is correct, if 7r§ 18 sound
and monotone and if I, € (Ly — D%?) is a sound in-
variant for Py (i.e. [Ps]t C I,), then IT = II* o o/°(I,)
18 a sound restricted abstract invariant for the assembly
program, that is [P,]% C I7.

Hence, a sound abstract invariant for the assembly
program can be derived:

[Pa]? E e o IT* 0 (L)
We first choose Iy = [Ps]*; this situation is illustrated
in figure 6. Then:

II* o a%¢(I) = IT* o a¢ o o ([ Ps])
= IT* o a'¢ o % ([Ps]) (proposition 3)
= II* o e ([Ps])
and:

[Pt = o(Pa],)
= O‘ZC © H([[PS]]T)

(proposition 3)

since the compilation is correct ([P,], = ﬁ([[PS]]T))
The soundness of IT* entails that:

[[Paﬂg E II* o ag(Is)

In general, [P,]* C I,. Given o’ and 7f are mono-
tone, the assembly invariant IT% o a7¢(I,) is a sound ap-
proximation of [P,]%. O

We mentioned in section 3.3 that allowing further
compiler optimizations and transformations would re-
quire the observational semantics [.], to be adapted.
This would entail the extension of the semantics [.]J%
and of the invariant translation procedure 7%. However,
the methodology we presented in this section is general
and would not be changed.

Ezample 4. The source invariant displayed in the exam-
ple 3 can be translated into the assembly invariant I]
given in the table below. Note that this invariant is a
sound approximation of the abstract semantics of the
assembly program as proved by theorem 1 ([P,]% C I7).

Program point [ I7 (D) (z)
lg [Nmin7 Nmax]
5 [0, 100]
g [0,99]
%o [1,100]
" [100, 100]

Towards a more informative and safer invariant. The
invariant translation procedure defined above does not
yield a very accurate invariant for the assembly program.
Roughly speaking, the invariant I, = 47¢(I7) does not
tell us anything about the value of the memory loca-
tions that do not belong to V.| or about the value of any
variable at a program point [ ¢ L!. Furthermore, the
correctness of the translated invariant relies on several

assumptions which we would like to relax (the compiler,
the invariant translator and the source invariant are sup-
posed to be correct). Therefore, we show in the follow-
ing how to construct a “full” invariant for the assembly
program (i.e. that would tell something about all the as-
sembly memory locations and program points) and how
to check it independently.

5 Invariant Propagation and Invariant
Checking

This section exposes how to carry out the invariant prop-
agation (i.e. computation of a more precise invariant for
the assembly program) and the invariant checking, which
should allow to trust the assembly invariant apart from
any hypothesis about the compilation, the source anal-
ysis or the invariant translation.

5.1 Post-fizpoints and Post-iterations

In this section we keep the notations of section 4.4. In
particular, I, denotes the translated invariant which we
would like to refine and to check.

Assembly invariant checker. In section 4.1, a static anal-
ysis was defined for a program P by giving a computable
function FIﬁD : (Lp — D% — (Lp — D%) such that
atoFp C F }n, o a! (soundness of the abstract seman-
tic function Flﬁg) where Fp denotes the concrete seman-
tic function introduced in definition 2. Such a function
F!: (L, — D!) — (L, — D!) can be defined for the
assembly program (with the same soundness condition
with respect to the concrete semantic function of the as-
sembly program Fy), as will be done in section 6.1. The
soundness of F¥ entails that [P,]* C lfpF¥. In practice,
F! is monotone. Note that this function could define an
analyzer for the assembly program as shown in section
4.1 in the case of the program P: A sound approximation
of [P,]* could be computed by iterating this function
from | and using a widening operator and an appropri-
ate iteration strategy [Bou93]. However, the lack of in-
formation available at the assembly level would make the
design of an efficient iteration strategy rather involved
as mentioned in the introduction.

Post-fixpoint and invariant checking. The invariant I, is
said to be a post-fixpoint of Ff if and only if Ff(I,) C I,.
In case I, is a post-fixpoint of F¥, then lfpF? C I,
therefore I, is a sound approximation of [P,]*.
Therefore the checking of a candidate assembly in-
variant can be done just by verifying that it is a post-
fixpoint of the assembly abstract semantic function F¥.
If the translated invariant is a post-fixpoint, then it is
sound apart from any hypothesis concerning the way it



Xavier Rival: Certification of Compiled Assembly Code by Invariant Translation 15

Ps i P,
s ﬁ s
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[P.JF = [P.JE ([P 3 [P - [P

Fig. 6. Proof of theorem 1

was obtained (the source analyzer, the invariant trans-
lator and the compiler are not required to be sound any
more to trust the translated invariant as was done in
theorem 1). However, in case I, is not a post-fixpoint of
F}, we cannot conclude it is not a sound approximation
of [P.]F.

In practice, the assembly abstract domain and the
assembly transfer functions should be defined carefully
so as to make the checking possible. Moreover, the re-
finement of the invariant (invariant propagation) should
be done before the invariant checking.

Post-iteration(s) and invariant propagation. If I is a
post-fixpoint of F¥, then the sequence (I,,)nen defined
by In = I and I,,y; = F%(I,) is decreasing since F! is
monotone. Hence, a way of improving the precision of the
translated invariant is to iterate the assembly abstract
transfer function starting from I, if it is a post-fixpoint.

In case I, is not a post-fixpoint, then an iteration
sequence can still be computed starting from it. How-
ever, a widening operator would generally be necessary
to enforce convergence.

Nevertheless the translated invariant is generally not
a post-fixpoint: I, maps elements of L] to precise ab-
stractions of sets of stores but it maps the elements of
Lo\ L}, to the least precise local invariant T, which makes
the checking unsuccessful at the points of L]. Therefore,
the next subsection explains how to compute a post-
fixpoint I/ from the translated invariant I,. Then I/
can be checked as mentioned above.

5.2 Practical Solution

In practice, the program point mapping m; maps at least
one point in each loop of the assembly control flow graph
to a source program point. Therefore, the computation
of a post-fixpoint of F# does not require an unbounded
iteration.

We suppose now that I, is sound. Let | € L, \
L7. Then, a sound local invariant can be determined
for this point by considering all the paths from a

point in L} to [ which do not encounter another
point belonging to L. Indeed, given such a path ¢ =
U lo,...,ln,l where I’ € L" we can compute a sound

abstract approximation If of the set of stores {p |

<' ) (ll7p/)7 (107 p0)7 RS (lna pn)a (l7p)> € IIPG]]} by USing
the abstract transfer functions introduced in section 4.1:

If = 1,00 b1,_1 0, 00 b1, © b1 15(Lallo)) |
(Vi, l; & LZ) A (l/ IS LZ)}

This amounts to iterating Ff from the abstract ele-
ment J, : L, — D? displayed below:

7 x €Ll — I,(x)
Tl egLll— L.

Then, if N is the maximal length of a path ¢ =
U, lo,...,l, such that I € L" and Vi, I; € L, \ L",
a sound invariant I, can be computed in N iterations.
Furthermore, this invariant would provide precise infor-
mation for any point of the control flow graph of P,:

N

I = [ |(FD'(Ja).

=0

In practice, I/ is adapted to invariant checking. Fur-
thermore, checking that I’ is a post-fixpoint for F! re-
duces to showing the following local property for each
pair (I,I') € (Ly \ L) x L":

oy (I (1) E I (1)

(indeed, the local invariants at all the other points of the
graph have been computed so as to achieve this prop-
erty).

5.8 Incompleteness

Section 5.2 details a method which should lead to the
checking of an invariant I! (by verifying it is a post-
fixpoint of ) derived from the translated invariant I,.

However, the invariant checking is definitely incom-
plete. For instance, I may fail to be a post-fixpoint of F¥
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if the abstract domain for the assembly program is too
weak to express some intermediate properties necessary
for the checking to succeed or if the abstract transfer
function is not precise enough.

Intuitively, a very simple piece of source code may
be compiled into a very obfuscated piece of target code.
In case the source statement is simply a “skip” state-
ment, the assembly checker would have to check that
the corresponding piece of code does not modify the ab-
stract stores. Nevertheless, the fact that a piece of code
“does nothing” is not decidable and so is in general the
fact that a piece of code “does nothing at the abstract
level”.

In practice, the implementation of the method starts
by the definition of a class of source and compiled
programs we wish the checking to succeed for, which
amounts to choosing the features of the source language
allowed and a class of compilers and compilation options.
Then comes the choice of the assembly abstract domain
(which may need to be obtained by refining the source
abstract domain in order to convey “more” intermedi-
ate properties) and of the abstract transfer functions for
assembly programs. This step is crucial and should lead
to the automatic checking of the programs of the pre-
viously defined class, following the method proposed in
section 5.2. We believe it is generally possible to build a
“good” abstract domain for a large class of source and
compiled programs. For instance, in the case of our ex-
periment based on a significant subset of the C language
and on the PowerPC architecture, only three refinements
of the domain were required. Two of them are due to the
way conditional branching is done in assembly programs
and are described in detail in section 6 (the third one
is evoked briefly in section 7). These refinements were
made necessary by particular aspects of the assembly
language: They should be handled only once even if we
wish to use several compilers since the refinements are
not specific to the compiler but to the assembly lan-
guage.

The purpose of designing a tool which would be
“complete on a class of programs” does not contradict
the incompleteness of the method. Indeed, given a tool
which is complete on the class of programs we are in-
terested in, it is generally possible to design a source
program Py and an assembly program P, (outside of the
class) such that the compilation of Ps into P, is correct
in the sense of definition 4 and such that the checking of
a translated invariant computed from an invariant ob-
tained on P; fails.

Anyway, a failure at checking time should lead to the
manual inspection of the cause. In case the failure is due
to a weakness of the abstract domain, the domain should
be improved.

The case of compiler optimizations (not considered
in this paper) turns out to be similar. Indeed, the choice
the optimizations to allow is part of the first step (defi-
nition of a class of source and compiled programs). The

abstract domain and transfer functions still should be
chosen accordingly.

5.4 An Abstract Proof of Compilation

When the checking of an invariant I! succeeds on an as-
sembly program P,, the invariant I can be considered
sound apart from any hypothesis about the compilation
of Ps into P, or about the way the invariant I, was pro-
duced. Then I, provides information about the behav-
ior of the assembly program P,: For instance, the value
stored in the memory cell of address z is in the range
[1,100] at the program point If, in the assembly pro-
gram of figure 3(b) (the propagation and checking of the
invariant displayed in the example 4 will be described
formally in the next section). However the correctness of
the compilation itself is not proved: In the example, the
checking of the invariant does not prove that the value
stored in the memory cell of address z at point [{; is the
equal to the value of variable z at point I3 in the source
program, even if it shows that these values both belong
to the range [1, 100].

However, the assembly level checking of an invariant
that was derived from a source invariant provides a kind
of “abstract proof of compilation”: Indeed, it entails that
the compiled program does not present behaviors the
source analyzer proved that the source program does not
enjoy. Therefore, this approach may detect some bugs
of compilers whereas other bugs cannot be detected. By
contrast, Translation Validation [PSS98] aims at proving
an operational equivalence between source and target
programs. Consequently, this method should be more
adapted to the discovery of compiler bugs.

6 Practical Aspects of Invariant Propagation
and Invariant Checking

Previous sections gave an overview of invariant trans-
lation and invariant checking. Given the method is not
complete (checking may fail even if the translated invari-
ant is sound), the design of a precise abstract domain is
required for checking to succeed. We envisage common
refinements, which turned out to be necessary for a spe-
cific (yet representative) architecture.

6.1 Definition of the Assembly-Level Abstract Checker

In this section we are interested in the checking of in-
variants on programs produced by simple non optimizing
compilers for the target architecture described in section
2.5 (which defines the class of compiled programs we are
interested in). This includes the gcc compiler for the
PowerPC architecture with most optimizations turned
off: The prototype presented in section 7 was designed
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for this architecture and this compiler; hence, it basically
implements the domain presented in this section.

The invariant checking method presented in section
5 is based on an abstract semantic function F¥ for the
assembly program P,. We assume here that an assembly

domain Dg is given together with a Galois connection

(P(Sa), Q) Z:Z (Dg, C) and we define a sound abstract

semantic function F? : (L, — Dg) — (Lg — Dg) for
P,; in the following, we show how to instantiate Dg SO
as to make checking succeed on the class of programs
under consideration.

As in section 4.1, we suppose that Dg provides two
abstract operators to handle assignments and tests:

- assign : L X E X Dg — Dg where L denotes the
set of assembly l-values (including all the registers
and the expressions that define one or several mem-
ory cells) and E denotes the set of the expressions
depending on the content of assembly memory cells.

- guard : B x C x Dg — Dg where C' denotes the
set of the conditional expressions depending on the
content of assembly memory cells.

The definition of the assembly abstract function F¥
is also based on abstract transfer functions:

F}: (L, — Df) — (Lo — Df)
If I, € (L, — D}), then:

if | =44, then: FS(I)(1) =T
if | # ia, then: F}(Io)(1) = ypep,, ¢va(Ia(l'))

Intuitively, ¢;+ defines the abstract transition from
point [ to point I’. The abstract transfer functions are
defined in detail in figure 7. The soundness of F} boils
down to the soundness of the transfer functions in the
same way as in section 4.1.

The abstract domain used for computing an invari-
ant for the source program is the domain of intervals
(section 4.1), so the first choice for Dg is also based on
intervals. Yet, variables values in assembly programs not
only include integers but also condition register values;
therefore Dg also relies on the domain of constants D¢
defined by C. Another possible choice would be to use
a domain based on P(C); the results would be a little
more precise, yet the problems mentioned in the follow-
ing subsection would still occur. In practice, the condi-
tion register is the only memory cell that may contain a
value in C, which justifies the following choice for Dg:

Dj = ({er} — D x (Lo \ {er}) — Ize)
= D¢ X ((La \ {Cr}) — ]IZO)

where Iz denotes the set of intervals of Z°.

The definitions of the guard and assign operators
for this domain are straightforward.

However this very simple choice for Dg does not allow
to propagate and check properly the translated invariant
of example 4 as shown in the next subsection.

We describe here the contribution to F¥ of all the
instructions in a program P,, by defining the corresponding
abstract transfer functions (in case ¢,/ is not defined
explicitly, it is equal to Ap* € Dg.J_):

- “load integer” instruction [ : 1i ro, ;0 : ...
1 (p*) = assign(ro, n, p*)
- “load” instruction [ : load ro, z (v); I' : ...
b1.0(p%) = assign(ro, M{z + v}, o)

- “store” instruction [ : store ro, z (v); I' : ...

b1y (p*) = assign(M{z + v}, 1o, p*)
- “move register” instruction [ : mr ro, r1; I ;...
b1 (p*) = assign(ro, 11, p*)
- “compare” instruction [ : cmp ro, r1; I’ ...

assign(cr, LT, guard(7,ro < r1, p%))
U assign(cr, EQ, guard(7,ro = r1, p*))
U assign(cr, GT, guard (7, ro > 11, p*))

o (p*) =

- “conditional branching” instruction [ : be(<) 1”5 1" : .. .:

b1 (p*) = guard (7, cr = LT, p)
b1 (p*) = guard(F, cr = LT, p¥)

(the definition of the transfer functions for the
conditional branching in case of other conditions is

similar)
- “branching” instruction I :b1”; I’ : ...
buim (p?) = p?
b (pf) = L

- “arithmetic” instruction ! : op rg, r1, ra; U

b1 (p*) = assign(ro, 11 G 12, p*)

where @ corresponds to the binary operator associated
to the arithmetic instruction op.

Fig. 7. Assembly abstract semantic function Fg

6.2 Practical Problems of Checking

We envisage here the propagation and the checking of
the translated invariant given in the example 4. More
precisely, we consider the propagation of the local in-
variant corresponding to the program point [§; we de-
rive local invariants for the program points 1§,1$,12,1§
and [{y. The result is shown in figure 8 (the translated
local invariants I, (1¢) and I,(1§;) associated to the pro-
gram points {§ and [{, are recalled in the second part of
the table).

No precise information about the value of the con-
dition register cr is discovered after the comparison in-
struction: At [g, cr is mapped to the non informative
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Program | cr T o ri
point [
Propagated invariant starting from [5
15 T [0, 100] T T
5 T [0, 100] [0, 100] T
13 T [0, 100] [0,100] | [100,100]
g T [0, 100] [0,100] | [100,100]
l§ T [0, 100] [0,100] | [100,100]
4 T [0, 100] [0,100] | [100,100]
Translated invariant
g T [0,99] T T
% T | [100,100] T T

Fig. 8. Invariant propagation

abstract value T. Hence, no precise characterization of
the values of the variables is inferred for any of the
branches after the conditional branching instruction and
the checking fails both at point I (since [0,100] €
[0,99]) and at point I (since [0,100] Z [100, 100]).

The reason why no information about the value of
the condition register is derived stems from the non-
relational structure of the domain Dg. Indeed, the choice
made for D} does not allow to take into account any
relation between the value of cr and the values stored
in the other memory locations (which is necessary for
the invariant checking to succeed): In the above case, cr
contains LT if ry € [0,99]; similarly, it contains EQ if
ro = 100 and it cannot be equal to GT. The design of
a new domain which solves this problem is addressed in
section 6.3; roughly speaking, it is based on a partition-
ing of the abstract values by the value of the condition
register.

A second issue is related to the fact that the compari-
son instruction compares the value contained in registers
even if these registers stand for variables (in the exam-
ple program of figure 3(c), ro contains the same value
as the memory cell of address z). The abstract transfer
function for cmp given in figure 7 would not take into
account this equality in case the abstract domain Dg is
unable to carry some kind of equality relation between
the values stored in distinct memory locations. Hence, a
more precise domain is needed in order to fix this weak-
ness of the initial domain Dg. This second extension is
described in section 6.4.

6.3 Value Partitioning

We suppose here that a domain Dg was defined for the
assembly programs as in section 6.1 and we extend it to
a new and more precise domain Dﬁ. An abstract value of
Dﬁ encloses an abstraction of the set of stores which map
the condition register to ¢ where c is any given condition
register value. The set of stores which map cr to LT is

approximated by an element of Dg (and the same for
EQ and GT).

More formally, Dﬁ is defined as a partitioning do-
main:

Definition 9 (Partitioning domain). Given the do-
Yo

main Dg and the Galois connection (P(S,),C) ——=

o
(Dg, C), the corresponding partitioning domain (Dﬁ, 0)
is defined as follows:

D! =C — D},
Furthermore it defines a Galois connection
(P(S.), ©) == (D}, )
where the concretization function is given by:

Vot € Df,

{p € 70(p(LT)) | pler) = LT}
U {p € 10(p*(EQ)) | pl(cr) = EQ}
U {p € 1(p*(GT)) | p(cr) = GT}

Proof of the Galois connection: Straightforward. O

Note that the notion of partitioning presented in
definition 9 can be extended to other data-types: For
instance the partitioning of the abstract values by the
value of one or several boolean variable(s) can improve
the precision of static analysis (this refinement is widely
used in [BCC03]).

The extension of the abstract operators is rather
straightforward (we use the index “0” for the operators
of Dg and the index “1” for the operators of Dg):

71(Pu) =

- Assignment operator:
If pf € Dﬁ, then an assignment to the condition reg-
ister is handled as follows:

LT — L

EQ — assigno(cr,EQ,pg)
GTw— L

assign, (cr, EQ, pf) =

where pg = p*(LT) U p*(EQ) U p*(GT).

The assignment of other values to cr is similar.

If | denotes an assembly l-value (which cannot eval-
uate to cr) and e any assembly expression, then:

assign, (I, e, p¥) = \c € C.assign, (I, e, p*(c))

- Guard operator:
If p* € Dg, then:

LT — p*(LT)
EQ — L
GT— L

guard, (7, cr = LT, p*) =

The other conditions depending on cr are handled in
a similar way.

If the condition expression ¢ does not depend on the
condition register and if b is a boolean, then:

guard, (b, ¢, p*) = Ac € C.guard, (b, ¢, p*(c))
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The comparison instruction [ : cmp ro, r1;l’ @ ... is
now analyzed as follows:

LT — guard,(7,r¢ <1, pg)
EQ — guard,(7,r¢p =1, pg)
GT — guard,(7,rp > 11, pg)

oL (p*) =

where p = p*(LT) U p*(EQ) U p*(GT).

In practice, the partitioning can be implemented
lazily. Indeed, the condition register is used only for
tests; hence, its value is of interest only at some points
of a program (between a comparison instruction and a
conditional branching instruction, i.e. only at the pro-
gram point {¢ in our example). Lazy partitioning may
allow memory savings: The real Power PC architecture
features 8 condition register fields which makes lazy
partitioning quite useful. Memory savings can also be
achieved by using sharing.

Moreover, the partitioning layer (corresponding to
Dﬁ) provides all the information we need about the con-
dition register value and the relation between its value
and the values of the other variables; hence, the basic
domain Dg can be simplified into a domain which does
not take the condition register into account (i.e. a func-
tion which maps integer registers and memory cells to
intervals in the case of the domain chosen in section 6.1).

Ezample 5. Using the partitioning domain based on the
interval domain yields the invariant displayed in figure
9. Note that we do lazy partitioning here: The mention
Ve in the cr column means that the abstract store p* de-
picted in the corresponding row maps any value of the
condition register to the same element of Dg (no parti-
tioning at this point). As remarked above, [¢ is the only
program point at which partitioning is absolutely neces-
sary; hence, the values for all the partitions are merged
after the branching (i.e. for the propagated invariants
corresponding to the labels [§ and [{4).

The correct ranges for the register ry are now de-
rived. However, the checking still fails since the ranges
for the content of the memory cell M{z} do not take
into account the test on rg (the value in rq is equal to
the content of M{z}). This issue motivates the next sub-
section.

6.4 FEqualities Domain

As mentioned in the example 5, the abstract domain
used for checking the invariant should keep information
about equality relations between the content of distinct
memory locations. In case the domain is not precise
enough to express and derive such properties, we propose
here to do a reduced product [CC79] with a specialized
domain D, which we define below:

Definition 10 (Variables equalities domain). The
equality domain (Df,C.) is defined by:

Program cr T ro ri
point [
Propagated invariant starting from [5
15 Ve [0, 100] T T
5 Ve [0, 100] [0,100] T
g Ve [0, 100] [0,100] [100, 100]
g LT [0, 100] [0,99] [100, 100]
EQ [0, 100] [100, 100] | [100,100]
GT € € 1L
l§ Ve [0, 100] [0, 99] [100, 100]
el Ve [0, 100] [100, 100] | [100,100]
Translated invariant
l§ Ve [0,99] T T
o1 Ve | [100, 100] T T

Fig. 9. Invariant propagation with partitioning

. D% is the set of the partitions of the set of assembly
memory locations V:

Di = {(Eiier | (Vi € I, E; € Vo) A (Uier By = Va)
A(Viel, EZ;AQ))}

. C¢ is the inverse of the sharpness order:
(Ei)icr Ce (Ej)jes <= Vi€ J, Jiel, E; CE;

Moreover, this domain defines a Galois connection as
follows: .,
(P(Sa), €) == (D%, Ce)

Qe

where:

Ye((Ei)icr) ={p € Sa | Vi€ I, JvE R,,
Ve € E;, p(z) =v}

Proof of the Galois connection: Straightforward (the ab-
straction function is determined by the data of 7.). O
Intuitively, the memory locations x and y may belong
to the same element of the partition only if they store
the same value.
Abstract operators assign and guard can be defined
for the domain D¥:

— Assignment operator:
The most important case is the “copy” assignment
(the content of a memory location is copied into an-
other one):

assign(z,y, (Ei)icr) = (Ej})jes
where the partition (E}) ;e is defined completely by:

{m}CEiAy¢Ei:>E|jEJ, EJ/ZEl\{x}
re B, NyeE; :>HJGJ,E§:EZ
r€E; Ny€eE; :>HJGJ,E§:EZU{$}

The instructions load, store and mr fall in that case.
We can remark that this case allows to derive new
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information: Either  and y are equal before the as-
signment and this information is preserved or x and
y are not equal before the assignment and then the
equality x = y is taken into account (after the other
equalities involving z are relaxed).

The case of more complicated assignments is han-
dled in a straightforward way. If e is a more complex
expression,

assign(z, ¢, (E)icr) = (Ej)jes
where the partition (E7);c is defined by:

Jj € J, B} = {«}
c¢ B =3jeJ B =E
(¢} CE; = 3j € J, E, = E;\ {z}

This intuitively amounts to relaxing the equalities x
was involved in before the assignment without deriv-
ing any new relation.

- Guard operator:
The guard operator does not allow to derive more
information:

guard(b, ¢, (E;)icr) = (Ei)ier

Moreover the merge (E;);cr Ue (E;) jeg of two partitions
(Ei)ier and (E7)jes is the coarsest partition (E})rer

which is finer than both (E;)ics and (E});es:
(Bl |ke K}y ={ENE;|icIAjeJ}\{0}

The reduced product domain. We assume that the cur-
rent assembly abstract domain Dﬁ cannot deal with
equalities between the content of memory locations (like
non-relational domains and in particular like the inter-
val domain considered above) and we strengthen it into
a new domain Dg which can do it.

More precisely, we define Dg as a reduced product:

D} = D! x Dt

which defines the following Galois connection (with the
product order):

(B(S4), £) == (D5,C)

Intuitively an element (p%, (E;)ics) represents a set of
stores which are both upper-approximated by pﬁ and by

(Ei)ier:

Y(p*, (Ei)icr) € D3,
Y2(p%, (Ei)ier) = 1 (p*) N ve((Ei)ier)

A reduce operator reduce : Dg — Dg is a function
which transforms an abstract value into another one
which has the same concretization (i.e. represents the
same set of stores) by refining the first element: Taking
equalities into account allows to derive more precise in-
formation in the domain Dg (more precise ranges can

Program cr T ro ri
point [
Propagated invariant starting from [5
15 Ve [0, 100] T T
5 Ve [0, 100] [0,100] T
g Ve [0, 100] [0,100] [100, 100]
g LT [0,99] [0,99] [100, 100]
EQ | [100,100] | [100,100] | [100, 100]
GT € € 1L
l§ Ve [0,99] [0,99] [100, 100]
el Ve | [100,100] | [100,100] | [100, 100]
Translated invariant
l§ Ve [0,99] T T
o1 Ve | [100, 100] T T

Fig. 10. Invariant checking with partitioning and equalities

be found for some variables which turn out to be equal
to other variables by intersecting their ranges). For in-
stance in the case of the interval domain, a valid reduce
operator would map (pf, (E;)icr) to (o, (E;)icr) where

the new abstract value p# is defined by:

Vo € V,, if x € E;, then pf(z) = ﬂ o (y)
yeE;

In practice, the reduction operator can be integrated to
the assign and the guard operators.

Ezample 6 (Equalities). In the example program of fig-
ure 3(c), the equalities domain discovers the equality
M{z} = ro at points 1§,1%,12,1¢ and 1§, (we only con-
sider here the program points we need to consider in
order to propagate and check the local invariant of the
point 1§ as done in example 4 and in example 5).

The reduction improves the ranges for the content of
the memory cell of address x at point [g: In case cr is
set to LT, then the content of rq is in the range [0,99];
hence, so is the content of variable .

The resulting local invariants given in figure 10 allow
the checking to succeed: Indeed, the local invariant com-
puted for point I§ starting from the translated invariant
of point I§ is more precise than the translated local in-
variant for point I (and the same for I{;); hence, the
checking condition given in section 5.2 is satisfied.

7 Implementation and Results

This section presents an overview of the implementation
of a prototype of an assembly code certifier and assesses
the results of this experience.

7.1 Context

The purpose here is to design a prototype able to certify
assembly programs corresponding to typical embedded
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systems, like those considered in [BCCT02,BCC*03].
The certification of a large class of C programs (i.e. auto-
matic analysis resulting in very low false alarms number)
is not our current goal; hence, we restricted to a class of
more simple, yet safety critical C programs.

These programs are written in C but mainly use
rather basic features. The control structure of these pro-
grams involves procedures (i.e. void functions) and a few
more complicated functions (with complex arguments
and a return value). The data-types which should be
handled do not include pointers even if pointers are im-
plicitly used when passing arrays to functions (the ar-
guments passed by reference can always be determined
without any ambiguity, so an alias analysis was unneces-
sary). Most classical C data-types are widely used: Var-
ious integer and floating point data-types, structures,
arrays and enums data-types. A pleasant aspect of the
class of programs under consideration is that they do not
use recursion. Therefore, the calling stack (the sequence
of function calls) can be represented explicitly during the
analysis. The absence of dynamic memory allocation and
of recursion also implies that the set of memory locations
(in the current environment and in the calling functions)
can be represented explicitly and finitely at any program
point, which simplifies the analysis and makes it more
precise.

The target architecture we chose comprises a 64 bytes
version of the motorola PowerPC processor [Mot97] and
a version of gce (we used a cross-compiler). The assem-
bly language introduced in section 2.5 is a simplified ver-
sion of the PowerPC instruction set; however, the real
architecture is much more complicated. Indeed, the pro-
cessor we considered features 32 “General Purpose Reg-
isters” (integer registers), 32 “Floating-Point Registers”
and a “Condition Register” composed of 8 fields. Mem-
ory access proceeds through various addressing modes;
the relative addressing described in section 2.5 is a gen-
eralization of the main addressing modes.

The compilation of programs containing functions
and procedures involves an execution stack. Local vari-
ables are addressed relatively to the stack pointer (func-
tion parameters are also stored in the stack). Therefore,
the precise analysis of the structure of the stack is crucial
for the checking to succeed.

7.2 Structure of the Prototype

Structure. The source analyzer is quite similar to the
C analyzers described in [BCC102,BCC*03]; however
it does not include all the domain refinements consid-
ered there. We provide more details about the abstract
domain we used below. The source analyzer checks the
correctness of the source code (as sketched in section
4.1).

The invariant translator preprocesses STABS stan-
dard debugging information and inputs the invariant

produced by the source analyzer. The result of the in-
variant translation corresponds to the invariant denoted
by J, in section 5.2.

The assembly invariant checker proceeds to the prop-
agation and to the verification of the translated invariant
as described in section 5.2. The resulting invariant can
be dumped to the disk as a bunch of html files, which
allows to inspect manually the final results of the analy-
sis (additional information about the translation are also
output as html files).

The assembly checker also carries out the assembly
code certification. This involves the checking of the fol-
lowing properties:

- The arithmetic instruction do not yield any exception
(no division by 0 or overflow error may occur);

- The access to memory is safe: Any load or store in-
struction only affect defined and authorized memory
locations (i.e. no segmentation fault may occur)

In fact the treatment of arithmetic exception may be
modified by the user. Therefore we plan to make the pre-
cise nature of the errors the analyzer should keep track
a parameter of the analysis.

The whole development (frontends, analyzers, trans-
lator and checker) amounts to 25 000 lines of OCaml code
and required three months of full-time work for one per-
son.

Abstract domain. The abstract domain is more compli-
cated than the interval domain considered along the pa-
per; nevertheless the content of sections 4, 5 and 6 can
be straightforwardly generalized. Basic integer and float-
ing point objects are abstracted to intervals. A boolean
type defined as an enum type is precisely handled (using
a domain of constants). The abstract domain represents
exactly the structure of composed objects (arrays, struc-
tures and enums); the basic members of this structures
(integer of floating point array cells and structure mem-
bers) are abstracted in the same way as simple variables
(using intervals). Moreover the abstract domain presents
the ability of partitioning stores using control-based cri-
teria (similarly to the approach of [HT98]). A parameter
of the analyzer commands the control-based partitioning
by pointing out which control structure (conditional or
loop) should be analyzed precisely.

At the assembly level, the domain is quite similar
but the refinements described in section 6 (lazy parti-
tioning by the value of the condition register and reduced
product with the equalities domain) are required and ap-
ply straightforwardly. Moreover the importance of point-
ers at the assembly level (for representing arrays, struc-
tures and the stack pointer) makes their precise abstract
representation crucial. The abstract representation of a
pointer z is a function ¢,: ¢, maps an integer n to the
cell of the abstract domain which corresponds to the con-
crete memory location of address z + n (intuitively ¢,
inputs an offset and outputs the abstract representation
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of the corresponding cell). In case z corresponds to an
array, ¢, maps the valid indexes for this array to the
abstract value corresponding to its cells. This symbolic
representation renders the checking of the correctness of
memory access simple: load rg, z (r1) is correct if and
only if the register r; contains a value which defines a
correct offset for the pointer corresponding to x.

Remark 3 (Memory alignments). In fact, the problem of
memory alignments required the implementation of an
additional domain. The assembly language introduced in
section 2.5 features one basic data-type only and ignores
the problem of memory alignments: All the memory cells
have size 1, so the addresses of the cells of an array of
integers are successive integers. In the case of the real
PowerPC processor, integers and floating point numbers
are 4 bytes long whereas short integers are 2 bytes long.
In case of an integer array lookup, the interval infor-
mation is generally not sufficient in order to prove the
correctness of the memory access. For instance, if we con-
sider an array of floating point numbers, the addresses of
the cells are multiples of 4 and if the index in the source
program is in the range [a,b], then the assembly offset
is in the range [4a, 4b]; if a < b, then 4a + 1 belongs to
the interval but does not correspond to a valid address
since the addresses are multiples of 4. The congruence
domain [Gra89] provides adequate information to prove
the correctness of arrays and struct reads and writes; so
a reduced product with this domain can be defined as in
section 6.4.

The abstract operators have been extended to convey
congruence information in the prototype.

Ezample 7. We give here a few details about an example
run of the prototype on a C program of 400 lines, con-
taining 10 functions and about 50 global variables. One
of the loops of the program required a precise analysis
(i.e. partitioning of traces by the number of iterations in
the loop). A main loop controls the execution of almost
all the program (the number of iterations in this loop is
unbounded). A few unrolling iterations (the union op-
erator is used for the first iterations) and the use of a
staged widening with threshold [BCCT02] were neces-
sary for the source analyzer to produce a quite precise
invariant. A list of values for the widening threshold and
the program points at which control partitioning should
be done are parameters of the analyzer.

The source analysis requires 2.5 s. and 15 Mb of
RAM on an Intel Pentium IIT laptop (1 GHz) under
linux 2.4.18. It produced one false alarm, which would
be solved using a more precise abstract domain (section
6.7 of [BCCT02]).

The parsing of the assembly program including the
processing of the debugging information and the building
of the mappings m; and m, requires about 4.5 s. The
invariant translation requires 1.5 s.

The invariant propagation is done in 4.1 s; the check-
ing of the stability of the translated invariant is passed

after about 1 s (it actually succeeds). Checking requires
about 27 Mb of RAM. The final assembly analysis leaves
the same false alarm as for the source (one potential
overflow).

The prototype succeeded in proving the soundness of
invariants. However, the size of the programs we could
consider is fairly limited: The prototype was not de-
signed with the purpose of scaling-up, since it was a
first experience of invariant translator. The main limita-
tion comes from the memory usage and stems from the
fact the assembly invariant was completely generated. A
real tool would generate and check it incrementally (the
memory usage would not be much greater than that of
the source analyzer).

8 Conclusion

We proposed a method for certifying assembly programs
produced by compilation from programs written in a
source language we have an analyzer for. The method is
generic with respect to the compiler and to the choice of
an abstract domain for representing sets of stores (since
the assembly abstract domain is derived from the source
abstract domain). Invariant propagation and checking
may require a precise treatment of some assembly lan-
guage aspects; nevertheless, we have to cope with this
additional issues only once even if the compiler is mod-
ified or changed, since it merely stems from the charac-
teristics of the assembly language itself.

The approach proved to be successful in practice.
Note that the final checking of the invariant is a strong
guarantee: Analyzing programs is a complex task, and
checking the final result apart from any hypothesis on
the correctness of the rest of the process is always a
good point. Moreover the distinct steps of the process
are independent: The source analysis, the translation of
the invariants and their checking can be done separately.
Existing tools can be used which reduces the cost of the
analysis of assembly programs.

A first extension of this work would be to turn the
current prototype into a true certifying tool, by extend-
ing the abstract domain to a relational domain and the
source language under consideration. Another more chal-
lenging goal would be to define a class of transforma-
tions (optimizations...) the method would work for and
to augment this class by taking more optimizations into
account. This would certainly require the extension of
the definition of the correctness of compilation. A last
direction would be to use similar methods to analyze
programs generated automatically from a specification:
A specification could be used to compute an invariant on
the program (the specification should contain appropri-
ate information about the program behavior); checking
the invariant on the program being simpler than infer-
ring an invariant from the generated program alone. An-
alyzing a rather “high-level” specification may make the
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inference of properties more simple and thus increase the
precision of static analysis.
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