
Shape Analysis with Structural Invariant
Checkers?

Bor-Yuh Evan Chang1 , Xavier Rival1,2 , and George C. Necula1

1 University of California, Berkeley, California, USA
2 École Normale Supérieure, Paris, France
{bec,rival,necula}@cs.berkeley.edu

Abstract. Developer-supplied data structure specifications are impor-
tant to shape analyses, as they tell the analysis what information should
be tracked in order to obtain the desired shape invariants. We observe
that data structure checking code (e.g., used in testing or dynamic anal-
ysis) provides shape information that can also be used in static analysis.
In this paper, we propose a lightweight, automatic shape analysis based
on these developer-supplied structural invariant checkers. In particular,
we set up a parametric abstract domain, which is instantiated with such
checker specifications to summarize memory regions using both notions
of complete and partial checker evaluations. The analysis then automati-
cally derives a strategy for canonicalizing or weakening shape invariants.

1 Introduction

Pointer manipulation is fundamental in almost all software developed in impera-
tive programming languages today. For this reason, verifying properties of inter-
est to the developer or checking the pre-conditions for certain complex program
transformations (e.g., refactorings) often requires detailed aliasing and structural
information. Shape analyses are unique in that they can provide this detailed
must-alias and shape information that is useful for many higher-level analyses
(e.g., typestate or resource usage analyses, race detection for concurrent pro-
grams). Unfortunately, because of precision requirements, shape analyses have
been generally prohibitively expensive to use in practice.

The design of our shape analysis is guided by the desire to keep the abstrac-
tion close to informal developer reasoning and to maintain a reasonable level of
interaction with the user in order to avoid excessive case analysis. In this pa-
per, we propose a shape analysis guided by the developer through programmer-
supplied data structure invariants. The novel aspect of our proposal is that these
specifications are given as checking code, that is, code that could be used to verify
instances dynamically. In this paper, we make the following contributions:

? This research was supported in part by the National Science Foundation under grants
CCR-0326577, CCF-0524784, and CNS-0509544; and an NSF Graduate Research
Fellowship.

H. Riis Nielson and G. Filé (Eds.): SAS 2007, LNCS 4634, pp. 384–401, 2007.
c©Springer-Verlag Berlin Heidelberg 2007. This is the authors’ version of the work. It is posted
here by permission of Springer-Verlag for your personal use. An extended version of this paper
is available as Technical Report UCB/EECS-2007-80.

Shape Analysis with Structural Invariant Checkers 385

– We observe that invariant checking code can help guide a shape analysis and
provides a familiar mechanism for the developer to supply information to
the analysis tool. Intuitively, checkers can be viewed as programmer-supplied
summaries of heap regions bundled with a usage pattern for such regions.

– We develop a shape analysis based on programmer-supplied invariant check-
ers (utilizing the framework of separation logic [17]).

– We introduce a notion of partial checker runs (using −∗) as part of the
abstraction in order to generalize programmer-supplied summaries when the
data structure invariant holds only partially (Sect. 3).

– We notice that the iteration history of the analysis can be used to guide the
weakening of shape invariants, which perhaps could apply to other shape
analyses. We develop an automatic widening strategy for our abstraction
based on this observation (Sect. 4.2).

In this paper, we consider structural invariants, that is, invariants concerning the
pointer structure (e.g., acyclic list, cyclic list, tree) but not data properties (e.g.,
orderedness). In the next section, we motivate the design of our shape analysis
and highlight the challenges through an example.

2 Overview

In Fig. 1, we present an example analysis that checks a skip list [16] rebalancing
operation to verify that it preserves the skip list structure. At the top, we show
the structure of a two-level skip list. In such a skip list, each node is either level
1 or level 0. All nodes are linked together with the next field (n), while the
level 1 nodes are additionally linked with the skip field (s). A level 0 node has
its s field set to null . In the middle left, we give the C type declaration of a
SkipNode and in the middle right, we give a checking routine skip1 that when
viewed as C code (assumed type safe) either diverges if there is a cycle in the
reachable nodes, returns false, or returns true when the nodes reachable from
the argument l are arranged in a skip list structure. The skip0 function is a
helper function for checking a segment of level 0 nodes. Intuitively, skip1 and
skip0 simply give the inductive structure of skip lists.

In the bottom section of Fig. 1, we present an analysis of the rebalancing
routine (rebalance). The assert at the top ensures that skip1(l) holds (i.e.,
l is a skip list), and the assert at the bottom checks that l is again a skip
list on return. We have made explicit these pre- and post-conditions here, but
we can imagine a system that connects the checker to the type and verifies
that the structure invariants are preserved at function or module boundaries. In
the figure, we show the abstract memory state of the analysis at a number of
program points using a graphical notation, which for now, we can consider as
informal sketches a developer might draw to check the code by hand. For the
program points inside the loop there are two memory states shown: one for the
first iteration (left) and one for the fixed point (right).

A programmer-defined checker can be used in static analysis by viewing the
memory addresses it would dereference during a successful execution as describ-
ing a class of memory regions arranged according to particular constraints. We

386 Bor-Yuh Evan Chang, Xavier Rival, and George C. Necula

level 1

level 0

s
n

s
n

s
n

s
n

s
n

s
n

typedef

struct SkipNode {
int d;

struct SkipNode* s;

struct SkipNode* n;

}
SkipNode;

bool skip1(SkipNode* l) {
if (l == null) return true;

else return skip1(l->s) &&

skip0(l->n, l->s);

}
bool skip0(SkipNode* l, SkipNode* e) {

if (l == e) return true;

else return l != null && l->s == null &&

skip0(l->n, e);

}

void rebalance(SkipNode* l) {
SkipNode *p, *c;

assert (l != null && skip1(l));

1

�

�

�

�
l

skip1

p = l; // previous level 1 node

2 c = l->n; // cursor

3 l->s = null;

4 while (c != null) {

5

�

�

�

�

0
ε

l, p c
n

s

skip0(ε) skip1

�

�

�

�

0
α β γ δ ε

l p c
skip1 n

s

skip0(-) skip0(ε) skip1

if (c should be a level 1 node) {
6 p->s = c; // set the skip pointer of the previous level 1 node

7 p = p->s;

8 c->s = null; c = c->n;

9

�

�

�

�

0
ε

l p c
n

s

n

s

skip0(ε) skip1

�

�

�

�

0
ε

l p cskip1 n

s

skip0(-) n

s

skip0(ε) skip1

}
else {

10 c->s = null; c = c->n;

11

�

�

�

�

0 0
ε

l, p c
n

s

n

s

skip0(ε) skip1

�

�

�

�

0 0
ε

l p cskip1 n

s

skip0(-) n

s

skip0(ε) skip1

}
}

12 assert (l != null && skip1(l));

}
First Iteration At Fixed Point

Fig. 1. Analysis of a skip list rebalancing

Shape Analysis with Structural Invariant Checkers 387

build an abstraction around this summarization mechanism. To name heap ob-
jects, the analysis introduces symbolic values (i.e., fresh existential variables).
To distinguish them from program variables, we use lowercase Greek letters
(α, β, γ, δ, ε, π, ρ, . . .). A graph node denotes a value (e.g., a memory address)
and, when necessary, is labeled by a symbolic value; the 0 nodes represent null .
We write a program variable (e.g., l) below a node to indicate that the value of
that variable is that node. Each edge corresponds to a memory region. A thin
edge denotes a points-to relationship, that is, a memory cell whose address is
the source node and whose value is the destination node (e.g., on line 5 in the
left graph, the edge labeled by n says that l->n points to c). A thick edge
summarizes a memory region, i.e., some number of points-to edges. Thick edges,
or checker edges, are labeled by a checker instantiation that describes the struc-
ture of the summarized region. There are two kinds of checker edges: complete
checker edges, which have only a source node, and partial checker edges, which
have both a source and a target node. Complete checker edges indicate a memory
region that satisfies a particular checker (e.g., on line 1, the complete checker
edge labeled skip1 says there is a memory region from l that satisfies checker
skip1). Partial checker edges are generalization that we introduce in our ab-
straction to describe memory states at intermediate program points, which we
discuss further in Sect. 3. An important point is that two distinct edges in the
graph denote disjoint memory regions.

To reflect memory updates in the graph, we simply modify the appropriate
points-to edges (performing strong updates). For example, consider the transi-
tion from program point 5 to point 9 and the updates on lines 6 and 7. For the
updates on line 8, observe that we do not have nodes for c->s or c->n in the
graph at program point 5. However, we have that from c , an instance of skip0
holds, which can be unfolded to materialize points-to edges for c->s and c->n
(that is, conceptually unfolding one step of its computation). The update can
then be reflected after unfolding.

As exemplified here, we want the work performed by our shape analysis
to be close to the informal, on-paper verification that might be done by the
developer. The abstractions used to summarize memory regions is developer-
guided through the checker specifications. While it may be reasonable to build
in generic summarization strategies for common structures, like lists and trees
(cf., [6,9]), it seems unlikely such strategies will suffice for other structures, like
the skip lists in this example. Traversal code for checking seems like a useful
and intuitive specification mechanism, as such code could be used in testing or
dynamic analysis (cf., [18]).

From this example, we make some observations that guide the design of our
analysis and highlight the challenges. First, in our diagrams, we have implicitly
assumed a disjointness property between the regions described by edges (to per-
form strong updates on points-to edges). This assumption is made explicit by
utilizing separation logic to formalize these diagrams (see Sect. 3). This choice
also imposes restrictions on the checkers. That is, all conjunctions are separating
conjunctions; in terms of dynamic checking, a compilation of skip1 must check

388 Bor-Yuh Evan Chang, Xavier Rival, and George C. Necula

that each address is dereferenced at most once during the traversal. Second, as
with many data structure operations, the rebalance routine requires a traversal
using a cursor (e.g., c). To check properties of such operations, we are often
required to track information in detail locally around the cursor, but we may be
able to summarize the rest rather coarsely. This summarization cannot be only
for the suffix (yet to be visited by the cursor) but must also be for the prefix
(already visited by the cursor) (see Sect. 3). Third, similar to other shape anal-
yses, a central challenge is to fold the graphs sufficiently in order to find a fixed
point (and to be efficient) while retaining enough precision. With arbitrary data
structure specifications, it becomes particularly difficult. The key observation we
make is that previous iterates are generally more abstract and can be used to
guide the folding process (see Sect. 4.2).

3 Memory Abstraction

M ::= β@f 7→ r
| M1 ∗ M2

| emp
| α.c(β)
| α1.c(β) ∗− α2.c(β)

(a) Abstract memory states

α1@f 7→ α2 α1 α2

f
α@f 7→ null α 0

f
α.c(β) α

c(β)
α1.c(β) ∗− α2.c(β) α1 α2

c(β)

(b) Edges

We describe our analysis within the
framework of abstract interpretation [5].
Our analysis state is composed of an
abstract memory state (in the form
of a shape graph) and a pure state
to track disequalities (the non-points-
to constraints). We describe the mem-
ory state in a manner based largely on
separation logic, so we use a notation
that is borrowed from there. A memory
state M includes the points-to relation
(β @ f 7→ r), the separating conjunction
(M1 ∗ M2), and the empty memory
state (emp) from separation logic, which
together can describe a set of possible
memories that have a finite number of points-to relationships. The separating
conjunction M1 ∗ M2 describes a memory that can be divided into two disjoint
regions (i.e., with disjoint domains) described by M1 and M2 . A field offset
expression β @ f corresponds to the base address β plus the offset of field f
(i.e., &(b.f) in C). For simplicity, we assume that all pointers occur as fields
in a struct . R-values r are symbolic expressions representing the contents of
memory cells (whose precise form is unimportant but does include null). Mem-
ory regions are summarized with applications of user-supplied checkers. We write
α.c(β) to mean checker c applied to α and β holds (i.e., c succeeds when applied
to α and β). For example, α.skip1() says that the skip1 checker is successful
when applied to α . We use this object-oriented style notation to distinguish
the main traversal argument α from any additional parameters β . These addi-
tional parameters may be used to specify additional constraints (as in the skip0
checker in Fig. 1), but we do not traverse from them. We also introduce a notion
of a partial checker run α1.c(β) ∗− α2.c(β) that describes a memory region
summarized by a segment from α1 to α2 , which will be described further in the

Shape Analysis with Structural Invariant Checkers 389

subsections below. Visually, we regard a memory state as a directed graph. The
edges correspond to formulas as shown in the inset (b).1 Each edge in a graph is
considered separately conjoined (i.e., each edge corresponds to a disjoint region
of memory).

Inductive Structure Checkers. The abstract domain provides generic sup-
port for inductive structures through user-specified checkers. Observe that a
dynamic run of a checker, such as skip1 (in Fig. 1), visits a region of memory
starting from some root pointer, and furthermore, a successful, terminating run
of a checker indicates how the user intends to access that region of memory. In
the context of our analysis, a checker gives a corresponding inductively-defined
predicate in separation logic and a successful, terminating run of the checker
bears witness to a derivation of that predicate.

π.c(ρ) := 〈M1 ; P1〉 ∨ · · · ∨ 〈Mn ; Pn〉
The definition of a checker c , with

formals π and ρ , consists of a finite
disjunction of rules. A rule is the conjunction of a separating conjunction of
a series of points-to relations and checker applications M and a pure, first-
order predicate P , written 〈M ; P 〉 . Free variables in the rules are considered
as existential variables bound at the definition. Because we view checkers as
executable code, the kinds of inductive predicates are restricted. More precisely,
we have the following restrictions on the Mi ’s: (1) they do not contain partial
checker applications (i.e., ∗−) and (2) the points-to edges correspond to finite
access paths from π . In other words, each Mi can only correspond to a memory
region reachable from π . A checker cannot, for example, posit the existence of
some pointer that points to π .

Each rule specifies one way to prove that a structure satisfies the checker
definition, by checking that the corresponding first-order predicate holds and
that the store can be separated into a series of stores, which respectively allow
proving each of the separating conjuncts. Base cases are rules with no checker
applications.

Example 1 (A binary tree checker). A binary tree with fields lt and rt can be
described by a checker with two rules:

π.tree() := 〈emp ; π = null〉 ∨ 〈(π@lt 7→ γ) ∗ (π@rt 7→ δ) ∗ γ.tree() ∗ δ.tree() ; π 6= null〉

Example 2 (A skip list checker). The “C-like” checkers for the two-level skip list
in Fig. 1 would be translated to the following:

π.skip1() := 〈emp ; π = null〉
∨ 〈(π@s 7→ γ) ∗ (π@n 7→ δ) ∗ γ.skip1() ∗ δ.skip0(γ) ; π 6= null〉

π.skip0(ρ) := 〈emp ; π = ρ〉
∨ 〈(π@s 7→ null) ∗ (π@n 7→ γ) ∗ γ.skip0(ρ) ; π 6= ρ ∧ π 6= null〉

1 For presentation, we show the most common kinds of edges. In the implementation,
we support field offsets in most places to handle, for example, pointer to fields.

390 Bor-Yuh Evan Chang, Xavier Rival, and George C. Necula

Segments and Partial Checker Runs. In the above, we have built some
intuition on how user-specified checkers can be utilized to give precise summaries
of memory regions. Unfortunately, the inductive predicates obtained from typical
checkers, such as tree or skip1 , are usually not general enough to capture the
invariants of interest at all program points. To see this, consider the invariant at
fixed point on line 5 (i.e., the loop invariant) in the skip list example (Fig. 1).
Here, we must track some information in detail around a cursor (e.g., p and
c), while we need to summarize both the already explored prefix before the
cursor and the yet to be explored suffix after the cursor. Such a situation is
typical when analyzing a traversal algorithm. The suffix can be summarized by
a checker application δ.skip0(ε) (i.e., the skip0 edge from c), but unfortunately,
the prefix segment (i.e., the region between l and p) cannot.

Rather than require more general checker specifications sufficient to capture
these intermediate invariants, we introduce a generic mechanism for summariz-
ing prefix segments. We make the observation that they are captured by partial
checker runs. In terms of inductively-defined predicates, we want to consider par-
tial derivations, that is, derivations with a hole in a subtree. This concept is in-
ternalized in the logic with the separating implication. For example, the segment
from l to p on line 5 corresponds to the partial checker application α.skip1() ∗−
β.skip1(). Informally, a memory region satisfies α.skip1() ∗− β.skip1() if and
only if for any disjoint region that satisfies β.skip1() (i.e., is a skip list from β),
then conjoining that region satisfies α.skip1() (i.e., makes a complete skip list
from α). This statement entails that β is reachable from α . Our notation for
separating implication is reversed compared to the traditional notation −∗ to
mirror more closely the graphical diagrams. Our use of separating implication is
restricted to the form where the premise and conclusion are checker applications
that differ only in the unfolding argument because these are the only partial
checker edges our analysis generates.

Semantics of Shape Graphs. The concretization of an abstract memory state
with checkers is defined by induction on the structure of such memory states and
on the unfolding of inductive checkers with the usual semantics of the separation
logic connectors. A concrete store σ is part of the concretization of an abstract
memory state M if and only if there exists a mapping of the abstract nodes in M
into concrete addresses in σ (a valuation), such that M under the valuation is
satisfied by σ . Further details, including a full definition, is given in the extended
version [3].

4 Analysis Algorithm

In this section, we describe our shape analysis algorithm. Like many other shape
analyses, we have a notion of materialization, which reifies memory regions in
order to track updates, as well as blurring or weakening, which (re-)summarizes
certain memory regions in order to obtain a terminating analysis. For us, we
materialize by unfolding checker edges (Sect. 4.1) and weaken by folding memory
regions back into checker edges (Sect. 4.2). Like others, we materialize as needed

Shape Analysis with Structural Invariant Checkers 391

to reflect updates and dereferences, but instead of weakening eagerly, we delay
weakening in order to use history information to guide the process.

Our shape analysis is a standard forward analysis that computes an abstract
state at each program point. In addition to the memory state (as described in
Sect. 3), the analysis also keeps track of a number of pure constraints P (pointer
equalities and disequalities). Furthermore, we maintain some disjunction, so our
analysis state has essentially the following form: 〈M1 ; P1〉 ∨ 〈M2 ; P2〉 ∨ · · · ∨
〈Mn ; Pn〉 (for unfoldings and acyclic paths where needed). Additionally, we
keep the values of the program variables (i.e., the stack frame) in an abstract
environment E that maps program variables to symbolic values that denote
their contents.2

4.1 Abstract Transition and Checker Unfolding

Because each edge in the graph denotes a separate memory region, the atomic
operations (i.e., mutation, allocation, and deallocation) are straightforward and
only affect graphs locally. As alluded to in Sect. 2, mutation reduces to the
flipping of an edge when each memory cell accessed in the statement exists in
the graph as a points-to edge. This strong update is sound because of separation
(that is, because each edge is a disjoint region).

When there is no points-to edge corresponding to a dereferenced location
because it is summarized as part of a checker edge, we first materialize points-to
edges by unfolding the checker definition (i.e., conceptually unfolding one-step
of the checker run). We unfold only as needed to expose the points-to edge that
corresponds to the dereferenced location. Unfolding generates one graph per
checker rule, obtained by replacing the checker edge with the points-to edges and
the recursive checker applications specified by the rule; the pure constraints in the
rule are also added to pure state. In case we derive a contradiction (in the pure
constraints), then those unfolded elements are dropped. Though, unfolding may
generate a disjunction of several graphs. A fundamental property of unfolding
is that the join of the concretizations of the resulting graphs is equal to the
concretization of the initial graph.

Example 3 (Unfolding a skip list). We exhibit an unfolding of the skip1 checker
from Example 2. The addition of the pure constraints are shown explicitly.�

�

�

�

P

α
skip1

unfold
−−−−→

�

�

�

�

P ∧ α = null

emp

∨

�

�

�

�

P ∧ α 6= null

α β γ
n

s

skip0(γ) skip1

4.2 History-Guided Folding

We need a strategy to identify sub-graphs that should be folded into complete
or partial checker edges. What kinds of sub-graphs can be summarized without
losing too much precision is highly dependent on the structures in question and
the code being analyzed. To see this, consider the fixed-point graph at program
2 In implementation, we instead include the stack frame in M to enable handling

address of local variable expressions (as in C) in a smooth manner.

392 Bor-Yuh Evan Chang, Xavier Rival, and George C. Necula

point 5 in this skip list example (Fig. 1). One could imagine folding the points-to
edges corresponding to p->n and p->s into one summary region from p to c (i.e.,
eliminating the node labeled γ), but it is necessary to retain the information that
p and c are “separated” by at least one n field. Keeping node γ expresses this
fact. Rather than using a canonicalization operation that looks only at one graph
to identify the sub-graphs that should be summarized, our weakening strategy is
based on the observation that previous iterates at loop join points can be utilized
to guide the folding process. In this subsection, we define the approximation test
and widening operations (standard operations in abstract interpretation-based
static analysis) over graphs as a simultaneous traversal over the input graphs.

Approximation Test. The approximation test on memory states M1 v M2

takes two graphs as input and tries to establish that the concretization of M1

is contained in the concretization of M2 (i.e., M1 ⇒ M2). Static analyses rely
on the approximation test in order to ensure the termination of fixed point
computation. We also utilize it to collapse extraneous disjuncts in the analysis
state and most importantly, as a sub-routine in the widening operation. Roughly
speaking, our approximation test checks that graph M1 is equivalent to graph
M2 up to unfolding of M2 . That is, the basic idea is to determine whether
M1 v M2 by reducing to stronger statements either by matching edges on both
sides or by unfolding M2 . To check this relation, we need a correspondence
between nodes of M1 and nodes of M2 . This correspondence is given by a
mapping Φ from nodes of M2 to those of M1 . The condition that Φ is such a
function ensures any aliasing expressed in M2 is also reflected in M1 . If at any
point, this condition on Φ is violated, then the test fails.

Initialization. The mapping Φ plays an essential role in the algorithm itself since
it gives the points from where we should compare the graphs. It is initialized
using the environment and then extended as the input graphs are traversed. The
natural starting points are the nodes that correspond to the program variables
(i.e., the initial mapping Φ0 = {E2(x) � E1(x) | x ∈ Var}).

Traversal.After initialization, we decide the approximation relation by traversing
the input graphs and attempting to match all edges. To check region disjointness
(i.e., linearity), when edges are matched, they are “consumed”. If the algorithm
gets stuck where not all edges are “consumed”, then the test fails. To describe this
traversal, we define the judgment M1 v M2[Φ] that says, “M1 is approximated
by M2 under Φ .”

In the following, we describe the rules that define M1 v M2[Φ] by following
the example derivation shown in Fig. 2 (from goal to axiom). A complete listing of
the rules is given in the extended version [3] (Appendix A). In Fig. 2, the top line
shows the initial goal with a particular initialization for Φ . Each subsequent line
shows a step in the derivation (i.e., a rewriting step) that is obtained by applying
the rule named on the right. The highlighting of nodes and edges indicates where
the rewriting applies. We are able to prove that the left graph is approximated
by the right graph because we reach emp v emp[Φ] .

First, consider the application of the pointsto rule (line 3 to 4). When both
M1 and M2 have the same kind of edge from matched nodes, the approximation

Shape Analysis with Structural Invariant Checkers 393

1 δ ε
n

s

v α ζ
skip1

[α � δ, ζ � ε]

2 δ ε
n

s

skip1
v α

skip1
[α � δ, ζ � ε]

3 δ ε
n

s

skip1
v α β γ

n

s

skip0(γ) skip1
[α � δ, ζ � ε]

4 δ ε
skip1

v α β γ
skip0(γ) skip1

[α � δ, ζ � ε, β � ε, γ � ε]

5 ε

skip0(γ)

v β γ
skip0(γ)

[α � δ, ζ � ε, β � ε, γ � ε]

6 emp v emp [α � δ, ζ � ε, β � ε, γ � ε]

assume

unfold

pointsto (2x)

checker

unfold

Fig. 2. Testing approximation by reducing to stronger statements

relation obviously holds for those edges, so those edges can be consumed. Any
target nodes are then added to the mapping Φ so that the traversal can continue
from those nodes. In this case, the s and n points-to edges match from the pair
α � δ . With this matching, the mappings β � ε, γ � ε are added. We highlight
in Φ with underlines the mappings that must match for each rule to apply. The
checker rule is the analogous matching rule for complete checker edges. We apply
this edge matching only to points-to edges and complete checker edges. Partial
checker edges are treated separately as described below.

Partial checker edges are handled by taking the separating implication inter-
pretation, which becomes critical here. We use the assume rule (as in the first
step in Fig. 2) to reduce the handling of partial checker edges in M2 to the han-
dling of complete checker edges (i.e., a “−∗ right” in sequent calculus or “−∗
introduction” in natural deduction). It extends the partial checker edge in M2

to a complete checker edge by adding the corresponding completion to M1 . A
key aspect of our algorithm is that this rule only applies when we have matched
both the source and target nodes of the partial checker edge, that is, we have
delineated in M1 the region that corresponds to the partial checker edge in M2 .

Now, consider the first application of unfold in Fig. 2 (line 2 to 3) where we
have a complete checker edge from α on the right, but we do not have an edge
from δ on the left that can be immediately matched with it. In this case, we
unfold the complete checker edge. In general, the unfolding results in a disjunc-
tion of graphs (one for each rule, Sect. 4.1), so the overall approximation check
succeeds if the approximation check succeeds for any one of the unfolded graphs.
Note that on an unfolding, we must also remember the pure constraint P from
the rule, which must be conjoined to the pure state on the right when we check
the approximation relation on the pure constraints. In the second application
of unfold in Fig. 2 (line 5 to 6), the unfolding of β.skip0(γ) is to emp because
we have that β = γ . This equality arises because they are both unified with ε
(specifically, the pointsto steps added β � ε and γ � ε to Φ).

Finally, we also have a rule for partial checkers in M1 (i.e., a corresponding
“left” or “elimination” rule). Since it is not used in the above example, we present
it below schematically:

394 Bor-Yuh Evan Chang, Xavier Rival, and George C. Necula

α1 α′

1

c
f2

f1

c

c v α2

c
[Φ, α2 � α1]

α′

1

f2

f1

c

c v α′

2

c
[Φ, α2 � α1, α′

2
� α′

1
] (α′

2
fresh)

apply

The rule is presented in the same way as in the example (i.e., with the goal on
top). Conceptually, this rule can be viewed as a kind of unfolding rule where
the complete checker edge in M2 is unfolded the necessary number of steps to
match the the partial checker edge in M1 .

Informally, the soundness of the approximation test can be argued from sep-
aration logic principles and from the fact that unfoldings have equivalent con-
cretizations. The approximation test is, however, incomplete (i.e., it may fail to
establish that an approximation relation between two graphs when their con-
cretizations are ordered by subset containment). Rather these rules have been
primarily designed to be effective in the way the approximation test is used by
the widening operation as described in the next subsection where we need to
determine if M1 is an unfolded version of M2 .

Widening. In this subsection, we present an upper bound operation M1OM2

that we use as our widening operator at loop join points. The case of disjunctions
of graphs will be addressed below. At a high-level, the upper bound operation
works in a similar manner as compared to the approximation test. We maintain a
node pairing Ψ that relates the nodes of M1 and M2 . Because we are computing
an upper bound here, the pairing Ψ need not have the same restriction as in the
approximation test; it may be any relation on nodes in M1 and M2 . From this
pairing, we simultaneously traverse the input graphs M1 and M2 consuming
edges. However, for the upper bound operation, we also construct the upper
bound as we consume edges from the input graphs. Intuitively, the basic edge
matching rules will lay down the basic structure of the upper bound and guide
us to the regions of memory that need to be folded.

Initialization. The initialization of Ψ is the analogous to the approximation test
initialization: we pair the nodes that correspond to the values of each variable
from the environments (i.e., the initial pairing Ψ0 = {〈E1(x), E2(x)〉 | x ∈ Var}).

Traversal. To describe the upper bound computation, we define a set of rewriting
rules of the form Ψ # (M1OM2) � M _ Ψ ′ # (M ′

1OM ′
2) � M ′ . Initially, M is

emp , and then we try to rewrite until M ′
1 and M ′

2 are emp in which case M ′

is the upper bound. A node in M corresponds to a pair (from M1 and M2).
Conceptually, we build M with nodes labeled with such pairs and then relabel
each distinct pair with a distinct symbolic value at the end.

Figure 3 shows an example sequence of rewritings to compute an upper
bound. A complete listing of the rewrite rules is given in the extended version [3]
(Appendix B). We elide the pairing Ψ , as it can be read off from the nodes in
the upper bound graph M (the rightmost graph). The highlighting of nodes in
the upper bound graph indicate the node pairings that are required to apply

Shape Analysis with Structural Invariant Checkers 395

previous current upper bound

1

0
α β γ

l, p c
n

s

skip0(γ) skip1
O

0
δ ε ζ η

l p c
n

s

n

s

skip0(η) skip1
�

α,δ α,ε β,ζ

l p c
skip1

m-checker

m-checker

w-aliases

m-pointsto

2

0
α β γ

l, p c
n

s

skip1
O

0
δ ε ζ η

l p c
n

s

n

s

skip1
�

α,δ α,ε β,ζ γ,η

l p c
skip0(γ,η)

3

0
α β γ

l, p c
n

s

O

0
δ ε ζ η

l p c
n

s

n

s

�
α,δ α,ε β,ζ γ,η

l p c
skip0(γ,η) skip1

4

0
α β

l, p c
n

s

O

0
ε ζ

p c
n

s

�
α,δ α,ε β,ζ γ,η

l p c
skip1 skip0(γ,η) skip1

5 emp O emp �

0

α,δ α,ε β,ζ γ,η

l p c
skip1 skip0(γ,η) skip1n

s

Fig. 3. An example of computing an upper bound. The inputs are the graphs
on the first iteration at program points 5 and 9 in the skip list example (Fig. 1).
The fixed-point graph at 5 is obtained by computing the upper bound of this
result and the upper bound of the first-iteration graphs at 5 and 11

the rule, and the highlighting of edges in the input graphs show which edges are
consumed in the rewriting step. Roughly speaking, the upper bound operation
has two kinds of rules: matching rules for when we have the same kind of edge on
both sides (like in the approximation test) and weakening rules where we have
identified a memory region to fold. We use the prefix m- for the matching rules
and w- for the weakening rules.

Line 1 shows the state after initialization: we have nodes in upper bound
graph for the program variables. The first two steps (applying rule m-checker)
match complete checker edges (first from 〈β, ζ〉 and then from 〈γ, η〉). Note that
the second application is enabled by the first where we add the pair 〈γ, η〉 . Extra
parameters are essentially implicit target nodes.

l, p

v
l pskip1

? Yes, always.

l p
n

s

v
l pskip1

? Yes, see Fig. 2.

The core of the upper bound
operation are three weakening
rules where we fold memory re-
gions. The next rule application
w-aliases is such a weakening step
(line 3 to 4). In this case, a node
on one side is paired with two nodes on the other (〈α, δ〉 and 〈α, ε〉). This situ-
ation arises where on one side, we have must-alias information, while the other
side does not (l and p are aliased on the left but not on the right). In this
case, we want to weaken both sides to a partial checker edge. To see that this is
indeed an upper bound for these regions, consider the diagram in the inset. As
shown on the first line, aliases can always be weakened to a partial checker edge
(intuitively, from a zero-step segment to a zero-or-more step segment). On the
second line, we need to check that a skip1 checker edge is indeed weaker than
the region between δ and ε . This check is done using the approximation test
described in the previous subsection. The check we need to perform here is the
example shown in Fig. 2. Observe that we utilize the edge matching rules that

396 Bor-Yuh Evan Chang, Xavier Rival, and George C. Necula

populates Ψ to delineate the region to be folded (e.g., the region between δ and
ε in the right graph). For the w-aliases rule, we do not specify here how the
checker c is determined, but in practice, we can limit the checkers that need to
be tried by, for example, tracking the type of the node (or looking at the fields
used in outgoing points-to edges).

There are two other weakening rules w-partial and w-checker that are not
used in the above example. Rule w-partial applies when we identify that an
(unfolded) memory region on one side corresponds to a partial checker edge on
the other. In this case, we weaken to the partial checker edge if we can show the
partial checker edge is weaker than the memory region. Rule w-partial is shown
below schematically:

M1 ∗ α β
c

O M2 ∗
δ

γ

f2

f1

c

� M ∗ α,γ β,δ

M1 O M2 � M ∗ α,γ β,δ
c

w-partial

if
δ

γ

f2

f1

c

v γ δ
c

[γ � γ, δ � δ]

Observe that we find out that the region in the right graph must be folded
because the corresponding region in the left graph is folded (and also indicates
which checker to use). Rule w-checker is the analogous rule for a complete checker
edge.

In Fig. 3, the last step is simply matching points-to edges. When we reach
emp for M1 and M2 , then M is the upper bound. In general, if, in the end,
there are regions we cannot match or weaken in the input graphs, we can obtain
an upper bound by weakening those regions to > in the resulting graph (i.e., a
summary region that cannot be unfolded). This results in an enormous loss in
precision that we would like avoid but can be done if necessary.

M ′
1 ⇒ M M ′

2 ⇒ M

(M1 ∗ M ′
1) ∨ (M2 ∗ M ′

2) ⇒ (M1 ∨M2) ∗ M

Soundness. The basic idea is that
we compute an upper bound by
rewriting based on the derived
rule of inference in separation logic shown in the inset. For each memory region
in the input graphs, either they have the same structure in the input graphs
and we preserve that structure or we weaken to a checker edge only when we
can decide the weakening with v . That is, during the traversal, we simply al-
ternate between weakening memory regions in each input graph to make them
match and applying the distributivity of separating conjunction over disjunction
to factor out matching regions.

Termination. We shall use this upper bound operation as our widening oper-
ator, so we check that it has the stabilizing property (i.e., successive iterates
eventually stabilize) to ensure termination of the analysis. Consider an infinite
ascending chain M0 v M1 v M2 v · · · and the corresponding widening chain
M0 v (M0OM1) v ((M0OM1)OM2) v · · · (i.e., the sequence of iterates). The
widening chain stabilizes because the successive iterates are bounded by the size

Shape Analysis with Structural Invariant Checkers 397

of M0 . Over the sequence of iterates, the only rule that may produce additional
edges not present in M0 is w-aliases , but its applicability is limited by the num-
ber of nodes. Then, nodes are created in the result only in two cases: the target
node when matching points-to edges (m-pointsto) and any additional parameter
nodes when matching complete checker edges (m-checker). Points-to and com-
plete checker edges are only created in the resulting graph because of matching,
so the number of nodes is limited by the points-to and complete checker edges
in M0 .

Disjunctions of graphs. In general, we consider widening disjunctions of graphs.
The widening operator for disjunctions is based on the operator for graphs and
attempts to find pairs that can be widened precisely in the sense that no region
need be weakened to > (i.e., because an input region could not be matched). In
addition to this selective widening process, the widening may leave additional
disjuncts, up to some fixed limit (perhaps based on trace partitioning [11]).

4.3 Extensions and Limitations

The kinds of structures that can be described with our checkers are essentially
trees with regular sharing patterns, which include skip lists, circular lists, doubly-
linked lists, and trees with parent pointers. Intuitively, these are structures where
one can write a recursive traversal that dereferences each field once (plus pointer
equality and disequality constraints). However, the effectiveness of our shape
analysis is not the same for all code using these structures. First, we materialize
only when needed by unfolding inductive definitions, which means that code that
traverse structures in a different direction than the checker are more difficult to
analyze. This issue may be addressed by considering additional materialization
strategies. Second, in our presentation, we consider partial checker edges with one
hole (i.e., a separating implication with one premise). This formulation handles
code that use cursors along a path through the structure but not code that uses
multiple cursors along different branches of a structure.

5 Experimental Evaluation

Code Analysis Max. Max.
Size Time Graphs Iter.

Benchmark (loc) (sec) (num) (num)

list reverse 19 0.007 1 3
list remove element 27 0.016 4 6
list insertion sort 56 0.021 4 7
binary search tree find 23 0.010 2 4
skip list rebalance 33 0.087 6 7

scull driver 894 9.710 4 16

We evaluate our shape
analysis using a pro-
totype implementation
for analyzing C code.
Our analysis is writ-
ten in OCaml and
uses the CIL infras-
tructure [14]. We have
applied our analysis
to a number of small
data structure manip-
ulation benchmarks and a larger Linux device driver benchmark (scull). In the
table, we show the size in pre-processed lines of code, the analysis times on a

398 Bor-Yuh Evan Chang, Xavier Rival, and George C. Necula

2.16GHz Intel Core Duo with 2GB RAM, the maximum number of graphs (i.e.,
number of disjuncts) at any program point, and the maximum number iterations
at any program point. In each case, we verified that the data structure manipula-
tions preserved the structural invariants given by the checkers. Because we only
fold into checkers based only on history information, we typically cannot gen-
erate the appropriate checker edge when a structure is being constructed. This
issue could be resolved by using constructor functions with appropriate post-
conditions or perhaps a one graph operation that can identify potential foldings.
For these experiments, we use a few annotations that add a checker edge that
say, for example, treat this null as the empty list (1 each in list insertion sort
and skip list rebalance).

The scull driver is from the Linux 2.4 kernel and was used by McPeak and
Necula [12]. The main data structure used by the driver is an array of doubly-
linked lists. Because we also do not yet have support for arrays, we rewrote the
array operations as linked-list operations (and ignored other char arrays). We
analyzed each function individually by providing appropriate pre-conditions and
inlining all calls, as our implementation does not yet support proper interpro-
cedural analysis. One function (cleanup module) was not completely analyzed
because of an incomplete handling of the array issues; it is not included in the
line count. We also had 6 annotations for adding checker edges in this example.
In all the test cases (including the driver example), the number of graphs we
need to maintain at any program point (i.e., the number of disjuncts) seems to
stay reasonably low.

6 Related Work

Shape analysis has long been an active area of research with numerous algo-
rithms proposed and systems developed. Our analysis is closest to some more
recent work on separation logic-based shape analyses by Distefano et al. [6] and
Magill et al. [9]. The primary difference is that a list segment abstraction is built
into their analyses, while our analysis is parameterized by inductive checker def-
initions. To ensure termination of the analysis, they use a canonicalization op-
eration on list segments (an operation from a memory state to a memory state),
while we use a history-guided approach to identify where to fold (an operation
from two memory states to one). Note that these approaches are not incompat-
ible with each other, and they have different trade-offs. The additional history
information allowed us to develop a generic weakening strategy, but because
we are history-dependent, we cannot weaken whenever (e.g., we cannot weaken
aggressively after each update). Recently, Berdine et al. [2] have developed a
shape analysis over generalized doubly-linked lists. They use a higher-order list
segment predicate that is parameterized by the shape of the “node”, which es-
sentially adds a level of polymorphism to express, for example, a linked list of
cyclic doubly-linked lists. We can instead describe custom structures monomor-
phically with the appropriate checkers, but an extension for polymorphism could
be very useful.

Shape Analysis with Structural Invariant Checkers 399

Lee et al. [8] propose a shape analysis where memory regions are summa-
rized using grammar-based descriptions that correspond to inductively-defined
predicates in separation logic (like our checkers). A nice aspect of their anal-
ysis is that these descriptions are derived from the construction of the data
structure (for a certain class of tree-like structures). For weakening, they use a
canonicalization operation to fold memory regions into grammar-based descrip-
tions (non-terminals), but to ensure termination of the analysis, they must fix in
advance a bound on the number of nodes that can be in a canonicalized graph.

TVLA [18] is a very powerful and generic system based on three-valued logic
and is probably the most widely applied tool for verifying deep properties of com-
plex heap manipulations. The framework is parametric in that users can provide
specifications (instrumentation predicates) that affect the kinds of structures
tracked by the tool. Our analysis is instead parameterized by inductive checker
definitions, but since we focus on structural properties, we do not handle any
data invariants. Much recent work has been targeted at improving the scalabil-
ity of TVLA. Manevich et al. [10] describe a strategy to merge memory states
whose canonicalizations are “similar” (i.e., have isomorphic sets of individuals).
Our folding strategy can be seen as being particularly effective when the mem-
ory states are “similar”; like them, we would like to use disjunction when the
strategy is ineffective. Arnold [1] identifies an instance where a more aggressive
summarization loses little precision (by allowing summary nodes to represent
zero-or-more concrete nodes instead of one-or-more). Our abstraction is related
in that our checker edges denote zero-or-more steps.

Hackett and Rugina [7] present a novel shape analysis that first partitions
the heap using region inference and then tracks updates on representative heap
cells independently. While their abstraction cannot track certain global prop-
erties like the aforementioned shape analyses, they make this trade-off to ob-
tain a very scalable shape analysis that can handle singly-linked lists. Recently,
Cherem and Rugina [4] have extended this analysis to handle doubly-linked lists
by including the tracking of neighbor cells. McPeak and Necula [12] identify a
class of axioms that can describe many common data structure invariants and
give a complete decision procedure for this class. Their technique is based on
verification-condition generation and thus requires loop invariant annotations.
PALE [13] is a similar system also based on verification-condition generation
but instead uses monadic second-order logic. Weis et al. [19] have extended
PALE with non-deterministic field constraints (and some loop invariant infer-
ence), which enables some reasoning of skip list structures.

Perry et al. [15] have also observed inductive definitions in a substructural
logic could be an effective specification mechanism. They describe shape invari-
ants for dynamic analysis with linear logic (in the form of logic programs).

7 Conclusion

We have described a lightweight shape analysis based on user-supplied structural
invariant checkers. These checkers, in essence, provide the analysis with user-
specified memory abstractions. Because checkers are only unfolded when the

400 Bor-Yuh Evan Chang, Xavier Rival, and George C. Necula

regions they summarize are manipulated, these specifications allow the user to
focus the efforts of the analysis by enabling it to expose disjunctive memory
states only when needed. The key mechanisms we utilize to develop such a shape
analysis is a generalization of checker-based summaries with partial checker runs
and a folding strategy based on guidance from previous iterates. In this paper,
we have focused on using structural checkers to analyze algorithms that traverse
the structures unidirectionally. We believe such ideas could be applicable more
broadly (both in terms of utilizable checkers and algorithms analyzed).

Acknowledgments. We would like to thank Hongseok Yang, Bill McCloskey,
Gilad Arnold, Matt Harren, and the anonymous referees for providing helpful
comments on drafts of this paper.

References

1. Gilad Arnold. Specialized 3-valued logic shape analysis using structure-based re-
finement and loose embedding. In Static Analysis Symposium (SAS), pages 204–
220, 2006.

2. Josh Berdine, Cristiano Calcagno, Byron Cook, Dino Distefano, Peter W. O’Hearn,
Thomas Wies, and Hongseok Yang. Shape analysis for composite data structures.
In Conference on Computer-Aided Verification (CAV), 2007.

3. Bor-Yuh Evan Chang, Xavier Rival, and George C. Necula. Shape analysis with
structural invariant checkers. Technical Report UCB/EECS-2007-80, University of
California, Berkeley, 2007.

4. Sigmund Cherem and Radu Rugina. Maintaining doubly-linked list invariants in
shape analysis with local reasoning. In Conference on Verification, Model Checking,
and Abstract Interpretation (VMCAI), 2007.

5. Patrick Cousot and Radhia Cousot. Abstract interpretation: A unified lattice
model for static analysis of programs by construction or approximation of fixpoints.
In Symposium on Principles of Programming Languages (POPL), pages 238–252,
1977.

6. Dino Distefano, Peter W. O’Hearn, and Hongseok Yang. A local shape analysis
based on separation logic. In Conference on Tools and Algorithms for the Con-
struction and Analysis of Systems (TACAS), pages 287–302, 2006.

7. Brian Hackett and Radu Rugina. Region-based shape analysis with tracked lo-
cations. In Symposium on Principles of Programming Languages (POPL), pages
310–323, 2005.

8. Oukseh Lee, Hongseok Yang, and Kwangkeun Yi. Automatic verification of pointer
programs using grammar-based shape analysis. In European Symposium on Pro-
gramming (ESOP), pages 124–140, 2005.

9. Stephen Magill, Aleksandar Nanevski, Edmund Clarke, and Peter Lee. Inferring
invariants in separation logic for imperative list-processing programs. In Work-
shop on Semantics, Program Analysis, and Computing Environments for Memory
Management (SPACE), 2006.

10. Roman Manevich, Shmuel Sagiv, Ganesan Ramalingam, and John Field. Partially
disjunctive heap abstraction. In Static Analysis Symposium (SAS), pages 265–279,
2004.

11. Laurent Mauborgne and Xavier Rival. Trace partitioning in abstract interpretation
based static analyzers. In European Symposium on Programming (ESOP), pages
5–20, 2005.

Shape Analysis with Structural Invariant Checkers 401

12. Scott McPeak and George C. Necula. Data structure specifications via local equal-
ity axioms. In Conference on Computer-Aided Verification (CAV), pages 476–490,
2005.

13. Anders Møller and Michael I. Schwartzbach. The pointer assertion logic engine. In
Conference on Programming Language Design and Implementation (PLDI), pages
221–231, 2001.

14. George C. Necula, Scott McPeak, Shree Prakash Rahul, and Westley Weimer. CIL:
Intermediate language and tools for analysis and transformation of C programs.
In Conference on Compiler Construction (CC), pages 213–228, 2002.

15. Frances Perry, Limin Jia, and David Walker. Expressing heap-shape contracts in
linear logic. In Conference on Generative Programming and Component Engineer-
ing (GPCE), pages 101–110, 2006.

16. William Pugh. Skip lists: A probabilistic alternative to balanced trees. Commun.
ACM, 33(6):668–676, 1990.

17. John C. Reynolds. Separation logic: A logic for shared mutable data structures.
In Symposium on Logic in Computer Science (LICS), pages 55–74, 2002.

18. Shmuel Sagiv, Thomas W. Reps, and Reinhard Wilhelm. Parametric shape analysis
via 3-valued logic. ACM Trans. Program. Lang. Syst., 24(3):217–298, 2002.

19. Thomas Wies, Viktor Kuncak, Patrick Lam, Andreas Podelski, and Martin C.
Rinard. Field constraint analysis. In Conference on Verification, Model Checking,
and Abstract Interpretation (VMCAI), pages 157–173, 2006.

	Introduction
	Overview
	Memory Abstraction
	Analysis Algorithm
	Abstract Transition and Checker Unfolding
	History-Guided Folding
	Extensions and Limitations

	Experimental Evaluation
	Related Work
	Conclusion

