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Abstract
Interprocedural program analysis is often performed by computing
procedure summaries. While possible, computing adequate sum-
maries is difficult, particularly in the presence of recursive proce-
dures. In this paper, we propose a complementary framework for
interprocedural analysis based on a direct abstraction of the calling
context. Specifically, our approach exploits the inductive structure
of a calling context by treating it directly as a stack of activation
records. We then build an abstraction based on separation logic
with inductive definitions. A key element of this abstract domain
is the use of parameters to refine the meaning of such call stack
summaries and thus express relations across activation records and
with the heap. In essence, we define an abstract interpretation-based
analysis framework for recursive programs that permits a fluid per
call site abstraction of the call stack—much like how shape analyz-
ers enable a fluid per program point abstraction of the heap.

Categories and Subject Descriptors D.2.4 [Software Engineer-
ing]: Software/Program Verification; F.3.1 [Logics and Meanings
of Programs]: Specifying and Verifying and Reasoning about Pro-
grams; F.3.2 [Logics and Meanings of Programs]: Semantics of
Programming Languages—Program analysis

General Terms Languages, Verification

Keywords interprocedural analysis, context-sensitivity, calling
context, shape analysis, inductive definitions, separation logic,
symbolic abstract domain

1. Introduction
It seems there are few things, if any, more fundamental in program-
ming than procedural abstraction. Hence, without qualification, in-
terprocedural analysis is simply something that static program an-
alyzers need to do well. Yet, precise interprocedural static analysis
in presence of recursion is difficult—analyzers need to simultane-
ously abstract unbounded executions, unbounded calling context,
and unbounded heap structures.

Broadly speaking, there are two main approaches to interpro-
cedural analysis with different strengths and weaknesses. The first
approach is to compute procedure summaries (e.g., [4, 16, 20]).
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These summaries are then used to modularly interpret function calls
(i.e., derivatives of the functional approach [28]). This approach is
exceedingly common, as modularity is important, if not a prerequi-
site, for scalability. Unfortunately, computing effective summaries
is not easy for all families of properties. Intuitively, it is more com-
plex to abstract relations between pairs of states than to abstract
sets of states. The former is the essence of what needs to be done
to compute procedure summaries, while the latter is what is more
typical in program analysis.

The second approach is to perform whole program analysis that,
at least conceptually, completely ignores procedural abstraction by
inlining function calls. Therefore, the analysis only needs to ab-
stract sets of states (instead of relations on pairs of states). While
this kind of analysis yields context-sensitivity without the complex-
ities of deriving procedure summaries, it is clear that the exponen-
tial blow-up makes scaling significantly more difficult. This blow-
up then exerts negative pressure on the choice in precision of the
state abstraction.

Certainly, these approaches are not entirely disjoint and over-
lap to some extent. However, in both situations, the typical result
is a rather coarse abstraction of calling contexts. In the modular
analysis situation, procedure summaries capture precisely what is
touched by the function in question but assume the context to be
arbitrary. For whole program analysis, the values of locals in the
call stack above the current call are typically completely abstract.
Coarse calling context abstraction makes it difficult to tackle, for
example, recursive procedures where there are critical relations be-
tween successive activation records.

In this paper, we propose abstracting calling contexts precisely
by directly modeling the call stack of activation records, that is, we
explicitly push the call stack into the state on which we abstract. To
do so, we exploit the fact that the call stack has a regular, inductive
structure so that shape analysis techniques apply. Under the hood,
we use separation logic formulas [21] with inductive definitions
in order to elaborate precise and concise stack descriptions. We
formalize our call stack abstraction inside the XISA shape analysis
framework [5, 6], as we leverage this abstract domain, which is
parametrized by inductive definitions.

While uncommon in practice, there has been prior work on di-
rectly abstracting the call stack [22] in the TVLA framework [27].
This approach requires careful choice of a set of predicates for the
modeling of stack summaries. Instead, leveraging the natural in-
ductive structure of the call stack and a framework built around
inductive definitions, we seek to lower the configuration effort. In
particular, we show that the inductive definitions for the summa-
rization of the call stack can be derived automatically.

Overall, our motivation is to define global program analyses for
programs with recursive functions that make use of a precise char-
acterization of the calling context (including the status of the pend-
ing call returns). While we apply a shape domain to the abstraction
of the call stack, our focus is not shape analysis per-se. Certainly,
heap shapes continue to fit naturally into the framework, but there is
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void main() {
dll* l; . . .
// l is a list (maybe not doubly-linked)
l = fix(l, NULL);

}

dll* fix(dll* c, dll* p) {
dll* ret;
if (c != NULL) {
c->prev = p;

I c->next = fix(c->next, c);
if (check(c->data)) {
ret = c->next; remove(c);

B }
else { ret = c; }

}
else { ret = NULL; }
return ret;

}

void remove(dll* n) {
if (n->prev != NULL)
n->prev->next = n->next;

if (n->next != NULL)
n->next->prev = n->prev;

free(n);
}

(a) The recursive function fix.
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(b) After two recursive calls to fix and just
about to make another recursive call at I.
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(c) Before return from the second recursive call to
fix at B.

Figure 1. An explanatory recursive program shown with diagrams depicting both the call stack and the heap at two points in its execution.

independent interest for numerical domains. In particular, the pro-
cedure summary approach has not been adapted to large classes of
numerical domains, so the technique proposed in this paper takes
steps towards a “plug-in” or product domain-style extension of base
domains to precise interprocedural analysis.

If heap shapes are of interest, we assume our abstract domain
has been instantiated with the appropriate inductive definitions
describing them (e.g., they come from the user in the form of
an inductive checker [6] corresponding to structural consistency
checking code). That is, while we automatically derive a program-
specific inductive definition to summarize call stacks, we do not try
to infer inductive definitions for recursive heap structures. From a
technical point of view, we exploit the fact that the call stack has
a fixed recursive backbone—in contrast to user-defined recursive
structures in the heap, which do not have a set shape. From a
usability perspective, the stack of activations records is a low-level
implementation mechanism for procedural abstraction and thus
such inductive definitions would be problematic to expect from the
user—in contrast to heap shapes, which are programmer-designed.

Finally, we clarify that we do not necessarily advocate a precise
call stack abstraction in all situations. Rather our technique fills a
gap in the analysis of programs with recursive procedures. In this
paper, we make the following contributions:

• We define an abstract domain that models the call stack directly
in an exact manner (Section 3) and with summarization (Sec-
tion 4). The novel aspect of our approach is to leverage the in-
ductive structure of the call stack by using a parametric shape
domain based on separation logic and inductive definitions.
• We give an algorithm for automatically deriving inductive cases

for call stack summarization (Section 5). That is, the inductive
definition stack used to summarize the call stack is defined on
the fly in a program-specific manner.
• We describe an analysis for programs with recursive procedures

using this call stack abstraction (Section 6).

• We provide evidence through a case study that our call stack ab-
straction can be used to overcome precision issues in the mod-
ular approach (Section 7). That is, a less precise base domain
with the call stack abstraction is sufficient for certain examples
where a more precise one is needed with the modular approach.

2. Overview
In this section, we illustrate the main challenges in designing a
precise abstraction of the calling context by following an example
execution of the recursive function fix shown in Figure 1(a). Then,
through this discussion, we preview our abstraction technique.

Consider the recursive function fix shown in Figure 1(a). This
function takes as input a pointer c to a dll structure. A dll structure
has three fields, next, prev, and data used to represent a doubly-
linked list of integers. The function fix does two things: (1) it
takes as input a singly-linked list (i.e., the prev links are unused or
potentially invalid) and sets the prev field of each node to create a
valid doubly-linked list; and (2) it implements a filtering operation
where all nodes whose data field satisfies the check function are
removed. It implements this functionality by a recursive walk using
the c pointer. On each call, the p pointer points to the previous node
where c->prev should be set. In particular, during the downward
sequence of recursive calls, it updates c->prev to set up the doubly-
linked list invariant. Then, on the upward sequence of returns, it
removes all nodes whose data field satisfies check. To simplify
our presentation, function fix also uses a local variable ret so
that there is only one return site.

It is certainly possible to perform the filtering along the down-
ward path of calls instead of upward path of returns, which in fact
would likely make analysis easier. However, in this case, the de-
veloper has chosen to do the removal along the upward sequence,
perhaps because she wants to call the library function remove. The
remove function expects a doubly-linked list node, but the doubly-
linked list invariant is not established until the downward sequence
is complete. While this example is synthetic, it exemplifies in a
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small fragment many of the key challenges in analyzing recursive
imperative programs: (1) state changes on both the downward call
path and upward return path, (2) incomplete or temporary breakage
of data structure invariants along the recursive call-return paths, and
(3) interactions with heap state conceptually “belonging” to callers.

To illustrate the analysis challenges, let us consider the concrete
program state at two points in an example execution. Figure 1(b)
shows the concrete state right after two recursive calls to fix (i.e.,
main has called fix, which has called itself twice and is at the
program point marked withI). To fix a convention, we say that the
first call to fix from main is not recursive. Figure 1(c) depicts the
concrete state just before the return of this same call and where the
current node (pointed to by c) has just been removed (shown grayed
out). In other words, check(11) evaluated to true and the state is
at the program point marked with B. We can also see that between
these two states, there have been two call-returns for the last two
nodes in the list (where their prev fields have been set appropriately
but neither node was removed). In addition to the list allocated in
the heap shown in the right part of Figures 1(b) and 1(c), we show
the call stack in the left part. In our picture, the call stack consists of
sequence of activation records where each field is a local variable
(e.g., p, c, and ret for activation records of fix).

Our approach to interprocedural analysis is essentially to ab-
stract the notion of state depicted in Figures 1(b) and 1(c). Tradi-
tional shape analysis focuses on precise summarization of the heap,
that is, the right part in the concrete state diagrams, while the call
stack is elided or coarsely abstracted. In this paper, we define a
precise abstraction of the call stack—the left part in the diagrams.

To gradually build up to our technique, let us consider an intu-
itive abstraction of the state shown in Figure 1(b) with only heap
summarization:

main · l

fix::main · c

fix::fix::main · p

fix::fix::main · c

fix::fix::fix::main · p

fix::fix::fix::main · c

next

prev

next

prev

next sll

Here, the nodes represent heap addresses, the thin edges denote
fields of a dll node (i.e., the edges labeled with next and prev), and
the thick edge labeled sll represents a singly-linked list of dll nodes
of undetermined length. The next and prev edges correspond to
those fields of the first three nodes of the input list l; the data fields
have been elided, as well as the prev field of the first node. The
call stack is, in a sense, elided by fully qualifying variables with
a call string (essentially, converting local variables into globals).
For instance, the l variable of main’s activation record, c of the
activation record for the first call to fix, and p of the activation
record for the second call to fix all point to the first node.

Our first observation is that this kind of exact modeling of
the call stack fits nicely in the separation logic-based abstraction
shown above (depicted as a separating shape graph [18]) if we
make the following simple extensions: (1) introduce a node for the
base address of each activation record, (2) view local variables as
fields of an activation record, and (3) link the activation records in
a call stack together with a (conceptual) frame pointer field. Note
that this representation does abstract low-level details, much like
the diagram in Figure 1(b) (e.g., we do not capture contiguousness
of activation records or low-level fields like the return address of
each activation). This abstraction with heap summaries but an exact
stack is formalized in Section 3.

At this point, we have an abstraction suitable for interprocedu-
ral analysis on non-recursive programs (but capable of precise rea-
soning with recursive data structures). However, for precise static
analysis in the presence of recursive procedures as we propose, it
is clear that we need to summarize the call stack to prevent our

representation from growing unbounded. In particular, we need to
abstract the concrete states both along the downward sequence of
recursive calls and the upward sequence of returns. In our example,
during the downward recursive call sequence, the structure of the
activation records is actually quite regular: (1) the local variable
p contains the same pointer value as c->prev in each activation
record (even in the initial call where it is NULL), and (2) the next
and prev fields of the already visited nodes (i.e., directly pointed
to by the c variables in the call stack) define a valid doubly-linked
list segment. It is not entirely a doubly-linked list, as c->next in
the most recent activation record is not NULL. While the upward
return sequence mostly preserves this pattern, there are wrinkles.
In particular, in this case where a node is removed from the list,
the next field of the previous element has been updated. In other
words, the next field of the c of the second most recent activation
record has been updated (i.e., fix::fix::main · c is updated when
fix::fix::fix::main is still active).

Therefore, a suitable call stack abstraction must be able to
precisely capture the following properties:

1. We must be able to track the fragments of the structure where
the prev fields have been fixed. This property is needed so that
we know that we obtain the doubly-linked list in the end. We
also need this property to validate the call to remove (e.g., the
prev field of the node to be removed is not dangling).

2. We must be able to track relations between the fields of each
activation record and heap structures. In particular, we need to
propagate invariants during the upward return sequence.

These properties can be expressed using an inductive statement
since the structure of the call stack is itself inductive. Successive ac-
tivation records must be disjoint regions of memory separate from
each other and the heap. Thus, our second key observation is that a
shape domain built on separation logic formulas with inductive def-
initions, such as the one described in our prior work [5, 6], seems
well-suited not only for abstracting recursive heap structures pre-
cisely but also for abstracting call stacks crisply. In other words, a
novel aspect of our approach is that we propose to use separation
logic formulas to describe not only heap data structures but also the
concrete call stack of activation records. Observe that the concrete
states shown in Figures 1(b) and 1(c) are lower level than descrip-
tions in many language semantics and most analyses.

While a shape domain based on inductive definitions seems ade-
quate for abstracting the call stack, it is, informally speaking, neces-
sary as well. Recall that in our example, the upward sequence of re-
turns mostly preserves the pattern along the downward sequence of
calls but not entirely. This observation indicates that the call stack
abstraction must be fluid in the sense that there is a need for vari-
ation, for example, along the downward call sequence versus the
upward return sequence. A similar kind of fluidity is obtained in
shape analysis for heap abstraction with materialization [26, 27].
We observe that the classical summarization and materialization
operations in shape analysis is exactly what we need at function
call and function return to obtain this fluidity:

• At a function call site, the call stack grows by one activation
record. We summarize (i.e., fold) the rest of call stack (exclud-
ing the new active activation record). In shape analysis, folding
is done through either widening [6] or canonicalization [10, 27]
operations. Folding allows us to continue the analysis with a
bounded (and precise) description of the call stack. Moreover,
the ability to create partial summaries is critical for addressing
challenge 1 above.
• At a function return site, the compact description of the inac-

tive activation records (i.e., the call stack excluding the most
recent activation record) should be materialized to expose the
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activation record of the caller. In shape analysis, materializa-
tion corresponds to unfolding [6, 10] or focus [27] operations.
Materialization is essential for addressing challenge 2 above.

Therefore, the fundamental concepts in shape analysis provide the
essential ingredients for the precise call stack abstraction that we
desire. In Section 4, we describe our combined stack-heap state
abstraction that makes use of an inductive predicate stack to pre-
cisely summarize recursive call stacks; the stack predicate is more
complex than inductive predicates describing typical recursive data
structures.

In general, shape domains require some level of parametrization
to describe the structures or summaries of interest. For example,
TVLA [27] uses instrumentation predicates, while separation logic-
based analyzes rely on inductive definitions (either supplied by the
analysis designer [2, 10] or the analysis user [6]). While asking the
user to provide descriptions of user-defined structures seems quite
natural, asking the user to describe the call stack does not. The call
stack is not even a structure to which the user has direct access in
any high-level language. However, at the same time, the inductive
backbone (i.e., a stack structure) is fixed here. In Section 5, we
describe a subtraction algorithm to automatically derive program-
specific definitions of the stack predicate. Because the backbone
is fixed, the challenge is in inferring the “node type” of activation
records. This task is similar in spirit to Berdine et al. [2] in inferring
the “node type” for a polymorphic doubly-linked list predicate.

3. Exact Call Stack Abstraction
Before we describe our approach for summarizing call contexts
(see Section 4), we first formalize an exact abstraction of call stacks
based on separation logic formulas.

Concrete Machine States. To begin, we describe the concrete
machine states on which we abstract (see Figure 2(a)). A concrete
state describes the status of a program at some point of its execu-
tion. An environment θ describes the set of program variables along
with their machine addresses defined at a point in the execution of
a program. It includes the global variables and the variables defined
in each activation record in the call stack. The environment is given
by the grammar in Figure 2(a): an environment encloses a stack of
pairs made of a function name and a local variable to address bind-
ing before ending with a global variable binding. We write x for a
generic variable drawn from X and use l and g to refer to local and
global variable names, respectively. For any environment θ, we de-
fine a few functions to simplify our presentation. Let callString(θ)
denote the call string defined by θ (i.e., pn:: · · · ::p1::p0). Similarly,
let vars(θ) be the set of variables of environment θ. Finally, let
addrOf(θ) : vars(θ)→ V be the function that gives the address of
any variable in the environment. These functions can be defined by
induction over the environment.

A program state s is a tuple made of an environment θ and a
memory state σ. A memory state is a finite mapping from addresses
to values (where the set of addresses is included in the set of
values). Addresses that do not correspond to the address of any
variable are heap locations, whereas addresses that correspond to
the address of a variable defined in an activation record are stack
locations.

3.1 Abstraction
The core of the abstraction is a spatial formula in separation logic
describing the shape of memory. Spatial formulas can be seen
equivalently as graphs [18]: (1) nodes, which are given symbolic
names (e.g., α), abstract sets of values and (2) edges describe mem-
ory cells subject to certain constraints, such as “cell of address α
contains value β” (i.e., α 7→ β). A graph G is the separating con-
junction ∗ [21] of the memory regions represented by each of its

s ::= 〈θ, σ〉 program states (∈ S)

θ ∈ E environments
θ ::= X global variables

| (p,X) :: θ new activation record

σ ∈ M = V⇀fin V memories

X ::= · | X,x 7� a variable to address bindings
x, l, g ∈ X program variables
p ∈ P procedure names
a ∈ V values including addresses

(a) The concrete state.

G ::= α 7→ β points-to edge
| α · f 7→ β points-to edge of a field
| α · c(. . .) inductive edge
| α · c(. . .) ∗= α′ · c′(. . .) segment edge
| emp | G1 ∗ G2 graphs

N ∈ D
]
num numerical constraints in a base domain

A ::= (G,N) analysis state (i.e., abstract program state)

α, β, . . . , ᾱ, g, . . . ∈ V
] symbolic names (i.e., nodes)

f, g, . . . , fp, l, . . . ∈ F field names (i.e., offsets)
(b) The abstract state.

Figure 2. Defining the concrete machine and abstract analysis
states.

edges as shown in Figure 2(b); the empty graph is written emp. A
points-to edge α 7→ β describes a memory cell with abstract ad-
dress α and contains the value abstracted by β. If we qualify the
left-hand side of points-to with a field as in α · f 7→ β, we rep-
resent a memory cell whose address is α plus the offset of field f
and whose content is β. We assume offsets are symbolic fields and
thus use a relatively high-level Java-like model; a lower-level mem-
ory model could be mixed in without much difficulty by following
our prior work [18]. An inductive edge α · c(. . .) is an instance of
inductive predicate c (with a distinguished traversal parameter α),
while a segment edge α · c(. . .) ∗= α′ · c′(. . .) is a partial deriva-
tion of an inductive predicate c. These edges summarize some set
of memory cells as described by an inductive predicate allowing
us to represent a potentially unbounded memory; Section 3.2 dis-
cusses these notions in greater depth. Concrete program states are
then abstracted by an analysis stateA consisting of a graphG and a
numerical constraint N . A numerical constraint describes relations
amongst symbolic names α and is drawn from some base domain
D
]
num, that is, the abstract domain described is parametrized by a

standard sort of numerical domain. If we instantiate this abstraction
with inductive definitions describing recursive heap data structures
supplied by the user, we essentially obtain the shape domains in our
prior work [5, 6].

To abstract the call stack in a concrete state s = 〈θ, σ〉, we
observe that the environment θ plays a significant role here. At the
abstract level, we build it directly into the graph as follows:

• The address of each global is represented by a node. Thus, the
set of global variable names are included in the set of symbolic
names V].
• We introduce a node to represent the base address of each

activation record. For the sake of clarity, we distinguish nodes
representing activation record addresses by using a bar over the
symbolic names as in ᾱ and by drawing them with a bold,
dotted border in diagrams. We also annotate them with the
function to which they correspond (i.e., indicating the “type”
of the activation record).
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• Each local variable can be viewed as a field of its activation
record. The set of field names F therefore includes local vari-
able names. This representation is key in allowing locals to be
summarized as part of the call stack (see Section 4).
• Lastly, we make explicit a frame pointer fp, which is simply a

field of all activation records. Like in the physical memory at
run time, the frame pointer fp points to the previous activation
record in the call stack. To distinguish them clearly in the
diagrams, frame pointer edges are drawn as dotted lines (and
usually the fp label is omitted).

Thus, with the above observations, we encode the structure of the
call stack in our shape domain in a faithful manner essentially as-is
and without any significant modifications.

ᾱ

ᾱ0

ᾱ1

ᾱ2

main

fix

fix

fix

fp

fp

fp

null

β0

β1

β2

β3

l

p

c

p

c

p

c

prev

next
prev

next
prev

next

sll

stack heap
As an example, an abstraction

of the concrete state from Fig-
ure 1(b) is shown inset. The ᾱ
nodes represent the base address
of the activation records, and
their outgoing points-to edges
correspond to the call stack. Ob-
serve that the horizontal edges
between the ᾱ nodes and the
β nodes are the stack cells for
local variables. Meanwhile, the
fp links connect the ᾱ nodes to
capture the actual stack struc-
ture. The heap is represented by
the edges in the rightmost col-
umn: the vertical edges are the
next and prev fields for the first
three nodes and β3 · sll() summa-
rizes an arbitrary singly-linked
list. Note that this portion of the graph is the only part of the mem-
ory state that is captured by traditional shape analyses. We have
elided a few edges from this figure, specifically the ret variable
edges in the stack and the data fields in the heap.

Concretization. Like for concrete states, we define functions that
compute the call string callString(G) and the set of variables it
defines vars(G) given a graph G. These functions follow the chain
of frame pointers to compute the desired result. We also define a
function

addrOf](G) : vars(G)→ V
] × F

that maps each variable to the points-to edge representing its cell
(i.e., an abstract address-of mapping).

D
]
graph graph domain

D
]
num numerical domain

D
] = D

]
graph × D

]
num shape domain

To define the
concretization of
a graph, we need
a mapping be-
tween symbolic
names and con-
crete values. Such mappings ν : V] → V are called valuations [5]
and allow us to abstract irrelevant details like concrete physical
addresses. We first summarize the types of the concretizations (the
names of the various domains are given in the inset):

γgraph : D
]
graph → P(M× (V] → V))

γnum : D
]
num → P(V] → V)

γ : D
] → P(E× M) .

The concretization of a graph G yields a set of pairs consisting
of a concrete memory σ and a valuation ν, while concretizing
a numerical domain element N should give a set of valuations.
Together, the concretization of the combined domain produces a
set of pairs of a concrete environment θ and a concrete memory σ.

To concretize a graph, we take the concretization of each edge:

γgraph(emp)
def
= { ([·], ν) | ν ∈ (V] → V) }

γgraph(G1 ∗ G2)
def
= { (σ1 ⊗ σ2, ν) | (σ1, ν) ∈ γgraph(G1)

and (σ2, ν) ∈ γgraph(G2) } .
We write ⊗ for the separating conjunction of concrete memories
(i.e., the union of two memory maps with disjoint domains) and
[·] for an empty concrete memory. The frame pointer fp fields
are model fields, so they have no concrete correspondence, but
otherwise, the concretization of a points-to edge is a single memory
cell, written [a1 7→ a2]:

γgraph(ᾱ1 · fp 7→ ᾱ2)
def
= { ([·], ν) | ν ∈ (V] → V) }

γgraph(α · f 7→ β)
def
= { ([ν(α, f) 7→ ν(β)], ν) |

ν ∈ (V] → V) }
γgraph(α 7→ β)

def
= { ([ν(α) 7→ ν(β)], ν) | ν ∈ (V] → V) }

where ν(α, f) gives the base address α plus the offset of field f.
We postpone defining the concretization of summary edges (i.e.,
inductive and segment edges) to Section 3.2.

Overall, the concretization of an analysis state A are the envi-
ronment-memory pairs given by the graph and consistent with the
numerical constraint:
〈θ, σ〉 ∈ γ(G,N) iff for some ν,

callString(θ) = callString(G) and vars(θ) = vars(G)

and (σ, ν) ∈ γgraph(G) and ν ∈ γnum(N) and
addrOf(θ)(x) = ν(addrOf](G)(x)) for all x ∈ vars(θ) .

Valuations ν connect the various components, capturing relations
across disjoint memory regions and with the numerical constraint.

3.2 Inductive Summarization and Materialization
As alluded to in Section 3.1, we summarize a potentially un-
bounded memory using edges built on inductive definitions. At
a high-level, an inductive definition consists of a set of unfolding
rules or cases that specify how a memory region can be recognized
through a recursive traversal. As stated earlier, our inductive edges
come in two forms: (1) an inductive edge α · c(. . .) describes a
memory region that satisfies inductive definition c from α, and (2)
a segment edge α · c(. . .) ∗= α′ · c′(. . .) describes an incomplete
structure, in particular, a memory region that can be derived by
unfolding α · c(. . .) a certain number of times up to a (missing)
α′ · c′(. . .) sub-region [5]. Relations among pointers or numeri-
cal values between successive unfoldings of an inductive edge are
captured by definitions with additional parameters. For instance,
the relation between prev and next pointers in a doubly-linked list
can be captured by the following inductive definition (written as a
separation logic formula);

l · dll(p)
def
=
`
emp ∧ l = null

´
∨
`
∃n, d.

(l · prev 7→ p ∗ l · next 7→ n ∗ l · data 7→ d
∗ n · dll(l)) ∧ l 6= null

´
Unfolding. An inductive definition gives rise to a natural syn-
tactic unfolding operation. Unfolding substitutes an inductive edge
α · c(. . .) or a segment edge α · c(. . .) ∗= α′ · c′(. . .) with one in-
ductive case of c’s definition (and where all existentially-quantified
variables are replaced with fresh nodes). For inductive edges, base
cases correspond to a rule with no new inductive edge upon un-
folding; for segment edges, the base case is unfolding to the empty
segment (i.e., when α = α′ and c = c′). We write G  unfold G

′

for an unfolding step from graph G to G′, as well as ?
unfold for

the reflexive-transitive closure of unfold. Because the unfolding
operation is so closely tied to the inductive definition, we often
present an inductive definition by the unfoldings that it induces.
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α

β

dll(β)  unfold α = 0

α

β

dll(β)  unfold

α

β

α0

α1

prev

next

data
dll(α)

Figure 3. Unfolding operation induced by the dll definition.

For instance, in Figure 3, we present the doubly-linked list defini-
tion dll in this style.

The concretization of graphs containing inductive or segment
edges is based on the concretization without them. In particular,
the concretization of a graph G containing inductives is simply the
join of the concretizations of all the graphs that can be derived from
it by successive unfolding:

γgraph(G) =
[
{G′ ∈ D]graph | G 

?
unfold G

′} .

Unfolding and Analyzing Updates. Unfolding is the key opera-
tion for abstractly interpreting writes. To reflect an update e1 := e2,
we traverse the graph to find the points-to edges (i.e., the memory
cells) that correspond to the addressing expressions e1 and e2. If
the points-to edges of interest already exist in the graph, then re-
flecting the update is simply a matter of swinging an edge. Because
a graph is a separating conjunction of edges, this modification is
a strong, destructive update. However, if the desired edges are not
present, then we try to materialize them with the unfolding oper-
ation  unfold. Unfolding to expose cells in a user-defined heap
structure is necessarily heuristic, but the distinguished traversal pa-
rameter in our inductive predicates (i.e., α in α · c(. . .)) provide
guidance (also see our prior work [5] for ways to make unfolding
more robust). More crisply, we describe the abstract interpretation
of an update with the following inference rule:

〈A, statement〉 ⇓ A′

〈A, e1〉 ⇓ 〈A′, α1 · f1 7→ β1〉 〈A′, e2〉 ⇓ 〈A′′, α2 · f2 7→ β2〉
〈A, e1 := e2〉 ⇓ A′′[G � G(A′′)[α1 · f1 7→ β2]]

The abstract interpretation judgment 〈A, statement〉 ⇓ A′ says
that in abstract state A, evaluating statement statement produces
a resulting stateA′ (as in a standard structured concrete operational
semantics). This judgment is defined in terms of an auxiliary judg-
ment 〈A, e〉 ⇓ 〈A′, α · f 7→ β〉 that evaluates an addressing ex-
pression e to a points-to edge in A, which may yield a modified
state A′ as the result of unfolding. To reflect the update, we write
G(A) for looking up the graph component of A, A[G � G′] for
replacing the graph component of A with G′, and G[α · f 7→ β]
for updating the edge with source α · f in G to point to β.

3.3 Towards Analyzing Calls and Returns
Our whole-program analysis is based on an abstract interpreta-
tion [7] of the program’s interprocedural control-flow graph. We
desire a sound analysis, which means at each step, the analysis ap-
plies locally-sound transfer functions. They cannot omit any pos-
sible concrete behavior. With just the abstraction described in this
section, we can define an analysis for non-recursive programs (al-
beit a potentially computationally expensive one).

ᾱ

ᾱ0

main

fix

fp

null

β0

γ0

l

p

c

ret
sll

At a function call site in the
concrete execution, a new activa-
tion record is pushed onto the call
stack. Correspondingly at the ab-
stract level, we push a new ab-
stract activation record: (1) we
create a new node representing the
base address of the new activation
record; and (2) we set the content

of its fields (i.e., the formal parameters and local variables) by as-
signing formal parameters to the actual arguments and by point-
ing local variables to fresh nodes. For example, consider again
the code from Figure 1(a). At the call to fix from main (i.e.,
fix(l, NULL)) during the analysis, we push a new abstract ac-
tivation record with base address ᾱ0 with fields for parameters c
and p and local variable ret as shown in the inset. The ᾱ0 · fp field
is set to point to ᾱ, the base address of the activation record for
main, while ᾱ0 · c is made to point to β0 (as ᾱ · l 7→ β0) and
ᾱ0 · p gets null. For the ᾱ0 · ret field, it is set to fresh node γ0,
which indicates it contains an arbitrary value. The β0 · sll() induc-
tive edge states that β0 is the head of a singly-linked list (of dll
nodes), which existed before the call.

Now, if we continue analyzing the body of fix, we see that
β0 · sll() would be unfolded along the path where β0 6= null (i.e.,
c != NULL) before arriving at a recursive call to fix. It is clear
that if we continue analyzing in the manner described above, we
will keep on creating new activation records and never terminate.
Thus, in order to ensure the termination of the analysis in the
presence of recursive functions, we must apply a widening that is
capable of summarizing the call stack.

As alluded to earlier, the key observation is that the call stack
is itself an inductive structure. Specifically, it is a list of activation
records where the frame pointer fp fields form the backbone. Based
on this observation, we use a special inductive predicate stack to
summarize recursive segments of the call stack (e.g., the sequence
of fix calls—fix?::main). This inductive predicate stack is nec-
essarily more complex than usual predicates for summarizing re-
cursive heap structures and is described in detail in Section 4. Fur-
thermore, the stack predicate must be program-specific because it
depends on the program’s interprocedural control-flow. Thus, its
definition cannot be known before beginning the analysis. In Sec-
tion 5, we detail an algorithm for deriving a definition of stack on
the fly during the analysis.

Finally, at a function return site, the analysis proceeds like in a
concrete execution by popping off the most recent activation. For
instance, in the example above, on return from fix to main, we
drop the node ᾱ0 and its outgoing edges for fp, c, p, and ret, just
like the disposal of heap cells. As an invariant of the analysis, we
make sure the topmost activation record is always exposed (i.e.,
never summarized in a stack predicate). This invariant ensures that
all program variables in scope (globals and locals) are directly
accessible. As part of the transfer function for return, we need to
make sure that the activation record of the caller function becomes
exposed after the return, as now it is the topmost one. In the
presence of call stack summarization that includes the caller, we
need to unfold the stack predicate to expose the caller’s activation
record—using the  unfold operation with stack. As such, stack
segments always go from callees to callers, that is, in the direction
of the fp links.

4. Summarizing Call Stacks Inductively
As alluded to earlier, we summarize call stacks from recursive pro-
grams using an inductive predicate stack, exploiting their inherent
inductive structure. The definition of stack is particularly interest-
ing because it depends on the interprocedural control flow of the
program being analyzed. To build intuition for a definition of stack,
we first explore a number of examples that illustrate requirements
for it. We consider analyzing simple recursive functions requiring
no relations between successive activations, recursive procedures
requiring simultaneous summarization of the stack and heap, nested
recursion, and mutual recursion. Our algorithm for automatically
deriving a stack definition on the fly during analysis is then de-
scribed in Section 5.
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Recursion without Heap Relations between Activations. Con-
sider the simple program shown in inset (a) that constructs a list of

void main() { list* x = f(); }

list* f() {
list* y;
if (. . .) return NULL;
else {
y = (list*)malloc();
y->next = f();
return y;

}
}

(a) List allocation.

ᾱ

ᾱ0

ᾱ1

main

f

f

β

β0

β1

x

y

y
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next

(b) After one recursive call.
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β
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β1
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γ0
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γ1
next

(c) After two recursive calls.

ᾱ1

stack

f::ctx

 unfold

ᾱ0

ᾱ1f

stack

ctx

β1

y
γ1

next

(d) An unfolding rule.

ᾱᾱ1

ᾱ2

main

f

stack stack

f
⋆

ββ2

x

y

(e) Summary for entry to f.

random length using a recursive
function f. For each call to func-
tion f, a new, uninitialized list
node is allocated on the heap be-
fore the next recursive call. For
simplicity in presentation, a list
node has just one field: next
for linking. Note that we elide
the size-of argument to malloc,
treating it as a high-level alloca-
tor with types. The next point-
ers are assigned during the se-
quence of returns. Inset (b) shows
a graph (with no summarization)
that describes the state of the pro-
gram at the entry of the first re-
cursive call to f (i.e., with the call
string f::f::main), while inset (c)
shows the state at the second re-
cursive call (i.e., f::f::f::main).
The repeated pattern is clear from
these diagrams: all pending acti-
vations of f have a local variable
y that point to a list node whose
next field is arbitrary. This appar-
ent pattern suggests the unfolding
rule or case for the definition of
stack shown in inset (d).

Inductive edges of stack are
labeled with a regular expression
to convey the set of call strings
to which the rule can be ap-
plied. Here, the regular expres-
sion f::ctx on this rule indicates
that it can be applied only to a
call stack where the topmost ac-
tivation record corresponds to an
f record, while the calling con-
text ctx may be arbitrary. These
constraints on the calling context
can be expressed as an additional
parameter to stack, so the labels
are simply a shorthand. In other
words, the first additional param-
eter to stack is a set of possible
call strings expressed as a regu-
lar expression. In the case of rule
definition, the label is a check for
that regular expression pattern (e.g., f::ctx on the left-hand side of
the example  unfold). For an instance of the stack predicate, it
gives an abstraction of the call string. As an example, using this
rule, we can over-approximate all the possible states at the entry to
function f after any number of recursive calls with the graph shown
in inset (e). The f? label indicates that there are zero or more f acti-
vations between ᾱ0 and ᾱ. Intuitively, these labels approximate the
sequence of frame pointer links and the types of activation records
along that sequence.

Recursion with Mixed Call Stack and Heap Summaries. In Fig-
ure 4, we present a slightly more involved example where an ex-
isting heap data structure is traversed recursively. Function f a re-
cursive, non-destructive walk of a list (i.e., a singly-linked list con-
sisting of list nodes). Before the first call to f, the memory state
is abstracted by the graph shown in Figure 4(a). After the first call

void main() { list* l; . . . /∗ make l · list() ∗/ . . .; f(l); }

void f(list* x) { if (x == NULL) return; else f(x->next); }

ᾱ
main

β0

l

list

(a) Before the first call to f.
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ᾱ0

main

f
β0

l

x

list

(b) After the first call to f.
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(c) After one recursive call.

ᾱ

ᾱ0
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ᾱ2

main

f

f

f

β0

β1

β2

l

x

x

x

list

next

next

(d) After two recursive calls.
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stack(β2)
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β2
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ᾱ0

ᾱ1f
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ctx

β1 β2

x next

(e) An unfolding rule.
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f
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(f) Summary for the entry point to f.

ᾱᾱ0
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f

f
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f
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β2

l
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list

next

(g) Non-empty unfolding of the stack segment in (f).

Figure 4. Summarizing the memory states for recursive list traver-
sal.

to f but before any recursive call, we have the graph shown in (b).
In (c), we show the graph after the first recursive call at the entry
point to f, while (d) shows the graph at the same point after two
recursive calls. Just like in the previous example, there is a clear
repeating pattern consisting of both stack and heap edges for each
activation. However, unlike the previous example, there is an im-
portant relation between successive activation records through the
heap: x->next of an activation record aliases x of the subsequent
activation (e.g., ᾱ0 · x 7→ β0 ∗ β0 · next 7→ β1 ∗ ᾱ1 · x 7→ β1).
Such a relation can be captured with an additional parameter to
the stack predicate, and thus we get the unfolding rule shown in
Figure 4(e). The key difference between the unfolding rule here
and the rule from the previous example is the parameter β2 (shown
highlighted in the figure) that says the next field from the value
of ᾱ1 · x (i.e., β1) points to an existing node given by parameter
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β2. Using this inductive definition, we can summarize the possible
states at the entry to function f using a stack segment edge (shown
in Figure 4(f).

In the graph shown in Figure 4(f), the stack segment not only
summarizes a portion of the call stack but also a fragment of
the heap, specifically the list segment between β0 and β2. It also
maintains the relation between the x pointers to elements in this
list—the inductive definition of stack is quite powerful here. To get
a better sense of this aspect, consider unfolding the stack segment
in the summary shown in Figure 4(f). There are two cases:

• The segment is empty. This base case says there are no cells
summarized by the segment and the ends are equal, that is,
ᾱ1 = ᾱ and β2 = β0. This state is exactly the one at the entry
point after the first call to f (i.e., with call string f::main) shown
in Figure 4(b).
• The segment is non-empty. One step of unfolding yields the

graph shown in Figure 4(g). Notice that one step of unfolding
exposes the previous activation record with the desired relation
between the previous activation’s x and current activation’s x.
Overall, this inductive case summarizes the state after succes-
sive recursive calls (e.g., states shown in Figures 4(c) and (d)).
For instance, replacing the stack segment in (g) with the empty
segment (i.e., unfold it to empty), we get the state after one re-
cursive call (c) where ᾱ0 = ᾱ and β1 = β0.

In both examples thus far in this section, we never defined a base
case for the stack inductive definition. At the same time, it is not
particularly meaningful to provide one, as the first function called
in the program is main, which must be the first/oldest activation
record. For our analysis, this absence of a base case for stack is
actually never a problem, as the stack predicate is always used as a
segment edge. For any segment, the base case is the empty segment.

Nested Recursion. The program below illustrates a nested recur-
sion: main calls function f, which calls itself recursively a certain
number of times, until it calls g, which then also calls itself recur-
sively a certain number of times. There is no call to f from g.

void main() { t* x; f(x); }
void f(t* x) { if (...) f(x); else g(x); }
void g(t* x) { if (...) g(x); }

ᾱᾱ0

ᾱ1ᾱ2

ᾱ3

main

f

g

stack(β1) stack(β0)

f
⋆

stack(β3) stack(β1)

g
⋆

β0

β1

β3

x

x

x

After a number of recursive calls, the layout of the call stack at the
entry point to function g can be summarized by the above graph
where the stack segments correspond to the sequence of recursive
calls in g and to the sequence of recursive calls in f, respectively.

Mutual Recursion. In the program below, functions f and g are
mutually recursive, so the call strings at the entry point to g are of
the form g::f::(g::f)?::main.

void main() { t* x; f(x); }
void f(t* x) { if (...) g(x); }
void g(t* x) { if (...) f(x); }

As the cycles are of the form g::f:: · · ·, the call stack of the above
program at the entry point to g is summarized using the following
rule:

ᾱ2

stack(β0)

g::f::ctx

β0

 unfold

ᾱ0

ᾱ1

ᾱ2

f

g

stack(β0)

ctx

β0

x

x

The cycles can be more complex. For example, for call stacks
where the call strings are of the form g::(f?::g)?::main, the in-
ductive stack rule for the (f?::g)? cycle would unfold into a call
stack fragment, which would contain a summary for the inner f?

cycle (i.e., another stack segment over the f? call string).

Defining stack. We can now state precisely the notion of an
inductive definition suitable for abstracting the call stack:

• A stack segment is a segment edge. This edge is labeled with
with a regular expression denoting a superset of the call strings
that it describes.
• A stack inductive definition is an inductive definition stack such

that each case unfolds a sequence of one or more activation
records according to a call string.

As stack segments are simply segment edges of the stack defi-
nition, the concretization of graphs with stack segments follows
from the definitions in Section 3. Notably, given the ability to
parametrize inductive definitions by simple regular expressions, the
meaning of stack summaries falls directly from the notion of induc-
tive segments.

5. Inferring Call Stack Summarization Rules
In Section 4, we illustrated how the call stack corresponding to
various forms of recursion is summarized by an inductive stack
predicate. However, we also need to be able to derive a suitable
definition for stack.

To obtain a terminating analysis, we require a widening operator
capable of summarizing the call stack. To do so, it must fold
fragments into stack segments. Yet, before beginning the analysis,
the definition of stack cannot be known, as the interprocedural
control flow of the program is still to be explored. This circularity
means that the definition of stack must be derived on the fly during
the analysis when recursive calls are found. In this section, we
describe such an algorithm for defining a program-specific stack
predicate on the fly.

Widening in Recursive Cycles. In this section, we consider a re-
cursive function f, which directly calls itself. The technique we
propose also applies to more complex cycles (e.g., mutual recur-
sion). In general, when a function call is recursive, the interproce-
dural control-flow graph contains two cycles: one at the function
entry (from the recursive call site) and one at the function exit (to
the recursive return site). Thus, to ensure termination of the anal-
ysis in the presence of recursion, widening is applied at the entry
and exit points of a recursive function.

We first describe, at a high-level, the steps that the analysis takes
to compute an invariant at such a recursive widening point. The key
operations are the widening on program states given some stack
definition (see Section 6.1) and a shape subtraction to generate
inductive rules of the stack predicate described later in this section.

Intuitively, deriving rules for stack comes from finding the dif-
ference between successive abstract program states at, for example,
f’s entry point after some number of recursive calls. Specifically,
the analysis takes the following steps at f’s entry point:

1. Compute a few abstract states by iterating over the recursive
call cycle. In practice, unrolling a few iterations of a cycle is
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(a) The abstract state at iteration 1 (A1).
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(b) The abstract state at iteration 2 (A2).
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(c) The result of shape subtraction.
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(d) An inferred rule for stack.

Figure 5. Inferring a stack rule from abstract states computed at the entry point to fix while analyzing the example in Figure 1(a).

often beneficial to get to stable behavior. Suppose we obtain
three states A0, A1, and A2 from the first iterations, and we
wish to extrapolate from A1 and A2.

2. We derive an inductive rule for stack from A1 and A2 using
the shape subtraction algorithm.

3. We weaken A2 into a weaker A′2 using the rule derived in
step 2. To perform this weakening step, we apply the widening
operator over program states toA1 andA2 to produceA′2. The
net result is that A′2 summarizes both A2 and A1 with a stack
segment for the difference between them.

4. We perform widening iteration over the cycle until convergence
to an invariant A∞. The definition of the widening operator
over program states guarantees convergence.

Note that the algorithm for inferring new inductive rules for stack
in step 2 assists widening in obtaining quality invariants. It does
not need to be sound or complete. In fact, it is possible to craft
complicated examples where discovering a repeating pattern would
be arbitrarily difficult. Instead, the goal should be that it is effective
at discovering adequate rules in realistic situations.

Creating stack Rules by Shape Subtraction. At a high-level, we
find the difference in the graphs between two successive state iter-
ances A1 = (G1, N1) and A2 = (G2, N2) using shape subtrac-
tion. This difference gives the exposed or unfolded fragment in a
new stack rule. In the following, suppose A1 corresponds to call
string f::f::ctx and A2 to f::f::f::ctx .

The first step is to derive the graph part of the new rule. To do
so, we want to isolate the edges that appear in G2 but not in G1.
In other words, we want to partition G2 into two disjoints sets of
edges Gcommon and G∆ such that informally speaking,

G2 = Gcommon ∗ G∆ and G1 = Gcommon .

The above is informal because we must take care of matching sym-
bolic node names (which correspond logically to existential vari-
ables). We illustrate the description of the algorithm by following

the example from Section 2 (i.e., Figure 1). Figure 5(a) shows the
abstract state at the entry point to fix obtained from one itera-
tion over the recursive call cycle (i.e., after executing one recursive
call); Figure 5(b) shows the abstract state after one more recursive
call (i.e., after two recursive calls). The graph shown in Figure 5(c)
shows the G∆ computed from the states in (a) and (b).

In essence, shape subtraction works by performing a simultane-
ous traversal over G1 and G2 to identify matching structure (i.e.,
Gcommon). A node naming relation Ψ ⊆ V

] × V
] serves to track

the correspondence between the nodes in G1 and those in G2, as
well as to define the frontier of the traversal. To start the subtraction
process, the node naming relation Ψ is initialized with root nodes
of memory regions that we want to be in Gcommon. In particular,
we pair the following for the initial Ψ: (1) nodes representing ad-
dresses of global variables, (2) base addresses of activation records
in the context ctx (e.g., (ᾱ, ᾱ) ∈ Ψ and (ᾱ0, ᾱ0) ∈ Ψ for initializ-
ing the example subtraction in Figure 5), (3) the base address of the
topmost activation record (e.g., (ᾱ1, ᾱ2) ∈ Ψ). This initialization
states that Gcommon is any portion of memory reachable from the
globals, activation records of the context, and the topmost activa-
tion. What remains,G∆, is the state difference betweenG1 andG2

that we wish to summarize with a stack segment. In the example,
the only activation record node that does not appear in Ψ is the one
for the second activation in G2 (i.e., ᾱ1 in Figure 5(b)). Observe
that this node is exactly the base address of the activation that we
wish to summarize.

At this point, the algorithm is rather straightforward. We collect
together edges of the same kind whose the source nodes are in
the node naming relation Ψ. Whenever two edges are matched, the
target nodes (and any additional checker parameters) are added to
Ψ. The matched edges are discarded from G1 and G2 and added
to Gcommon (up to node renaming). For example, in Figure 5, the
edges corresponding to field l of ᾱ can be matched and consumed
right after initialization. Then, the pair (β0, β0) is added to Ψ, and
the prev edges from β0 in both graphs can be consumed next. We
iterate this “match and consume” traversal until G1 is empty in
which case G2 has become G∆.
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It is possible that G1 fails to become empty, that is, we are
unable to find a common fragment. This subtraction algorithm is
much like the graph join algorithm [6] in that the result depends
on the traversal order. Matching and consuming certain edge pairs
too early may cause the algorithm to fail to produce an empty G1

when another traversal order would have succeeded. Fortunately, in
our experience, a simple breadth-first-style strategy suffices. First,
we match fields from the topmost activation record, which are not
pointed to by other activation records directly (e.g., from (ᾱ1, ᾱ2)).
Then, we do the same for the fields from the context (e.g., from
(ᾱ, ᾱ) and (ᾱ0, ᾱ0)). Nodes directly pointed to by the activation
being summarized are considered last.

The graph result of shape subtraction G∆ gives the unfolded
edges for a stack unfolding rule, that is, the portion of memory
that could be summarized by a stack segment (of length 1). As-
is, such a rule does not express all the properties that are needed
to describe the call stack precisely. In the Figure 5 example, we
need to express aliasing relations between successive activations
(cf., the difference between the list allocation and the list traversal
examples in Section 4). These relations are captured by parameters
on the stack definition. The parameters are given by the nodes at the
boundary between the topmost activation and the activations being
summarized. In this case, nodes β1 and β2 are this boundary and
become parameters in the definition of the stack rule as shown in
Figure 5(d). Finally, any relevant numerical constraints in the base
domain is also captured in defining a stack rule. OnceG∆ has been
computed, we simply take the projection of the numerical invariant
N2 onto the set of symbolic node names in G∆.

Shape subtraction on the graph portion can be seen as a restric-
tion on frame inference [1]. Here, we are looking for an exact match
as opposed to an entailment between two configurations. In spirit,
the above algorithm potentially could be applied to derive other
kinds of inductive definitions besides stack (cf., [14]). However, we
make critical use of understanding the inductive structure of a call
stack to get good results. For example, this background knowledge
is used in initializing the node naming relation Ψ. We hypothesize
that having some knowledge on the kind of inductive backbone of
interest is key to getting high-quality definitions.

6. Applying Call Stack Summaries in Analysis
With the mechanism for deriving stack rules during analysis, we
have all the pieces for analyzing recursive procedures with call
stack summarization by following the outline in Section 3.3. In
particular, sound transfer functions from intraprocedural inductive
shape analysis [5, 6, 18] for basic program statements, like as-
signment (cf., Section 3.2), guard conditions for branching, loops,
and memory allocation-deallocation, carry over in a straightfor-
ward manner. A slight difference is that instead of a fixed set of
variables as in the intraprocedural case, we have both global and
local variables. Local variables are fields of activation records in
our graph, but all program variables in scope are easily accessible,
as we ensure that the topmost activation is never summarized.

There are two remaining pieces to our interprocedural analysis.
First, we want to see how widening with derived stack rules ap-
plies at the function entry and exit points in recursive call cycles
(Section 6.1). Second, the soundness and termination of extensi-
ble inductive shape analysis [5, 6] relies on the assumption that all
inductive definitions are fixed before the analysis starts. In this pa-
per where the definition of stack is extended on the fly, we need
to justify soundness and termination in the presence of such on-
the-fly inductive rule generation (Section 6.2). We conclude this
section with a summary of the reasons for termination and sound-
ness for the overall analysis, as well as some empirical experience
(Section 6.3).
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Figure 6. Widening at the entry point to fix in Figure 1(a).

6.1 Widening with Call Stack Summaries
After an appropriate inductive rule for stack has been derived (see
Section 5), widening at function entry and exit points in a recursive
call cycle is not particularly different than at loop heads. That is, the
join t and widen ∇ on graphs and program states [6] essentially
carries over. We do not redefine these algorithms, but we discuss
their main features here by following our example introduced in
Section 2.

The join on separating shape graphs is stabilizing, so the only
difference between join t and widen ∇ is the operator applied to
elements of the numerical base domain. At a high-level, the join
on graphs is actually quite similar to the subtraction algorithm de-
scribed in Section 5. They both work by a simultaneous match and
consume traversal over two graphs from root nodes using a node
naming relation (i.e., Ψ). Roughly speaking, the main difference is
that join applies weakening to memory regions delineated by the
traversal. For example, it folds fragments consisting of points-to
edges (e.g., α · next 7→ β) into an instance of an inductive defi-
nition (e.g., α · list()). Folding is in essence applying an unfolding
rule in reverse [6].

Following the outline in Section 5, at the entry point to fix, we
first obtain abstract states A1 and A2 from Figures 5(a) and (b),
respectively. Subtraction is applied to them to get the stack rule in
Figure 5(d). With this rule, widening on abstract states is applied
to A1 and A2 to produce the state A∞ shown in Figure 6(a),
which summarizes both A1 and A2. Beginning at the entry point
to fix with A∞, we analyze until the next recursive call and
returning to the entry point, we get the abstract state A∞+1 shown
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ᾱ0ᾱ2
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Figure 7. An invariant just before returning from a recursive call
to fix.

in Figure 6(b). Observe that ᾱ3 is the activation record that can be
folded into the stack segment (using the Figure 5(d) rule). Thus,
computingA∞∇A∞+1 yieldsA∞, which confirms thatA∞ is an
invariant that summarizes the set of all concrete states that can be
observed at the entry to function fix (after one or more recursive
calls).

The control point after the function exit before the return site of
a recursive call is also on a cycle in the interprocedural control flow
graph, so we perform widening iterations there. We perform widen-
ing at the point just before the topmost abstract activation record is
discarded. In Figure 7, we show an abstract element summarizing
concrete states that can be observed just before returning from a re-
cursive call to fix (and where this call went along the path where
c was not null and node c was not removed). Note that during the
sequence of returns from recursive calls, the new dll edge appears,
as upon function return, the tail of the structure has prev pointers
set correctly so as to define a dll.

6.2 Introducing Inductive Rules on the Fly
As noted above, a source of complexity in summarizing the call
stack with the stack predicate is that new inductive rules are gen-
erated on the fly. To reason about this aspect, we extend our frame-
work with rule set extension. When the analysis starts, the setR is
empty. Whenever a new recursive call site is discovered, a new rule
is added to R. Therefore, we consider R an element of a separate
lattice, specifically the powerset of the set of rules. Each invariant
is with respect to a set of rules R, which determines the instance
of the graph domain in use. Thus, our analysis state is actually an
(R, G,N) tuple in the abstract domain D] defined below. For clar-
ity, we annotate D]graph with the set of rules R allowed for the
inductive definition of stack as follows: D]graph〈R〉 (and similarly
with γgraph〈R〉). We also define γ〈R〉(G,N) as we did γ(G,N),
except we now use γgraph〈R〉 in place of γgraph (and similarly for
the order v〈R〉 on states (G,N)).

D
] def

= { (R, G,N) | G ∈ D]graph〈R〉 and N ∈ D]num }

γ(R, G,N)
def
= {s | s ∈ γ〈R〉(G,N)}

(R0, G0, N0) v (R1, G1, N1) iff
R0 ⊆ R1 and (G0, N0) v〈R1〉 (G1, N1)

The above ordering v is sound, as R0 ⊆ R1 implies that
γgraph〈R0〉(G0) ⊆ γgraph〈R1〉(G1). All transfer functions are
as before, except for widening at the head of recursive functions,
which also adds a new rule. Most importantly, as shown in Venet
[29] that has similar a construction, this widening stabilizes if the

Recursive Iterative
Benchmark (ms) (ms)

list traversal 11 4
list get nth element 22 4
list insertion nth element 48 16
list remove nth element 27 11
list deletion (memory free) 13 4
list append 20 13
list reverse 29 5

Table 1. Micro-benchmarks comparing analysis times for recur-
sive and iterative versions of the same operation.

process of adding rules is itself bounded. One possible bound is to
allow at most one rule per call site.

The above construction also suggests applying more complex
forms of widening to the set of rules R, while preserving sound-
ness. In the ordering (R0, G0, N0) v (R1, G1, N1) defined
above, we stated that it must the case that R0 ⊆ R1. However,
we could use a more sophisticated ordering on sets of rules. In par-
ticular, if we have two rules r0 and r1 where r1 is weaker than r0,
then we could replace r0 with r1 in our set of rules while main-
taining soundness. In terms of the analysis, this observation means
that inductive rules for stack may be weakened during the course
of the analysis. Surprisingly, we can use this process to improve
what can be summarized. Suppose the analysis discovers a stack
rule r to summarize the call stack at the entry of some function
f. However, widening at the next iteration fails (i.e., is imprecise)
due to rule r being too specific, we are allowed to weaken r to a
coarser rule r′ that may allow this widening step to succeed. This
technique is potentially useful when the shape part of the rules is
stable, but when the numeric contents of cells need to be computed
by a non-trivial widening sequence, as can be seen in Section 7.
To guarantee termination of the analysis with this process, the rule
weakening step must be shown to stop in some way.

6.3 Termination, Soundness, and Empirical Experience
To ensure termination, the analysis algorithm applies widening
to at least one point in each cycle in the set of abstract flow
equations. In the case of whole-program interprocedural analyses,
the following is one set of such widening points: (1) loop heads for
intraprocedural loops and (2) at the entry and at the exit of functions
when analyzing a recursive call. At the end of the analysis, each
program point is mapped to a finite set of abstract elements. As
all transfer functions are sound, and there is at least one widening
point on each cycle in the interprocedural control-flow graph, the
analysis terminates and is sound:

Soundness. If concrete state s can be reached at program
point l and if the set of abstract elements computed for
point l is { (Rl

0, G
l
0, N

l
0), . . . , (Rl

n, G
l
n, N

l
n) }, then s ∈

γ(Rl
i, G

l
i, N

l
i ) for some i ∈ 0..n.

Preliminary Empirical Experience. We have implemented shape
subtraction and stack rule inference described in Section 5 in
XISA [5, 6]. It discovers the appropriate stack rules for all of the
examples given in Sections 2 and 4. In each case, the stack rule
inference time is negligible. We also have implemented a prototype
analyzer and ran it on a series of micro-benchmarks that compares
the analysis time of some recursive functions against their iterative
counterparts (Table 1). The tests were performed on a 2.4 GHz
MacBook Pro with 8 GB of RAM and under a Linux 2.6.27 virtual
machine. In all these cases, the memory usage is not significant (at
most 6 MB).
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While the analysis times on these micro-benchmarks are neg-
ligible, we do see that analyzing the recursive versions take about
two to three times more time than their iterative counterparts. This
slowdown is expected since the analysis of a recursive function in-
volves not only the inference of a suitable stack definition but also
two fixed-point computations (one over the call sites and one over
the return sites). In contrast, the analysis of a single imperative loop
requires only one fixed point computation. Note that in the case of
list reverse, the imperative version is quite trivial (e.g., does not
even require a segment summary in the loop invariant), while the
stack inductive definition for the recursive version is just as com-
plex as the other examples.

7. Case Study: Precision and Modularity
In this section, we look more closely at numerical properties, which
are combined with shape properties in the presence of recursion.
Figure 8(a) shows an example program that implements a filter
equation over a doubly-linked list. Here, we replaced the integer
data field with two floating point fields x and y. It walks through
the structure and deletes the nodes where the x field is not in
range [−M,M ]. In the same pass, it integrates a filter equation by
reading from the x fields and writing the result to the y fields; this
computation is performed only for the nodes that are not deleted.

Let us first consider the purely numeric part of the code (i.e., the
digital filter) and imagine that it is implemented using a while-loop
instead of recursion. On this version of the program, the Astrée
analyzer [3] can infer rather precise invariants using either the
domain of Feret [11] or simply the interval domain with threshold
widening. For instance, if we let M = 5, a = 0.8, and p is initially
set to 0, then Astrée computes the range [−85.00008, 85.00008] as
an approximation for the terms of the sequence after 7 iterations
using only the interval domain with threshold widening (on the
iterative, purely numeric version). Even though Astrée does not
support recursion, the basic techniques are applicable to the purely
numeric part of the program shown in Figure 8(a).

On the other hand, using a modular approach to interprocedural
analysis to reason precisely about the numeric part is quite chal-
lenging, as we must capture relations between the inputs and out-
puts in the abstract domain. For instance, to obtain the same prop-
erties as using the interval domain in the iterative version, we must
use a complex domain like polyhedra [8]. For non-linear filters like
those handled by Feret [11], even polyhedra would not be sufficient
to achieve the same level of precision with the modular approach.
In essence, relational abstract domains are sometimes required to
achieve the same level of precision using the modular approach as
non-relational domains on an iterative counterpart.

We now consider analyzing the program shown in Figure 8(a)
using our call stack abstraction and by instantiating the base do-
main with intervals, that is, with a simple non-relational domain.
When applied to this program, our analysis must infer inductive
rules for stack at two call sites (as there are two recursive call
sites). We consider only the second call site, as the other one
is very similar, though slightly more complicated with respect to
shape. Figure 8(b) depicts the abstract state after two recursive
calls before summarization of the call stack is performed. Nodes
that denote floating point values are annotated with an interval.
In particular, we have that Iγ0 = Iγ1 = [−M,+M ], Iδ0 =
[−a ?M − ε,+a ?M + ε′], and so on. The ε, ε′ values account for
rounding errors. To obtain an invariant, we first derive a stack rule
shown in Figure 8(c). This rule allows us to fold the call stack at
the first recursive call site. Interestingly, this rule does not work at
the next iteration because the interval constraints over the floating
point nodes have not yet stabilized. Instead, we weaken the stack
as discussed in Section 6.2. In essence, this process amounts to the
same series of widening steps on the numerical domain elements as

void filter(dll* l, float p) {
if (l != NULL) {

if (l->x < -M || l->x > M) {
dll* n = l->next; remove(l); filter(n, p);

}
else {
l->y = a * p + l->x; filter(l->next, l->y);

}
}

}
(a) Recursive implementation of a digital filter.
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Figure 8. Obtaining numerical properties on a recursive program
with the call stack abstraction.

in the analysis of the iterative program by Astrée, except they are
applied when generating the stack summarization rule. Thus, it will
lead to the computation of the same numerical invariants.

Recall that we are not advocating an abandonment of modular
interprocedural analysis. As noted in Section 1, modularity is of-
ten the basis for scalability. When functions should be analyzed
out of context (e.g., library API functions), then the modular ap-
proach seems ideal. Instead, we present interprocedural analysis by
call stack summarization as an alternative that can be more effec-
tive in certain situations. A potentially hybrid approach could be
to apply modular analysis except were call stack summarization is
absolutely required. For example, call stack summarization is ap-
plied for a few intricate internal functions as part of a modular,
tabulation-based analysis of the program.

8. Discussion: Interprocedural Shape Analysis
In this section, we consider known challenges in the context of
interprocedural analysis of heap manipulating programs and com-
ment on trade-offs.
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8.1 Cutpoints
Modular shape analyses [4, 12, 13, 16, 23] typically infer an ab-
straction of the effect of a procedure on a portion of the heap. To
make this effect abstraction precise, the analysis needs to carefully
extract the fragment of the heap that may be modified during a
call so that the rest of the heap is a frame [21]. Such an analysis
must also abstract cutpoints [23] carefully to obtain precise results.
Cutpoints are the locations at the border of the callee’s reachable
heap, that is, any node that is reachable from the callee’s parame-
ters (though not directly pointed-to by them) and reachable from a
pending activation or a global (without following links inside the
callee’s reachable heap). It is important to track cutpoints precisely
in a modular analysis, as they are used to reflect the effect of the
callee in the caller’s state on function return. Doing so can be chal-
lenging, as an unbounded number of cutpoints may arise either due
to unbounded recursion or due to the traversal of unbounded heap
structures. While there is no general solution for cutpoints today,
several partial solutions have been proposed. For example, they fo-
cus on isolating their effect by proving cutpoint-freeness [24] or
by proving that cutpoints are not live [17], or they reason up to a
bounded number of them [23].

Our analysis based on call stack summarization also needs to
cope with cutpoints so that the widening iteration reaches a precise
fixed point. In the following, we consider how cutpoints impact our
analysis in particular situations.

Summarizing Cutpoints. Cutpoints often arise when a field of
a caller’s activation record point into the heap space that may be
modified by the callee (or a subsequent sub-call). This situation
arises in the example in Section 2 (Figure 1). Such cutpoints may
be unbounded, as each recursive call defines a set of local cutpoints
and the number of recursive calls may be unbounded; however, they
can be summarized as part of the call stack and re-exposed when
recursive calls return. Observe that such cutpoints appear among
the parameters in inductive rules for stack. Therefore, our approach
can deal with an unbounded number of cutpoints by folding them
as part of the call stack with finitely many parameters.

Case Splitting from Cutpoints. Another case is when the cut-
points stem from the global variables or from sections of the call
stack that are not summarized (e.g., as the activation record of
main). Such cutpoints cause singularities in the call stack as in
the example from Rinetzky et al. [23]. In that example, a singly-
linked list is built by appending two singly linked lists while keep-
ing a pointer to the element in the middle; then a destructive reverse
function is applied to the whole structure. The state before the list
reverse can be summarized as follows:

ᾱ
main

β0 β1

l1

l0 list list list

Now, our analysis needs to walk through the segment between β0

and β1 (using the segment unfolding [5]) and discovers a stack
rule for summarizing the call stack. The generated rule is actually
very similar to the one derived from the list traversal example
of Section 4 (Figure 4(e)); it is essentially the same except for
the direction of next pointers, which are switched by the reverse
function. As we might predict, special care must be taken for the
case where the reverse reaches node β1. Applying widening here
would cause the property that l1 points inside the list to be lost. A
solution is to case split and not perform widening on that iteration.
The trick here is a variation on a classical one: when a new behavior
is observed (e.g., reaching β1), postpone widening to the next
iteration (cf., [3]).

To summarize, cutpoints induce a somewhat different set of is-
sues compared with modular shape analyses, as our analysis ab-

stracts only states and not effects. These issues can be alleviated
using standard techniques to some extent.

8.2 Heap Partitioning and Cutpoints

void f(dll* l) {
if (...) { f(l->prev); }
else { f(l->next); }

}

Sharing can introduce more se-
vere problems, as the example
shown inset demonstrates. In this
code, function f takes as input a
doubly-linked list and performs a
non-deterministic walk over it: at
each step, depending on a random test, it either walks one step for-
ward and calls itself recursively, or it walks one step backwards and
calls itself recursively. The difficulty here is that this function may
traverse several times the same elements of the doubly-linked list.
Thus, at any time in a concrete execution, an element that has been
visited in the past may be visited again in the future. This prevents
the heap structure from being partitioned into sub-regions touched
by successive recursive calls. This problem would also occur in the
case of analyses that infer the footprint of procedures so as to com-
pute their effect.

This sort of problem can arise even without procedures, so we
consider this issue orthogonal to the cutpoint problem: cutpoints
aim at describing the borders in the heap partition used to abstract
successive calls, whereas the issue of this example is that no simple
and good partitioning exists.

9. Related Work
The most closely related work to ours is Rinetzky and Sagiv [22].
They designed an analysis based on three-valued logic [27] where
the call stack is abstracted together with the heap. Some earlier
work had similar views (e.g., [9]). Rinetzky and Sagiv [22]’s con-
crete model is quite similar to ours. However, the abstraction is
radically different, as we use separation logic and inductive defi-
nitions. In particular, we found that these tools are natural for ab-
stracting the call stack. First, the call stack can be defined induc-
tively, and second, there are built-in separation constraints between
the call stack and the heap, as well as between successive activation
records. Moreover, we found that the operations like function call,
function return, and widening encode well in this abstraction.

Most interprocedural shape analyses take advantage of func-
tions in order to achieve modularity. For instance, Jeannet et al.
[16] abstracts input-output relations in the TVLA framework using
three-valued structures with two occurrences of each element of the
universe: one for the input state and one for the output state. The
analysis of Rinetzky et al. [23, 24] is based on the tabulation of
pairs of input-output three-valued structures. In Marron et al. [19],
cutpoints are used in order to segment the abstract states and re-
strict the analysis to a precise approximation of the footprint of pro-
cedures. Similarly, separation logic-based modular analyses, such
as Gotsman et al. [12], Calcagno et al. [4], or Gulavani et al. [13],
isolate the footprint of procedures and compute the effect on the
local heap (though in different manners). As we noted in Section 1,
modularity in shape analysis has many advantages, especially when
analyzing libraries or for scalability reasons. Our approach fills a
gap to tackle a family of analysis problems, such as the combined
analysis example of Section 7, where whole program analysis ap-
pears more suitable.

Another area of static analysis related to our work is that of
context-sensitive analyses. The term “context sensitive” is used in
many ways and may cover very different levels of abstraction, rang-
ing from approaches that use call-strings to describe contexts [28]
or an abstraction of the control flow history [25] to techniques
where the call stack content is abstracted [15, 22]. Our technique
uses a rather coarse abstraction of the call string and of the control
flow history, so its precision can be further improved by applying
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those techniques [25, 28]. The analysis of Jeannet and Serwe [15]
features a non-relational abstraction of the call stack in the sense
that it discards the order of the activation records.

10. Conclusion
In this paper, we have explored a whole-program approach to inter-
procedural analysis over recursive programs. In particular, we have
shown how to apply a shape analysis abstraction based on sep-
aration logic and inductive definitions to directly summarize call
stacks along with heap structures. To automatically derive rules for
call stack summarization, we exploited its built-in inductive struc-
ture. The XISA framework [5] turned out to be both expressive and
robust in abstracting a very concrete model of calling contexts.
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