
Symbolic Transfer Function-based
Approaches to Certified Compilation ∗

Xavier RIVAL
Département d’Informatique,
École normale supérieure,

45, rue d’Ulm, 75230, Paris Cedex 5, France
rival@di.ens.fr

Abstract
We present a framework for the certification of compilation and
of compiled programs. Our approach uses a symbolic transfer
functions-based representation of programs, so as to check that
source and compiled programs present similar behaviors. This
checking can be done either for a concrete semantic interpretation
(Translation Validation) or for an abstract semantic interpretation
(Invariant Translation) of the symbolic transfer functions. We pro-
pose to design a checking procedure at the concrete level in order
to validate both the transformation and the translation of abstract
invariants. The use of symbolic transfer functions makes possible
a better treatment of compiler optimizations and is adapted to the
checking of precise invariants at the assembly level. The approach
proved successful in the implementation point of view, since it ren-
dered the translation of very precise invariants on very large assem-
bly programs feasible.

Categories and Subject Descriptors: D.2.4 [Software/Program
Verification]: Formal methods, Validation, Assertion checkers,
Correctness proofs; D.3.1 [Formal Definitions and Theory]: Se-
mantics; D.3.4 [Processors]: Compilers, Optimization; F.3.1 [Spec-
ifying and Verifying and Reasoning about Programs]: Invariants,
Mechanical verification; F.3.2 [Semantics of Programming Lan-
guages]: Operational semantics, Denotational semantics, Algebraic
approaches to semantics, Program analysis.

General Terms: Algorithms, Design, Theory, Verification

Keywords: Static Analysis, Abstract Interpretation, Certification,
Compilation, Translation Validation

1 Introduction

1.1 Motivations
Critical software (as in embedded systems) is concerned both with
correctness and safety. The designer of such systems is usually in-
terested in checking that the final program correctly implements a
specification and is safe in the sense that it should not yield any
“bad behavior”. Hence, much work has been done for the analy-
sis of source programs [4, 5]. However, in the same time compil-
ers have become huge and complex. For instance, the code of gcc
amounts to about 500000 lines of code. Moreover, the semantics of

∗This work was supported by the ASTREE Project of the French RNTL

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
POPL’04, January 14–16, 2004, Venice, Italy.
Copyright 2004 ACM 1-58113-729-X/04/0001 ...$5.00

the C language leaves some erroneous cases unspecified in order to
let the compiler designer free to implement various optimizations.
Therefore, certifying compilation and compiled programs turns out
to be necessary in the case of highly critical applications. Given a
source program Ps and a compiled program Pc, the following ques-
tions are of interest: (1) does Pc yield the same behaviors as Ps ?
(2) does Pc meet some safety requirements; e.g. is it runtime error
free ?

Proving the compiler formally would be an answer for the first
question, but this solution is usually too expensive and is not practi-
cal if the code of the compiler is not available. Hence, a more prac-
tical approach proceeds by proving the semantic equivalence of Ps
and Pc (Translation Validation, noted TV). In practice, an external
tool generates proof obligations and attempts to check them after
each compilation. Analyzing directly assembly programs is prob-
lematic since compilation induces a loss of structure both at the data
and at the control level. Therefore, a more satisfactory approach to
the second problem is based on the analysis of the source program
Ps and on a phase of Invariant Translation (noted IT), which yields
some sound invariant for Pc.

A unifying framework for the certification of compilation and of
compiled programs would allow to compare these methods and to
share the effort to tackle some common problems: finding suitable
representations for programs, characterizing the semantic relation
between source and compiled programs, handling optimizations...

1.2 Related Work
In Proof Carrying Code systems [16, 18, 2], an untrusted compiler
is required to provide annotations together with the compiled pro-
gram, which is related to IT. Before the program is executed, a cer-
tifier generates Verification Conditions and attempts to prove them
using the annotations; if it succeeds, then the program obeys the
safety policy and can be executed. Typed Assembly and Intermedi-
ate Languages (TAL/TIL) were proposed as a means to keep more
semantic information in the target programs [15, 21], so as to im-
prove the level of confidence into compiled programs ([14] relates
the implementation of a compiler for a safe C dialect). The TAL
approach was further extended by [22] with more expressive anno-
tations. Yet, all these systems require deep compiler modifications.
Moreover, most of them aim at checking type safety properties and
are restricted to security or memory safety properties.

As an example of abstract invariant translation system, we can cite
our previous work in [20]: a source analyzer was instrumented
to translate the source invariant into an invariant which was then
proved to hold for the compiled program. The process does not re-
quire the compiler to be modified. Complex invariants were trans-
lated and checked at the assembly level so as to prove the absence

of runtime errors. Yet, these results can be improved, so as to han-
dle more complex and precise invariants, to scale up and to accom-
modate optimizations: indeed, our tool was not able to translate
relational invariants or to certify optimized code.

Translation Validation-based methods were pioneered in [19] and
extended in [17, 23]. An external tool generates Verification Con-
ditions and attempts to solve them, so as to prove the compilation
correct. The compiler does not need to be modified.

As far as we know, the feasibility of an IT system based on TV has
not been remarked before.

1.3 Contribution
Our purpose is to provide a framework for the certification of com-
pilation and of compiled programs and to propose an efficient, flex-
ible and scalable IT process:

• We provide a symbolic representation of (source and assembly)
programs so as to make compilation certification suitable; then,
we formalize TV- and IT-based approaches in this framework.

• A new approach to Invariant Translation based on Translation
Validation appears in this framework. Indeed, the equivalence
checking step justifies the semantic correctness of compilation;
hence, it discards the abstract invariant checking requirement of
[20]. Furthermore, this new approach proves the semantic equiv-
alence of source and compiled programs and takes benefit from
the TV pass to improve the efficiency of the invariant translation.

• We implemented the latter approach. The certifier was run on
real examples of highly critical embedded software, for the pur-
pose of proving the safety of assembly programs using the same
criteria as for source programs in [5], which requires to translate
very precise invariants. We are not aware of any similar existing
work.

• At last, the symbolic representation of programs turns out to be
a very adequate model to tackle the difficulties which arise when
considering optimizations.

1.4 Overview
Sect. 2 introduces some preliminaries and states the definition of
compilation correctness used in the paper. Sect. 3 sets up a sym-
bolic representation of programs adequate for compilation certifi-
cation (either by TV or IT). IT and TV are integrated to this frame-
work in Sect. 4, together with a new approach to Invariant Trans-
lation, based on Translation Validation. Experimental results are
provided and show the scalability of the latter approach. Sect. 5
tackles the problem of optimizing compilation using the technical
tools introduced in Sect. 3. Sect. 6 concludes.

2 Correctness of Compilation
This section introduces preliminaries and leads to a definition of
compilation correctness in the non-optimizing case.

2.1 Programs, Transition Systems, Symbolic
Transfer Functions

Programs are usually formalized as Labeled Transition Systems
(LTS). An execution state is defined in this model by a program
point l (a label) and a store ρ, that is a function which assigns a
value to each memory location (variable, register, array cell). In
the following, we write X for the set of memory locations, L for
the set of labels, R for the set of values and S = X → R for the
set of stores. In this setting, a program P is a tuple (LP,→P, iP)
where LP is the set of labels of P, iP ∈ LP is the entry point of P and
(→P)⊆ (LP×S)×(LP×S) is the transfer relation of P. Intuitively,

(l0,ρ0)→P (l1,ρ1) if and only if an execution of P reaching point
l0 with store ρ0 may continue at program point l1, with store ρ1.
This model allows non-determinism since (→P) is a relation. Note
that the notion of program point does not necessarily correspond
to the notion of syntactic program point. A label may in particular
define both a calling context and a program point.

The semantics of a program P is the set of all the possible runs
of P. In the following, if E is a set, we note E? for the set of
the finite sequences of elements of E and P(E) for the power-set
of E . An execution trace (or run) is a sequence of states. The
semantics JPK of a program P = (LP,→P, iP) is the set of the finite
partial execution traces of P: JPK⊆ (LP×S)?. The semantics JPK
boils down to a least fixpoint (lfp) in the complete lattice (P((LP×

S)?),⊆): JPK = lfp⊆/0 FP where FP : P((LP×S)?)→ P((LP×S)?) is
the continuous semantic function defined below:

FP(X) = {〈(x0,s0), . . . ,(xn,sn),(xn+1,sn+1)〉
| 〈(x0,s0), . . . ,(xn,sn)〉 ∈ X
∧(xn,sn)→P (xn+1,sn+1)} ∪ {〈(iP,s)〉 | s ∈ S}

Source and Assembly languages: In the following, we choose a
subset of C as a source language (Fig. 1(a)) and the Power-PC-like
assembly language presented in Fig. 1(b). The source language
features loops, conditionals, assignments, array and integer vari-
ables. Source statements and assembly instructions are (implicitly)
labeled.

The assembly language provides registers (denoted by ri), memory,
indirections in the data and usual assembly features. The address
of a variable x is denoted by x. If n is an integer, the predicate
isaddr(n) means that n is a valid address for a memory location
in the current program; then, content(n) denotes the content of the
memory cell of address n. If isaddr(x + v) holds, then the instruc-
tion load r0, x (v) loads the value content(x + v) into register r0;
in case x + v is not a valid address, the load instruction yields an
error. The store instruction is similar (but copies the content of
a register into a memory cell). The instruction li r0, n loads the
integer n into the register r0. The arithmetic instruction op r0, r1, r2
takes the content of r1 and r2 as arguments and stores the result
into r0. The comparison instruction cmp r0, r1 sets the value of the
condition register according to the order of the values in r0 and r1:
if r0 < r1, cr is assigned LT and so on. The conditional branching
instruction bc(<) l directs the control to the instruction of label l if
cr contains the value LT . The branching instruction b l re-directs
the control to the instruction of label l.

The semantics of source and assembly programs is defined as
above since they are transitions systems. Adding procedures, non-
determinism, and more complex data structures would be straight-
forward.

2.2 Definition of Correct Compilation
Let Ps = (Ls,→s, is) be a source program and Pa = (La,→a, ia)
be an assembly program. We assume that Pa is a compiled pro-
gram corresponding to Ps, so we expect Ps and Pa to present simi-
lar behaviors: execution traces of both programs should be in cor-
respondence. The relation between traces of Ps and of Pa can be
defined by a mapping of source and assembly program points and
memory locations. For instance, on Fig. 2, the source program
points ls

0, l
s
1, l

s
2, l

s
3, l

s
4, l

s
5, l

s
6 respectively correspond to the assembly

program points la
0 , la

2 , la
4 , la

8 , la
11, l

a
15, l

a
16. Similarly, the source vari-

able t corresponds to a region of the assembly memory starting
at address t and of the same size as t (we suppose memory cells
have size 1) and so on. Then, the value of i at point ls

4 should
be equal to the value stored at address i at point la

8 . These map-

Lv ::= x (x ∈ X) | Lv[E]
E ::= n (n ∈ Z) | Lv
| E+E | E−E
| E?E | E/E

C ::= true | false | ¬C
| C∧C | C∨C
| E == E | E < E

S ::= Lv := E
| if(C) B else B
| while(C) B

B ::= {S; . . . ; S}

(a) Source language

c ∈ {<,≤,=, 6=,>,≥}
v ∈ {r0, . . . ,rN}∪Z

op ::= add | sub
| mul | div

n ∈ Z

I ::= load ri, n(v)
| store ri, n(v)
| li ri, n
| op ri, r j, v
| cmp ri, r j
| bc(c) l | b l

(b) Assembly language

Figure 1. Syntax

i,x : integer variables
t : integer array of length n ∈N, where n is a parameter
ls
0 i :=−1;

ls
1 x := 0;

ls
2 while(i < n){

ls
3 i := i+1;

ls
4 x := x + t[i]

ls
5 }

ls
6 . . .

(a) Source program

la
0 li r0,−1 la

9 add r0, r0, 1
la
1 store r0, i(0) la

10 store r0, i(0)
la
2 li r1, 0 la

11 load r1, x (0)
la
3 store r1, x (0) la

12 load r2, t (r0)
la
4 load r0, i(0) la

13 add r1, r1, r2
la
5 li r1, n la

14 store r1, x(0)
la
6 cmp r0, r1 la

15 b la
4

la
7 bc(≥) la

16 la
16 . . .

la
8 load r0, i(0)

(b) Assembly program

Figure 2. Compilation

pings are further represented by a bijection πL : Lr
s → Lr

a where
Lr

s ⊆ Ls and Lr
a ⊆ La (the program point mapping) and a bijection

πX : X r
s → X r

a where X r
s ⊆ Xs and X r

a ⊆ Xa (the variable mapping).
Note that Lr

a ⊂ La in general, since intermediate assembly program
points have no source counterpart as is the case for la

1 , la
3 , la

5 , . . . In
case some non reachable source program points are deleted, we also
have Lr

s ⊂ Ls. The semantic correspondence between Ps and Pa can
be stated as a one to one relation between the observational abstrac-
tion of the traces of both programs. Most optimizations do not fit
in this simple framework; some are dealt with in Sect. 5. Erasure
operators Φi : (Li×S)?→ (Lr

i ×S)? (for i ∈ {s,a}) can be defined,
that abstract away program points and memory locations which do
not belong to Lr

i and to X r
i : Φi(〈(l0,ρ0), . . . ,(ln,ρn)〉) is the trace

〈(lk0 ,ρ
′
k0

), . . . ,(lkm
,ρ′km

)〉 where k0 < .. . < km, {k0, . . . ,km} = { j |
l j ∈ Lr

i } and ∀i, ρ′ki
is the restriction of ρki

to X r
i . The observational

abstraction operators αr
i : P((Li×S)?)→ P((Lr

i ×S)?) can be de-
fined by αr

i (X) = {Φi(σ) | σ ∈ X } for i ∈ {s,a}. The stores ρs and
ρa are equivalent if and only if ∀xs ∈ X r

s , ∀xa ∈ X r
a , πX (xs) = xa⇒

ρs(xs) = ρa(xa) (we note ρs 'πX ρa for the store equivalence). The
traces σs = 〈(ls

0,ρ
s
0), . . . ,(l

s
n,ρs

n)〉 and σs = 〈(la
0 ,ρa

0), . . . ,(l
a
n ,ρa

n)〉
are equivalent (noted σs'σa) if and only if ∀i, la

i = πL(ls
i)∧ρs

i 'πX

ρa
i . If ∀ j ∈ {s,a}, Tj ⊆ P((Lr

j×S)?), we write Ts ' Ta if and only
if ' is a bijection between Ts and Ta.

DEFINITION 1 (COMPILATION CORRECTNESS, [20]). The
compilation of Ps into Pa is correct with respect to πL and πX if and
only if αr

s(JPsK) ' αr
a(JPaK) (i.e. iff αr

s(JPsK) and αr
a(JPaK) are in

bijection).

3 A Symbolic Representation of Programs
An atomic source statement is usually expanded at compile time
into a long and intricate sequence of assembly instructions (a source
statement can be compiled into many different sequences). Opti-
mizations (Sect. 5) make the correspondence between source and
assembly actions even more involved. Therefore, we design in this
section a “higher level” symbolic representation of the semantics of
programs which proves efficient to relate the behaviors of source
and compiled programs.

3.1 Symbolic Transfer Functions
Symbolic Transfer Functions (STFs) appeared in the work of Colby
and Lee [7] as a means to avoid accumulated imprecisions along
paths in the control flow: an STF describes precisely the store trans-
formation between two program points. STFs turn out to be also a
nice setting for reasoning about program equivalence.

An STF δ is either a parallel assignment b−→x ←−→e c, where −→x and
−→e are respectively a sequence of memory locations and a sequence
of expressions; or a conditional construct bc ? δt | δ f c where c is
a condition and δt , δ f are STFs; or the void STF � (which stands
for the absence of transition). Note that the empty assignment is the
identity; it is denoted by ι. We write T for the set of STFs.

Semantics of Symbolic Transfer Functions: An STF is inter-
preted by a function which maps a store ρ to the set of possible
transformed stores in presence of non-determinism. In the follow-
ing, we forbid non-determinism for the sake of concision; hence, a
transfer function is interpreted by a function which maps a store to a
store or to the constant ⊥S (in case of error, there is no transformed
store). We assume that the semantics of expressions and conditions
is defined as follows: if e is an expression, then JeK ∈ S→ R and
if c is a condition, then JcK ∈ S→ B where B denotes the set of
booleans {T ,F }. The update of the variable x with the value v in
the store ρ is denoted by ρ[x← v]. The semantics of STFs is defined
by induction on the syntax as follows:

• J�K(ρ) =⊥S
• Jbx0 ← e0, . . . ,xn ← encK(ρ) = ρ[x0 ← v0] . . . [xn ← vn], where
∀i,JeiK(ρ) = vi. Note that the values are all computed in the
initial environment ρ.

• Jbc ? δt | δ f cK =

{

JδtK(ρ) if JcK(ρ) = T
Jδ f K(ρ) if JcK(ρ) = F

Composition of Symbolic Transfer Functions: The composition
of two STFs can be written as an STF:

THEOREM 1 (COMPOSITION, [7]). There exists a (non unique)
computable operator ⊕ : T×T→ T such that ∀δ0,δ1 ∈ T, Jδ0⊕
δ1K = Jδ0K◦ Jδ1K.

EXAMPLE 1. If x and y are not aliased, if δ0 = by > 3 ? bz←
y + xc | bz← 3c c and δ1 = bx < 4 ? by← xc | � c, then bx <
4 ? bx > 3 ? bz← 2x,y← xc | bz← 3,y← xc c | � c is a correct
definition for δ0⊕δ1.

The composition is generally not associative; yet, we do not distin-
guish δ0⊕ (δ1⊕ δ2) and (δ0⊕ δ1)⊕ δ2, since they have the same
semantics. We do not describe completely a composition function.
The main problem of such an operator generally concerns the alias-
ing problem. If δ0 reads a location l0 and δ1 writes into the location
l1, two cases should be considered when computing δ0⊕δ1: either
l0 and l1 are aliases or they are not. Consequently δ0⊕ δ1 should
contain a conditional testing the aliasing of l0 and l1. Hence, mul-
tiple compositions may result in huge functions (exponential blow-
up). Therefore, the use of a simplification function is required to
keep the STFs “small”. Let isalias(x,y) denote the dynamic alias-
ing test of locations x and y: the condition isalias(x,y) is true if
and only if x and y represent the same memory location. Then, the
following simplification rules are acceptable:

bisalias(x,x) ? δt | δ f c → δt
bisalias(x,ri) ? δt | δ f c → δ f if x is a variable

bisalias(t[e0],t[e1]) ? δt | δ f c → δt if ∀ρ, Je0K(ρ) = Je1K(ρ)

DEFINITION 2 (SIMPLIFICATION FUNCTION). A simplification
function is a computable function S : T→ T which preserves the
semantics of STFs: ∀δ ∈ T, JS(δ)K = JδK

3.2 Semantics Using Symbolic Transfer Func-
tions

In the following, we always assume that the transfer relation of a
program can be encoded as a table of STFs. Let P = (LP,→P, iP).
A table of STFs encoding the transfer relation→P is a family ∆P =
(δl,l′)l,l′∈LP

where δl,l′ stands for the STF between points l and l′

and is such that:

δl,l′ (ρ) = ρ′ ⇐⇒ (l,ρ)→P (l′,ρ′)

Intuitively, δl,l′ (ρ) = ρ′ means that program point l′ can be reached
with store ρ′ after one transition step from the state (l,ρ) if ρ′ 6=
⊥S. If δl,l′ (ρ) = ⊥S, then l′ cannot be reached after the execution
state (l,ρ). Therefore, the relation→P is completely and uniquely
characterized by ∆P (this also holds in the non-deterministic case).
In practice, most of the δl,l′ are �, so we use a sparse representation
for the transition tables.

In the case of C programs, each statement defines a family of trans-
fer functions; in case of assembly programs, each instruction de-
fines one or two STFs (two in the case of conditional branching
only). As an example, we give the STF-based encoding for two
instructions:

• The load l : load r0, x(v); l′ : ... succeeds if and only if x + v is
a valid address:

δl,l′ = bisaddr(x + v) ? br0← content(x+ v)c | � c

• The comparison l : cmp r0, r1; l′ : ...:

δl,l′ = br0 < r1 ? bcr← LTc
| br0 = r1 ? bcr← EQc | bcr←GTc cc

For a complete definition of the semantics of source (Fig. 1(a)) and
assembly (Fig. 1(b)) programs using STFs, we refer the reader to
Appendices A and B.

Henceforth, we assume that the semantics of programs is given by
their STFs-based representation. The STFs-based assembly seman-
tics may abstract away some “low level” aspects of assembly in-
structions, like the problems of alignments inherent in usual store
and load instructions or like the instructions devoted to the man-
agement of the cache memory and of the interruptions mechanism
(system-level operations). Similarly, the semantics encoding may

ignore overflows. If so, the forthcoming proofs of correctness do
not take these properties into account, because of this initial abstrac-
tion. The assembly model is defined by the translation of assembly
programs in tables of STFs.

3.3 Towards Compilation Certification
We assume that the compiler provides the program point mapping
and the memory location mapping together with the program Pa
when compiling Ps. In the following, we suppose that Lr

s = Ls
and X r

s = Xs without a loss of generality; hence, Φs is the identity.
We envisage here the definition of a new program observationally
equivalent to Pa and more adapted to further formal reasoning about
compilation. This program (the reduced-LTS) will be widely used
in Sect. 4. A source reduced-LTS is usually also defined.

Reduction of Labeled Transition Systems: We suppose here that
Lr

a contains at least one point in each strongly connected compo-
nent of Pa: we assume that at least one point in each loop of the
compiled program can be mapped to a point in the source, in order
to be able to relate in a good way the behaviors of both. The entry
point ia is also supposed to be in Lr

a. Then, a reduced-LTS Pr
a can

be defined by considering the points in Lr
a only and defining ade-

quate STFs between these points. If l, l′ ∈ Lr
a and c = l, l0, . . . , ln, l′

is a path from l to l′ such that ∀i, li 6∈ Lr
a, then we can define

the associated STF δc
l,l′ by composing single step STFs (Th. 1).

There is only a finite number of paths c satisfying the above con-
dition. The transition relation of the reduced-LTS is defined by
(l,ρ)→ (l′,ρ′)⇐⇒∃c, δc

l,l′ (ρ) = ρ′. Note that any pair of points
of the reduced-LTS defines a finite set of STFs instead of one STF
in the case of the original LTS. The traces of the reduced-LTS are
the same as those of the initial LTS modulo deletion of intermediate
states, as mentioned below:

THEOREM 2 (LTS REDUCTION). Let Ψr be the func-
tion Ψr : (La × S)? → (Lr

a × S)?; 〈(l0,ρ0), . . . ,(ln,ρn)〉 7→
〈(lk0 ,ρk0), . . . ,(lkm

,ρkm
)〉 where {k0, . . . ,km} = {i | li ∈ Lr

a} and
k0 < .. .< km. Then, Ψr is onto between JPaK and JPr

aK (the program
point forget operator): ∀σ′ ∈ JPr

aK, ∃σ ∈ JPaK, σ′ = Ψr(σ).

If the compilation of Ps into Pa is correct, the bijection between
traces of both programs maps a one-step transition in Ps to a one-
step transition in Pr

a .

Simplification: The computation of the reduced-LTS should ben-
efit from the use of a simplification. For instance, real assembly
languages compute and load addresses in several stages: the first
half of the address is loaded, then the second half is loaded and
shifted and the sum yields the address. Similarly, the load of a dou-
ble floating point constant can be split into several operations. A
simplification (Def. 2) reduces such sequences of operations into
atomic ones. In practice, we noted that using an efficient simplifi-
cation procedure was crucial to make further certification easier.

4 Certification of Compilation and
of Compiled Programs

We consider the certification of compilation and of compiled pro-
grams in the framework introduced above.

4.1 Abstract Invariant Translation and
Invariant Checking

A first goal is to check that the assembly programs complies with
some safety requirements. This can be done by inferring an in-
variant of the source program, translating it into a property of the
assembly program and checking the soundness of this invariant. We

envisage here a class of invariants (large enough for most applica-
tions) and the way we can translate them, using the formalism of
Abstract Interpretation [8].

Let D] be an abstract domain for representing sets of stores:

(P(S),⊆) −−→←−−α

γ
(D],v). The domain D] provides usual abstract

operations (⊥ and > constants, an associative and commutative
t operator and u,∆,∇ operators), a sound assignment operator
(assign : P(X)×E×D]→ D] inputs a set of locations, an expres-
sion and an abstract invariant and handles the assignment; in case
the set of locations is not a singleton, we are in presence of a “may
assign”), a sound guard operator (guard : C×B×D]→ D] inputs
a condition, a boolean and an abstract invariant). The soundness of
the guard operator boils down to ∀c ∈ C, ∀d ∈ D], ∀b ∈ B, {ρ ∈
γ(d) | JcK(ρ) = b} ⊆ γ(guard(c,b,d)): intuitively γ(guard(c,b,d))
contains at least all the stores in γ(d) which evaluate the condition
c to b (the soundness of assign is similar). It is a general result
of the Abstract Interpretation theory [8] that a sound approxima-
tion JPsK

] : Ls→ D] of the behaviors of the source program can be
computed: ∀l ∈ Ls, {ρ ∈ S | 〈. . . ,(l,ρ), . . .〉 ∈ JPsK} ⊆ γ(JPsK

](l)).

The issue we address here is how to derive from JPsK
] a property

for the assembly program, i.e. a local invariant I]
a(la) for each point

la ∈ La. The compilation of Ps into Pa is here assumed to be correct.
We write δ] for α ◦ JδK ◦ γ (most precise abstract transfer function
corresponding to δ; an upper approximation of it is usually com-
puted).

• Let ls ∈ Ls, la ∈ Lr
a such that πL(ls) = la and ρa ∈ S such that

there exists σa = 〈. . . ,(la,ρa), . . .〉 ∈ JPaK. The correctness of the
compilation entails the existence of ρs ∈ S such that ρs 'πX ρa.
We deduce that ρa ◦ πX ∈ γ(JPsK

])(ls), which defines a sound
local invariant I]

a(la) at the assembly level at point la. Intuitively,
a property of xs is “inherited” by πX (xs) and if ¬(∃xs ∈ X r

s , xa =

πX (xs)), then the source invariant JPsK
](ls) does not give any

information about xa.
• Once a local invariant has been determined for all the points of

the reduced-LTS, a local invariant can be computed for any other
label of La under the assumption that any loop of Pa contains
at least a point that is in Lr

a. Indeed, let la ∈ La. There exists
a finite set P of paths c = l′a, l0, . . . , ln, la such that l′a ∈ Lr

a and

l0 6∈ Lr
a, . . . , ln 6∈ Lr

a and we can define a local invariant I]
a(la):

I]
a(la) =

G

c∈P ,c=l′a,...,la

δ]
c(I

]
a(l
′
a)). (1)

where δ]
c = (δln,la ⊕ . . .⊕δl′a ,l0)

] if c = l′a, l0, . . . , ln, la

Moreover, I]
a(la) is sound: γ({ρ ∈ S | 〈. . . ,(la,ρ), . . .〉 ∈ JPaK}) v

I]
a(la). We deduce that a sound invariant can be derived for Pa from
JPsK

] (see [20] for an extensive proof):

THEOREM 3 (INVARIANT TRANSLATION SOUNDNESS). If the
compilation of Ps into Pa is correct, then the invariant I]

a is sound,
that is:

∀la ∈ La, {ρ ∈ S | 〈. . . ,(la,ρ), . . .〉} ⊆ γ(I]
a(la)).

Assuming the correctness of the compilation of Ps into Pa is gen-
erally not acceptable; hence, we envisage now a way to check the
soundness of the translated invariant I]

a independently of the way it
is derived from the source invariant.

Intuitively, Invariant Checking amounts to verifying the inductive-
ness of the translated invariant at the reduced-LTS level (Th. 2).

The principle of Invariant Checking (IC) is stated by the following
theorem (we still suppose that Lr

a contains one point in each cycle
of La):

THEOREM 4 (INVARIANT CHECKING). If I]
a is an assembly ab-

stract invariant such that for all la, l′a ∈ Lr
a, and for all path c :

la, l0, . . . , ln, l′a such that l0 6∈ Lr
a, . . . , ln 6∈ Lr

a, δ]
c(I

]
a(la)) v I]

a(l′a),

then I]
a is sound.

EXAMPLE 2. A basic interval analysis would infer the invariants
i ∈ [0,n− 1] at point ls

3 and i ∈ [1,n] at point ls
4. The translated

invariant I]
a is such that I]

a(la
8)(i) = [0,n−1] and I]

a(la
11)(i) = [1,n].

This ensures local stability (for la
8 and la

11) since δ]
la
8 ,la

11
(I]

a(la
8)) v

I]
a(la

11). Stability is proved by checking similar inequalities for all
pairs of program points in the assembly reduced-LTS.

In practice, this checking is performed in an abstract domain D′]

more precise than D], since the structure of the assembly program
can be much more complicated and require the refinement of I]

a.
For instance, the checking of an interval invariant at point la

15 in
the example above requires knowing that the content of r0 and the
content of the memory cell of address i are equal at point la

11. This
information is provided by an auxiliary analysis using the abstract
domain DE of the set of the partitions of the set of the assembly
memory locations. This domain defines a Galois connection [8]

(P(Xs→ R),⊆)−−−→←−−−αe

γe
(DE ,ve), where:

ρ ∈ γe(ϒ) ⇐⇒ ∀ψ ∈ ϒ, ∃v ∈ R, ∀x ∈ ψ, ρ(x) = v.

Then, the invariant checking would be done in the reduced product
of D] and DE [10] (usually, only an approximation of the reduced
product is effectively computed). Among the other domain refine-
ments which may turn out to be necessary to handle a real assembly
language, we can cite the reduced product with the congruence do-
main [11]: the pair (a,b)∈N×N represents the set {a+kb | k∈Z}.
Indeed, analyzing the access to struct members or array cells re-
quires congruence information about the memory addresses.

Precision and STFs: The decomposition of source statements into
sequences of instructions induces a loss of structure which may
compromise invariant checking when STFs are not used. Rela-
tional abstract domains often handle precisely complex operations
(assignments and guards of complex expressions) when done in one
step as is the case for the octagons [13] for some linear assignments
like y := Σi ai ?xi where ai ∈Z. Similarly, precise transfer functions
carry out in a better way “big” expressions in one step. For instance,
the symbolic manipulations implemented in the analyzer of [5] re-
duce x +(y− x) to y (under certain conditions and with corrections
due to possible floating points rounding errors), which may not be
doable anymore if an assignment is split into a sequence of state-
ments. More formally, if ζ = Jδ0K◦ . . .◦ JδnK then ζ] v δ]

0 ◦ . . .◦δ]
n

since λx.x v γ◦α. Generally, ζ] @ δ]
0 ◦ . . .◦δ]

n: this strict inequal-
ity corresponds to a loss of precision. However, STFs solve this
problem since they rebuild expressions (Th. 1); hence, they al-
low to recover the precision achieved at the source level, provided
the abstraction occurs after symbolic composition of the STFs [7],
i.e. provided we use (δ0⊕ . . .⊕ δn)

], which is more precise than
δ]

0 ◦ . . .◦δ]
n.

REMARK 1 (REFINEMENT AND STFS). The use of STFs can
supersede the use of a symbolic domain or some domain refinement.
For instance, the checking procedure of [20] requires a partitioning
over the values of the condition register to handle branching. This

refinement is not necessary any more when using STFs, which is a
major improvement compared to [20] (lower memory usage).

4.2 Translation Validation
The goal of Translation Validation is to prove each compilation sep-
arately by showing that the assembly program correctly implements
the source program. The most common approach proceeds to this
equivalence proof locally.

As seen in Sect. 2.1, the semantics of the program Pi boils down
to the least fixpoint of an operator FPi computed in a complete lat-
tice (for i ∈ {s,a}). By continuity of FPi for the inclusion order,
JPiK =

S

n∈ω Fn
Pi
(/0). Since the erasure operators Φi and ' are also

continuous (for the inclusion order) and Φi(/0) = /0, we deduce the
following theorem, which states the principle of Translation Vali-
dation:

THEOREM 5 (TRANSLATION VALIDATION). If for all Es ∈
P((Ls × Ss)

?) and Ea ∈ P((La × Sa)
?), Φs(Es) ' Φa(Ea) =⇒

Φs(Fs(Es))'Φa(Fa(Ea)), then Φs(JPsK)'Φa(JPaK).

The similarity of Theorem 5 with a Fixpoint Transfer Theorem [9]
can be noticed (the proofs are identical).

In practice, the implication Φs(Es) ' Φa(Ea) =⇒ Φs(Fs(Es)) '
Φa(Fa(Ea)) is proved by showing the following property over the
assembly reduced-LTS, for all program points ls, l′s, la, l

′
a such that

πL(ls) = la and πL(l′s) = l′a:

∀ρs ∈ Xs→ R, ∀ρa ∈ Xa→ R,
ρs 'πX ρa ⇒ Jδls,l′s K(ρs)'πX Jδla,l′a K(ρa)

(2)

This equivalence of STFs can be proved by a conservative deci-
sion procedure at the reduced-LTS level (Sect. 3.3), by observing
only the memory locations in πX . A slight generalization of (2) is
used in practice, since there are generally several STFs between two
control points of a Reduced-LTS, as seen in Sect. 3.3. Handling
non-determinism would require considering sets of states instead
of states in (2). In case the semantics of the source language leaves
some behaviors undefined (as the C semantics does), the proof of
adequation of STFs outlined by (2) should restrict to well-defined
behaviors: the definition of STFs can be extended by an additional
“undefined behavior” STF ~, such that ∀ρ ∈ S, J~K(ρ) = S. An-
other approach to this problem proceeds by specializing the source
semantics, which is doable if the way the compiler handles the “un-
defined” cases is known.

EXAMPLE 3 (STFS ADEQUATION). In the case of the example
programs of Fig. 2, ls

2 corresponds to la
4 ; ls

3 to la
8 . After automatic

simplification, δls
2,l

s
3
= bi < n ? ι | � c and δla

4 ,la
8

= bcontent(i) <

n ? bcr ← LT,r1 ← n,r0 ← content(i)c | � c (since isaddr(i)
holds). These STFs are symbolically equivalent (in the sense of
(2)), since cr, r0 and r1 are not mapped to any source variable and
since the location of address i is mapped to the variable i.

Checking the equivalence of δls
3,l

s
4

and δla
8 ,la

11
requires to assume that

t + content(i) is a valid address if and only if i is a valid index in
the array t (predicate noted isindex(t, i)) and that these locations
are associated by πX : this stems from πX and from the assembly
memory model.

As in Ex. 2, the case of node ls
5 requires more information: checking

the equivalence of δls
4,l

s
5

and δla
11,l

a
15

requires knowing that r0 and i
store the same value at point la

11, which can be proved by an auxil-
iary equality analysis (as in Sect. 4.1).

Principle of a translation verifier: In practice, the local property
(2) is checked by a specialized theorem prover, able to show the

equivalence of expressions and to decide implications and incom-
patibilities between conditions. First, we observe that STFs can be
seen as trees. A branch in an STF defines a (possibly void) sequence
of conditions c0, . . . ,cn (when an “else” branch is taken, we get a
negative condition) and either a (possibly empty) set of assignments
or an error transition �. We propose here a typical algorithm for
attempting to prove the local property displayed above (ls, l′s, la, l

′
a

denote program points such that πL(ls) = la and πL(l′s) = l′a):

- Assume that corresponding source and assembly memory loca-
tions contain the same value.

- Simplify the trees δls,l′s and δla,l′a by eliminating redundant con-
ditions on their branches (and using equivalences like bc ? � |
� c ≡�).

- Reduce the assembly STF using information about equality rela-
tions provided by a preliminary analysis.

- For each pair of branches cs
0, . . . ,c

s
m of leaf f s in δls,l′s and

ca
0, . . . ,c

a
n of leaf f a in δla,l′a , assume cs

0, . . . ,c
s
m,ca

0, . . . ,c
a
n and

check that:
. either the current assumption is contradictory (the branches

are not compatible);
. or the leaves f s and f a are equivalent: either they are both

the � STF or they correspond to semantically equivalent se-
quences of assignments.

If one step fails to prove the incompatibility of the branches or the
equivalence of the assignments at the leaves, then the Translation
Validation fails and yields an (possibly false) alarm. This algo-
rithm is conservative and possibly not optimal (global simplifica-
tions could be done right at the beginning by considering compati-
ble branches only).

Among systems proving a semantic equivalence of source and com-
piled programs we can cite the systems of [19, 23] and of [17].

4.3 Translation Validation-based Invariant
Translation

TV proves the equivalence of the source program and of the com-
piled program for a concrete semantic interpretation of STFs. This
verification is done locally, by checking the semantic equivalence
of source and assembly STFs (Th. 5). By contrast, IC (Th. 4) is
based on an abstract semantic interpretation of STFs and involves
the effective checking of a fixpoint. In case no alarm appears, the
proof is validated. If IC or TV succeeds, the confidence level in the
compilation correctness increased: both approaches aim at showing
that some property of the original program is preserved.

Furthermore, TV and IT can be advantageously combined: indeed,
Th. 3 suggests that invariant checking could be discarded if we
can assume compilation correctness, which can be proved by TV.
If two symbolic transfer functions δ and δ′ are semantically equiv-
alent, then they can be abstracted to a same abstract function δ].
We deduce the principle of this approach from Th. 3 and Th. 5 as
follows (with the notations of Sect. 4.1 and Sect. 4.2):

THEOREM 6. If the hypotheses of Th. 5 hold (i.e. if for all
Es ∈ P((Ls×Ss)

?) and Ea ∈ P((La×Sa)
?), Φs(Es)'Φa(Ea) =⇒

Φs(Fs(Es)) ' Φa(Fa(Ea))) and if ∀l ∈ Ls, {ρ | 〈. . . , l,ρ), . . .〉} ∈

JPsK⊆ γ(JPsK
](l)), then the invariant I]

a computed as in Sect. 4.1 is
sound.

A first advantage of doing TV instead of IC to justify the soundness
of the invariant translation is that the domain refinement evoked in
Ex. 2 is not necessary any more: the design of the reduced-product
D]×DE can be avoided. Moreover, running TV once is enough to
prove several IT passes: only one checking procedure is required.

However, the main practical advantage we noticed is that the TV
process described in Sect. 4.2 provides very useful information
about the meaning of some assembly sequences. For instance, the
conversion of integers into floating point values involves compli-
cated sequences of assembly operations: in the case of the real
PPC language, such a conversion is commonly compiled into a se-
quence of bitwise operations, subtractions and multiplication. This
sequence can be proved (by hand) to be equivalent to the conver-
sion. Then, TV should recognize such sequences and replace them
by the atomic “conversion” operation: TV produces a new, sim-
pler assembly STF equivalent to the original one. This latter STF
makes the further invariant propagation step (following (1)) more
efficient and more precise: indeed, the design of a precise abstract
counterpart for the original intricate sequence would be painful.

Finally, we propose the following process for certifying both the
compilation and the compiled code:

1. compilation of Ps and Pa to reduced-LTSs, using STFs
2. Translation Validation (Sect. 4.2); replacement of assembly

STFs by “simpler” ones during the proof;
3. translation of the invariant computed at the source level as seen

in Sect. 4.1 (no Invariant Checking required);
4. checking that the safety requirements are fulfilled using the

translated invariant

Note that the step 4 is still strictly necessary to prove the soundness
of the compiled code (i.e. that it yields no run-time error). Indeed,
the equivalence proof of step 3 holds with respect to the mappings
πX and πL: it entails that part of the computations done at the as-
sembly level implement the source program but it does not mean
that any computation done at the assembly level is the counterpart
of some part of the source program. Therefore, the verification of
the soundness of the assembly program must eventually be done at
the assembly level, even if the source analysis concludes that the
source program is semantically safe.

4.4 Implementation and Results
We implemented a certifier following the approach introduced in
Sect. 4.3 in OCaml [12]: the IT is preceded by a TV step which
allows to deal with simplified assembly STFs when translating in-
variants and to avoid coping with abstract invariant checking.

Our goal was to certify automatically both the compilation and the
absence of Run-Time Errors (RTE) in the compiled assembly pro-
grams. We also expected the certifier to scale up. The target archi-
tecture is a 32 bits version of the Power-PC processor; the compiler
is gcc 3.0.2 for Embedded ABI (cross-compiler). The source invari-
ants are computed using the analyzer presented in [5] and achieve
a very low false alarms number when used for checking RTE. This
result is achieved thanks to a very precise domain, using octagons
[13], boolean relations, ellipsoid domain, control-based partitioning
and other domain refinements.

The benchmarks involve three programs (of small, medium and
large size) corresponding to typical embedded applications: the
third one is a real life application, running in true systems for a
long time (it amounts to about 75 kLOC after constant propagation
and features 10000 static variables) whereas the two others cor-
respond to representative development examples. These programs
are usually compiled with a low level of optimization since the user
generally wishes the compiler to produce regular and predictable
results in the context of critical systems. Hence, the certification
we attempt to operate here is realistic.

The translation verifier handles most C features (excluding dynamic
memory allocation through pointers which is not used in the fam-

Program 1 2 3
Size of the source (lines) 369 9500 74365
Size of the assembly (lines) 1932 56626 344005
(1) C frontend (s) 0,04 0,53 2,97
(1) Assembly frontend (s) 0,08 0,97 13
(1) Mapping construction (s) 0,03 0,39 0,81
(2) Translation Validation (s) 0,14 0,62 9,45
Alarms in Trans. Validation 0 0 0
(3) Invariant translation 0,23 8,22 84,5
(4) + RTE checking (s)
Alarms (Runtime Errors) 0 0 22
Source analysis (s) 1,15 46,79 3698

Table 1. Benchmarks

ily of highly critical programs under consideration): procedures
and functions, structs, enums, arrays and basic data types and all
the operations on these data-types. The fragments of C and of the
Power PC assembly language we considered are larger than those
presented in Appendices A and B: In particular, a restricted form of
alias is handled for the sake of passing by reference of some kind
of function arguments like arrays. Non-determinism is also accom-
modated (volatile variables). The mappings πX (for variables) and
πL (for program points) are extracted from standard debugging in-
formation. The verifier uses the Stabs format (hence, it inputs as-
sembly programs including these data).

The equivalence proof is carried out by an optimized first order
Resolution-based prover which accepts only clauses of length 1
(details about Resolution can be found in [6]). This requires a pre-
normalization of STFs (the conditions are all expanded into atomic
ones). Clauses are all of the form e0R e1 (where R is a relation) or
e0 (where e0 is a boolean expression); hence, in case a derivation of
false exists, it can be found immediately. The Unification procedure
is mostly based on the ML pattern matching of the rules specifying
the equivalence of expressions; it is not complete but very fast. Two
auxiliary analyses were necessary in order to make the translation
validation successful:

• the equality analysis mentioned in Sect. 4.1;
• a congruence analysis [11] since alignments should be handled

carefully (in order to accommodate struct and enum data types).

The whole development amounts to about 33000 lines of OCaml
code: The various parsers and interfaces (e.g. with the source ana-
lyzer) are about 17000 lines; the kernel of the certifier (the imple-
mentation of the STFs and the prover) is about 6000 lines; the sym-
bolic encoding functions (i.e. the formal definition of the semantics
of the source and assembly languages) are about 3000 lines; the
invariant translator and the certifier are about 5000 lines. The most
critical and complicated part of the system corresponds to the sym-
bolic composition (2000 lines) and to the prover (1500 lines).

The four steps described in the end of Sect. 4.3 were run on a 2.4
GHz Intel Xeon with 4 Gbytes of RAM. TV succeeds on the three
programs (no alarm is raised). The results of the benchmarks are
given in table 1 (sizes are in lines, times in seconds).

As can be seen in the table above, most of the time for the assembly
certification is spent in the invariant translation and the checking of
RTE which is due to the size of the invariants dumped by the source
analyzer (although only part of the source invariant was used for the
assembly certification). The step (1) is longer than TV because the
frontend performs massive STFs simplifications, which make the
equivalence checking more easy: there was no dynamic aliasing
tests (Sect. 3.1) in the simplified STFs. The checking time is rather

small compared to the source analysis done to synthesize, process
and serialize the source invariant (last raw). The memory require-
ment for the third program is 750 Mbytes for the source analysis;
400 Mbytes for the assembly certification (i.e. for the step (4)).
This requirements are much smaller than those of the IC algorithm
used in [20], since the certification of the first program was about 20
s long and required about 80 Mbytes; the third program could not
be treated. The key of scalability is to make IC redundant and to do
TV instead: the abstract fixpoint checking turns out to be much too
resource consuming. We believe that a direct analysis of the assem-
bly program would be very painful to design (complex invariants)
and not scalable.

TV is successful: no false alarm is raised by the equivalence proofs,
which justifies the further IT. No possible runtime errors are re-
ported in the first two programs. The alarms reported for the last
one concern the same program points as the source analysis for the
RTE checking. These alarms can be disproved by hand, so the certi-
fier proves able to certify the assembly program almost completely.
The main conclusion of this experimental study is that the approach
to IT based on TV (Sect. 4.3, Th. 6) is realistic and scalable to large
critical applications.

5 Optimizing Compilation
The previous sections focused on non-optimizing compilation, as
defined in Def. 1. We envisage the extension of our framework
to optimizing transformations by considering a few representative
cases and generalizing the solutions.

5.1 Methodology
First, we notice that most optimizations do not fit in the above
framework since they are not considered correct in Def. 1. Hence,
this definition should be generalized, so as to accept these new
transformations as “correct compilations”.

The certification methods presented in Sect. 4 are based on the
reduced-LTS notion. Hence, two approaches for handling an opti-
mizing transformation can be proposed:

• enhancing the definition of reduced-LTSs so as to extend the cer-
tification method (TV and IC algorithms change);

• integrating the proof of correctness of the optimization into the
computation of the reduced-LTS, which allows to extend the cer-
tification method straightforwardly: the optimization is proved
first and a “de-optimized” reduced-LTS is derived; then compi-
lation is proved in the previous sense (only IT must be adapted
since πX and πL are modified).

In the following, we address some families of optimizations; the
issue of certifying series of optimizations is considered afterwards.
Extensive references about optimizations can be found in [1, 3]. We
do not claim to be exhaustive (which would not be doable here);
yet, the methods presented below are general and can be extended
to more involved transformations than the mere compilation con-
sidered in Sect. 4. We examplify these methods on representative
members of several classes of optimizations.

5.2 Code Simplification: Dead Code/Variable
Elimination

Dead-Code Elimination: In case a compiler detects that some
piece of the source code is unreachable (typically after constant
propagation), it may not compile it: then, some source program
points are not mapped to any assembly program point. This opti-
mization is correct in the sense of Def. 1, since correctness was

defined by the data of a bijection between subsets of the source and
assembly program points Lr

s ⊆ Ls and Lr
a ⊆ La: eliminated program

points should not appear in Lr
s. Non-eliminated points are expected

to appear somewhere in the mapping, therefore we may envisage to
check that the source program points that do not belong to Lr

s ac-
tually are dead-code (optimization checking). Dead-code analyses
done by compilers are most often quite simple, so this should be
checked by a rather coarse dead-code analysis. Hence, no exten-
sion of the reduced-LTS notion is required (the transformation is
verified at the source reduced-LTS elaboration level).

Dead-Variable Elimination: Most compilers do liveness analysis
in order to avoid storing dead-variables. A slightly more compli-
cated definition of the variable mapping πX can accommodate this
further transformation. Indeed, the abstract counterpart of a source
variable depends on the program point and may not exist at some
points, so πX : Lr

s×Xs→ Xa ∪{ /0} where πX (ls,xs) = /0 means that
xs has no assembly counterpart at point ls and should not be live at
that point if the optimization is correct.

Copy propagation and register coalescing: Compilers attempt to
keep a variable that is used several times in a piece of code in a
register and do not store it back to memory before using it again.
For instance, the load instructions la

4 , la
8 and la

11 in the example pro-
gram of Fig. 2(b) could be eliminated, since the variable i is stored
in register r0 everywhere in the loop. The same approach as for
dead-variable elimination works here.

5.3 Order Modifying Transformations:
Instruction Level Parallelism

We envisage now the case of transformations which compromise
the correspondence of program points; our study focuses on in-
struction scheduling. Instruction Level Parallelism (ILP or schedul-
ing) aims at using the ability of executing several instructions at the
same time featured by modern architectures, so as to cut down the
cost of several cycles long instructions. Hardware scheduling is not
a difficulty, since its soundness stems from the correctness of the
processor (which should be addressed separately); hence, we con-
sider software scheduling only ([2], Chap. 20). Software schedul-
ing does not fit in the correctness definition presented in Sect. 2.2,
since the pieces of code corresponding to distinct source statements
might be inter-wound (assembly instructions can be permuted). In-
deed, Fig. 3 displays an example of software scheduling: the body
of the loop of the example program of Fig. 2 is optimized so as
to reduce pipeline stalls. If load, store and arithmetic instructions
all have a latency of one cycle, then the execution of the code of
Fig. 3(b) yields one cycle stall against four in the case of the (non
optimized) code of Fig. 3(a). The pieces of code corresponding
to the statements ls

3→ ls
4 and ls

4→ ls
5 are inter-wound, so ls

4 has no
counterpart in the optimized program. The mapping πL is no longer
defined; πX becomes a function from (Ls×X) to P(La×X). Be-
fore we extend the algorithms proposed in Sect. 4, we need to set
up a new notion of assembly program points, so as to set up again
a mapping between Ps and Pa.

Correctness of Compilation: Let us consider a source execution
state of the form (ls

4,ρs) in the program of Fig. 2. This state corre-
sponds to a state of the form (la

11,ρa) in the program of Fig. 3(a).
However, it does not correspond to a unique state in the optimized
program (Fig. 3(b)): the value of i is effectively computed at point
lo
14, whereas the value of t + i is read by the next statement at point

lo
11. Therefore, a source execution state (ls,ρ) corresponds to a se-

quence of states in the optimized program; hence, we propose to
define a new assembly observational abstraction αr

a by extending
the Φa function (Sect. 2.2). The new Φa should rebuild the orig-

la
8 load r0, i(0)

la
9 add r0, r0, 1

la
10 store r0, i(0)

la
11 load r1, x(0)

la
12 load r2, t (r0)

la
13 add r1, r1, r2

la
14 store r1, x(0)

la
15 . . .

(a) Unoptimized code

lo
8 load r0, i(0)

lo
9 load r1, x (0)

lo
10 add r0, r0, 1

lo
11 load r2, t (r0)

lo
12 add r1, r1, r2

lo
13 store r0, i(0)

lo
14 store r1, x (0)

lo
15 . . .

(b) Optimized code

Figure 3. Software Scheduling

inal control points, by associating so-called fictitious points to se-
quences of labels in the optimized code:

DEFINITION 3 (FICTITIOUS STATE). In case ls ∈ Ls corre-
sponds to the sequence of assembly points la

0 , . . . , la
n , we introduce

a fictitious label l f representing the sequence and a set of fictitious
memory locations Xl f

⊆ La×X representing the memory locations

observed at that point. Furthermore, we assert that πL(ls) = l f .

The fictitious state (l f ,ρ f) is associated to the sequence of states
(la

0 ,ρa
0), . . . ,(l

a
n ,ρa

n) if and only if ρ f is defined by ∀(la
i ,xa) ∈

X f , ρ f (xa) = ρa
i (xa).

Note that the definition of the fictitious states is not ambiguous: in
case πX (ls,xs)∩Xl f

contains more than one point, the definition of

ρ f (xs) does not depend on the choice of the corresponding fictitious
location, since ∀(la

i ,xa),(la
i′ ,x
′
a) ∈ πX (ls,xs), ρa

i (xa) = ρa
i′ (x
′
a) if πX

is correct (in practice, the equality analysis of Sect. 4.1 subsumes
the verification of the correctness of πX).

The new Φa operator inputs a trace σ and builds up a fictitious trace
σ f by concatenating fictitious states corresponding to the sequences
of states in σ in the same order as they appear in σ. As in Sect. 2.2,
the new αr

a operator can be defined by αr
a(E) = {Φa(σ) | σ ∈ E}

and the transformation is said to be correct if αr
s(JPsK)' αr

a(JPaK).

EXAMPLE 4. The mapping of the first and of the last points of
the loop are unchanged: source variables i,x,t at point ls

3 cor-
respond to assembly locations of addresses i,x,t at point lo

8 and
the same for points ls

5 and lo
15. Yet, at point ls

4, (lo
14, i) ∈ πX (ls

4, i);
(lo

9 ,x) ∈ πX (ls
4,x) and (lo

9 ,t + k), . . . ,(lo
14,t + k) ∈ πX (ls

4,t[k]). This

mapping defines a corresponding “fictitious point” l f
2 for ls

4. Fic-
titious locations are (lo

14, i), (lo
9 ,x), (lo

11,t[k]) and (lo
11,ri) (the last

choice is arbitrary). The fictitious point l f
1 (resp. l f

3) corresponds

to the point lo
8 (resp. lo

15). Fictitious locations for l f
1 are those of

lo
8 and the same for l f

3 . The compilation of Ps (Fig. 2(b)) into Po
(Fig. 3(b)) is correct according to the new compilation correctness
definition.

Computing Reduced-LTS: The computation of the reduced-LTS
is based on the definition of STFs between fictitious points, which is
technical but easy. The TV (Th. 5) and the IC (Th. 4) algorithms are
extended straightforwardly to the reduced-LTS based on fictitious
points (which is a reduced-LTS in the sense of Sect. 3.3).

EXAMPLE 5. The transfer function δl f
2 ,l f

3
displayed below can be

proved equivalent to δls
3,l

s
4

= bisindex(t, i) ? bx← x + t[i]c | � c

since the fictitious locations (lo
11,r0) and (lo

14, i) contain the same
value as would be shown by a simple extension of the equality anal-

ysis:

δl f
2 ,l f

3
= bisaddr((lo

11,t)+(lo
11,r0)) ?

b(lo
15,r1)← content((lo

11,t)+(lo
11,r0)),

(lo
15,r2)← (lo

9 ,x)+ content((lo
11,t)+(lo

11,r0)),
(lo

15,x)← (lo
9 ,x)+ content((lo

11,t)+(lo
11,r0))c

|�c

IC is similar (the same STFs are interpreted in the abstract domain
instead of symbolically).

Invariant Translation: The IT algorithm (Th. 3) should be
adapted so as to produce results for the assembly LTS (and not only
for the reduced-LTS): a fictitious point is a label of the reduced-LTS
but not of the assembly LTS. Indeed, the above extension of Def. 1
allows to derive a local invariant for each point of the reduced-LTS
only (i.e. for each fictitious point).

The solution to this problem also comes from the STFs formal-
ism. Let la ∈ La; let us compute a local invariant for la. If l f

is a fictitious point corresponding to the sequence la
0 , . . . , la

n such
that πX (ls) = l f , a sound local invariant I](l f) can be derived
for l f . Then, if there exists a path c = la

0 , . . . , la
n , la

n+1, . . . , l
a
m, la,

which does not encounter any other fictitious states of the reduced-
LTS a sound abstract upper-approximation of the set of stores {ρ |
〈. . . ,(la

0 ,ρa
0), . . . ,(l

a
n ,ρa

n),(l
a
n+1,ρ

a
n+1), . . . ,(l

a
m,ρa

m),(la,ρ)〉 ∈ JPaK}

can be obtained by applying the abstract STF between l f and la
along the path c to I](l f) (this STF can be computed in the same
way as an STF between fictitious states). A sound invariant I](la)
can be derived by merging these abstract upper-approximations (as
in Sect. 4.1).

The same ideas apply to other optimizations which move locally
some computations, like code motion, Partial Redundancy Elimi-
nation (with a more general equality analysis than in Sect. 4.1) or
Common Subexpressions Elimination.

5.4 Path Modifying Transformations: Loop
Unrolling

Most compilers carry out structure modifying optimizations such
as loop unrolling and branch optimizations (these transformations
reduce time in branchings and interact well with the scheduling op-
timizations considered in Sect. 5.3). These transformations break
the program point mapping πL in a different way: one source point
may correspond to several assembly points (not to a sequence of
points). In this section, we focus on loop unrolling. This optimiza-
tion consists in grouping two successive iterations of a loop, as is
the case in the example below (we use source syntax for the sake of
convenience and concision; i++ represents i := i+1):

l0 : i := 0; l′0 : i := 0;
l1 : while(i < 2n){ l′1,e : while(i < 2n){

l2 : B; l′2,e : B; l′3,e : i++;
l3 : i++;} l′1,o l′2,o : B; l′3,o : i++;}

l4 : l′4 :

We write P for the original code; P′ for the optimized one.

Correctness of Compilation: The source point l2 corresponds to
two points in P′ (l′2,e and l′2,o); and the same for l3. We also du-
plicated l1 into l′1,e and l′1,o for the sake of the example. The in-
dex e (resp. o) is used for points where the value of i is even
(resp. odd). As in Sect. 5.3, extending the compilation correct-
ness definition reduces to defining a new Φa function. Indeed, Φa
should “collapse” the pairs of duplicated points into a same point,

mapped to the original point. We write φa : L→ L for the pro-
gram point collapsing function. For instance, in the above example
φa(l′2,e) = φa(l′2,o) = l2. Then, the new assembly erasure operator
is defined by:

Φa(〈(l,ρ), . . . ,(l′,ρ′)〉) = 〈(φa(l),ρ), . . . ,(φa(l
′),ρ′)〉

The only transformation operated on P is the unrolling; conse-
quently, the erasure operator Φs is the identity.

For instance, if we consider the run of P′:

σ = 〈(l′0,ρ0),(l
′
1,e,ρ1),(l

′
2,e,ρ2),(l

′
3,e,ρ3),(l

′
1,o,ρ4),(l

′
2,o,ρ5)〉

then:

Φa(σ) = 〈(l0,ρ0),(l1,ρ1),(l2,ρ2),(l3,ρ3),(l1,ρ4),(l2,ρ5)〉.

Given Φa(σ) ∈ JPK, the correspondence of Φa(σ) with a trace in
Φs(JPK) = JPK is trivial.

Translation Validation: The above generalization of Def. 1 cannot
be taken into account at the reduced-LTS level, so the IC and TV
certification algorithms (Th. 4 and Th. 5) must be adapted. More
precisely, a translation verifier should prove the following:

∀ls, l′s ∈ Ls, ∀la ∈ πL(ls), ∀ρs ∈ S,
∀ρa ∈ {ρ | 〈. . . ,(la,ρ), . . .〉 ∈ JPaK},

ρs 'πX ρa =⇒∃l′a ∈ πL(l′s) such that
Jδls,l′s K(ρs)'πX Jδla,l′aK(ρa)

(3)

Intuitively, the formula states that for any transition on an edge ls, l′s
in the source LTS from a state (ls,ρs) and for any state (la,ρa) in the
target LTS in correspondence with (ls,ρs) there exists a transition in
the target LTS simulating the source transition. Note the additional
assumption ρa ∈ {ρa | 〈. . . ,(la,ρa), . . .〉 ∈ JPaK} in (3), which was
not present in (2): it is due to the partitioning of source states for a
same source point by several different assembly points (like l ′2,e and
l′2,o). For instance, in the case of the example, the transfer function
δl1,l2 = bi < 2n ? ι | � c corresponds to two transfer functions:
δl1,e,l2,e

= bi < 2n ? ι | � c and δl1,o,l2,o
= ι. At point l1,o the value of

i belongs to [1,2n−1]; the equivalence of δl1,o,l2,o
(ρ) and of δl1,l2(ρ)

can be proved for the stores which achieve that property. A simple
auxiliary analysis may be required to collect this kind of properties.

The case of invariant checking (Th. 4) is similar.

Invariant Translation: The derivation of a sound invariant for
P′ from a sound abstract invariant I] for P is rather straightfor-
ward, since the new definition of compilation correctness entails
that ∀ls ∈ Ls, ∀la ∈ πX (ls), {ρ ∈ S | 〈. . . ,(la,ρ)〉 ∈ JPaK} ⊆ {ρ ∈ S |
〈. . . ,(ls,ρ)〉} ∈ JPsK. Consequently, if la ∈ πX (ls), then I](ls) is a
sound invariant for la.

A more precise invariant can be computed for the target program
if the source analysis uses a control partitioning “compatible” with
the transformation – for instance a loop unrolling in the current ex-
ample.

Many optimizations which alter the branching structure of pro-
grams can be handled by doing similar generalizations. Function
inlining also falls in that case.

5.5 Structure Modifying Transformations:
Loop Reversal

Some optimizations focus on small and complex pieces of code
and operate important reordering transformations, like loop rever-
sal, loop interchange, loop collapsing. For instance, loop reversal

modifies a loop in the following way:

l0 : i := 0; l′0 : i := n−1;
l1 : while(i < n){ l′1 : while(i≥ 0){

l2 : B; l′2 : B;
l3 : i := i+1;} l′3 : i := i−1;}

l3 : . . . l′3 : . . .

We write P for the original code; P′ for the optimized one.

Loop reversal may allow to use a specific “branch if counter is null”
instruction featured by some architectures. Such a transformation
is not always legal, so compilers generally check that the trans-
formation does not break any loop carried data-dependence, which
we assume here (in case the transformation would break a data-
dependence, it is illegal; hence, it is not performed).

Correctness of Compilation: Loop reversal changes the order of
execution of some statements, so the adaptation of the compilation
correctness definition requires new Φa and Φs functions to be de-
fined so as to “forget” the order of execution of some pieces of code.
More precisely, the assignments done inside the loop are the same
since the transformation does not break any data-dependence, but
they may be executed in a different order. Therefore, the new obser-
vational operators should forget the order the values are computed
in at some program points. Hence, Φs should replace a sequence
σ of states inside the loop by a function φ from {l2, l3}×X to the
set P(R) such that φ(l2,x) = {ρ(x) | σ = 〈. . . ,(l2,ρ), . . .〉} and the
same for φ(l3,x) (the definition of Φa is similar). Furthermore, the
value of the induction variable i is modified before and after the
loop, so Φa and Φs should abstract it away. The observational se-
mantics of P and P′ is a set of sequences made of states (outside
of the reversed loop) and functions defined as above (representing a
run inside the reversed loop). The compilation is correct if and only
if these semantics are in bijection, as in Def. 1.

Translation Validation: Loop reversal radically changes the struc-
ture of the program, so it is not possible to operate TV without
resorting to a global rule, proving the correctness of the transfor-
mation, as done in [23, 24]. The reversal is legal if and only if the
permutation of two iterates is always legal and the data dependences
are preserved. Hence, TV should check the absence of loop-carried
dependences and the following equivalence (B[i← x] denotes the
substitution of the variable i by the expression x in B):

∀x,y ∈ Z, B[i← x];B[i← y]≡ B[i← y];B[i← x]

For instance, in case the code of B is encoded into an STF δ, the
above equivalence can be established by the algorithm of Sect. 4.2
applied to the STFs δB ⊕bi← yc ⊕ δB ⊕ bi← xc and δB⊕ bi←
xc⊕δB⊕bi← yc.

Invariant Translation: We first remark that the IT algorithm of
Th. 3 still works for the program points outside the reversed loop.

Let us consider a program point inside the loop —for instance,
l2. The correctness of compilation entails the equality {ρ(x) |
〈. . . ,(l2,ρ), . . .〉 ∈ JPK} = {ρ(x) | 〈. . . ,(l′2,ρ), . . .〉 ∈ JP′K}, so we
can determine which classes of invariants can be translated:

• Case of non-relational invariants: The invariant JPK] is non rela-
tional if it is of the form L→ (X → D]) where D] is a domain

for representing sets of values ((P(R),⊆) −−→←−−α

γ
(D],v)). Then,

the soundness of JPK] boils down to ∀l ∈ L, ∀x ∈ X , {ρ(x) |
〈. . . ,(l,ρ), . . .〉} ⊆ γ(JPK](l)(x)). Hence, the above equality im-
plies that the non-relational invariant can be translated if the com-
pilation is correct.

• Case of relational invariants: Examples can show that relational
properties may not be preserved by the translation in presence of
globally reordering transformations.

Similar arguments would extend to other reordering transforma-
tions like loop interchange, coalescing.

5.6 Results
Accommodating optimizations: Our framework turns out to al-
low the certification of optimizing compilation, since a wide range
of optimizing transformations were considered with success. Han-
dling a new optimization generally starts with the extension of the
compilation correctness definition, by tuning the observational se-
mantics operators Φs and Φa and by generalizing the mappings πX
and πL. Defining more abstract observational operators allows to
accept more optimizations; yet, these abstractions may render the
translation of some classes of invariants impossible as was the case
in Sect. 5.5. The certification algorithms can be extended to a wide
range of optimizations:

• Code Simplification optimizations (Sect. 5.2) are handled
straightforwardly

• Path modifying transformations (Sect. 5.4) can be accommo-
dated by generalizing the reduced-LTS notion and the certifying
procedures.

• The locally order modifying transformations like scheduling
(Sect. 5.3) can be certified without changing the reduced-LTS
definition: the computation of reduced-LTS is more involved but
the further steps of certification (TV or invariant checking) can
be mostly preserved. Only IT must be adapted (in a rather sys-
tematic way).

• The case of globally reordering optimizations (Sect. 5.5) is not so
satisfactory, since it involves global rules; yet such transforma-
tions should be rather localized (e.g. applied to some small loops
only), so their certification should still be amenable. Moreover,
this last class of optimizations is not so important as the previ-
ous ones in the case of practical C compilers (GNU gcc, Diab C
compiler...).

Real compilers perform series of optimizations. A definition of
compilation correctness for a sequence of optimizations can be de-
rived by composing the observational abstractions corresponding to
each transformation. In case the compiler provides the intermedi-
ate programs, the certification (by TV or IT) can be carried out in
several steps so as to cut down the difficulty of mapping the source
and target code.

Implementation and practical aspects: We had not planed to ex-
tend the certifier of Sect. 4.4 to the certification of optimized code
when implementing it. However, the implementation of a new mod-
ule in the frontend allowed to tackle part of the optimizations en-
visaged above and other similar transformations: the code simpli-
fication transformations (Sect. 5.2), the local reordering optimiza-
tions (Sect. 5.3) and some limited forms of path modifying trans-
formations (Sect. 5.4) —i.e. branching local transformations. The
new version of the certifier is effective for the first two classes of
optimizations. Loop unrolling cannot be proved due to a lack of
adequate information in the compiler output; localized branching
transformations are certified successfully. The gcc compiler does
not perform any reordering transformation in the sense of Sect. 5.5,
so we did not attempt to certify them. Finally, the new certifier can
handle code produced by gcc with the option -O2 (quite high op-
timizing level; no possibly misleading global optimization is per-
formed; the highest level -O3 mainly adds function inlining and
loop unrolling), which is rather positive given the additional im-
plementation effort is very reasonable: the additional frontend files

amount to about 3000 lines of OCaml code (the whole compila-
tion and assembly certifier amounts to about 33000 lines). We also
noted an important slowdown of the assembly frontend, mainly due
to more complex interfaces and to the additional computations done
to build the reduced-LTS (partial composition of STFs as mentioned
in Sect. 5.3).

The main difficulty in extending the certifier consists in finding ad-
equate debug information, so as to know which transformation has
been performed. The new certifier still uses the same standard de-
bug information format, which does not provide much data about
optimizations. Moreover, these information turn out to be some-
times wrong in the case of optimizing compilation: some scopes
of variables or program point mappings were wrong, so we had to
fix some debug entries by hand. The precise mapping of program
points also had to be partially reconstructed by applying some non
trivial processing to the Stabs debugging information. The stan-
dard debugging information formats provided by most compilers
are mostly aimed at debugging only and not at mapping source and
compiled programs for the sake of verification. We may suggest the
introduction of a more adequate debugging information format for
this purpose.

Our new certifier does not use any intermediate RTL (Register
Transfer Language) dump provided by the gcc compiler and car-
ries out the validation in one pass. However, it seems that handling
more complicated optimizations would require a several steps pro-
cess to be implemented as is the case of the systems of [17] and
[23, 24], which both address more elaborate optimizations.

6 Conclusion
We provided a framework for reasoning about the certification of
compilation and of compiled programs. It is mainly based on a
symbolic representation of the semantics of source and compiled
programs and on structures to check properties of the fixpoints of
the semantic operators of source and compiled programs, hence of
the semantics of source and compiled programs. Existing certi-
fication methods were integrated to the framework; furthermore, a
new method for certifying assembly programs was proposed, which
is based on the ability to prove the semantic equivalence of pro-
grams first: this equivalence checking not only justifies IT, but also
provides more precise information about the structure of assem-
bly programs, which renders IT more efficient and accurate. In the
implementation point of view, this approach proved very success-
ful, since strong properties about very large real examples of safety
critical programs were proved at the assembly level. This success
was made possible by a fine description of the equivalence between
source and compiled programs.

Moreover, many classes of optimizations can be successfully ac-
commodated in our framework. Part of them are handled at the
reduced-LTS elaboration level (as code simplification or locally or-
der modifying transformations). Path modifying or globally order
modifying transformations require a stronger treatment. The invari-
ant translation result derives from a precise definition of compila-
tion correctness, which allows to derive systematically which class
of properties of the source extends to the target code.

Last, our approach allows to factor some problems out of the design
of an adequate certification process. For instance, the symbolic rep-
resentation of programs is shared by IT, IC and TV. In the practi-
cal point of view, some steps are also common, as is the gathering
of mapping data. Note that the approach is compiler independent
(no instrumentation of the compiler is required; the certifier only
needs some standard information) and even architecture indepen-
dent. Indeed, accommodating a new target language amounts to

implementing a new frontend compiling programs into a symbolic
representation (i.e. reduced-LTS), which formalizes the semantic
model of the new assembly language.

Acknowledgment: We deeply acknowledge B. Blanchet, J. Feret
and C. Hymans for their comments on an earlier version. We
thank the members of the Astree project for stimulating discussions:
B. Blanchet, P. Cousot, R. Cousot, J. Feret, L. Mauborgne, A. Miné
and D. Monniaux.

7 References
[1] A. W. Appel. Modern Compiler Implementation in ML. Cam-

bridge University Press, 1997.

[2] A. W. Appel. Foundational Proof-Carrying Code. In 16th
LICS, pages 247–256, 2001.

[3] D. F. Bacon, S. L. Graham, and O. J. Sharp. Compiler trans-
formations for high-performance computing. ACM Comput-
ing Surveys, 26(4):345–420, 1994.

[4] B. Blanchet, P. Cousot, R. Cousot, J. Feret, L. Mauborgne,
A. Miné, D. Monniaux, and X. Rival. Design and Imple-
mentation of a Special-Purpose Static Program Analyzer for
Safety-Critical Real-Time Embedded Software, invited chap-
ter. In The Essence of Computation: Complexity, Analysis,
Transformation. Essays Dedicated to Neil D. Jones, LNCS
2566, pages 85–108. Springer-Verlag, 2002.

[5] B. Blanchet, P. Cousot, R. Cousot, J. Feret, L. Mauborgne,
A. Miné, D. Monniaux, and X. Rival. A Static Analyzer for
Large Safety Critical Software. In PLDI’03, pages 196–207,
2003.

[6] C.-L. Chang and R. C.-T. Lee. Symbolic Logic and Mechan-
ical Theorem Proving. Academic Press, Computer Science
Classics, 1973.

[7] C. Colby and P. Lee. Trace-Based Program Analysis. In 23rd
POPL, pages 195–207, St. Petersburg Beach, (Florida USA),
1996.

[8] P. Cousot and R. Cousot. Abstract Interpretation: a unified
lattice model for static analysis of programs by construction
or approximation of fixpoints. In 4th POPL, pages 238–252,
1977.

[9] P. Cousot and R. Cousot. Constructive versions of Tarski’s
fixed point theorems. Pacific Journal of Mathematics,
81(1):43–57, 1979.

[10] P. Cousot and R. Cousot. Abstract Interpretation and Appli-
cation to Logic Programs. Journal of Logic Programming,
13(2–3):103–179, 1992.

[11] P. Granger. Static Analysis of Arithmetical Congruences. Int.
J. Computer. Math., 1989.

[12] X. Leroy, D. Doligez, J. Garrigue, D. Rémy, and J. Vouillon.
The Objective Caml system, documentation and user’s man-
ual (release 3.06). Technical report, INRIA, Rocquencourt,
France, 2002.

[13] A. Miné. The Octagon Abstract Domain. In Analysis, Slicing
and Transformation 2001 (in WCRE 2001), IEEE, 2001.

[14] G. Morrisett, K. Crary, N. Glew, D. Grossman, R. Samuels,
F. Smith, and D. Walker. TALx86: A Realistic Typed Assem-
bly Language. In WCSSS, 1999.

[15] G. Morrisett, D. Tarditi, P. Cheng, C. Stone, R. Harper, and
P. Lee. The TIL/ML Compiler: Performance and Safety

Through Types. In WCSSS, 1996.

[16] G. C. Necula. Proof-Carrying Code. In 24th POPL, pages
106–119, 1997.

[17] G. C. Necula. Translation Validation for an Optimizing Com-
piler. In PLDI’00. ACM Press, 2000.

[18] G. C. Necula and P. Lee. The Design and Implementation of
a Certifying Compiler. In PLDI’98. ACM Press, 1998.

[19] A. Pnueli, O. Shtrichman, and M. Siegel. Translation Valida-
tion for Synchronous Languages. In ICALP’98, pages 235–
246. Springer-Verlag, 1998.

[20] X. Rival. Abstract Interpretation-based Certification of As-
sembly Code. In 4th VMCAI, New York (USA), 2003.

[21] D. Tarditi, G. Morrisett, P. Cheng, C. Stone, R. Harper, and
P. Lee. TIL: A Type-Directed Optimizing Compiler for ML.
In PLDI’96, pages 181–192. ACM Press, 1996.

[22] H. Xi and R. Harper. A dependently typed assembly lan-
guage. In International Conference on Functional Program-
ming, Florence, Italy, September 2001.

[23] L. Zuck, A. Pnueli, Y. Fang, and B. Goldberg. VOC: A
Translation Validator for Optimizing Compilers. In Electronic
Notes in Theoretical Computer Science, 2002.

[24] L. Zuck, A. Pnueli, Y. Fang, B. Goldberg, and Y. Hu. Trans-
lation Run-Time Validation of Optimized Code. In Electronic
Notes in Theoretical Computer Science, 2002.

A An STFs-based Semantics of a Subset of C
This appendix gives an STFs-based semantics for the subset of C
presented on Fig. 1(a).

We suppose there is a label before each statement. A location is
either an integer variable or an array variable. Values are integers
(hence, Z⊆ R): overflows are not taken into account.

The STFs define the semantics of statements; hence they describe
for each statement the error cases and the transformation of the store
in case no error happens. Therefore, we introduce in the next sub-
section an operation which inputs a symbolic transfer function δ
and builds up a symbolic transfer function δ′ such that δ′ carries
out the same transformation as δ in case the evaluation of a given
L-value lv (resp. an expression e, a condition c) succeeds and such
that δ′ fails if the evaluation of lv (resp. e, c) fails. Then, we give
the semantics of statements and blocks.

REMARK 2 (ALTERNATE APPROACH). A valuable approach
consists in modifying the semantics of STFs so as to allow fail-
ures inside expressions. In case the evaluation of e or lv fails in the
environment ρ, then Jblv← ecK(ρ) = ⊥S. This approach proved
efficient in practice; yet, it would have made the presentation of the
paper more involved, so we restrict to the approach evoked in the
previous paragraph.

A.1 Errors in L-values, Expressions
and Conditions

We define three operators Clv : Lv×T→ T, Ce : E×T→ T and
Cc : C×T→T. Intuitively, Clv(lv,δ) tests whether the evaluation of
lv fails; in case lv does not fail, then it carries out the same “action”
as δ. The operators Ce and Cc behave similarly. They are defined by
mutual induction (as usual, x denotes a variable; e an expression; c

a condition; lv an l-value, n an integer and δ an STF):

Clv(x,δ) = δ
Clv(x[e]) = Ce(e,b(0 ≤ e)∧ (e < n) ? δ | � c)

(n is the size of the array x)
Ce(n,δ) = δ
Ce(lv,δ) = Clv(lv,δ)

Ce(e0⊕ e1,δ) = Ce(e0,Ce(e1,δ)) (⊕ ∈ {+,−,?})
Ce(e0/e1,δ) = Ce(e0,Ce(e1,be1 = 0 ? e0/e1 | � c))

Cc(c,δ) = δ (c ∈ {true, false})
Cc(¬c,δ) = Cc(c,δ)

Cc(c0⊕ c1,δ) = Cc(c0,Cc(c1,δ)) (⊕ ∈ {∧,∨})
Cc(e0⊕ e1,δ) = Ce(e0,Ce(e1,δ)) (⊕ ∈ {<,==})

For instance, if t is an array of length 4, then Ce(18/t[i],δ) = b(0≤
i)∧ (i < 4) ? bt[i] = 0 ? δ | � c | � c.

If t is an array of length n, the predicate isindex(t, i) is defined by
isindex(t, i)⇔ ((0≤ i)∧ (i < n)).

In case overflows would be taken into account and the range for
the integers would be [Nmin,Nmax], then some of the case above
would be modified. For instance, the addition would be handled as
follows:

Ce(e0 + e1,δ) = b(Nmin ≤ e0 + e1)∧ (e0 + e1 ≤ Nmax) ?
δ
|�c

A.2 Symbolic Transfer Functions
for Statements

We present here the transfer functions for each language construc-
tion (the STFs that are not mentioned explicitly are �):

• Case of an assignment l : lv := e; l′ : ...:

δl,l′ = Clv(lv,Ce(e,blv← ec))

• Case of a conditional l : if(c){lt : Bt ; l′t}else{l f : B f ; l′f }; l′ : ...:

δl,lt = Cc(c,bc ? ι | � c)
δl,l f

= Cc(c,bc ? � | ι c)
δl′t ,l′ = δl′f ,l

′ = ι

• Case of a loop l : while(c){lb : Bb; l′b}; l′ : ...:

δl,lb = δl′b,lb
= Cc(c,bc ? ι | � c)

δl,l′ = δl′b,l
′ = Cc(c,bc ? � | ι c)

For instance, if t is an array of length 4 and x is an integer variable,
then the assignment l : x := 18/t[i]; l′ : ... is represented by the STF:

δl,l′ = b(0≤ i)∧ (i < 4) ?
bt[i] 6= 0 ? bx← 18/t[i]c | � c
|�c

B STFs-based Semantics of an Assembly
Language

We keep the notations of Fig. 1(b) In the following, if x is an integer,
then:

• x denotes the address of x;
• isaddr(x) is the predicate “x is a valid address in the input store”;
• content(x) denotes the content of the memory cell of address x

in the input store (addresses are integers).

The values are integers and comparison values. A comparison value
is either LT (which means “less than”), or EQ (“equal”) and GT
(“greater than”). We do not take overflows into account. Hence,
Z∪{LT,EQ,GT} ⊆ R.

We list the STFs defining the semantics of the assembly language
presented on Fig. 1(b) (the STFs that are not presented explicitly
are �):

• the “load integer” instruction l : li r0, n; l′ : ... loads the integer
n into the register r0:

δl,l′ = br0← nc

• the “load” instruction l : load r0, x (v); l′ : ... loads the content of
the memory cell of address x + v (v is either an integer constant or
the content of a register) if x + v is a valid address (if not, it fails):

δl,l′ = bisaddr(x+ v) ? br0← content(x + v)c | � c

• the “store” instruction l : store r0, x (v); l′ : ... stores the content
of the register r0 in the memory cell of address x + v if x + v is a
valid address (if not, it fails):

δl,l′ = bisaddr(x + v) ? bx+ v← r0c | � c

• the “compare” instruction l : cmp r0, r1; l′ : ... compares the con-
tent v0 and v1 of the registers r0 and r1; if v0 < v1 then the value
of the condition register is set to LT; if v0 = v1, then the value of
the condition register is set to EQ; if v0 > v1, then the value of the
condition register is set to GT:

δl,l′ = br0 < r1 ?
bcr← LTc
| br0 = r1 ? bcr← EQc | bcr←GTc cc

• the “conditional branching” instruction l : bc(<) l ′′; l′ : ...
branches to l′′ or to the next instruction depending on the value
stored in the condition register:

δl,l′ = bcr = LT ? � | ι c
δl,l′′ = bcr = LT ? ι | � c

• the “branching” instruction l : b l′′; l′ : ... branches to label l′′:

δl,l′′ = ι
δl,l′ = �

• the “addition” instruction l : add r0, r1, v; l′ : ... adds the content
of the register r1 and the value v (v is either the content of a register
r2 or an integer constant n) and stores the result in the register r0
(and the same for the “subtract” and the “multiply” instructions):

δl,l′ = br0← r1 + vc

In case the valid integer values would be [Nmin,Nmax]∩Z and if
overflows were taken into account, then the definition of the transfer
function would be:

δl,l′ = b(Nmin ≤ r1 + v)∧ (r1 + v ≤ Nmax) ?
br0← r1 + vc
|�c

• the “division”instruction l : div r0, r1, v; l′ : ... fails if the divisor
is equal to 0:

δl,l′ = bv 6= 0 ? br0← r1/vc | � c

