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Probabilistic programming is the idea of writing models from statistics and machine learning using program

notations and reasoning about these models using generic inference engines. Recently its combination with

deep learning has been explored intensely, which led to the development of so called deep probabilistic

programming languages, such as Pyro, Edward and ProbTorch. At the core of this development lie inference

engines based on stochastic variational inference algorithms. When asked to find information about the

posterior distribution of a model written in such a language, these algorithms convert this posterior-inference

query into an optimisation problem and solve it approximately by a form of gradient ascent or descent. In

this paper, we analyse one of the most fundamental and versatile variational inference algorithms, called

score estimator or REINFORCE, using tools from denotational semantics and program analysis. We formally

express what this algorithm does on models denoted by programs, and expose implicit assumptions made

by the algorithm on the models. The violation of these assumptions may lead to an undefined optimisation

objective or the loss of convergence guarantee of the optimisation process. We then describe rules for proving

these assumptions, which can be automated by static program analyses. Some of our rules use nontrivial

facts from continuous mathematics, and let us replace requirements about integrals in the assumptions, such

as integrability of functions defined in terms of programs’ denotations, by conditions involving differentia-

tion or boundedness, which are much easier to prove automatically (and manually). Following our general

methodology, we have developed a static program analysis for the Pyro programming language that aims at

discharging the assumption about what we call model-guide support match. Our analysis is applied to the

eight representative model-guide pairs from the Pyro webpage, which include sophisticated neural network

models such as AIR. It finds a bug in one of these cases, reveals a non-standard use of an inference engine in

another, and shows that the assumptions are met in the remaining six cases.
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1 INTRODUCTION
Probabilistic programming refers to the idea of writing models from statistics and machine learning

using program notations and reasoning about these models using generic inference engines. It has

been the subject of active research in machine learning and programming languages, because of its

potential for enabling scientists and engineers to design and explore sophisticated models easily;

when using these languages, they no longer have to worry about developing custom inference

engines for their models, a highly-nontrivial task requiring expertise in statistics and machine

learning. Several practical probabilistic programming languages now exist, and are used for a wide

range of applications [Carpenter et al. 2017; Gehr et al. 2016; Goodman et al. 2008; Gordon et al.

2014; Mansinghka et al. 2014; Minka et al. 2014; Narayanan et al. 2016; Wood et al. 2014].

We consider inference engines that lie at the core of so called deep probabilistic programming

languages, such as Pyro [Bingham et al. 2019], Edward [Tran et al. 2018, 2016] and ProbTorch

[Siddharth et al. 2017]. These languages let users freely mix deep neural networks with constructs

from probabilistic programming, in particular, those for writing Bayesian probabilistic models. In

so doing, they facilitate the development of probabilistic deep-network models that may address

the problem of measuring the uncertainty in current non-Bayesian deep-network models; a non-

Bayesian model may predict that the price of energy goes up and that of a house goes down, but it

cannot express, for instance, that the model is confident with the first prediction but not the second.

The primary inference engines for these deep probabilistic programming languages implement

stochastic (or black-box) variational inference
1
algorithms. Converting inference problems into

optimisation problems is the high-level idea of these algorithms.
2
When asked to find information

about the posterior distribution of a model written in such a language, these algorithms convert

this question to an optimisation problem and solve the problem approximately by performing

a gradient descent or ascent on the optimisation objective. The algorithms work smoothly with

gradient-based parameter-learning algorithms for deep neural networks, which is why they form

the backbone for deep probabilistic programming languages.

In this paper, we analyse one of the most fundamental and versatile variational inference algo-

rithms, called score estimator or REINFORCE
3
[Paisley et al. 2012; Ranganath et al. 2014; Williams

1992; Wingate and Weber 2013], using tools from denotational semantics and program analy-

sis [Cousot and Cousot 1977, 1979, 1992]. We formally express what this algorithm does on models

denoted by probabilistic programs, and expose implicit assumptions made by the algorithm on

the models. The violation of these assumptions can lead to undefined optimisation objective or

the loss of convergence guarantee of the optimisation process. We then describe rules for proving

these assumptions, which can be automated by static program analyses. Some of our rules use

nontrivial facts from continuous mathematics, and let us replace requirements about integrals in the

assumptions, such as integrability of functions defined in terms of programs’ denotations, by the

conditions involving differentiation or boundedness, which are much easier to prove automatically

(and manually) than the original requirements.

Following our general methodology, we have developed a static program analysis for the Pyro

programming language that can discharge one assumption of the inference algorithm about so

1
The term stochastic variational inference (VI) often refers to VI with data subsampling [Hoffman et al. 2013], and our usage

of the term is often called black-box VI [Ranganath et al. 2014] to stress the treatment of a model as a black-box sampler.

2
The inference problems in their original forms involve solving summation/integration/counting problems, which are

typically more difficult than optimisation problems. The variational-inference algorithms convert the former problems to

the latter ones, by looking for approximate, not exact, answers to the former.

3
REINFORCE [Williams 1992] is an algorithm originally developed for reinforcement learning (RL), but it is commonly used

as a synonym of the score-estimator algorithm. This is because REINFORCE and score estimator use a nearly identical

method for estimating the gradient of an optimisation objective.
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called model-guide pairs. In Pyro and other deep probabilistic programming languages, a program

denoting a model typically comes with a companion program, called guide, decoder, or inference

network. This companion, which we call guide, helps the inference algorithm to find a good

approximation to what the model ultimately denotes under a given dataset (i.e., the posterior

distribution of the model under the dataset); the algorithm uses the guide to fix the search space of

approximations, and solves an optimisation problem defined on that space. A model and a guide

should satisfy an important correspondence property, which says that they should use the same

sets of random variables, and for any such random variable, if the probability of the variable having

a particular value is zero in the model, it should also be zero in the guide. If the property is violated,

the inference algorithm may attempt to solve an optimisation problem with undefined optimisation

objective and return parameter values that do not make any sense. Our static analysis checks this

correspondence property for Pyro programs. When applied to eight representative model-guide

pairs from the Pyro webpage, which include sophisticated neural network models such as Attend-

Infer-Repeat (AIR), the analysis found a bug in one of these cases, revealed a non-standard use of

the inference algorithm in another, and proved that the property holds in the remaining six cases.

Another motivation for this paper is to demonstrate an opportunity for programming languages

and verification research to have an impact on the advances of machine learning and AI technologies.

One popular question is: what properties should we verify on machine-learning programs? Multiple

answers have been proposed, which led to excellent research results, such as those on robustness

of neural networks [Mirman et al. 2018]. But most of the existing research focuses on the final

outcome of machine learning algorithms, not the process of applying these algorithms. One of

our main objectives is to show that the process often relies on multiple assumptions on models

and finding automatic ways for discharging these assumptions can be another way of making PL

and verification techniques contribute. While our suggested solutions are not complete, they are

intended to show the richness of this type of problems in terms of theory and practice.

We summarise the contributions of the paper:

• We formally express the behaviour of themost fundamental variational inference algorithm on

probabilistic programs using denotational semantics, and identify requirements on program

denotations that are needed for this algorithm to work correctly.

• We describe conditions that imply the identified requirements but are easier to prove. The

sufficiency of the conditions relies on nontrivial results from continuous mathematics. We

sketch a recipe for building program analyses for checking these conditions automatically.

• Wepresent a static analysis for the Pyro language that checks the correspondence requirement

of model-guide pairs. The analysis is based on our recipe, but extends it significantly to address

challenges for dealing with features of the real-world language. Our analysis has successfully

verified 6 representative Pyro model-guide examples, and found a bug in one example.

The extended version of the paper can be found in [Lee et al. 2019].

2 VARIATIONAL INFERENCE AND VERIFICATION CHALLENGES BY EXAMPLES
We start by explaining informally the idea of stochastic variational inference (in short SVI), one

fundamental SVI algorithm, and the verification challenges that arise when we use this algorithm.

2.1 Stochastic Variational Inference
In a probabilistic programming language, we specify a model by a program. The program model()

in Figure 1(a) is an example. It describes a joint probability density 𝑝 (𝑣, obs) on two real-valued

random variables 𝑣 and obs. The value of the former is not observed, while the latter is observed

to have the value 0. Finding out the value of 𝑣 is the objective of writing this model. The joint
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1 # define model and guide
2 def model():
3 v = pyro.sample("v", Normal(0., 5.))
4 if (v > 0):
5 pyro.sample("obs", Normal(1., 1.), obs=0.)
6 else:
7 pyro.sample("obs", Normal(-2., 1.), obs=0.)
8

9 def guide():
10 theta = pyro.param("theta", 3.)
11 v = pyro.sample("v", Normal(theta, 1.))

12 # perform stochastic variational inference
13 svi = SVI(model, guide,
14 Adam({"lr": 1.0e-2}),
15 loss=Trace_ELBO())
16 for step in range(2000):
17 svi.step()
18

19 # print result
20 print("trained theta =",
21 pyro.param("theta").item())

(a) Example model-guide pair for stochastic variational inference in Pyro.

model (prior)

model (posterior)

guide (optimal)

-10 -5 5 10

0.1

0.2

0.3

0.4

(b) Probability densities of the model and the
guide as a function of 𝑣 ∈ R.

KL + const

-4 -2 2 4

3.0

3.5

4.0

4.5

(c) KL divergence from the guide to the model
(plus log𝑝 (obs=0)) as a function of 𝜃 ∈ R.

Fig. 1. Example of performing stochastic variational inference.

density 𝑝 (𝑣, obs) is expressed in terms of prior 𝑝 (𝑣) and likelihood 𝑝 (obs |𝑣) in the program. The

prior 𝑝 (𝑣) of 𝑣 is the normal distribution with mean 0 and standard deviation 5, and it expresses

the belief about the possible value of 𝑣 before any observation. The likelihood 𝑝 (obs |𝑣) is a normal

distribution whose mean and standard deviation are either (1, 1) or (−2, 1) depending on the sign

of the value of 𝑣 . The purpose of most inference algorithms is to compute exactly or approximately

the posterior density given a prior and a likelihood. In our example, the posterior 𝑝 (𝑣 |obs=0) is:

𝑝 (𝑣 |obs=0) = 𝑝 (𝑣, obs=0)∫
d𝑣 𝑝 (𝑣, obs=0)

=
𝑝 (𝑣) · 𝑝 (obs=0|𝑣)

𝑝 (obs=0) .

Intuitively, the posterior expresses an updated belief on 𝑣 upon observing obs = 0. The dashed blue

and solid orange lines in Figure 1(b) show the prior and posterior densities, respectively. Note that

the density of a positive 𝑣 in the prior went up in the posterior. This is because when 𝑣 > 0, the

mean of 𝑝 (obs |𝑣) is 1, a value closer to the observed value 0 than the alternative −2 for the mean.

SVI algorithms approach the posterior inference problem from the optimisation angle. They

consider a collection of approximating distributions to a target posterior, formulate the problem

of finding a good approximation in the collection as an optimisation problem, and solve the

optimisation problem. The solution becomes the result of those algorithms. In Pyro, the users

specify such a collection by a single parameterised program called guide; the collection can be

generated by instantiating the parameters with different values. The program guide() in Figure 1(a)

is an example. It has a real-valued parameter 𝜃 (written as theta in the program), and states that

the probability density 𝑞𝜃 (𝑣) of 𝑣 is the normal distribution with unknown mean 𝜃 and standard

deviation 1. The lines 13–17 in the figure show how to apply a standard SVI engine of Pyro (called

Trace_ELBO) to find a good 𝜃 . They instruct the engine to solve the following optimisation problem:

argmin𝜃KL(𝑞𝜃 (𝑣) | |𝑝 (𝑣 |obs=0)), where KL(𝑞𝜃 (𝑣) | |𝑝 (𝑣 |obs=0)) ≜ E𝑞𝜃 (𝑣)
[
log

𝑞𝜃 (𝑣)
𝑝 (𝑣 |obs=0)

]
.
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The optimisation objective KL(𝑞𝜃 (𝑣) | |𝑝 (𝑣 |obs=0)) is the KL divergence from 𝑞𝜃 (𝑣) to 𝑝 (𝑣 |obs=0),
and measures the similarity between the two densities, having a small value when the densities are

similar. The KL divergence is drawn in Figure 1(c) as a function of 𝜃 , and the dotted green line in

Figure 1(b) draws the density 𝑞𝜃 at the optimum 𝜃 . Note that the mean of this distribution is biased

toward the positive side, which reflects the fact that the property 𝑣 > 0 has a higher probability

than its negation 𝑣 ≤ 0 in the posterior distribution.

One of the most fundamental and versatile algorithms for SVI is score estimator (also called RE-

INFORCE). It repeatedly improves 𝜃 in two steps. First, it estimates the gradient of the optimisation

objective with samples from the current 𝑞𝜃𝑛 :

∇𝜃KL(𝑞𝜃 (𝑣) | |𝑝 (𝑣 |obs=0))
���
𝜃=𝜃𝑛
≈ 1

𝑁

𝑁∑
𝑖=1

(∇𝜃 log𝑞𝜃𝑛 (𝑣𝑖 )) · log
𝑞𝜃𝑛 (𝑣𝑖 )

𝑝 (𝑣𝑖 , obs=0)

where 𝑣1, . . . , 𝑣𝑁 are independent samples from the distribution 𝑞𝜃𝑛 . Then, the algorithm updates 𝜃

with the estimated gradient (the specific learning rate 0.01 is chosen to improve readability):

𝜃𝑛+1 ← 𝜃𝑛 − 0.01 ×
1

𝑁

𝑁∑
𝑖=1

(∇𝜃 log𝑞𝜃𝑛 (𝑣𝑖 )) · log
𝑞𝜃𝑛 (𝑣𝑖 )

𝑝 (𝑣𝑖 , obs=0)
.

When the learning rate 0.01 is adjusted according to a known scheme, the algorithm is guaranteed

to converge to a local optimum (in many cases) because its gradient estimate satisfies the following

unbiasedness property (in those cases):

∇𝜃KL(𝑞𝜃 (𝑣) | |𝑝 (𝑣 |obs=0))
���
𝜃=𝜃𝑛

= E

[
1

𝑁

𝑁∑
𝑖=1

(∇𝜃 log𝑞𝜃𝑛 (𝑣𝑖 )) · log
𝑞𝜃𝑛 (𝑣𝑖 )

𝑝 (𝑣𝑖 , obs=0)

]
(1)

where the expectation is taken over the independent samples 𝑣1, . . . , 𝑣𝑁 from 𝑞𝜃𝑛 .

2.2 Verification Challenges
We now give two example model-guide pairs that illustrate verification challenges related to SVI.

The first example appears in Figure 2(a). It is the Bayesian regression example from the Pyro

webpage (this example is among the benchmarks used in §8), which solves the problem of finding

a line that interpolates a given set of points in R2.
The problem with this example is that the KL divergence of its model-guide pair, the main

optimisation objective in SVI, is undefined. The model and guide in the figure use the random

variable sigma, but they use different non-zero-probability regions, called supports, for it. In the

model, the support is [0, 10], while that in the guide is R. But the KL divergence from a guide to a

model is defined only if for every random variable, its support in the guide is included in that in the

model. We point out that this support mismatch was found by our static analyser explained in §8.

Figures 2(b) and 2(c) show two attempts to resolve the undefined-KL issue. To fix the issue, we

change the distribution of sigma in the model in (b), and in the guide in (c). These revisions remove

the problem about the support of sigma, but do not eliminate that of the undefined KL. In both (b)

and (c), the KL divergence is∞. This happens mainly because sigma can be arbitrarily close to 0 in

the guide in both cases, which makes integrand in the definition of the KL divergence diverge to∞.
An SVI-specific verification challenge related to this example is how to prove the well-definedness

of the KL divergence and more generally the optimisation objective of an SVI algorithm. In §6.2,

we provide a partial answer to the question. We give a condition for ensuring the well-definedness

of the KL divergence. Our condition is more automation-friendly than the definition of KL, because

it does not impose the difficult-to-check integrability requirement present in the definition of KL.

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 16. Publication date: January 2020.
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1 def model(...):
2 ...
3 sigma = pyro.sample("sigma",

4 Uniform (0., 10.))

5 ...
6 pyro.sample("obs",
7 Normal(..., sigma), obs=...)

8 def guide(...):
9 ...
10 loc = pyro.param("sigma_loc", 1.,
11 constraint=constraints.positive)
12 ...
13 sigma = pyro.sample("sigma",

14 Normal (loc, 0.05))

(a) Bayesian regression example from the Pyro webpage.

1 def model_r1(...):
2 ...
3 sigma = pyro.sample("sigma",

4 Normal (5., 5.))

5 ...
6 pyro.sample("obs",
7 Normal(..., abs(sigma)), obs=...)
8

9 def guide_r1(...):
10 # same as guide() in (a)
11 ...

(b) The example with a revised model.

1 def model_r2(...):
2 # same as model() in (a)
3 ...
4

5 def guide_r2(...):
6 ...
7 sigma = pyro.sample("sigma",

8 Uniform (0., 10.))

(c) The example with a revised guide.

Fig. 2. Example model-guide pairs whose KL divergence is undefined.

1 def model():
2 v = pyro.sample("v", Normal(0., 5.))
3 if (v > 0):
4 pyro.sample("obs", Normal(1., 1.), obs=0.)
5 else:
6 pyro.sample("obs", Normal(-2., 1.), obs=0.)
7

8 def guide():
9 theta = pyro.param("theta", 3.)
10 v = pyro.sample("v",

11 Uniform (theta-1., theta+1.))

(a) The model from Figure 1(a), and a guide
using a parameterised uniform distribution.

KL + const

-4 -2 0 2 4

3.5

4.0

4.5

5.0

(b) KL divergence from the guide to the model
(plus log𝑝 (obs=0)) as a function of 𝜃 ∈ R.

Fig. 3. Example model-guide pair for which the gradient of the KL divergence is undefined, or the score
estimator is biased.

The second example appears in Figure 3(a). It uses the same model as in Figure 1(a), but has a

new guide that uses a uniform distribution parameterised by 𝜃 ∈ R. For this model-guide pair, the

KL divergence is well-defined for all 𝜃 ∈ R, and the optimal 𝜃 ∗ minimising the KL is 𝜃 ∗ = 1.

However, as shown in Figure 3(b), the gradient of the KL divergence is undefined for 𝜃 ∈ {−1, 1},
because the KL divergence is not differentiable at −1 and 1. For all the other 𝜃 ∈ R \ {−1, 1}, the KL
divergence and its gradient are both defined, but the score estimator cannot estimate this gradient

in an unbiased manner (i.e., in a way satisfying (1)), thereby losing the convergence guarantee to a

local optimum. The precise calculation is not appropriate in this section, but we just point out that

the expectation of the estimated gradient is always zero for all 𝜃 ∈ R \ {−1, 1}, but the true gradient
of the KL is always non-zero for those 𝜃 , because it has the form:

𝜃
25
− 1[−1≤𝜃 ≤1] · 1

2
log

N(0;1,1)
N(0;−2,1) .

Here N(𝑣 ; 𝜇, 𝜎) is the density of the normal distribution with mean 𝜇 and standard deviation 𝜎

(concretely,N(𝑣 ; 𝜇, 𝜎) = 1/(
√
2𝜋𝜎) ·exp(−(𝑣−𝜇)2/(2𝜎2))). The mismatch comes from the invalidity

of one implicit assumption about interchanging integration and gradient in the justification of the

score estimator; see §5 for detail.
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To sum up, the second example shows that even if the KL divergence is defined, its gradient is

sometimes undefined, and also that even if both the KL divergence and its gradient are defined, the

sample-based estimate of the gradient in a standard SVI algorithm may be biased—this means that

the equation similar to (1) does not hold and an SVI algorithm is no longer guaranteed to converge

to a local optimum. Proving that these failure cases do not arise is another SVI-specific verification

challenge. In §6.3, we give another example of similar flavour, and provide an automation-friendly

condition that ensures the existence of the KL divergence and its gradient as well as the unbiasedness

of the gradient estimate of the score estimator.

We conclude the section by emphasising that the aforementioned issues could have a large

impact on the results of SVI. For instance, running the Bayesian regression example in Figure 2(a)

in Pyro after a small change (0.4 instead of 0.05 in line 14) sometimes results in a crash. Also,

running its revised version in Figure 2(c) leads to the complete failure of an optimiser and produces

meaningless results. These observations strengthen the importance of resolving the verification

challenges presented above.
4

3 REVIEW OF MEASURE THEORY AND NOTATIONS
A 𝜎-algebra Σ on a set 𝑋 is a collection of subsets of 𝑋 such that (i) 𝑋 ∈ Σ; (ii) 𝐴0 ∪ 𝐴1 ∈ Σ and

𝑋 \ 𝐴0 ∈ Σ for all 𝐴0, 𝐴1 ∈ Σ; (iii)
⋃
𝑛 𝐴𝑛 ∈ Σ when all subsets 𝐴𝑛 are in Σ. An equivalent but

easier-to-remember characterisation is that Σ is closed under boolean operations and countable

union and intersection. We call the pair (𝑋, Σ) of a set and a 𝜎-algebrameasurable space, and subsets
in Σ measurable. A function 𝑓 from a measurable space (𝑋, Σ) to another measurable space (𝑋 ′, Σ′)
is measurable if 𝑓 −1 (𝐵) ∈ Σ for all 𝐵 ∈ Σ′.
An example of measurable space is the 𝑛-dimensional Euclidean space R𝑛 with the Borel 𝜎-

algebra B ≜ 𝜎 ({(−∞, 𝑟1) × · · · × (−∞, 𝑟𝑛)
�� 𝑟 ∈ R𝑛}), where 𝜎 is the closure operator that converts

a collection of subsets of R𝑛 into the smallest 𝜎-algebra containing the collection. Subsets 𝑋 of R𝑛 ,
such as [0,∞)𝑛 , form measurable spaces with the 𝜎-algebra {𝑋 ∩𝐴 | 𝐴 ∈ B}. Another example is

a set 𝑋 with the so called discrete 𝜎-algebra on 𝑋 that consists of all subsets of 𝑋 .

A measure 𝜇 on a measurable space (𝑋, Σ) is a function from Σ to [0,∞] such that 𝜇 (∅) = 0 and

𝜇 satisfies the countable additivity condition: 𝜇 (⋃∞𝑛=0 𝐵𝑛) = ∑∞
𝑛=0 𝜇 (𝐵𝑛) for any countable family of

disjoint measurable subsets 𝐵𝑛 . A well-known example is the Lebesgue measure 𝜆𝑛 on R𝑛 which
maps each measurable subset of R𝑛 to its volume in the usual sense.

5
When 𝜇 (𝑋 ) ≤ 1, we call 𝜇

subprobability measure. If 𝜇 (𝑋 ) = 1, we may drop “sub”, and call 𝜇 probability measure.
The Lebesgue integral

∫
is a partial operator that maps a measure 𝜇 on (𝑋, Σ) and a real-valued

measurable function on the same space (𝑋, Σ) to a real number. It is denoted by

∫
𝜇 (d𝑥) 𝑓 (𝑥). To

follow the paper, it is enough to know that this integral generalises the usual Riemann integral

from calculus.
6
For a measure 𝜈 on (𝑋, Σ), if 𝜈 (𝐴) =

∫
𝜇 (d𝑥) (𝑓 (𝑥) · 1[𝑥 ∈𝐴]) for non-negative 𝑓 ,

we say that 𝑓 is the density of 𝜈 with respect to 𝜇 and call 𝜇 reference measure.
In the paper, we use a few well-known methods for building measurable spaces.

The first method applies when we are given a set 𝑋 and a collection of functions {𝑓𝑖 : 𝑋 →
𝑋𝑖 | 𝑖 ∈ 𝐼 } to measurable spaces (𝑋𝑖 , Σ𝑖 ). The method is to equip 𝑋 with the smallest 𝜎-algebra Σ
making all 𝑓𝑖 ’s measurable: Σ ≜ 𝜎 ({𝑓 −1𝑖 (𝐵) | 𝑖 ∈ 𝐼 , 𝐵 ∈ Σ𝑖 }).
4
The aforementioned issues do not always cause problems in inference results (e.g., Figures 2(a) and 2(c) mostly give

reasonable results), because the random seeds and the initial values for SVI could be set well so that the probability of SVI

going wrong becomes low. We emphasise, however, that the probability is non-zero.

5
The Lebesgue measure 𝜆𝑛 is the unique measure on R𝑛 that sets the volume of the unit cube (0, 1)𝑛 to 1 and is translation

invariant: for all measurable subsets 𝐴 and 𝑟 ∈ R𝑛 , 𝜆𝑛 (𝐴) = 𝜆𝑛 ( {𝑟 ′ − 𝑟 | 𝑟 ′ ∈ 𝐴}) .
6
Another useful fact is that when 𝑓 is non-negative,

∫
𝜇 (d𝑥) 𝑓 (𝑥) = sup

∑
𝑖 (inf𝑥∈𝐴𝑖

𝑓 (𝑥)) · 𝜇 (𝐴𝑖 ) where the supremum

is taken with respect to all finite partitions {𝐴𝑖 }𝑖 of 𝑋 into measurable subsets.
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The second relies on two constructions for sets, i.e., product and disjoint union. Suppose that we

are given measurable spaces (𝑋𝑖 , Σ𝑖 ) for all 𝑖 ∈ 𝐼 . We define a product measurable space that has∏
𝑖∈𝐼 𝑋𝑖 as its underlying set and the following product 𝜎-algebra

⊗
𝑖∈𝐼 Σ𝑖 as its 𝜎-algebra:⊗

𝑖∈𝐼
Σ𝑖 ≜ 𝜎

({∏
𝑖

𝐴𝑖

��� there is a finite 𝐼0 ⊆ 𝐼 such that (∀𝑗 ∈ 𝐼 \ 𝐼0. 𝐴 𝑗 = 𝑋 𝑗 ) ∧ (∀𝑖 ∈ 𝐼0. 𝐴𝑖 ∈ Σ𝑖 )
})
.

The construction of the product 𝜎-algebra can be viewed as a special case of the first method where

we consider the smallest 𝜎-algebra on
∏
𝑖∈𝐼 𝑋𝑖 that makes every projection map to 𝑋𝑖 measurable.

When the 𝑋𝑖 are disjoint, they can be combined as disjoint union. The underlying set in this case is⋃
𝑖∈𝐼 𝑋𝑖 , and the 𝜎-algebra is⊕

𝑖∈𝐼
Σ𝑖 ≜ {𝐴 | 𝐴 ∩ 𝑋𝑖 ∈ Σ𝑖 for all 𝑖 ∈ 𝐼 }.

When 𝐼 = {𝑖, 𝑗} with 𝑖 ≠ 𝑗 , we denote the product measurable space by (𝑋𝑖 × 𝑋 𝑗 , Σ𝑖 ⊗ Σ 𝑗 ). In
addition, if 𝑋𝑖 and 𝑋 𝑗 are disjoint, we write (𝑋𝑖 ∪ 𝑋 𝑗 , Σ𝑖 ⊕ Σ 𝑗 ) for the disjoint-union measurable

space.

The third method builds a measurable space out of measures or a certain type of measures,

such as subprobability measures. For a measurable space (𝑋, Σ), we form a measurable space with

measures. The underlying set Mea(𝑋 ) and 𝜎-algebra ΣMea(𝑋 ) of the space are defined by

Mea(𝑋 ) ≜ {𝜇 | 𝜇 is a measure on (𝑋, Σ)}, ΣMea(𝑋 ) ≜ 𝜎
({
{𝜇 | 𝜇 (𝐴) ≤ 𝑟 }

�� 𝐴 ∈ Σ, 𝑟 ∈ R}) .
The difficult part to grasp is ΣMea(𝑋 ) . Once again, a good approach for understanding it is to

realise that ΣMea(𝑋 ) is the smallest 𝜎-algebra that makes the function 𝜇 ↦−→ 𝜇 (𝐴) from Mea(𝑋 )
to R measurable for all measurable subsets 𝐴 ∈ Σ. This measurable space gives rise to a variety

of measurable spaces, each having a subset 𝑀 of Mea(𝑋 ) as its underlying set and the induced

𝜎-algebra Σ𝑀 = {𝐴 ∩𝑀 | 𝐴 ∈ ΣMea(𝑋 ) }. In the paper, we use two such spaces, one induced by the

set Sp(𝑋 ) of subprobability measures on 𝑋 and the other by the set Pr(𝑋 ) of probability measures.

A measurable function 𝑓 from (𝑋, Σ) to (Mea(𝑌 ), ΣMea(𝑌 ) ) is called kernel. If 𝑓 (𝑥) is a subprob-
ability measure (i.e., 𝑓 (𝑥) ∈ Sp(𝑌 )) for all 𝑥 , we say that 𝑓 is a subprobability kernel. In addition,

if 𝑓 (𝑥) is a probability measure (i.e., 𝑓 (𝑥) ∈ Pr(𝑌 )) for all 𝑥 , we call 𝑓 probability kernel. A good

heuristic is to view a probability kernel as a random function and a subprobability kernel as a

random partial function. We use well-known facts that a function 𝑓 : 𝑋 → Mea(𝑌 ) is a sub-

probability kernel if and only if it is a measurable map from (𝑋, Σ) to (Sp(𝑌 ), ΣSp(𝑌 ) ), and that

similarly a function 𝑓 is a probability kernel if and only if it is a measurable function from (𝑋, Σ)
to (Pr(𝑌 ), ΣPr(𝑌 ) ).

We use a few popular operators for constructing measures throughout the paper. We say that a

measure 𝜇 on a measurable space (𝑋, Σ) is finite if 𝜇 (𝑋 ) < ∞, and 𝜎-finite if there is a countable
partition of 𝑋 into measurable subsets 𝑋𝑛’s such that 𝜇 (𝑋𝑛) < ∞ for every 𝑛. Given a finite or

countable family of𝜎-finitemeasures {𝜇𝑖 }𝑖∈𝐼 onmeasurable spaces (𝑋𝑖 , Σ𝑖 )’s, the product measure of

𝜇𝑖 ’s, denoted
⊗

𝑖∈𝐼 𝜇𝑖 , is the unique measure on (∏𝑖∈𝐼 𝑋𝑖 ,
⊗

𝑖∈𝐼 Σ𝑖 ) such that (
⊗

𝑖∈𝐼 𝜇𝑖 ) (
∏
𝑖∈𝐼 𝐴𝑖 ) =∏

𝑖∈𝐼 𝜇𝑖 (𝐴𝑖 ) for all measurable subsets 𝐴𝑖 of 𝑋𝑖 . Given a finite or countable family of measures

{𝜇𝑖 }𝑖∈𝐼 on disjoint measurable spaces (𝑋𝑖 , Σ𝑖 )’s, the sum measure of 𝜇𝑖 ’s, denoted
⊕

𝑖∈𝐼 𝜇𝑖 , is the
unique measure on (∑𝑖∈𝐼 𝑋𝑖 ,

⊕
𝑖∈𝐼 Σ𝑖 ) such that (

⊕
𝑖∈𝐼 𝜇𝑖 ) (

⋃
𝑖∈𝐼 𝐴𝑖 ) =

∑
𝑖∈𝐼 𝜇𝑖 (𝐴𝑖 ).

Throughout the paper, we take the convention that the set N of natural numbers includes 0. For

all positive integers 𝑛, we write [𝑛] to mean the set {1, 2, . . . , 𝑛}.
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Real constants 𝑐 ∈ R Primitive real-valued functions 𝑓 ::= . . .

String constants 𝛼 ∈ Str Primitive string-valued functions 𝑔 ::= . . .

Real expressions 𝐸 ::= 𝑐 | 𝑥 | 𝑓 (𝐸, . . . , 𝐸)
Boolean expressions 𝐵 ::= true | 𝐸 < 𝐸 | 𝐵 ∧ 𝐵 | ¬𝐵
String expressions 𝑆 ::= 𝛼 | 𝑔(𝑆, . . . , 𝑆, 𝐸, . . . , 𝐸)

Commands 𝐶 ::= skip | 𝑥 := 𝐸 | 𝐶;𝐶 | if 𝐵 {𝐶} else {𝐶} | while𝐵 {𝐶}
| 𝑥 := samplenorm (𝑆, 𝐸, 𝐸) | scorenorm (𝐸, 𝐸, 𝐸)

Fig. 4. Grammar of our core language.

4 SIMPLE PROBABILISTIC PROGRAMMING LANGUAGE
In this section, we describe the syntax and semantics of a simple probabilistic programming

language, which we use to present the theoretical results of the paper. The measure semantics in

§4.2 uses results and observations from [Staton et al. 2016], but the density semantics and the other

materials in §4.3 are new in this work.

4.1 Syntax
We use an extension of the standard while language with primitives for probabilistic programming.

The grammar of the language is given in Figure 4. Variables in the language store real numbers, but

expressions may denote reals, booleans and strings, and they are classified into 𝐸, 𝐵, 𝑆 based on these

denoted values. The primitive functions 𝑓 for reals and 𝑔 for strings may be usual arithmetic and

string operations, such as multiplication and exponentiation for 𝑓 and string concatenation for 𝑔.

The grammar for 𝐶 includes the cases for the standard constructs of the while language, such

as assignment, sequencing, conditional statement and loops. In addition, it has two constructs for

probabilistic programming. The first 𝑥 := samplenorm (𝑆, 𝐸1, 𝐸2) draws a sample from the normal
distribution with mean 𝐸1 and standard deviation 𝐸2 and names the sample with the string 𝑆 .

The next scorenorm (𝐸0, 𝐸1, 𝐸2) expresses that a sample is drawn from the normal distribution with

mean 𝐸1 and standard deviation 𝐸2 and the value of this sample is observed to be 𝐸0. It lets

the programmers express information about observed data inside programs. Operationally, this

construct can be understood as an instruction for updating a global variable that stores the so

called importance score of the execution. The importance score quantitatively records how well the

random choices in the current execution match the observations, and the score statement updates

this score by multiplying it with the density at 𝐸0 of the appropriate normal distribution.

Consider the following program:

𝑥 := samplenorm (“𝑎”, 0.0, 5.0); scorenorm (3.0, 𝑥, 1.0).

The program specifies a model with one random variable “𝑎”. Using a relatively flat normal distri-

bution, the program specifies a prior belief that the value of the random variable “𝑎” is likely to be

close to 0.0 and lie between −2 × 5.0 and 2 × 5.0. The next score statement refines this belief with

one data point 3.0, which is a noisy observation of the value of “𝑎” (bound to 𝑥 ). The parameters to

the normal density in the statement express that the noise is relatively small, between −2 × 1.0 and
2 × 1.0. Getting the refined belief, called posterior distribution, is the reason that a data scientist

writes a model like this program. It is done by an inference algorithm of the language.
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Permitting only the normal distribution does not limit the type of models expressible in the

language. Every distribution can be obtained by transforming the standard normal distribution.
7

4.2 Measure Semantics
The denotational semantics of the language just presented is mostly standard, but employs some

twists to address the features for probabilistic programming [Staton et al. 2016].

Here is a short high-level overview of the measure semantics. Our semantics defines multiple

measurable spaces, such as Store and State, that hold mathematical counterparts to the usual actors

in computation, such as program stores (i.e., mappings from variables to values) and states (which

consist of a store and further components). Then, the semantics interprets expressions 𝐸, 𝐵, 𝑆 and

commands 𝐶 as measurable functions of the following types:

⟦𝐸⟧ : Store→ R, ⟦𝐵⟧ : Store→ B, ⟦𝑆⟧ : Store→ Str, ⟦𝐶⟧ : State→ Sp(State × [0,∞)) .

Here R is the measurable space of reals with the Borel 𝜎-algebra, and B and Str are discrete

measurable spaces of booleans and strings. Store and State aremeasurable spaces for stores (i.e., maps

from variables to values) and states which consist of a store and a part for recording information

about sampled random variables. Note that the target measurable space of commands is built

by first taking the product of measurable spaces State and [0,∞) and then forming a space out

of subprobability measures on State × [0,∞). This construction indicates that commands denote

probabilistic computations, and the result of each such computation consists of an output state

and a score which expresses how well the computation matches observations expressed with the

score statements in the command𝐶 . Some of the possible outcomes of the computation may lead to

non-termination or an error, and these abnormal outcomes are not accounted for by the semantics,

which is why ⟦𝐶⟧(𝜎) for a state 𝜎 ∈ Σ is a subprobability distribution. The semantics of expressions

is much simpler. It just says that expressions do not involve any probabilistic computations, so that

they denote deterministic measurable functions.

We now explain how this high-level idea gets implemented in our semantics. Let Var be a

countably infinite set of variables. Our semantics uses the following sets:

Stores 𝑠 ∈ Store ≜ [Var → R]
(
which is isomorphic to

∏
𝑥 ∈Var

R
)

Random databases 𝑟 ∈ RDB ≜
⋃

𝐾⊆finStr
[𝐾 → R]

(
which is isomorphic to

⋃
𝐾⊆finStr

∏
𝛼 ∈𝐾
R
)

States 𝜎 ∈ State ≜ Store × RDB,

where [𝑋 → 𝑌 ] denotes the set of all functions from 𝑋 to 𝑌 . A state 𝜎 consists of a store 𝑠 and a

random database 𝑟 . The former fixes the values of variables, and the latter records the name (given

as a string) and the value of each sampled random variable. The domain of 𝑟 is the names of all

the sampled random variables. By insisting that 𝑟 should be a map, the semantics asserts that no

two random variables have the same name. For each state 𝜎 , we write 𝜎𝑠 and 𝜎𝑟 for its store and

random database components, respectively. Also, for a variable 𝑥 , a string 𝛼 and a value 𝑣 , we write

𝜎 [𝑥 ↦→ 𝑣] and 𝜎 [𝛼 ↦→ 𝑣] to mean (𝜎𝑠 [𝑥 ↦→ 𝑣], 𝜎𝑟 ) and (𝜎𝑠 , 𝜎𝑟 [𝛼 ↦→ 𝑣]).
We equip all of these sets with 𝜎-algebras and turn them to measurable spaces in a standard way.

Note that we constructed the sets from R by repeatedly applying the product and disjoint-union

7
Here we consider only Borel spaces. Although using only the normal distribution does not affect the expressiveness, it has

an impact on stochastic variational inference to be discussed later, because it requires a guide to use only normal distributions.

But the impact is not significant, because most well-known approaches for creating guides from the machine-learning

literature (such as extensions of variational autoencoder) use normal distributions only, or can be made to do so easily.
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⟦skip⟧(𝜎) (𝐴) ≜ 1[ (𝜎,1) ∈𝐴] ⟦𝑥 := 𝐸⟧(𝜎) (𝐴) ≜ 1[ (𝜎 [𝑥 ↦→⟦𝐸⟧𝜎𝑠 ],1) ∈𝐴]
⟦𝐶0;𝐶1⟧(𝜎) (𝐴) ≜

∫
⟦𝐶0⟧(𝜎) (d(𝜎 ′,𝑤 ′))

∫
⟦𝐶1⟧(𝜎 ′) (d(𝜎 ′′,𝑤 ′′)) 1[ (𝜎′′,𝑤′ ·𝑤′′) ∈𝐴]

⟦if 𝐵 {𝐶0} else {𝐶1}⟧(𝜎) (𝐴) ≜ 1[⟦𝐵⟧𝜎𝑠=true] · ⟦𝐶0⟧(𝜎) (𝐴) + 1[⟦𝐵⟧𝜎𝑠≠true] · ⟦𝐶1⟧(𝜎) (𝐴)
⟦while𝐵 {𝐶}⟧(𝜎) (𝐴) ≜ (fix 𝐹 ) (𝜎) (𝐴)(

where 𝐹 (𝜅) (𝜎) (𝐴) ≜ 1[⟦𝐵⟧𝜎𝑠≠true] · 1[ (𝜎,1) ∈𝐴]
+ 1[⟦𝐵⟧𝜎𝑠=true] ·

∫
⟦𝐶⟧(𝜎) (d(𝜎 ′,𝑤 ′))

∫
𝜅 (𝜎 ′) (d(𝜎 ′′,𝑤 ′′)) 1[ (𝜎′′,𝑤′ ·𝑤′′) ∈𝐴]

)
⟦𝑥 := samplenorm (𝑆, 𝐸1, 𝐸2)⟧(𝜎) (𝐴) ≜ 1[⟦𝑆⟧𝜎𝑠∉dom(𝜎𝑟 ) ] · 1[⟦𝐸2⟧𝜎𝑠 ∈(0,∞) ]

·
∫
d𝑣

(
N(𝑣 ; ⟦𝐸1⟧𝜎𝑠 , ⟦𝐸2⟧𝜎𝑠 ) · 1[ ( (𝜎𝑠 [𝑥 ↦→𝑣 ],𝜎𝑟 [⟦𝑆⟧𝜎𝑠 ↦→𝑣 ]),1) ∈𝐴]

)
⟦scorenorm (𝐸0, 𝐸1, 𝐸2)⟧(𝜎) (𝐴) ≜ 1[⟦𝐸2⟧𝜎𝑠 ∈(0,∞) ] · 1[ (𝜎,N(⟦𝐸0⟧𝜎𝑠 ;⟦𝐸1⟧𝜎𝑠 ,⟦𝐸2⟧𝜎𝑠 )) ∈𝐴]

Fig. 5. Measure semantics ⟦𝐶⟧ ∈ K of commands𝐶 . HereN(𝑣 ; 𝜇, 𝜎) is the density of the normal distribution
with mean 𝜇 and standard deviation 𝜎 .

operators. We equip R with the usual Borel 𝜎-algebra. Then, we parallel each usage of the product

and the disjoint-union operators on sets with that of the corresponding operators on 𝜎-algebras.

This gives the 𝜎-algebras for all the sets defined above. Although absent from the above definition,

the measurable spaces B and Str equipped with discrete 𝜎-algebras are also used in our semantics.

We interpret expressions 𝐸, 𝐵, 𝑆 as measurable functions ⟦𝐸⟧ : Store → R, ⟦𝐵⟧ : Store → B,
and ⟦𝑆⟧ : Store → Str , under the assumption that the semantics of primitive real-valued 𝑓 of

arity 𝑛 and string-valued 𝑔 of arity (𝑚, 𝑙) are given by measurable functions ⟦𝑓 ⟧ : R𝑛 → R and

⟦𝑔⟧ : Str𝑚 × R𝑙 → Str . It is standard, and we describe it only for some sample cases of 𝐸 and 𝑆 :

⟦𝑥⟧𝑠 ≜ 𝑠 (𝑥), ⟦𝑓 (𝐸0, . . . , 𝐸𝑛−1)⟧𝑠 ≜ ⟦𝑓 ⟧(⟦𝐸0⟧𝑠, . . . , ⟦𝐸𝑛−1⟧𝑠),
⟦𝛼⟧𝑠 ≜ 𝛼, ⟦𝑔(𝑆0, . . . , 𝑆𝑚−1, 𝐸0, . . . , 𝐸𝑙−1)⟧𝑠 ≜ ⟦𝑔⟧(⟦𝑆0⟧𝑠, . . . , ⟦𝑆𝑚−1⟧𝑠, ⟦𝐸0⟧𝑠, . . . , ⟦𝐸𝑙−1⟧𝑠).

Lemma 4.1. For all expressions 𝐸, 𝐵, and 𝑆 , their semantics ⟦𝐸⟧, ⟦𝐵⟧ and ⟦𝑆⟧ are measurable
functions from Store to R, B and Str , respectively.

We interpret commands𝐶 as measurable functions from State to Sp(State × [0,∞)), i.e., subprob-
ability kernels from State to State × [0,∞). Let K be the set of subprobability kernels from State
to State × [0,∞), and ΣState×[0,∞) be the 𝜎-algebra of the product space State × [0,∞). We equip K
with the partial order ⊑: for all 𝜅, 𝜅 ′ ∈ K , 𝜅 ⊑ 𝜅 ′ if and only if 𝜅 (𝜎) (𝐴) ≤ 𝜅 ′(𝜎) (𝐴) for all 𝜎 ∈ State
and 𝐴 ∈ ΣState×[0,∞) . The next lemma is a minor adaptation of a known result [Kozen 1981].

Lemma 4.2. (K, ⊑) is an 𝜔-complete partial order with the least element ⊥ ≜ (𝜆𝜎. 𝜆𝐴. 0).

The measure semantics of a command 𝐶 is defined in Figure 5. The interpretation of the loop

is the least fixed point of the function 𝐹 on the 𝜔-complete partial order K . The function 𝐹 is

continuous, so the least fixed point is obtained by the 𝜔-limit of the sequence {𝐹𝑛 (⊥)}𝑛 . In the

definition of 𝐹 , the argument 𝜅 is a sub-probability kernel, and it represents the computation after

the first iteration of the loop. The semantics of the sample statement uses an indicator function to

exclude erroneous executions where the argument 𝑆 denotes a name already used by some previous

random variable, or the standard deviation ⟦𝐸2⟧𝜎𝑠 is not positive. When this check passes, it distils

𝐴 to a property on the value of 𝑥 and computes the probability of the property using the normal

distribution with mean ⟦𝐸1⟧𝜎𝑠 and standard deviation ⟦𝐸2⟧𝜎𝑠 .

Theorem 4.3. For every command 𝐶 , its interpretation ⟦𝐶⟧ is well-defined and belongs to K .
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4.3 Posterior Inference and Density Semantics
We write a probabilistic program to answer queries about the model and data that it describes.

Among such queries, posterior inference is one of the most important and popular. Let 𝜎𝐼 = (𝑠𝐼 , [])
be the initial state that consists of some fixed store and the empty random database. In our setting,

posterior inference amounts to finding information about the following probability measure Pr(𝐶, ·)
for a command 𝐶 . For a measurable 𝐴 ⊆ RDB,

Mea(𝐶,𝐴) ≜
∫
⟦𝐶⟧(𝜎𝐼 ) (d(𝜎,𝑤)) (𝑤 · 1[𝜎 ∈Store×𝐴]), 𝑍𝐶 ≜ Mea(𝐶, RDB), Pr(𝐶,𝐴) ≜ Mea(𝐶,𝐴)

𝑍𝐶
.

(2)

The probability measure Pr(𝐶, ·) is called the posterior distribution of 𝐶 , andMea(𝐶, ·) the unnor-
malised posterior distribution of𝐶 (inMea(𝐶, ·) and Pr(𝐶, ·), we elide the dependency on 𝑠𝐼 to avoid

clutter). Finding information about the former is the goal of most inference engines of existing

probabilistic programming languages. Of course, Pr(𝐶, ·) is not defined when the normalising con-

stant 𝑍𝐶 is infinite or zero. The inference engines regard such a case as an error that a programmer

should avoid, and consider only 𝐶 without those errors.

Most algorithms for posterior inference use the density semantics of commands. They implicitly

pick measures on some measurable spaces used in the semantics. These measures are called

reference measures, and constructed out of Lebesgue and counting measures [Bhat et al. 2012,

2013; Hur et al. 2015]. Then, the algorithms interpret commands as density functions with respect

to these measures. One outcome of this density semantics is that the unnormalised posterior

distribution Mea(𝐶, ·) of a command 𝐶 has a measurable function 𝑓 : RDB → [0,∞) such that

Mea(𝐶,𝐴) =
∫
𝜌 (d𝑟 ) (1[𝑟 ∈𝐴] · 𝑓 (𝑟 )), where 𝜌 is a reference measure on RDB. Function 𝑓 is called

density ofMea(𝐶, ·) with respect to 𝜌 .

In the rest of this subsection, we define the meanings of commands using density functions. To

do this, we need to set up some preliminary definitions.

First, we look at a predicate and an operator for random databases, which are about the possibility

and the very act of merging two databases. For 𝑟, 𝑟 ′ ∈ RDB, define the predicate 𝑟#𝑟 ′ by:

𝑟#𝑟 ′ ⇐⇒ dom(𝑟 ) ∩ dom(𝑟 ′) = ∅.

When 𝑟#𝑟 ′, let 𝑟 ⊎ 𝑟 ′ be the random database obtained by merging 𝑟 and 𝑟 ′:

dom(𝑟 ⊎ 𝑟 ′) ≜ dom(𝑟 ) ∪ dom(𝑟 ′); (𝑟 ⊎ 𝑟 ′) (𝛼) ≜ if 𝛼 ∈ dom(𝑟 ) then 𝑟 (𝛼) else 𝑟 ′(𝛼).

Lemma 4.4. For every measurable ℎ : RDB × RDB × RDB→ R, the function (𝑟, 𝑟 ′) ↦−→ 1[𝑟#𝑟 ′ ] ×
ℎ(𝑟, 𝑟 ′, 𝑟 ⊎ 𝑟 ′) from RDB × RDB to R is measurable.

Second, we define a reference measure 𝜌 on RDB:

𝜌 (𝑅) ≜
∑

𝐾⊆finStr

(⊗
𝛼 ∈𝐾

𝜆

)
(𝑅 ∩ [𝐾 → R]),

where 𝜆 is the Lebesgue measure on R. As explained in the preliminary section, the symbol ⊗
here represents the operator for constructing a product measure. In particular,

⊗
𝛼 ∈𝐾 𝜆 refers to

the product of the |𝐾 | copies of the Lebesgue measure 𝜆 on R. In the above definition, we view

functions in [𝐾 → R] as tuples with |𝐾 | real components and measure sets of such functions using

the product measure

⊗
𝛼 ∈𝐾 𝜆. When 𝐾 is the empty set,

⊗
𝛼 ∈𝐾 𝜆 is the nullary-product measure

on {[]}, which assigns 1 to {[]} and 0 to the empty set.

The measure 𝜌 computes the size of each measurable subset 𝑅 ⊆ RDB in three steps. It splits

a given 𝑅 into groups based on the domains of elements in 𝑅. Then, it computes the size of each
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group separately, using the product of the Lebesgue measure. Finally, it adds the computed sizes.

The measure 𝜌 is not finite, but it satisfies the 𝜎-finiteness condition,8 the next best property.
Third, we define a partially-ordered set D with certain measurable functions. We say that a

function 𝑔 : Store × RDB→ {⊥} ∪ (Store × RDB × [0,∞) × [0,∞)) uses random databases locally or

is local if for all 𝑠, 𝑠 ′ ∈ Store, 𝑟, 𝑟 ′ ∈ RDB, and𝑤 ′, 𝑝 ′ ∈ [0,∞),

𝑔(𝑠, 𝑟 ) = (𝑠 ′, 𝑟 ′,𝑤 ′, 𝑝 ′) =⇒ (∃𝑟 ′′. 𝑟 ′#𝑟 ′′ ∧ 𝑟 = 𝑟 ′ ⊎ 𝑟 ′′ ∧ 𝑔(𝑠, 𝑟 ′′) = (𝑠 ′, [],𝑤 ′, 𝑝 ′))
∧ (∀𝑟 ′′′. 𝑟#𝑟 ′′′ =⇒ 𝑔(𝑠, 𝑟 ⊎ 𝑟 ′′′) = (𝑠 ′, 𝑟 ′ ⊎ 𝑟 ′′′,𝑤 ′, 𝑝 ′)) .

The condition describes the way that 𝑔 uses a given random database 𝑟 , which plays the role of a

bank of random seeds (that 𝑔 may partially consume as it needs random values). Some part 𝑟 ′′ of 𝑟
may be consumed by 𝑔, but the unconsumed part 𝑟 ′ of 𝑟 does not change and is returned in the

output. Also, the behaviour of 𝑔 does not depend on the unconsumed 𝑟 ′. We define the set D by

D ≜
{
𝑔 : Store × RDB→ {⊥} ∪ (Store × RDB × [0,∞) × [0,∞))

�� 𝑔 is measurable and local

}
. (3)

Here we view {⊥} and [0,∞) as measurable spaces equipped with discrete and Borel 𝜎-algebras.

Also, we regard Store × RDB and {⊥} ∪ (Store × RDB × [0,∞) × [0,∞)) as measurable spaces

constructed by the product and disjoint-union operators on measurable spaces, as explained in §3.

The locality in the definition of D formalises expected behaviours of commands. In fact, as we

will show shortly, it is satisfied by all commands in our density semantics. This property plays an

important role when we establish the connection between the density semantics in this subsection

and the standard measure semantics in §4.2.

The functions in D are ordered pointwise: for all 𝑔,𝑔′ ∈ D,

𝑔 ⊑ 𝑔′ ⇐⇒ ∀(𝑠, 𝑟 ) ∈ Store × RDB. (𝑔(𝑠, 𝑟 ) = ⊥ ∨ 𝑔(𝑠, 𝑟 ) = 𝑔′(𝑠, 𝑟 )) .

Lemma 4.5. (D, ⊑) is an 𝜔-complete partial order and has the least element 𝑎 ↦−→ ⊥. Thus, every
continuous function 𝐺 on D has a least fixed point (and this least fixed point is unique).

For each𝑔 ∈ D, let𝑔‡ be the following lifting to a function on {⊥}∪(Store×RDB×[0,∞)×[0,∞)):

𝑔‡ (⊥) ≜ ⊥, 𝑔‡ (𝑠, 𝑟,𝑤, 𝑝) ≜
{
⊥ if 𝑔(𝑠, 𝑟 ) = ⊥,
(𝑠 ′, 𝑟 ′,𝑤 ×𝑤 ′, 𝑝 × 𝑝 ′) if 𝑔(𝑠, 𝑟 ) = (𝑠 ′, 𝑟 ′,𝑤 ′, 𝑝 ′).

This lifting lets us compose two functions in D.

Using these preliminary definitions, we define a density semantics in Figure 6, where a command

𝐶 means a function ⟦𝐶⟧𝑑 ∈ D. The notation 𝑟 \ 𝑣 in the figure means the removal of the entry 𝑣

from the finite map 𝑟 if 𝑣 ∈ dom(𝑟 ); otherwise, 𝑟 \ 𝑣 is just 𝑟 . The set membership ⟦𝐶⟧𝑑 ∈ D says

that ⟦𝐶⟧𝑑 is a local measurable function from Store × RDB to {⊥} ∪ Store × RDB × [0,∞) × [0,∞).
Thus, the function ⟦𝐶⟧𝑑 takes a store 𝑠 and a random database 𝑟 as inputs, where the former fixes

the values of variables at the start of 𝐶 and the latter specifies random seeds some of which 𝐶 may

consume to sample random variables. Given such inputs, the function outputs an updated store

𝑠 ′, the part 𝑟 ′ of 𝑟 not consumed by 𝐶 , the total score𝑤 ′ expressing how well the execution of 𝐶

matches observations, and the probability density 𝑝 ′ of 𝐶 at the consumed part of 𝑟 . If 𝑟 does not

contain enough random seeds, or the execution of 𝐶 encounters some runtime error, or it falls into

an infinite loop, then the function returns ⊥.

Lemma 4.6. For every command 𝐶 , its semantics ⟦𝐶⟧𝑑 is well-defined and belongs to D.

8
The condition lets us use Fubini theorem when showing the well-formedness of the density semantics in this subsection

and relating this semantics with the measure semantics in the previous subsection.
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⟦skip⟧𝑑 (𝑠, 𝑟 ) ≜ (𝑠, 𝑟, 1, 1) ⟦𝑥 :=𝐸⟧𝑑 (𝑠, 𝑟 ) ≜ (𝑠 [𝑥 ↦→ ⟦𝐸⟧𝑠], 𝑟 , 1, 1)
⟦𝐶0;𝐶1⟧𝑑 (𝑠, 𝑟 ) ≜ (⟦𝐶1⟧‡𝑑 ◦ ⟦𝐶0⟧𝑑 ) (𝑠, 𝑟 )

⟦if 𝐵 {𝐶0} else {𝐶1}⟧𝑑 (𝑠, 𝑟 ) ≜ if (⟦𝐵⟧𝑠 = true) then ⟦𝐶0⟧𝑑 (𝑠, 𝑟 ) else ⟦𝐶1⟧𝑑 (𝑠, 𝑟 )
⟦while𝐵 {𝐶}⟧𝑑 (𝑠, 𝑟 ) ≜ (fix𝐺) (𝑠, 𝑟 )

(where 𝐺 (𝑔) (𝑠, 𝑟 ) = if (⟦𝐵⟧𝑠 ≠ true) then (𝑠, 𝑟, 1, 1) else (𝑔‡ ◦ ⟦𝐶⟧𝑑 ) (𝑠, 𝑟 ))
⟦𝑥 :=samplenorm (𝑆, 𝐸1, 𝐸2)⟧𝑑 (𝑠, 𝑟 ) ≜ if (⟦𝑆⟧𝑠 ∉ dom(𝑟 ) ∨ ⟦𝐸2⟧𝑠 ∉ (0,∞)) then ⊥

else (𝑠 [𝑥 ↦→ 𝑟 (⟦𝑆⟧𝑠)], 𝑟 \ ⟦𝑆⟧𝑠, 1, N(𝑟 (⟦𝑆⟧𝑠); ⟦𝐸1⟧𝑠, ⟦𝐸2⟧𝑠))
⟦scorenorm (𝐸0, 𝐸1, 𝐸2)⟧𝑑 (𝑠, 𝑟 ) ≜ if (⟦𝐸2⟧𝑠 ∉ (0,∞)) then ⊥ else (𝑠, 𝑟,N(⟦𝐸0⟧𝑠; ⟦𝐸1⟧𝑠, ⟦𝐸2⟧𝑠), 1)

Fig. 6. Density semantics ⟦𝐶⟧𝑑 ∈ D of commands 𝐶

The density semantics ⟦𝐶⟧𝑑 is closely related to the measure semantics ⟦𝐶⟧ defined in §4.2. Both

interpretations of𝐶 describe the computation of𝐶 but from slightly different perspectives. To state

this relationship formally, we need a few notations. For 𝑔 ∈ D and 𝑠 ∈ Store, define

dens(𝑔, 𝑠) : RDB→ [0,∞), dens(𝑔, 𝑠) (𝑟 ) ≜
{
𝑤 ′ × 𝑝 ′ if ∃𝑠 ′,𝑤 ′, 𝑝 ′. (𝑔(𝑠, 𝑟 ) = (𝑠 ′, [],𝑤 ′, 𝑝 ′)),
0 otherwise,

get (𝑔, 𝑠) : RDB→ Store ∪ {⊥}, get (𝑔, 𝑠) (𝑟 ) ≜
{
𝑠 ′ if ∃𝑠 ′,𝑤 ′, 𝑝 ′. (𝑔(𝑠, 𝑟 ) = (𝑠 ′, [],𝑤 ′, 𝑝 ′)),
⊥ otherwise.

Both dens(𝑔, 𝑠) and get (𝑔, 𝑠) are concerned with random databases 𝑟 that precisely describe the

randomness needed by the execution of𝑔 from 𝑠 . This is formalised by the use of [] in the definitions.
The function dens(𝑔, 𝑠) assigns a score to such an 𝑟 , and in so doing, it defines a probability density

on RDB with respect to the reference measure 𝜌 . The function get (𝑔, 𝑠) computes a store that

the computation of 𝑔 would result in when started with such an 𝑟 . We often write dens(𝐶, 𝑠) and
get (𝐶, 𝑠) to mean dens(⟦𝐶⟧𝑑 , 𝑠) and get (⟦𝐶⟧𝑑 , 𝑠), respectively.

Lemma 4.7. For all 𝑔 ∈ D, the following functions from Store × RDB to R and {⊥} ∪ Store are
measurable: (𝑠, 𝑟 ) ↦−→ dens(𝑔, 𝑠) (𝑟 ) and (𝑠, 𝑟 ) ↦−→ get (𝑔, 𝑠) (𝑟 ).

The next lemma is the main reason that we considered the locality property. It plays a crucial

role in proving Theorem 4.9, the key result of this subsection.

Lemma 4.8. For all non-negative bounded measurable functions ℎ : ({⊥} ∪ Store) × RDB → R,
stores 𝑠 , and functions 𝑔1, 𝑔2 ∈ D, we have that∫

𝜌 (d𝑟 )
(
dens(𝑔‡

2
◦ 𝑔1, 𝑠) (𝑟 ) · ℎ

(
get (𝑔‡

2
◦ 𝑔1, 𝑠) (𝑟 ), 𝑟

))
=

∫
𝜌 (d𝑟1)

(
dens(𝑔1, 𝑠) (𝑟1) · 1[get (𝑔1,𝑠) (𝑟1)≠⊥]

·
∫

𝜌 (d𝑟2)
(
dens(𝑔2, get (𝑔1, 𝑠) (𝑟1)) (𝑟2) · 1[𝑟1#𝑟2 ] · ℎ

(
get (𝑔2, get (𝑔1, 𝑠) (𝑟1)) (𝑟2), 𝑟1 ⊎ 𝑟2

)))
.

Assume that ({⊥}∪Store) ×RDB is ordered as follows: for all (𝑎, 𝑟 ), (𝑎′, 𝑟 ′) ∈ ({⊥}∪Store) ×RDB,
(𝑎, 𝑟 ) ⊑ (𝑎′, 𝑟 ′) ⇐⇒ (𝑎 = ⊥ ∨ 𝑎 = 𝑎′) ∧ 𝑟 = 𝑟 ′.

Theorem 4.9. For all non-negative bounded measurable monotone functions ℎ : ({⊥} ∪ Store) ×
RDB→ R and states 𝜎 ,∫
⟦𝐶⟧(𝜎) (d(𝜎 ′,𝑤 ′)) (𝑤 ′·ℎ(𝜎 ′𝑠 , 𝜎 ′𝑟 )) =

∫
𝜌 (d𝑟 ′)

(
dens(𝐶, 𝜎𝑠 ) (𝑟 ′)·1[𝑟 ′#𝜎𝑟 ] ·ℎ(get (𝐶, 𝜎𝑠 ) (𝑟 ′), 𝑟 ′⊎𝜎𝑟 )

)
.
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model 𝐶 ≡
(
𝑠 := samplenorm (“slope”, 0.0, 5.0); 𝑖 := samplenorm (“intercept”, 0.0, 5.0);
𝑥1 := 1.0; 𝑦1 := 2.3; 𝑥2 := 2.0; 𝑦2 := 4.2; 𝑥3 := 3.0; 𝑦3 := 6.9;

scorenorm (𝑦1, 𝑠 · 𝑥1 + 𝑖, 1.0); scorenorm (𝑦2, 𝑠 · 𝑥2 + 𝑖, 1.0); scorenorm (𝑦3, 𝑠 · 𝑥3 + 𝑖, 1.0)
)

guide 𝐷𝜃 ≡
(
𝑠 := samplenorm (“slope”, 𝜃1, exp(𝜃2)); 𝑖 := samplenorm (“intercept”, 𝜃3, exp(𝜃4))

)
Fig. 7. Example model-guide pair for simple Bayesian linear regression.

Corollary 4.10. Mea(𝐶,𝐴) =
∫
𝜌 (d𝑟 ) (1[𝑟 ∈𝐴] · dens(𝐶, 𝑠𝐼 ) (𝑟 )) for all 𝐶 and all measurable 𝐴.

This corollary says that dens(𝐶, 𝑠𝐼 ) is the density of the measureMea(𝐶, ·) with respect to 𝜌 , and

supports our informal claim that ⟦𝐶⟧𝑑 computes the density of the measure ⟦𝐶⟧.

5 STOCHASTIC VARIATIONAL INFERENCE
In this section, we explain stochastic variational inference (SVI) algorithms using the semantics

that we have developed so far. In particular, we describe the requirements made implicitly by one

fundamental SVI algorithm, which is regarded most permissive by the ML researchers because the

algorithm does not require the differentiability of the density of a given probabilistic model.

We call a command 𝐶 model if it has a finite nonzero normalising constant:

𝑍𝐶 = Mea(𝐶, RDB) =
( ∫
⟦𝐶⟧(𝜎𝐼 ) (d(𝜎,𝑤))𝑤

)
∈ (0,∞),

where 𝜎𝐼 is the initial state. Given a model 𝐶 , the SVI algorithms attempt to infer a good approx-

imation of 𝐶’s posterior distribution Pr(𝐶, ·) defined in (2). They tackle this posterior-inference

problem in two steps.

First, the SVI algorithms fix a collection of approximate distributions. They usually do so by

asking the developer of𝐶 to provide a command 𝐷𝜃 parameterised by 𝜃 ∈ R𝑝 , which can serve as a

template for approximation distributions. The command 𝐷𝜃 typically has a control-flow structure

similar to that of 𝐶 , but it is simpler than 𝐶 : it does not use any score statements, and may replace

complex computation steps of𝐶 by simpler ones. In fact,𝐷𝜃 should satisfy two formal requirements,

which enforce this simplicity. The first is

Mea(𝐷𝜃 , RDB) = 1 for all 𝜃 ∈ R𝑝 ,
which means that the normalising constant of 𝐷𝜃 is 1. The second is that 𝐷𝜃 should keep the score

(i.e., the𝑤 component) to be 1, i.e.,

⟦𝐷𝜃⟧(𝜎𝐼 ) (State × ([0,∞) \ {1})) = 0.

Meeting these requirements is often not too difficult. A common technique is to ensure that 𝐷𝜃 does

not use the score statement and always terminates. Figure 7 gives an example of (𝐶, 𝐷𝜃 ) for simple

Bayesian linear regression with three data points. Note that in this case, 𝐷𝜃 is obtained from 𝐶 by

deleting the score statements and replacing the arguments 0.0 and 5.0 of normal distributions by

parameter 𝜃 = (𝜃1, 𝜃2, 𝜃3, 𝜃4). Following the terminology of Pyro, we call a parameterised command

𝐷𝜃 guide if it satisfies the two requirements just mentioned.

Second, the SVI algorithms search for a good parameter 𝜃 that makes the distribution described

by 𝐷𝜃 close to the posterior of 𝐶 . Concretely, they formulate an optimisation problem where the

optimisation objective expresses that some form of distance from 𝐷𝜃 ’s distribution to 𝐶’s posterior

should be minimised. Then, they solve the problem by a version of gradient descent.

The KL divergence is a standard choice for distance. Let 𝜇, 𝜇 ′ be measures on RDB that have

densities 𝑔 and 𝑔′ with respect to the measure 𝜌 . The KL divergence from 𝑔 to 𝑔′ is defined by

KL(𝑔| |𝑔′) ≜
∫

𝜌 (d𝑟 )
(
𝑔(𝑟 ) · log 𝑔(𝑟 )

𝑔′(𝑟 )

)
. (4)
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In words, it is the ratio of densities 𝑔 and 𝑔′ averaged according to 𝑔. If 𝑔 = 𝑔′, the ratio is always 1,

so that the KL becomes 0. The KL divergence is defined only if the following conditions are met:

• Absolute continuity: 𝑔′(𝑟 ) = 0 =⇒ 𝑔(𝑟 ) = 0 for all 𝑟 ∈ RDB,9 which ensures that the

integrand in (4) is well-defined even when the denominator 𝑔′(𝑟 ) in (4) takes the value 0;

• Integrability: the integral in (4) has a finite value.

Using our semantics, we can express the KL objective as follows:

argmin𝜃 ∈R𝑝KL

(
dens(𝐷𝜃 , 𝑠𝐼 )

������dens(𝐶, 𝑠𝐼 )
𝑍𝐶

)
. (5)

Recall that dens(𝐷𝜃 , 𝑠𝐼 ) and dens(𝐶, 𝑠𝐼 )/𝑍𝐶 are densities of the probability measures of the command

𝐷𝜃 and the posterior of 𝐶 (Corollary 4.10), and they are defined by means of our density semantics

in §4.3. Most SVI engines solve this optimisation problem by a version of gradient descent.

In the paper, we consider one of themost fundamental and versatile SVI algorithms. The algorithm

is called score estimator or REINFORCE, and it works by estimating the gradient of the objective in

(5) using samples and performing the gradient descent with this estimated gradient. More concretely,

the algorithm starts by initialising 𝜃 with some value (usually chosen randomly) and updating it

repeatedly by the following procedure:

(i) Sample 𝑟1, . . . , 𝑟𝑁 independently from dens(𝐷𝜃 , 𝑠𝐼 )

(ii) 𝜃 ← 𝜃 − 𝜂 ×
(
1

𝑁

𝑁∑
𝑖=1

(
∇𝜃 log dens(𝐷𝜃 , 𝑠𝐼 ) (𝑟𝑖 )

)
· log dens(𝐷𝜃 , 𝑠𝐼 ) (𝑟𝑖 )

dens(𝐶, 𝑠𝐼 ) (𝑟𝑖 )

)
Here 𝑁 and 𝜂 are hyperparameters to this algorithm, the former determining the number of samples

used to estimate the gradient and the latter, called learning rate, deciding how much the algorithm

should follow the direction of the estimated gradient. Although we do not explain here, sampling

𝑟1, . . . , 𝑟𝑁 and computing all of dens(𝐷𝜃 , 𝑠𝐼 ) (𝑟𝑖 ), dens(𝐶, 𝑠𝐼 ) (𝑟𝑖 ) and ∇𝜃 (log dens(𝐷𝜃 , 𝑠𝐼 ) (𝑟𝑖 )) can be

done by executing 𝐷𝜃 and 𝐶 multiple times under slightly unusual operational semantics [Yang

2019]. The SVI engines of Pyro and Anglican implement such operational semantics.

The average over the 𝑁 terms in the 𝜃 -update step is the core of the algorithm. It approximates

the gradient of the optimisation objective in (5):

∇𝜃KL
(
dens(𝐷𝜃 , 𝑠𝐼 )

������dens(𝐶, 𝑠𝐼 )
𝑍𝐶

)
≈ 1

𝑁

𝑁∑
𝑖=1

(
∇𝜃 log dens(𝐷𝜃 , 𝑠𝐼 ) (𝑟𝑖 )

)
· log dens(𝐷𝜃 , 𝑠𝐼 ) (𝑟𝑖 )

dens(𝐶, 𝑠𝐼 ) (𝑟𝑖 )
.

The average satisfies an important property called unbiasedness, summarised by Theorem 5.1.

Theorem 5.1. Let 𝐶 be a model, 𝐷𝜃 be a guide, and 𝑁 ≠ 0 ∈ N. Define KL(−) : R𝑝 → R≥0 as KL𝜃
≜ KL(dens(𝐷𝜃 , 𝑠𝐼 ) | |dens(𝐶, 𝑠𝐼 )/𝑍𝐶 ). Then, KL(−) is well-defined and continuously differentiable with

∇𝜃KL𝜃 = E∏
𝑖 dens (𝐷𝜃 ,𝑠𝐼 ) (𝑟𝑖 )

[
1

𝑁

𝑁∑
𝑖=1

(
∇𝜃 log dens(𝐷𝜃 , 𝑠𝐼 ) (𝑟𝑖 )

)
log

dens(𝐷𝜃 , 𝑠𝐼 ) (𝑟𝑖 )
dens(𝐶, 𝑠𝐼 ) (𝑟𝑖 )

]
(6)

if
(R1) dens(𝐶, 𝑠𝐼 ) (𝑟 ) = 0 =⇒ dens(𝐷𝜃 , 𝑠𝐼 ) (𝑟 ) = 0, for all 𝑟 ∈ RDB and 𝜃 ∈ R𝑝 ;
(R2) for all (𝑟, 𝜃, 𝑗) ∈ RDB × R𝑝 × [𝑝], the function 𝑣 ↦−→ dens(𝐷𝜃 [ 𝑗 :𝑣 ], 𝑠𝐼 ) (𝑟 ) on R is differentiable;
(R3) for all 𝜃 ∈ R𝑝 , ∫

𝜌 (d𝑟 )
(
dens(𝐷𝜃 , 𝑠𝐼 ) (𝑟 ) · log

dens(𝐷𝜃 , 𝑠𝐼 ) (𝑟 )
dens(𝐶, 𝑠𝐼 ) (𝑟 )

)
< ∞;

9
This condition can be relaxed in a more general formulation of the KL divergence stated in terms of the so called Radon-

Nikodym derivative. We do not use the relaxed condition to reduce the amount of materials on measure theory in the paper.
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(R4) for all (𝜃, 𝑗) ∈ R𝑝 × [𝑝], the function

𝑣 ↦−→
∫

𝜌 (d𝑟 )
(
dens(𝐷𝜃 [ 𝑗 :𝑣 ], 𝑠𝐼 ) (𝑟 ) · log

dens(𝐷𝜃 [ 𝑗 :𝑣 ], 𝑠𝐼 ) (𝑟 )
dens(𝐶, 𝑠𝐼 ) (𝑟 )

)
on R is continuously differentiable;

(R5) for all 𝜃 ∈ R𝑝 ,

∇𝜃
∫
𝜌 (d𝑟 )

(
dens(𝐷𝜃 , 𝑠𝐼 ) (𝑟 ) · log

dens(𝐷𝜃 , 𝑠𝐼 ) (𝑟 )
dens(𝐶, 𝑠𝐼 ) (𝑟 )

)
=

∫
𝜌 (d𝑟 ) ∇𝜃

(
dens(𝐷𝜃 , 𝑠𝐼 ) (𝑟 ) · log

dens(𝐷𝜃 , 𝑠𝐼 ) (𝑟 )
dens(𝐶, 𝑠𝐼 ) (𝑟 )

)
;

(R6) for all 𝜃 ∈ R𝑝 ,∫
𝜌 (d𝑟 ) ∇𝜃dens(𝐷𝜃 , 𝑠𝐼 ) (𝑟 ) = ∇𝜃

∫
𝜌 (d𝑟 ) dens(𝐷𝜃 , 𝑠𝐼 ) (𝑟 ).

Here 𝜃 [ 𝑗 : 𝑣] denotes a vector in R𝑝 that is the same as 𝜃 except that its 𝑗-th component is 𝑣 .

The conclusion of this theorem (Equation (6)) and its proof are well-known [Ranganath et al. 2014],

but the requirements in the theorem (and the continuous differentiability of KL𝜃 in the conclusion)

are rarely stated explicitly in the literature.

The correctness of the algorithm crucially relies on the unbiasedness property in Theorem 5.1.

The property ensures that the algorithm converges to a local minimum with probability 1. Thus, it

is important that the requirements in the theorem are met. In fact, some of the requirements there

are needed even to state the optimisation objective in (5), because without them, the objective does

not exist. In the next section, we describe conditions that imply those requirements and can serve

as target properties of program analysis for probabilistic programs. The latter point is worked out

in detail in §7 and §8 where we discuss program analysis for probabilistic programs and SVI.

6 CONDITIONS FOR STOCHASTIC VARIATIONAL INFERENCE
Ideally wewant to have program analysers that discharge the six requirements R1-R6 in Theorem 5.1.

However, except R1 and R2, the requirements are not ready for serving as the targets of static

analysis algorithms. Automatically discharging them based on the first principles (such as the

definition of integrability with respect to a measure) may be possible, but seems less immediate

than doing so using powerful theorems from continuous mathematics.

In this section, we explain conditions that imply the requirements R3-R6 and are more friendly

to program analysis than the requirements themselves. The conditions are given in two boxes (9)

and (10). Throughout the section, we fix a model 𝐶 and a guide 𝐷𝜃 .

6.1 Assumption
Throughout the section, we assume that the densities of 𝐷𝜃 and 𝐶 have the following form:

dens(𝐷𝜃 , 𝑠𝐼 ) (𝑟 ) =
𝑀∑
𝑖=1

1[𝑟 ∈𝐴𝑖 ]
∏
𝛼 ∈𝐾𝑖

N
(
𝑟 (𝛼); 𝜇 (𝑖,𝛼) (𝜃 ), 𝜎 (𝑖,𝛼) (𝜃 )

)
, (7)

dens(𝐶, 𝑠𝐼 ) (𝑟 ) =
𝑀∑
𝑖=1

1[𝑟 ∈𝐴𝑖 ]

(∏
𝛼 ∈𝐾𝑖

N
(
𝑟 (𝛼); 𝜇 ′(𝑖,𝛼) (𝑟 ), 𝜎

′
(𝑖,𝛼) (𝑟 )

)) ©«
∏
𝑗 ∈[𝑁𝑖 ]

N
(
𝑐 (𝑖, 𝑗) ; 𝜇

′′
(𝑖, 𝑗) (𝑟 ), 𝜎

′′
(𝑖, 𝑗) (𝑟 )

)ª®¬ ,
where

• 𝑀, 𝑁𝑖 ∈ N \ {0};
• 𝐴1, . . . , 𝐴𝑀 are disjoint measurable subsets of RDB;
• 𝐾𝑖 ’s are finite sets of strings such that dom(𝑟 ) = 𝐾𝑖 for all 𝑟 ∈ 𝐴𝑖 ;
• 𝜇 (𝑖,𝛼) and 𝜎 (𝑖,𝛼) are measurable functions from R𝑝 to R and (0,∞), respectively;
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• 𝜇 ′(𝑖,𝛼) and 𝜇
′′
(𝑖, 𝑗) are measurable functions from [𝐾𝑖 → R] to R;

• 𝜎 ′(𝑖,𝛼) and 𝜎
′′
(𝑖, 𝑗) are measurable functions from [𝐾𝑖 → R] to (0,∞);

• 𝑐 (𝑖, 𝑗) is a real number.

In programming terms, our assumption first implies that both𝐶 and 𝐷𝜃 use at most a fixed number

of random variables. That is, the number of random variables they generate must be finite not only

within a single execution but also across all possible executions since the names of all random

variables are found in a finite set

⋃𝑀
𝑖=1 𝐾𝑖 . This property is met if the number of steps in every

execution of 𝐶 and 𝐷𝜃 from 𝜎𝐼 is bounded by some 𝑇 and the executions over the same program

path use the same set of random variables. Note that the bound may depend on 𝑠𝐼 . Such a bound

exists for most probabilistic programs.
10
Also, the assumption says that the parameters of normal

distributions in sample statements in 𝐷𝜃 may depend only on 𝜃 , but not on other sampled random

variables. This is closely related to a common approach for designing approximate distributions in

variational inference, called mean-field approximation, where the approximate distribution consists

of independent normal random variables.

We use the term “assumption” here, instead of “condition” in the following subsections because

the assumed properties are rather conventional and they are not directly related to the requirements

in Theorem 5.1, at least not as much as the conditions that we will describe next.

6.2 Condition for Requirement R3
Note that the integral in the requirement R3 can be written as the sum of two expectations:∫

𝜌 (d𝑟 )
(
dens(𝐷𝜃 , 𝑠𝐼 ) (𝑟 ) · log

dens(𝐷𝜃 , 𝑠𝐼 ) (𝑟 )
dens(𝐶, 𝑠𝐼 ) (𝑟 )

)
= Edens (𝐷𝜃 ,𝑠𝐼 ) (𝑟 ) [log dens(𝐷𝜃 , 𝑠𝐼 ) (𝑟 )] − Edens (𝐷𝜃 ,𝑠𝐼 ) (𝑟 ) [log dens(𝐶, 𝑠𝐼 ) (𝑟 )] . (8)

The minus of the first term (i.e., −Edens (𝐷𝜃 ,𝑠𝐼 ) (𝑟 ) [log dens(𝐷𝜃 , 𝑠𝐼 ) (𝑟 )]) is called the differential
entropy of the density dens(𝐷𝜃 , 𝑠𝐼 ). Intuitively, it is large when the density on R𝑛 is close to the

Lebesgue measure, which is regarded to represent the absence of information. The differential

entropy is sometimes undefined [Ghourchian et al. 2017]. Fortunately, a large class of proba-

bility densities (containing many commonly used probability distributions) have well-defined

entropies [Ghourchian et al. 2017; Nair et al. 2006]. Our dens(𝐷𝜃 , 𝑠𝐼 ) is one of such fortunate cases.

Theorem 6.1. Edens (𝐷𝜃 ,𝑠𝐼 ) (𝑟 ) [| log dens(𝐷𝜃 , 𝑠𝐼 ) (𝑟 ) |] < ∞ under our assumption in §6.1.

We remark that a violation of the assumption (7) for 𝐷𝜃 can result in an undefined entropy, as

illustrated by the following examples.

Example 6.2. Consider guides 𝐷 (𝑖,𝜃 ) defined as follows (𝑖 = 1, 2):

𝐷 (𝑖,𝜃 ) ≡ (𝑥1 := samplenorm (“𝑎1”, 𝜃1, 1); 𝑥2 := samplenorm (“𝑎2”, 𝜃2, 𝐸𝑖 [𝑥1]))

where for some 𝑛 ≥ 1 and 𝑐 ≠ 0 ∈ R,11

𝐸1 [𝑥1] ≡ if (𝑥1=0) then 1 else exp(−1/|𝑥1 |𝑛), 𝐸2 [𝑥1] ≡ exp(exp(𝑐 · 𝑥3
1
)) .

None of dens(𝐷 (𝑖,𝜃 ) , 𝑠𝐼 )’s satisfies the assumption (7) because the standard deviation of the normal

distribution for 𝑥2 depends on the value of 𝑥1. The entropies of dens(𝐷 (𝑖,𝜃 ) , 𝑠𝐼 )’s are all undefined:
Edens (𝐷 (𝑖,𝜃 ) ,𝑠𝐼 ) (𝑟 ) [| log dens(𝐷 (𝑖,𝜃 ) , 𝑠𝐼 ) (𝑟 ) |] = ∞ for all 𝑖 = 1, 2. □

10
Notable exceptions are models using probabilistic grammars or those from Bayesian nonparametrics.

11
Formally, we should implement 𝐸1 [𝑥1 ] as an application of a primitive function 𝑓1 to 𝑥1 that has the semantics described

by the if-then-else statement here.
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Since the first term of (8) is always finite by Theorem 6.1, it is enough to ensure the finiteness of

the second term of (8). For 𝑖 ∈ [𝑀], define the set of (absolute) affine functions on [𝐾𝑖 → R] as:

A𝑖 ≜
{
𝑓 ∈ [[𝐾𝑖 → R] → R]

��� 𝑓 (𝑟 ) = 𝑐 + ∑
𝛼 ∈𝐾𝑖

(𝑐𝛼 · |𝑟 (𝛼) |) for some 𝑐, 𝑐𝛼 ∈ R
}
.

Our condition for ensuring the finiteness of the second term is as follows:

For all 𝑖 ∈ [𝑀], there are 𝑓 ′, 𝑓 ′′, 𝑙 ′, 𝑢 ′, 𝑙 ′′, 𝑢 ′′ ∈ A𝑖 such that

|𝜇 ′(𝑖,𝛼) (𝑟 ) | ≤ exp(𝑓 ′(𝑟 )), exp(𝑙 ′(𝑟 )) ≤ 𝜎 ′(𝑖,𝛼) (𝑟 ) ≤ exp(𝑢 ′(𝑟 )),
|𝜇 ′′(𝑖, 𝑗) (𝑟 ) | ≤ exp(𝑓 ′′(𝑟 )), exp(𝑙 ′′(𝑟 )) ≤ 𝜎 ′′(𝑖, 𝑗) (𝑟 ) ≤ exp(𝑢 ′′(𝑟 )),

all four hold for every (𝛼, 𝑗, 𝑟 ) ∈ 𝐾𝑖 × [𝑁𝑖 ] ×𝐴𝑖 .

(9)

Theorem 6.3. The condition (9) implies Edens (𝐷𝜃 ,𝑠𝐼 ) (𝑟 ) [| log dens(𝐶, 𝑠𝐼 ) (𝑟 ) |] < ∞ under our as-
sumption in §6.1. Thus, in that case, it entails the requirement R3 (i.e., the objective in (5) is well-defined).

Our condition in (9) is sufficient but not necessary for the objective in (5) to be defined. However,

its violation is a good warning, as illustrated by our next examples.

Example 6.4. Consider models 𝐶1, . . . ,𝐶4 and a guide 𝐷𝜃 defined as follows:

𝐶𝑖 ≡ (𝑥1 := samplenorm (“𝑎1”, 0, 1); 𝑥2 := samplenorm (“𝑎2”, 𝐸𝑖 [𝑥1], 1)) for 𝑖 = 1, 2

𝐶𝑖 ≡ (𝑥1 := samplenorm (“𝑎1”, 0, 1); 𝑥2 := samplenorm (“𝑎2”, 0, 𝐸𝑖 [𝑥1])) for 𝑖 = 3, 4

𝐷𝜃 ≡ (𝑥1 := samplenorm (“𝑎1”, 𝜃1, 1); 𝑥2 := samplenorm (“𝑎2”, 𝜃2, 1))
where for some 𝑛 ≥ 1 and 𝑐 ≠ 0 ∈ R,

𝐸1 [𝑥1] ≡ if (𝑥1=0) then 0 else
1

𝑥𝑛
1

, 𝐸2 [𝑥1] ≡𝐸4 [𝑥1] ≡ exp(𝑐 ·𝑥31), 𝐸3 [𝑥1] ≡ if (𝑥1=0) then 1 else |𝑥1 |𝑛 .

Let 𝐴 = [{“𝑎1”, “𝑎2”} → R]. For 𝑟 ∈ 𝐴, define
𝜇 ′
1
(𝑟 ) ≜ if 𝑟 (“𝑎1”) = 0 then 0 else 1/𝑟 (“𝑎1”)𝑛, 𝜇 ′

2
(𝑟 ) ≜ exp(𝑐 · 𝑟 (“𝑎1”)3),

𝜎 ′
3
(𝑟 ) ≜ if 𝑟 (“𝑎1”) = 0 then 1 else |𝑟 (“𝑎1”) |𝑛, 𝜎 ′

4
(𝑟 ) ≜ exp(𝑐 · 𝑟 (“𝑎1”)3).

Then, we have that

dens(𝐶𝑖 , 𝑠𝐼 ) (𝑟 ) = 1[𝑟 ∈𝐴] · N (𝑟 (“𝑎1”); 0, 1) · N (𝑟 (“𝑎2”); 𝜇 ′𝑖 (𝑟 ), 1) for 𝑖 = 1, 2

dens(𝐶𝑖 , 𝑠𝐼 ) (𝑟 ) = 1[𝑟 ∈𝐴] · N (𝑟 (“𝑎1”); 0, 1) · N (𝑟 (“𝑎2”); 0, 𝜎 ′𝑖 (𝑟 )) for 𝑖 = 3, 4

dens(𝐷𝜃 , 𝑠𝐼 ) (𝑟 ) = 1[𝑟 ∈𝐴] · N (𝑟 (“𝑎1”);𝜃1, 1) · N (𝑟 (“𝑎2”);𝜃2, 1).
None of 𝜇 ′

1
, 𝜇 ′

2
, 𝜎 ′

3
, and 𝜎 ′

4
satisfies the condition in (9). The function 𝜇 ′

1
is not bounded in {𝑟 ∈

𝐴 | −1 ≤ 𝑟 (“𝑎1”) ≤ 1 ∧ −1 ≤ 𝑟 (“𝑎2”) ≤ 1}, but every 𝜇 ′ satisfying the condition in (9) should be

bounded. Also, the cubic exponential growth of 𝜇 ′
2
cannot be bounded by any linear exponential

function on 𝑟 . The violation of the condition by 𝜎 ′
3
and 𝜎 ′

4
can be shown similarly.

In fact, the objective in (5) is not defined for all of the four cases. This is because for all 𝑖 = 1, . . . , 4,

Edens (𝐷𝜃 ,𝑠𝐼 ) (𝑟 ) [| log dens(𝐶𝑖 , 𝑠𝐼 ) (𝑟 ) |] = ∞. □

We now show that the condition in (9) is satisfied by a large class of functions in machine

learning applications, including functions using neural networks. We call a function nn : R𝑛 → R
an affine-bounded neural network if there exist functions 𝑓𝑗 : R

𝑛 𝑗 → R𝑛 𝑗+1
and affine functions

𝑙 𝑗 : R𝑛 𝑗 → R for all 1 ≤ 𝑗 ≤ 𝑑 such that (i) 𝑛1 = 𝑛 and 𝑛𝑑+1 = 1; (ii) nn = 𝑓𝑑 ◦ · · · ◦ 𝑓1; and
(iii) ∥ 𝑓𝑗 (𝑣)∥1 ≤ 𝑙 𝑗 ( |𝑣1 |, . . . , |𝑣𝑛 𝑗

|) for all 1 ≤ 𝑗 ≤ 𝑑 and 𝑣 ∈ R𝑛 𝑗
, where ∥ · ∥1 denotes the ℓ1-norm.

Note that each component of 𝑓𝑗 can be, for instance, an affine function, one of commonly used

activation functions (e.g., relu, tanh, sigmoid, softplus), or one of min/max functions (min andmax).
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Therefore, most of neural networks used inmachine learning applications are indeed affine-bounded.

Lemma 6.5 indicates that a wide range of functions satisfy the condition (9).

Lemma 6.5. Pick 𝑖 ∈ [𝑀] and 𝛼 ∈ 𝐾𝑖 . Let (𝛼1, . . . , 𝛼 𝐽 ) be an enumeration of the elements in 𝐾𝑖 , and
𝑟 ≜ (𝑟 (𝛼1), . . . , 𝑟 (𝛼 𝐽 )) ∈ R𝐽 be an enumeration of the values of 𝑟 ∈ 𝐴𝑖 . Consider any affine-bounded
neural network nn : R𝐽 → R, polynomial poly : R𝐽 → R, and 𝑐 ∈ (0,∞). Then, the below list of
functions 𝜇 ′(𝑖,𝛼) and 𝜎

′
(𝑖,𝛼) on 𝐴𝑖 satisfy the condition in (9):

𝜇 ′(𝑖,𝛼) (𝑟 ) = nn(𝑟 ), 𝜇 ′(𝑖,𝛼) (𝑟 ) = poly(𝑟 ), 𝜇 ′(𝑖,𝛼) (𝑟 ) = exp(nn(𝑟 )),
𝜎 ′(𝑖,𝛼) (𝑟 ) = |nn(𝑟 ) | + 𝑐, 𝜎 ′(𝑖,𝛼) (𝑟 ) = |poly(𝑟 ) | + 𝑐, 𝜎 ′(𝑖,𝛼) (𝑟 ) = exp(nn(𝑟 )),
𝜎 ′(𝑖,𝛼) (𝑟 ) = ( |nn(𝑟 ) | + 𝑐)

−1, 𝜎 ′(𝑖,𝛼) (𝑟 ) = ( |poly(𝑟 ) | + 𝑐)
−1, 𝜎 ′(𝑖,𝛼) (𝑟 ) = softplus(nn(𝑟 )),

where softplus(𝑣) ≜ log(1 + exp(𝑣)). Moreover, the same holds for 𝜇 ′′(𝑖, 𝑗) and 𝜎
′′
(𝑖, 𝑗) as well.

6.3 Condition for Requirements R4-R6
Assume that the model 𝐶 and the guide 𝐷𝜃 satisfy our assumption and condition in the previous

two subsections. Our condition for the requirements R4-R6 is given below:

For all 𝑖 ∈ [𝑀], 𝛼 ∈ 𝐾𝑖 , and (𝜃, 𝑗) ∈ R𝑝 × [𝑝],
the function 𝑣 ∈ R ↦−→ 𝜇 (𝑖,𝛼) (𝜃 [ 𝑗 : 𝑣]) is continuously differentiable;

the function 𝑣 ∈ R ↦−→ 𝜎 (𝑖,𝛼) (𝜃 [ 𝑗 : 𝑣]) is continuously differentiable.

(10)

Theorem 6.6. If both our assumption in §6.1 and the condition (9) hold, then the condition (10)

implies the requirements R4-R6.

The proof of the theorem uses the following nontrivial result [Klenke 2014, Theorem 6.28] about

exchanging differentiation and integration, a consequence of the dominated convergence theorem.

Theorem 6.7. Let 𝑉 ⊂ R be an open interval, and (𝑋, Σ, 𝜇) be a measure space. Suppose that a
measurable function 𝑓 : 𝑉 × 𝑋 → R satisfies the following conditions: (a) for all 𝑣 ∈ 𝑉 , the integral∫
𝜇 (d𝑥) 𝑓𝑣 (𝑥) is well-defined; (b) for almost all 𝑥 ∈ 𝑋 (w.r.t. 𝜇) and all 𝑣 ∈ 𝑉 , the partial derivative
∇𝑣 𝑓𝑣 (𝑥) with respect to 𝑣 is well-defined;12 (c) there is a measurable function ℎ : 𝑋 → R such that∫
𝜇 (d𝑥) ℎ(𝑥) is well-defined and |∇𝑣 𝑓𝑣 (𝑥) | ≤ ℎ(𝑥) for all 𝑣 ∈ 𝑉 and almost all 𝑥 ∈ 𝑋 (w.r.t. 𝜇). Then,

for all 𝑣 ∈ 𝑉 , both sides of the below equation are well-defined, and the equality holds:

∇𝑣
∫

𝜇 (d𝑥) 𝑓𝑣 (𝑥) =
∫

𝜇 (d𝑥) ∇𝑣 𝑓𝑣 (𝑥).

Note that the theorem ensures not only the validity of interchanging differentiation and integration,

but also the differentiability of

∫
𝜇 (d𝑥) 𝑓𝑣 (𝑥) (w.r.t. 𝑣) and the integrability of ∇𝑣 𝑓𝑣 (𝑥) over 𝑥 ∈ 𝑋 .

Our condition in (10) is sufficient but not necessary for the requirements R4-R6 to hold, in

particular for the objective in (5) to have well-defined partial derivatives in 𝜃 . However, its violation

is a good indication of a potential problem. The following example illustrates this point.

Example 6.8. Consider a model 𝐶 and a guide 𝐷𝜃 defined as follows:

𝐶 ≡ 𝑥 := samplenorm (“𝑎”, 0, 1) 𝐷𝜃 ≡ 𝑥 := samplenorm (“𝑎”, 0, 𝐸 [𝜃 ])
where 𝐸 [𝜃 ] ≡ relu(𝜃 ) + 2 and relu(𝑣) ≜ 1[𝑣≥0] · 𝑣 . Such 𝐸 [𝜃 ] can definitely appear in ma-

chine learning applications, once a guide starts to use neural networks with parameters 𝜃 . Let

𝐴 = [{“𝑎”} → R] and 𝜎 (𝜃 ) ≜ relu(𝜃 ) + 2. Then, dens(𝐶, 𝑠𝐼 ) (𝑟 ) = 1[𝑟 ∈𝐴] · N (𝑟 (“𝑎”); 0, 1) and
12
A more popular notation is (𝜕𝑓𝑣 (𝑥))/(𝜕𝑣) , but we opt for ∇𝑣 𝑓𝑣 (𝑥) to avoid clutter.
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dens(𝐷𝜃 , 𝑠𝐼 ) (𝑟 ) = 1[𝑟 ∈𝐴] · N (𝑟 (“𝑎”); 0, 𝜎 (𝜃 )) . Note (10) is violated: 𝜎 is non-differentiable at 𝜃 = 0.

A simple calculation shows:

∇𝜃
∫

𝜌 (d𝑟 )
(
dens(𝐷𝜃 , 𝑠𝐼 ) (𝑟 ) · log

dens(𝐷𝜃 , 𝑠𝐼 ) (𝑟 )
dens(𝐶, 𝑠𝐼 ) (𝑟 )

)
=


0 if 𝜃 ∈ (−∞, 0)
((2 + 𝜃 )2 − 1)/(2 + 𝜃 ) if 𝜃 ∈ (0,∞)
undefined if 𝜃 = 0.

Hence, the objective in (5) does not have a well-defined partial derivative in 𝜃 at 𝜃 = 0. □

7 ANALYSIS
In this section, we describe a recipe for building a static analysis that automatically discharges

some of the assumptions and conditions given in §6. The recipe ensures that the constructed static

analyses are sound with respect to the density semantics in §4.3. We illustrate it by describing

four static analyses for verifying the model-guide support match (the requirement R1), the guide-

parameter differentiability (the requirement R2), the condition (9), and the condition (10). The

analysis for the model-guide support match has been developed significantly more for the Pyro

programming language, and applied to analyse realistic examples of the language. This fully-blown

analysis and our experiments will be described in §8.

Throughout this section, we assume that the parameters 𝜃 of a guide 𝐷𝜃 are included in Var , and
are only read by 𝐷𝜃 and not accessed by a model 𝐶 . What we used to call 𝑠𝐼 will be the part of the

store for variables in Var \ 𝜃 , and what we used to write 𝜃 will correspond to the other part for 𝜃 .

7.1 Generic Program Analysis Framework
Our recipe is for building a static analysis that infers information about the state transformation of

a given command. It is similar to the conventional methodology for building a so called relational
static analysis, which also attempts to find information about the relationship between input and

output states of a given command. However, our recipe diverges from the convention in one

important point: while the abstract states of conventional relational analyses represent relations

on states, we let abstract states directly express sets of concrete state transformers. This departure

from the convention is due to the difficulty of using relations for expressing properties of state

transformers that we desire. For instance, we could not express a set of functions with a certain

type of differentiability using relations.

Recall the domain D in (3), and the notion of admissible subset from domain theory: 𝐷0 ⊆ D is

admissible if it contains ⊥ and is closed under taking the limits of 𝜔-chains in 𝐷0.

Our recipe assumes an abstraction instance defined by the following items:

• An abstract domain, i.e., a set T ♯
with a designated element ⊥♯

.

• A concretisation function, i.e., a function 𝛾 : T ♯ → P(D) such that for every 𝑡 ∈ T ♯
, 𝛾 (𝑡)

is an admissible subset of D. Note that the concretisation interprets each abstract element

𝑡 as a set of concrete transformers in D. The admissibility is imposed to enable the sound

analysis of loops.

• A widening operator widen : T ♯ × T ♯ → T ♯, such that for all 𝑡1, 𝑡2 ∈ T ♯
and 𝑖 ∈ [2],

𝛾 (𝑡𝑖 ) ⊆ 𝛾 (widen(𝑡1, 𝑡2)) and for every sequence {𝑡𝑛}𝑛≥1 in T ♯
, its widened sequence {𝑡 ′𝑛}𝑛≥1,

defined by 𝑡 ′
1
≜ 𝑡1 and 𝑡

′
𝑛+1 ≜ widen(𝑡 ′𝑛, 𝑡𝑛+1) for 𝑛 ≥ 1, has an index𝑚 such that 𝑡 ′𝑚 = 𝑡 ′𝑚+1.

• An abstract conditional operator for every expression 𝐸, that is, a function cond (𝐸)♯ : T ♯ ×
T ♯ → T ♯

such that for all 𝑡1, 𝑡2 ∈ T ♯
and 𝑔1, 𝑔2 ∈ D, if 𝑔1 ∈ 𝛾 (𝑡1) and 𝑔2 ∈ 𝛾 (𝑡2), then(

𝜆(𝑠, 𝑟 ).(if (⟦𝐸⟧𝑠=true) then 𝑔1 (𝑠, 𝑟 ) else 𝑔2 (𝑠, 𝑟 ))
)
∈ 𝛾 (cond (𝐸)♯ (𝑡1, 𝑡2)) .

• An abstract composition operator ◦♯ : T ♯ × T ♯ → T ♯
such that for all 𝑡1, 𝑡2 ∈ T ♯

and

𝑔1, 𝑔2 ∈ D, if 𝑔1 ∈ 𝛾 (𝑡1) and 𝑔2 ∈ 𝛾 (𝑡2), then 𝑔‡
2
◦ 𝑔1 ∈ 𝛾 (𝑡2 ◦♯ 𝑡1).
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⟦skip⟧♯ ≜ skip♯ ⟦if 𝐸 {𝐶0} else {𝐶1}⟧♯ ≜ cond (𝐸)♯ (⟦𝐶0⟧♯, ⟦𝐶1⟧♯)
⟦𝑥 := 𝐸⟧♯ ≜ update(𝑥, 𝐸)♯ ⟦𝑥 := samplenorm (𝑆, 𝐸1, 𝐸2)⟧

♯ ≜ sample(𝑥, 𝑆, 𝐸1, 𝐸2)♯

⟦𝐶0;𝐶1⟧♯ ≜ ⟦𝐶1⟧♯ ◦♯ ⟦𝐶0⟧♯ ⟦scorenorm (𝐸0, 𝐸1, 𝐸2)⟧♯ ≜ score(𝐸0, 𝐸1, 𝐸2)♯

⟦while 𝐸 {𝐶}⟧♯ ≜ (wfix𝑇 ) (where 𝑇 (𝑡 ′) ≜ cond (𝐸)♯ (𝑡 ′ ◦♯ ⟦𝐶⟧♯, skip♯))

Fig. 8. Abstract semantics ⟦𝐶⟧♯ ∈ T ♯ of commands 𝐶

• For all expressions 𝐸0, 𝐸1, 𝐸2 and for all variables 𝑥 , the abstract elements skip♯, update(𝑥, 𝐸0)♯,
sample(𝑥, 𝑆, 𝐸1, 𝐸2)♯, and score(𝐸0, 𝐸1, 𝐸2)♯ ∈ T ♯

such that

⟦skip⟧𝑑 ∈ 𝛾 (skip♯), ⟦𝑥 := samplenorm (𝑆, 𝐸1, 𝐸2)⟧𝑑 ∈ 𝛾 (sample(𝑥, 𝑆, 𝐸1, 𝐸2)♯),
⟦𝑥 := 𝐸0⟧𝑑 ∈ 𝛾 (update(𝑥, 𝐸0)♯), ⟦scorenorm (𝐸0, 𝐸1, 𝐸2)⟧𝑑 ∈ 𝛾 (score(𝐸0, 𝐸1, 𝐸2)♯).

Given these data, we define the static analysis ⟦𝐶⟧♯ ∈ T ♯
of a command 𝐶 in Figure 8. Here

the (wfix 𝑇 ) is the usual widened fixed point of 𝑇 , which is defined as the first element 𝑡𝑚 with

𝑡𝑚 = 𝑡𝑚+1 in the widened sequence (𝑡𝑛)𝑛≥1 where 𝑡1 ≜ ⊥♯
and 𝑡𝑛+1 ≜ widen(𝑡𝑛,𝑇 (𝑡𝑛)).

Theorem 7.1 (Soundness). For all commands 𝐶 , we have ⟦𝐶⟧𝑑 ∈ 𝛾 (⟦𝐶⟧
♯).

In the rest of this section, we instantiate this framework into four static analysis instances. In

each case, we describe the abstract domain, the abstract bottom element, and the concretisation

function. Moreover, in the first two cases, we detail the transfer functions. In the following, for

a tuple (𝑠 ′, 𝑟 ′,𝑤 ′, 𝑝 ′) ∈ Store × RDB × [0,∞) × [0,∞), we use the subscripts −𝑠 , −𝑟 , −𝑤 , and −𝑝 to
denote its components. For instance, (𝑠 ′, 𝑟 ′,𝑤 ′, 𝑝 ′)𝑠 = 𝑠 ′ and (𝑠 ′, 𝑟 ′,𝑤 ′, 𝑝 ′)𝑟 = 𝑟 ′.

7.2 Analysis for Model-Guide Match
The first instance analysis finds information about the names of sampled random variables. Such

information can be used for discharging the requirement R1, the correspondence between the

support of a model and that of a guide. The analysis is based on the below abstraction:

T ♯ ≜ {⊥♯,⊤♯} ∪ P(Str), ⊥♯ ≜ ⊥♯, 𝛾 (⊥♯) ≜ {𝜆(𝑠, 𝑟 ).⊥},
𝛾 (⊤♯) ≜ D, 𝛾 (𝐾) ≜

{
𝑔 ∈ D

�� ∀𝑠, 𝑟 . 𝑔(𝑠, 𝑟 ) ≠ ⊥ ∧ (𝑔(𝑠, 𝑟 ))𝑟 = [] =⇒ dom(𝑟 ) = 𝐾
}
,

where [] denotes the empty random database. A typical abstract element in T ♯
is a set of names 𝐾 ,

which represents concrete commands sampling random variables in 𝐾 . The domain T ♯
contains

⊥♯
and ⊤♯

to express two extreme cases, the set containing only one command that always returns

⊥, and the set of all commands.

Sound abstract operations can be derived from the density semantics and from the abstraction

following the abstract interpretation methodology [Cousot and Cousot 1977]:

widen(⊥♯, 𝑆) = widen(𝑆,⊥♯) = 𝑆 ;
widen(⊤♯, 𝑆) = widen(𝑆,⊤♯) = ⊤♯

;

widen(𝑆0, 𝑆1) = 𝑆0 if 𝑆0 = 𝑆1, ⊤♯
otherwise for 𝑆0, 𝑆1 ∈ P(Str);

cond (𝐸)♯ = widen;
◦♯ = widen;

skip♯ = update(𝑥, 𝐸0)♯ = ∅;
sample(𝑥, 𝑆, 𝐸1, 𝐸2)♯ = {𝑥};

score(𝐸0, 𝐸1, 𝐸2)♯ = ∅.
We can use the resulting analysis to discharge the requirement R1. We just need to run it on both

𝐶 and𝐷𝜃 , and check whether ⟦𝐶⟧♯ = ⟦𝐷𝜃⟧♯ = 𝐾 for some𝐾 ∈ P(Str). The positive answer implies

the requirement R1, because all the random variables are drawn from the normal distribution. Our

extension of this analysis for Pyro (§8) does not rely on this exclusive use of the normal distribution,

and tracks information about the type of distribution of each random variable and state properties,

so as to prove the model-guide support match for realistic Pyro programs.
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7.3 Analysis for Guide Parameter Differentiability
The second instance analysis aims at proving the differentiability of the density of a guide 𝐷𝜃 with

respect to its parameters 𝜃 . It infers the continuous partial differentiability of multiple functions

with respect to variables in the input state. The analysis is defined by the below abstraction:

T ♯ ≜ P(Var) × P(Var) × P(Var × Var), ⊥♯ ≜ (Var, Var, Var × Var),
𝛾 (𝑋,𝑌, 𝑅) ≜

{
𝑔 ∈ D

�� (
∀𝑥 ∈ 𝑋 .∀𝑠, 𝑟 . 𝑔(𝑠, 𝑟 ) ≠ ⊥ =⇒ 𝑠 (𝑥) = (𝑔(𝑠, 𝑟 ))𝑠 (𝑥)

)
∧
(
∀𝑦 ∈ 𝑌 .∀𝑠, 𝑟 . 𝑔(𝑠, 𝑟 ) ≠ ⊥ =⇒ 𝜆𝑣 ∈ R. dens(𝑔, 𝑠 [𝑦 ↦→ 𝑣]) (𝑟 ) is 𝐶1

)
∧
(
∀(𝑧,𝑢) ∈ 𝑅.∀𝑠, 𝑟 . 𝑔(𝑠, 𝑟 ) ≠ ⊥ =⇒ 𝜆𝑣 ∈ R. (𝑔(𝑠 [𝑧 ↦→ 𝑣], 𝑟 ))𝑠 (𝑢) is R-valued and 𝐶1

)}
.

By “𝐶1
”, wemean that the relevant function is continuously differentiable. Being aR-valued function

in the last part requires that 𝑔(𝑠 [𝑧 ↦→ 𝑣], 𝑟 ) be never ⊥. An (𝑋,𝑌, 𝑅) in T ♯
expresses a property of

a transformer 𝑔 ∈ D (which can be viewed as semantic command) that 𝑔 does not change variables

in 𝑋 , its density is 𝐶1
with respect to each variable in 𝑌 in the input state, and for each (𝑧,𝑢) ∈ 𝑅,

it assigns a real value to 𝑢 in the output state in a 𝐶1
manner with respect to 𝑧 in the input state.

We now define the abstract operations induced by this abstraction. Given an expression 𝐸, we

letV(𝐸) denote the set of variables that occur in 𝐸, and we write C1 (𝐸) for the set of variables
with respect to which ⟦𝐸⟧ is 𝐶1

(based on classical differentiability rules). The definitions below

follow from general principles such as the multivariate chain rule and account for discontinuities

induced by conditions which break differentiability.

widen((𝑋0, 𝑌0, 𝑅0), (𝑋1, 𝑌1, 𝑅1)) = (𝑋0 ∩ 𝑋1, 𝑌0 ∩ 𝑌1, 𝑅0 ∩ 𝑅1)
cond (𝐸)♯ ((𝑋0, 𝑌0, 𝑅0), (𝑋1, 𝑌1, 𝑅1)) = (𝑋0 ∩ 𝑋1, (𝑌0 ∩ 𝑌1) \ V(𝐸),

{(𝑧,𝑢) ∈ 𝑅0 ∩ 𝑅1 | 𝑧 ∉ V(𝐸) ∨ 𝑢 ∈ 𝑋0 ∩ 𝑋1})
◦♯ ((𝑋0, 𝑌0, 𝑅0), (𝑋1, 𝑌1, 𝑅1)) = (𝑋0 ∩ 𝑋1, {𝑥 ∈ 𝑌1 | ∀𝑦 ∈ Var . (𝑥,𝑦) ∈ 𝑅1 ∧ 𝑦 ∈ 𝑌0},

{(𝑧, 𝑣) | ∀𝑢 ∈ Var . (𝑧,𝑢) ∈ 𝑅1 ∧ (𝑢, 𝑣) ∈ 𝑅0})
skip♯ = (Var,Var,Var × Var)

update(𝑥, 𝐸)♯ = (Var \ {𝑥},Var,Var × (Var \ {𝑥}) ∪ {(𝑦, 𝑥) | 𝑦 ∈ C1 (𝐸)})
sample(𝑥, 𝑆, 𝐸1, 𝐸2)♯ = (Var \ {𝑥}, C1 (𝐸1) \ (V(𝑆) ∪ V(𝐸2)),

(Var \ (V(𝑆) ∪ V(𝐸2))) × Var)
score(𝐸0, 𝐸1, 𝐸2)♯ = (Var, (C1 (𝐸0) ∩ C1 (𝐸1)) \ V(𝐸2), (Var \ V(𝐸2)) × Var)

To discharge the differentiability requirement R2, we need to run this analysis on a guide 𝐷𝜃 .

If the 𝑌 component of the analysis result contains all the parameters 𝜃 (i.e., there exists (𝑋,𝑌, 𝑅)
such that ⟦𝐷𝜃⟧♯ = (𝑋,𝑌, 𝑅) and 𝜃 ⊆ 𝑌 ), then the requirement R2 is met.

7.4 Analysis for Condition (10)

The third analysis extends the second by tracking and checking more properties. Its aim is to prove

the condition (10). Just like the second analysis, it infers information about the continuous partial

differentiability of multiple functions involving the output state and the density. Also, it checks

whether the density of a given command 𝐶0 has the form

dens(⟦𝐶0⟧𝑑 , 𝑠) (𝑟 ) = dens(𝑔, 𝑠) (𝑟 ) =
𝑀∑
𝑖=1

1[𝑟 ∈𝐴𝑖 ]
∏
𝛼 ∈𝐾𝑖

N
(
𝑟 (𝛼); 𝜇 (𝑖,𝛼) (𝑠), 𝜎 (𝑖,𝛼) (𝑠)

)
(11)
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for some finite 𝑀 , and some 𝐴𝑖 , 𝐾𝑖 , 𝜇 (𝑖,𝛼) and 𝜎 (𝑖,𝛼) , and if so, it tracks properties of the 𝜇 (𝑖,𝛼) and
𝜎 (𝑖,𝛼) . Here is the abstraction for the analysis:

T ♯ ≜ {⊤♯} ∪
(
P(Var) × P(Var) × P(Var × Var)

)
, ⊥♯ ≜ (Var, Var, Var × Var), 𝛾 (⊤♯) ≜ D,

𝛾 (𝑋,𝑌, 𝑅) ≜
{
𝑔 ∈ D

�� 𝑔 has the form (11) ∧
(
∀𝑥 ∈ 𝑋 .∀𝑠, 𝑟 . 𝑔(𝑠, 𝑟 ) ≠ ⊥ =⇒ 𝑠 (𝑥) = (𝑔(𝑠, 𝑟 ))𝑠 (𝑥)

)
∧
(
∀𝑠, 𝑟 . 𝑔(𝑠, 𝑟 ) ≠ ⊥ =⇒ 𝜆𝑣 ∈ R. 𝜇 (𝑖,𝛼) (𝑠 [𝜃 𝑗 ↦→ 𝑣]) is 𝐶1

for all 𝑖, 𝑗, 𝛼
)

∧
(
∀𝑠, 𝑟 . 𝑔(𝑠, 𝑟 ) ≠ ⊥ =⇒ 𝜆𝑣 ∈ R. 𝜎 (𝑖,𝛼) (𝑠 [𝜃 𝑗 ↦→ 𝑣]) is 𝐶1

for all 𝑖, 𝑗, 𝛼
)

∧
(
∀𝑦 ∈ 𝑌 .∀𝑠, 𝑟 . 𝑔(𝑠, 𝑟 ) ≠ ⊥ =⇒ 𝜆𝑣 ∈ R. 𝜇 (𝑖,𝛼) (𝑠 [𝑦 ↦→ 𝑣]) is 𝐶1

for all 𝑖, 𝛼
)

∧
(
∀𝑦 ∈ 𝑌 .∀𝑠, 𝑟 . 𝑔(𝑠, 𝑟 ) ≠ ⊥ =⇒ 𝜆𝑣 ∈ R. 𝜎 (𝑖,𝛼) (𝑠 [𝑦 ↦→ 𝑣]) is 𝐶1

for all 𝑖, 𝛼
)

∧
(
∀(𝑧,𝑢) ∈ 𝑅.∀𝑠, 𝑟 . 𝑔(𝑠, 𝑟 ) ≠ ⊥ =⇒ 𝜆𝑣 ∈ R. (𝑔(𝑠 [𝑧 ↦→ 𝑣], 𝑟 ))𝑠 (𝑢) is R-valued and 𝐶1

)}
.

The abstract operations are similar to those for the differentiability analysis thus we omit their

definitions. We can use the analysis to prove the condition (10). We just need to run it on a guide

𝐷𝜃 and check whether ⟦𝐷𝜃⟧♯ is not ⊤♯
. If so, the condition holds.

7.5 Analysis for Condition (9)

The last instance is a static analysis that aims at proving the condition (9). The analysis checks

whether a given command 𝐶0 has a density of the following form:

dens(𝐶0, 𝑠) (𝑟 ) = dens(𝑔, 𝑠) (𝑟 ) =
𝑀∑
𝑖=1

1[𝑟 ∈𝐴𝑖 ]

(∏
𝛼 ∈𝐾𝑖

N
(
𝑟 (𝛼); 𝜇 ′(𝑖,𝛼) (𝑠, 𝑟 ), 𝜎

′
(𝑖,𝛼) (𝑠, 𝑟 )

)) ©«
∏
𝑗 ∈[𝑁𝑖 ]

N
(
𝑐 (𝑖, 𝑗) ; 𝜇

′′
(𝑖, 𝑗) (𝑠, 𝑟 ), 𝜎

′′
(𝑖, 𝑗) (𝑠, 𝑟 )

)ª®¬ (12)

for some finite 𝑀 , and some 𝐴𝑖 , 𝐾𝑖 , 𝑁𝑖 , 𝜇
′
(𝑖,𝛼) , 𝜎

′
(𝑖,𝛼) , 𝜇

′′
(𝑖, 𝑗) , and 𝜎

′′
(𝑖, 𝑗) . If so, it tracks whether the

𝜇 ′(𝑖,𝛼) , 𝜎
′
(𝑖,𝛼) , 𝜇

′′
(𝑖, 𝑗) , and 𝜎

′′
(𝑖, 𝑗) and some other functions can be bounded by affine exponentials on

the input variables. The abstraction for the analysis is as follows:

T ♯ ≜ {⊤♯} ∪ P(Var) × P(Var) × (Var ⇀ P(Var)), ⊥♯ ≜ (Var,Var, 𝜆𝑥∈Var . ∅), 𝛾 (⊤♯) ≜ D,
𝛾 (𝑋,𝑌, 𝑅) ≜

{
𝑔 ∈ D

�� 𝑔 has the form (12) ∧
(
∀𝑥 ∈ 𝑋 .∀𝑠, 𝑟 . 𝑔(𝑠, 𝑟 ) ≠ ⊥ =⇒ 𝑠 (𝑥) = (𝑔(𝑠, 𝑟 ))𝑠 (𝑥)

)
∧

(
∀𝑖 ∈ [𝑀], 𝛼 ∈ 𝐾𝑖 . ∃ an affine function 𝑙 from [𝑌 ∪ 𝐾𝑖 → R] to R such that for all 𝑠, 𝑟 ,

𝑔(𝑠, 𝑟 ) ≠ ⊥ =⇒ max( |𝜇 ′(𝑖,𝛼) (𝑠, 𝑟 ) |, 𝜎
′
(𝑖,𝛼) (𝑠, 𝑟 ), 𝜎

′
(𝑖,𝛼) (𝑠, 𝑟 )

−1) ≤ exp(𝑙 ({|𝑠 (𝑥) |}𝑥 ∈𝑌 , {|𝑟 (𝛽) |}𝛽∈𝐾𝑖
))

)
∧

(
∀𝑖 ∈ [𝑀], 𝑗 ∈ [𝑁𝑖 ] . ∃ an affine function 𝑙 from [𝑌 ∪ 𝐾𝑖 → R] to R such that for all 𝑠, 𝑟 ,

𝑔(𝑠, 𝑟 ) ≠ ⊥ =⇒ max( |𝜇 ′′(𝑖, 𝑗) (𝑠, 𝑟 ) |, 𝜎
′′
(𝑖, 𝑗) (𝑠, 𝑟 ), 𝜎

′′
(𝑖, 𝑗) (𝑠, 𝑟 )

−1) ≤ exp(𝑙 ({|𝑠 (𝑥) |}𝑥 ∈𝑌 , {|𝑟 (𝛽) |}𝛽∈𝐾𝑖
))

)
∧

(
∀𝑦 ∈ dom(𝑅), 𝑖 ∈ [𝑀] . ∃ an affine function 𝑙 from [𝑅(𝑦) ∪ 𝐾𝑖 → R] to R such that for all 𝑠, 𝑟 ,

𝑔(𝑠, 𝑟 ) ≠ ⊥ =⇒ (𝑔(𝑠, 𝑟 ))𝑠 (𝑦) ≤ exp(𝑙 ({|𝑠 (𝑥) |}𝑥 ∈𝑅 (𝑦) , {|𝑟 (𝛽) |}𝛽∈𝐾𝑖
))

)}
.

Here we use the notation {|𝑠 (𝑥) |}𝑥 ∈𝑌 to mean a partial map from variables 𝑥 in 𝑌 to values

|𝑠 (𝑥) |. The abstract operations that derive from this abstraction are quite similar to those of the

differentiability analysis, therefore we do not detail them. To verify the condition (9), we run the

analysis on a model 𝐶 and check whether ⟦𝐶⟧♯ ≠ ⊤♯
. If the check succeeds, the condition holds.

8 STATIC ANALYSIS FOR MODEL-GUIDE PAIRS IN PYRO AND ITS EVALUATION
We present a static analysis that can verify the support correspondence for Pyro model-guide pairs.

The analysis extends the first instance of the framework presented in §7. Our presentation focuses

on the most salient aspects of this analysis and experimental results.

8.1 Some Features of Pyro Programs
Pyro is a probabilistic programming framework based on Python and PyTorch. It supports a wide

spectrum of distributions and neural networks, and features commands for sampling and scoring.
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It comes with multiple inference engines, including SVI. We chose Pyro over other probabilistic

programming languages (e.g., Anglican) because unlike most of other languages, in Pyro, SVI

algorithms are considered as main inference engines and neural networks can be used together

with probabilistic programming, which leads to more interesting examples.

In Pyro programs, random-variable names are often created at runtime, for instance by concate-

nating a fixed string with a sequence of dynamically-generated indices.

Example 8.1 (Use of indexed random-variable names). The code excerpt (of a model or guide

program in Pyro) below samples 𝑁 ×𝑀 instances of independent random variables, and names

them with “𝑥_1_1”, . . . , “𝑥_𝑁_𝑀”.

for i in range(1,N+1):

for j in range(1,M+1):

val = pyro.sample("x_{}_{}".format(i,j), Normal(m,d)) □

Since Pyro is based on PyTorch and is adapted to implement data-science applications, Pyro

programs heavily use multidimensional arrays, called tensors, and operations over them from

PyTorch, in particular, element-wise operations and broadcasting. More precisely, when a binary

operation (such as addition) is applied to two tensors of identical size, it outputs a new tensor of

the same size where each output element is computed separately from the corresponding input

elements. This principle often makes it possible to parallelise computations. Broadcasting occurs

when a binary operation is applied to two tensors of different dimensions that can somehow

be unified. Intuitively, it introduces and duplicates dimensions to produce tensors of identical

dimensions, so that binary operations can be performed element-wise.

Tensors are also heavily used for sampling, which has several consequences. First, it means

that an analysis targeted at Pyro programs should be able to track information about at least

the dimensions of sampled tensors. Second, the dimensions of sampled tensors are grouped such

that each of these groups has a different property with respect to probabilistic independence of

tensor components. Pyro inference engines exploit this property for optimisation, for instance, via

subsampling, but for this optimisation to be valid, the grouping of dimensions in a model should

match that of a guide. Our analysis tracks information about dimension grouping of sampled tensors

and the use of the Pyro construct called plate, which enables the optimisation just mentioned.

8.2 Abstract Domain
We extend our analysis from §7 so that it tracks not just how each part of a given program transforms

states, but also which states can reach at each program point. We need the latter to get information

about random variables with dynamically generated names that is precise enough for our verification

task. To describe states, we rely on an abstract domain that consists of multiple subdomains

(combined by product). Among them, the key part is RDB♯ ≜ [Str ⇀fin {⊤}∪ (Pfin (Zone♯)×Dist♯)],
where⇀fin denotes a finite partial map. Dist♯ is an abstract domain whose element represents a set

of elementary probability distributions, such as the standard normal distribution. The other Zone♯

is our custom domain for zones, which express higher-dimensional rectangles in N𝑛 .

An element 𝑟 ♯ ∈ RDB♯ means a set of concrete random databases 𝑟 for each concrete store 𝑠 . The

domain of 𝑟 consists of names that are obtained by concatenating baseline strings 𝛼 in dom(𝑟 ♯)
with index sequences. If 𝑟 ♯ maps a baseline string 𝛼 to ⊤, it does not give any information about

index sequence and a probability distribution used for the random variable. Otherwise, the second

component of 𝑟 ♯ specifies the information about the distribution, and the first component a region

of N𝑛 that contains the index sequences used in the names. The region is described by a finite

subset {𝑍 ♯

1
, . . . , 𝑍

♯
𝑛} of Zone♯, which means the disjoint union of the rectangles represented by the
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𝑍
♯

𝑖
. To emphasise this union interpretation, we write 𝑍

♯

1
∪ . . . ∪ 𝑍 ♯

𝑛 for the subset. The following

table summarises the definitions of our abstract domain, based on Zone♯:

RDB♯ ≜ [Str ⇀fin {⊤} ∪ (Pfin (Zone♯) × Dist♯)];
𝑍 ♯ ≜ 𝐼 ♯

1
× ... × 𝐼 ♯𝑚, product of intervals in N;

𝐼 ♯ ≜ [𝐵♯
𝑙
, 𝐵

♯
𝑟 ], closed interval specified by bounds;

𝐵♯ ≜ 𝑐 | 𝑥 + 𝑐 | 𝑥 + 𝑐 = 𝑐 ′, equality to constant, variable plus constant, or both.

A higher-dimensional rectangular zone 𝑍 ♯
is described by a finite sequence of intervals 𝐼 ♯, each

of which is made of two bounds. A bound 𝐵♯ may be defined as one or two constraints which

express that this bound is equal to a constant, or to a variable plus a constant, or both. This intuitive

denotation defines a concretisation function 𝛾𝑟 : RDB♯ → P(State).

Example 8.2. Consider the code of Example 8.1. After 𝑖 − 1 iterations in the main loop and 𝑗

iterations in the last execution of the inner loop, we expect the analysis to come up with the

invariant, [“𝑥” ↦→ ([1, 𝑖−1] × [1, 𝑀] ∪ [𝑖, 𝑖] × [1, 𝑗], normal(𝑚,𝑑))]. In turn, at the exit of the main

loop, we expect the analysis to infer the invariant, [“𝑥” ↦→ ([1, 𝑖=𝑁 ]×[1, 𝑗=𝑀], normal(𝑚,𝑑))]. □

In addition to these constraints over random databases, our analyser also uses an abstraction that

maintains typing information and numerical constraints over variables. We do not fully formalise

these constraints as the overall structure of the domain relies on a classical reduced product.

Finally, we describe the combination of the above state abstraction with the abstraction of §7.2.

More precisely, we start with the abstract domain exposed in §7.2 (which we denote by T ♯
) and

build a novel abstract domain T ♯
𝑠 that also satisfies the requirements of §7.1. We let the set of

abstract elements be T ♯
𝑠 ≜ [𝑅𝐷𝐵♯ → T ♯ × 𝑅𝐷𝐵♯]. Intuitively, such an element maps an input

abstract random database into a set of functions together with an over-approximation of their

output, when applied to this abstract input. The concretisation below formalises this: for all 𝑡𝑠 ∈ T ♯
𝑠 ,

𝛾𝑠 (𝑡𝑠 ) ≜
{
𝑔 ∈ D

�� ∀𝑟 ♯
𝑖
∈ 𝑅𝐷𝐵♯ . 𝑡𝑠 (𝑟 ♯𝑖 ) = (𝑡, 𝑟

♯
𝑜 ) =⇒

∃𝑔′ ∈ 𝛾 (𝑡). ∀(𝑠, 𝑟 ) ∈ 𝛾𝑟 (𝑟 ♯𝑖 ). 𝑔(𝑠, 𝑟 ) = 𝑔′(𝑠, 𝑟 ) ∧
(
𝑔(𝑠, 𝑟 ) = ⊥ ∨ (𝑔(𝑠, 𝑟 )𝑠 , 𝑔(𝑠, 𝑟 )𝑟 ) ∈ 𝛾𝑟 (𝑟 ♯𝑜 )

)}
.

8.3 Computation of Loop Invariants
Although our static analysis for Pyro requires a state abstraction, its principles and structure

are similar to those of the general analysis shown in §7. In the following, we first describe the

integration of the state abstraction in the analysis of §7.2.

The abstract operations in T ♯
𝑠 can all be derived by lifting those in T ♯

into functions. We illustrate

this for the abstract composition ◦♯𝑠 for T ♯
𝑠 . Recall the operator ◦♯ for T ♯

in §7.2. Given 𝑡𝑠 , 𝑡
′
𝑠 ∈ T

♯
𝑠 ,

𝑡𝑠 ◦♯𝑠 𝑡 ′𝑠 ≜ 𝜆𝑟
♯

0
. (𝑡 ◦♯ 𝑡 ′, 𝑟 ♯

2
) where (𝑡 ′, 𝑟 ♯

1
) = 𝑡 ′𝑠 (𝑟

♯

0
) and (𝑡, 𝑟 ♯

2
) = 𝑡𝑠 (𝑟 ♯

1
).

The other abstract operators over T ♯
𝑠 are defined in a similar manner.

As inmost static analysis problems, the computation of precise loop invariants requires a carefully

designed widening operator. In the case of zones, the analysis needs to generalise information

about the bounds. We assume 𝑟
♯

0
, 𝑟

♯

1
∈ RDB♯ are abstract random databases, and present the main

steps in the computation of the widening widen(𝑟 ♯
0
, 𝑟

♯

1
).
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(i) For each 𝑟
♯

𝑖
, we fuse zones 𝑍

♯

0
, 𝑍

♯

1
in 𝑟

♯

𝑖
into a single zone when 𝑍

♯

0
and 𝑍

♯

1
are the same except

for one component and they represent adjacent high-dimensional rectangles. The following

rewriting illustrates this step.(
“𝑥” ↦→

(
[1, 𝑖−1] × [1, 𝑗=𝑀] ∪ [𝑖, 𝑖] × [1, 𝑗=𝑀], normal(𝑚,𝑑)

) )
{

(
“𝑥” ↦→

(
[1, 𝑖] × [1, 𝑗=𝑀], normal(𝑚,𝑑)

) )
(ii) We generalise the intervals of corresponding zones in 𝑟

♯

0
and 𝑟

♯

1
using a weak version of

unification on their bounds. The bounds of corresponding intervals in two such zones

survive this step in a weakened form if they share at least one syntactically equal expression.

Otherwise, the bounds are dropped, which causes the introduction of ⊤ into abstract random

databases. The following rewriting instances illustrate this bound generalisation.

widen
( (
“𝑥” ↦→

(
[1, 𝑖] × [1, 𝑗−1=𝑀], normal(𝑚,𝑑)

) )
,

(
“𝑥” ↦→

(
[1, 𝑖] × [1, 𝑗=𝑀], normal(𝑚,𝑑)

) ) )
=

(
“𝑥” ↦→

(
[1, 𝑖] × [1, 𝑀], normal(𝑚,𝑑)

) )
widen

( (
“𝑥” ↦→

(
[1, 𝑖] × [1, 𝑗−1], normal(𝑚,𝑑)

) )
,

(
“𝑥” ↦→

(
[1, 𝑖] × [1, 𝑗=𝑀], normal(𝑚,𝑑)

) ) )
=

(
“𝑥” ↦→ ⊤

)
The analysis also applies standard widening techniques to typing information and numerical

constraints mentioned in §8.2. Finally, a model-guide pair can be verified if and only if their

analyses return equivalent abstract random databases, without any name mapped into ⊤.

8.4 Experimental Evaluation
We have implemented a prototype analyser and carried out experiments so as to assess the effec-

tiveness of our analysis to verify the support correspondence for Pyro model-guide pairs.
13
More

precisely, we evaluated the following three research questions:

(i) Can our analysis discover incorrect model-guide pairs in realistic probabilistic programs?

(ii) Can the analysis verify correct model-guide pairs despite the complexity of the definition?

(iii) Is the analysis efficient enough so that it can cope with realistic probabilistic programs?

Benchmark programs. We took example programs from the Pyro webpage that can be handled by

standard SVI engines or can be naturally rewritten to be so. Those engines do not use Pyro’s recent

vectorised enumeration-based optimisation (enabled by the option TraceEnum_ELBO), and are run

with the option Trace_ELBO. We made this choice because the optimisation is newly introduced

and whether it is used or not changes the set of random variables used in a Pyro program.

We have applied our analysis to two groups of Pyro programs. The first is the Pyro regression test
suite [Uber AI Labs 2019b], which comprises 66 examples exercising the basic programming patterns

expected in Pyro programs. While each of these is small, they cover many standard patterns of

both correct and incorrect model-guide pairs. Among these, 33 test cases use only TraceEnum_ELBO

and fall outside the scope of our analysis, and 6 of the remaining 33 test cases come with two

subsampling options. Hence, we can consider 39 experiments based on this regression suite.

The second is a collection of examples from the Pyro webpage [Uber AI Labs 2019a]. The webpage

features 18 Pyro examples, among which 9 involve model-guide pairs (other examples use automatic

guide generation, or do not perform SVI at all). Out of these 9 examples, 5 use Trace_ELBO, and

three can be converted naturally into Trace_ELBO versions although they do not use Trace_ELBO.

Thus, 8 Pyro examples fall within the scope of our analysis. These examples correspond to advanced

13
Code is available at https://github.com/wonyeol/static-analysis-for-support-match.
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Table 1. Key features of the model-guide pairs from Pyro examples. LoC denotes the lines of code of model
and guide. The columns “Total #” show the number of objects/commands of each type used in model and
guide, and the columns “Total dimension” show the total dimension of tensors in model and guide, either
sampled from sample or used inside score, as well as the dimension of 𝜃 in guide.

Total # Total dimension

Name Corresponding probabilistic model LoC for plate sample score sample score 𝜃

br Bayesian regression 27 0 1 10 1 10 170 9

csis Inference compilation 31 0 0 2 2 2 2 480

lda Amortised latent Dirichlet allocation 76 0 5 8 1 21008 64000 121400

vae Variational autoencoder (VAE) 91 0 2 2 1 25600 200704 353600

sgdef Deep exponential family 94 0 8 12 1 231280 1310720 231280

dmm Deep Markov model 246 3 2 2 1 640000 281600 594000

ssvae Semi-supervised VAE 349 0 2 4 1 24000 156800 844000

air Attend-infer-repeat 410 2 2 6 1 20736 160000 6040859

Table 2. Analysis results on two benchmark sets: Pyro test suite (Left) and Pyro examples (Right). The model-
guide pairs from Pyro test suite are grouped into 7 categories, based on which type of plate objects are used.
#Same (or #Diff) denotes the number of model-guide pairs for which the output of our analyser, valid or
invalid, is the same as (or different from) the documented output. #Crash denotes the number of pairs for
which our analyser crashes. The column “Time” shows the analysis time in seconds; on Left, it is averaged
over those model-guide pairs (in each category) for which our analyser does not crash. The column “Valid?”
shows the output of our analysis, valid or invalid.

Category #Same #Diff #Crash Time

No plates 9 0 0 0.001

Single for-plate 4 0 3 0.004

Nested for-plates 2 0 2 0.026

Single with-plate 5 0 0 0.001

Nested with-plates 7 2 0 0.002

Non-nested with-plates 2 0 0 0.002

Nested for-plate & with-plate 0 0 3 N/A

Total 29 2 8 0.003

Name Valid? Time

br x 0.006

csis o 0.007

lda x 0.014

vae o 0.005

sgdef o 0.070

dmm o 0.536

ssvae o 0.013

air o 4.093

probabilistic models
14
from the machine-learning literature, most of which use sophisticated neural

networks and probabilistic modelling. Table 1 describes the structure of these 8 examples in detail.

Prototype analyser and results. Our analyser is implemented in OCaml, and supports the main

data-structures and operations defined by Python, PyTorch, and Pyro. In particular, it precisely

abstracts the shape of PyTorch tensor objects, the shape transformation information of PyTorch

neural-network-related objects, the automatic broadcasting information of Pyro plate objects, and

the shape of allocated indices for sample names, using the zone abstraction described above. It also

supports common Pyro probability distributions, and can precisely cope with standard Pyro and

PyTorch operations manipulating the Pyro distribution objects and PyTorch tensor objects. While

our prototype supports a wide range of Python, PyTorch, and Pyro features, we point out that we

did not implement a static analysis for the full Python (plus PyTorch and Pyro) language (e.g., no

support for classes, dictionaries, named tuples, and user-defined functions).

14
The models include variational autoencoder (VAE) [Kingma and Welling 2014], semi-supervised VAE [Kingma et al. 2014],

deep exponential family [Ranganath et al. 2015], attend-infer-repeat [Eslami et al. 2016], deep Markov model [Krishnan

et al. 2017], inference compilation [Le et al. 2017], and amortised latent Dirichlet allocation [Srivastava and Sutton 2017].
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The analysis results are summarised in Table 2 and are discussed in detail in the following.

Run-times were measured on an Intel Core i7-7700 machine running Linux Ubuntu 16.04.

Discovery of invalid model-guide pairs. The analysis rejected two Pyro examples, br and lda, as

incorrect due to an invalid model-guide pair. br is the Bayesian regression example discussed in §2.

For br, the analysis discovers that a random variable sigma is sampled from Uniform(0.,10.) in

the model 𝐶 , but from Normal(..) in the guide 𝐷𝜃 (Figure 2(a)). Since the support of sigma in 𝐷𝜃
is not a subset of that in𝐶 (i.e., R ⊈ [0, 10]), the requirement R1 is violated. Thus, the SVI objective,

KL(𝐷𝜃 ∥𝐶), is undefined, and br has an invalid model-guide pair.

For lda, the analysis discovers that a randomvariable doc_topics is sampled from Dirichlet(..)

in the model𝐶 , but from Delta(..) in the guide 𝐷𝜃 . Since the reference measures of doc_topics in

𝐶 and 𝐷𝜃 are different (the Lebesgue measure vs. the counting measure), KL(𝐷𝜃 ∥𝐶) cannot be com-

puted by (4). For this reason, lda has an invalid model-guide pair. Our analyser tracks the reference

measure implicitly by regarding the support of any distribution with Lebesgue measure, as disjoint

from that of any distribution with counting measure (which is sound due to the aforementioned

reason), and this allowed us to discover the issue of lda.

In both cases, the found correctness issues are unknown before and subtle. In particular, it turned

out that lda, though incorrect when viewed as an example of SVI, is a valid implementation, because

it performs not SVI but variational expectation-maximisation (EM) [Neal and Hinton 1998].
15
The

lda uses an SVI engine just to solve an optimisation problem in variational EM (not to do SVI), and

uses the Delta distribution to perform a particular realisation of the M-step in variational EM.

Verification of probabilistic programs relying on model-guide pairs. Among the Pyro test suite,

the analysis successfully verifies 31 examples among 39. Interestingly, two of these 31 successful

validations, highlighted in Table 2(a), correspond to cases that were flagged as “invalid model-guide

pairs” in the Pyro git repository. Upon inspection, these two examples turn out to be correct.

On the other hand, 8 examples from the Pyro test suite could not be verified due to the crashes

of the analyser. One of these failures is due to the need to reason more precisely about the content

of a for loop (e.g., using some partitioning techniques), and seven are due to the use of plates with

subsampling, as ranges for for loops. Therefore, these failures could be resolved using existing

static analysis techniques and a more precise handling of the semantics of Python constructions.

Moreover, 6 Pyro examples (among the 8 that we considered) were verified successfully, which

means all correct Pyro examples were verified. Finally, we corrected the two examples that were

rejected due to invalid model-guide pairs, and these two examples were also successfully verified.

Analysis efficiency. The analysis returned within a second on each program in the Pyro test suite,

and on most of the Pyro examples. The slowest analysis was observed on air, which was analysed

within 5 seconds. Most of the Pyro examples sample from and score with distributions of very high

dimension arranged in complex tensors, using nested for and plate’s. While they are not large,

they present a high degree of logical complexity, that is representative of realistic probabilistic

programs. The fact that such programs get analysed within seconds shows that the analysis and the

underlying abstract domain to describe zones, sampled dimensions, and distributions can generalise

predicates quickly so that precise loop invariants can be computed.

9 RELATEDWORK AND LIMITATION
Related work. As far as we know, the idea of using SVI for probabilistic programs first appeared

in [Wingate and Weber 2013]. When further insights into how to create generic (sometimes also

called black-box) SVI engines were found [Kucukelbir et al. 2015, 2017; Ranganath et al. 2014], the

15
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idea was tried for realistic probabilistic programming languages, such as Stan [Kucukelbir et al.

2015] and Anglican [van de Meent et al. 2016], resulting in impressive case studies [Kucukelbir

et al. 2015]. The major inference engines for deep probabilistic programming languages [Bingham

et al. 2019; Siddharth et al. 2017; Tran et al. 2018, 2016] are all based on SVI nowadays. However,

we do not know of any prior work that attempts to reveal implicit assumptions made by these SVI

engines and to discharge these assumptions manually or automatically, as we did in this paper.

The correctness of a different type of inference engines based on Monte-Carlo methods has

been the subject of study in the PL community. Such engines have clearly formulated correctness

conditions from Markov chain theory [Geyer 2011; Green 1995; Hastings 1970; Metropolis et al.

1953], such as ergodicity and correct stationarity. Tools from formal semantics have been employed

to show that the inference engines satisfy these conditions [Borgström et al. 2016; Hur et al.

2015; Kiselyov 2016; Scibior et al. 2018]. While looking at different algorithms, some of these

works consider more expressive languages than what we used in the paper, in particular, those

supporting higher-order functions. One interesting direction is to extend our results to such

expressive languages using the ideas from these works, especially the operational technique in

[Borgström et al. 2016] and the denotational monad-based technique in [Scibior et al. 2018].

The consequence of having random choice in a programming language has been actively investi-

gated by the semantics researchers from the early days [Borgström et al. 2016; Ehrhard et al. 2014;

Heunen et al. 2017; Jones and Plotkin 1989; Kozen 1981; Smolka et al. 2017; Staton 2017; Staton

et al. 2016; Toronto et al. 2015; Vákár et al. 2019]. Our work uses the technique developed in this

endeavour, such as Giry monad and denotational formulation of idealised importance sampling [Sta-

ton et al. 2016]. Also, just as we connected the measure semantics with the density semantics,

[Kozen 1981] and [Borgström et al. 2016] related two semantics with similar flavours, although the

considered languages (with or without continuous distribution and score statements) and the style

of semantics (operational vs denotational) are different. Our density semantics uses a reference

measure built out of Lebesgue measure as in [Bhat et al. 2012, 2013; Hur et al. 2015]. This choice

is found to cause an issue when the score statement is treated not as a scoring mechanism but in

terms of conditional expectation [Wu et al. 2018]. How to resolve this matter is still open.

Static analyses for probabilistic programming languages or languages with probabilistic choice

typically attempt to check probabilistic properties [Chakarov and Sankaranarayanan 2013; Cousot

and Monerau 2012; Monniaux 2000; Wang et al. 2018], or perform posterior inference [Chaganty

et al. 2013; Wang et al. 2018], or find information useful for posterior inference [Nori et al. 2014].

For instance, [Monniaux 2000] defines a probabilistic abstract interpretation framework, which is

applied to estimate the failure probability [Monniaux 2001]. More recently, [Cousot and Monerau

2012] sets up a general framework to design probabilistic abstract interpretations, which lift

conventional static analysis tools to a probabilistic setup, and [Wang et al. 2018] proposes a

framework for analysing probabilistic programs based on hyper-graphs with probabilistic actions

on edges. Our program analyses aim at a different type of verification tasks, namely, proving

the safety requirements imposed by the SVI engines. Static analyses for checking the continuity

properties of programs are proposed in [Chaudhuri et al. 2010]. Some techniques used in those

analyses may help track the kind of smoothness properties considered in this paper precisely.

Limitation. We described four static analyses (§7.2-§7.5) for discharging the requirements R1-R6,

and developed one of the four analyses further (§8.2-§8.4) to build a prototype analyser for actual

Pyro programs. Here we clarify the underlying assumptions and limitations of these analyses.

The static analysis for model-guide support match (§7.2) was implemented into our static analyser

for Pyro (§8.4) but with additional extensions (§8.2-§8.3), so that it does not make the assumption
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in §6.1; the assumption was introduced mainly to develop analyses for the requirements R3-R6.

Hence, our static analyser handles both continuous and discrete random variables.

On the other hand, other analyses (§7.3-§7.5) are unimplemented and make the assumption in

§6.1. We expect that the assumption can be relaxed, without much difficulty, to permit continuous

or discrete distributions having finite entropy and moments of all degrees, because our proofs of

theorems and lemmas bound various expectations mostly by entropies and moments. It would be

more challenging, however, to relax the assumption to allow distributions not having finite entropy

and moments of all degrees, or models having unboundedly many random variables (of any kind).

In particular, addressing the later limitation might require techniques developed for proving that

probabilistic systems has finite expected execution time.

This paper focuses on a particular optimisation objective (5) for SVI, but we point out that other

objectives have been proposed for different inference or learning algorithms, such as variational

EM (e.g., lda in §8.4) and importance weighted autoencoder [Burda et al. 2016]. One interesting

research direction is to develop techniques for verifying the well-definedness of these objectives.
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