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Résumé

Cette thèse est consacrée à l’étude d’abstractions d’ensemble de traces adaptées
à l’analyse statique et aux transformations de programmes. Cette étude a été
menée dans le cadre de l’interprétation abstraite.

Dans une première partie, nous proposons un cadre général permettant de
définir des analyses effectuant un partitionnement des traces. Cela permet en
particulier d’utiliser des propriétés définies par l’histoire des exécutions, pour
écrire des disjonctions de propriétés abstraites utiles lors de l’analyse statique.
Ainsi, nous obtenons des analyses plus efficaces, qui sont non seulement plus
précises mais aussi plus rapides. La méthode a été implémentée et éprouvée
dans l’analyseur de code C Astrée, et on obtient d’excellents résultats lors
de l’analyse d’applications industrielles de grande taille.

La seconde partie est consacrée au développement de méthodes permettant
d’automatiser le diagnostique des alarmes produites par un analyseur tel
qu’Astrée. En effet, en raison de l’incomplétude de l’analyseur, une alarme
peut, soit révéler une véritable erreur dans le programme, soit provenir d’une
imprécision de l’analyse.
Nous proposons tout d’abord d’extraire des slices sémantiques, c’est à dire
des sous-ensembles de traces du programmes, satisfaisant certaines conditions ;
cette technique permet de mieux caractériser le contexte d’une alarme et peut
aider, soit à prouver l’alarme fausse, soit à montrer un véritable contexte d’er-
reur. Ensuite, nous définissons des familles d’analyses de dépendances adaptées
à la recherche d’origine de comportements anormaux dans un programme, afin
d’aider à un diagnostique plus efficace des raisons d’une alarme.
Les résultats lors de l’implémentation d’un prototype sont encourageants.

Enfin, dans la troisième partie, nous définissons une formalisation générale de
la compilation dans le cadre de l’interprétation abstraite et intégrons diverses
techniques de compilation certifiée dans ce cadre.
Tout d’abord, nous proposons une méthode fondée sur la traduction d’inva-
riants obtenus lors d’une analyse du code source et sur la vérification indépen-
dante des invariants traduits.
Ensuite, nous formalisons la méthode de preuve d’équivalence, qui produit
une preuve de correction de la compilation, en prouvant l’équivalence du pro-
gramme compilé et du programme source.
Enfin, nous comparons ces méthodes du point de vue théorique et à l’aide de
résultats expérimentaux.
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Abstract

We study of abstractions for sets of traces adapted to static analysis and pro-
gram transformations in the abstract interpretation framework.

In the first part, we propose a general framework for control-based trace parti-
tioning in static analysis. In particular, this framework allows to use properties
of the history of program executions in order to express disjunctions of abstract
properties in static analyses. As a result, we obtain efficient analyses, improv-
ing not only precision but also execution time in most cases. This method was
implemented in the Astrée analyzer, devoted to the analysis of C programs.
Moreover, we report excellent result in the analysis of large critical real world
programs.

In the second part, we develop automatic techniques for the inspections of
alarms produced by an analyzer such as Astrée. Indeed, the analyzer is
incomplete, so an alarm raised by Astrée could be either a real bug or just
be due to an imprecision inherent in the analysis.
First, we propose to extract semantic slices, i.e. subsets of the program ex-
ecution traces, which satisfy some given conditions; this approach allows to
characterize more precisely the context corresponding to an alarm. Further-
more, in some cases, it helps to prove the alarm to be false; otherwise, it may
help to find a real error scenario. Then, we define families of dependence anal-
yses so as to track the origin of abnormal behaviors in programs, and to help
for a more efficient diagnosis of the reason why an alarm was raised.
We got encouraging results using a prototype, which we implemented.

In the last part, we define a general formalization for compilation in the ab-
stract interpretation framework and we integrate several approaches to certified
compilation in our framework.
First, we propose a method based on a translation of abstract invariants com-
puted in an analysis of the source code and on the checking of the the soundness
of the resulting invariants. This checking allows to trust the translated invari-
ant independantly from any assumption about the soundness of the translation
or the source analysis.
Second, we formalize the translation equivalence approach, which amounts to
proving the correctness of compilation, by checking that the source program
and the compiled program are equivalent.
Last, we compare both techniques not only in the theoretical point of view but
also in a practical experiment.
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Chapter 1

Introduction

1.1 Software Verification

1.1.1 Need for software verification

In the last decades, software took a growing importance into all kinds of systems. For
instance, the design of the electronic command of transportation system represents typi-
cally 30 % to 40 % of the cost of the whole development; moreover, most of this fraction
is due to the testing and debugging stages.

Moreover, complex systems require complex, intricate and large software. As an ex-
ample, the typical size of current designs for fly-by-wire control systems ranges from 100
000 to 1 000 000 LOCs (lines of code), whereas it used to be typically 10 times smaller
10 years ago.

The consequence of this increasing complexity is that the probability for bugs and
failures is dramatically augmented, unless the development process is extremely rigorous.
Moreover, the consequences of a software failure range from an insignificant imprecision
in the computation to the worse unexpected behavior such as the crash of a whole system;
in particular, it may cause great human or economic damage, and thus, is not acceptable.

The risk for bugs to occur and to cause major damage is not theoretical. We could
cite many examples of famous bugs. For instance, an integer overflow arising in a low
importance task caused both the main and the backup control systems to shut down, 30
seconds after the take-off of the Ariane 501 launcher in 1996, resulting in the destruction
of the rocket [ea96]. The imprecision in floating point computations caused the failure of
a Patriot missile in 1992, causing dozens of deaths. Even when they do not result in a
dramatic failure, bugs may cause tremendous over-costs: for example, multiple issues in
the development of the baggage handling system of the Denver airport resulted in a two
years schedule overrun and a $ 116 million budget overrun, in 1995. Many other “software
horror stories”can be found, e.g. in http://www.cs.tau.ac.il/~nachumd/horror.html,
ranging from the most peculiar to the most dramatic reports.

As a consequence of the importance of software, we notice an increasing interest in
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software verification methods.

1.1.2 Current trends in software verification

In the last thirty years a large range of software verification techniques have been devel-
oped, so as to tackle various applications.

Properties: First, let us summarize the most common properties, to be checked by
software verification systems.

Safety properties express that programs “should not go wrong”. In particular, the
absence of runtime-errors or the absence of undefined behaviors are safety properties.
Obviously, such properties are of great interest, when checking the design of critical sys-
tems, such as flight control systems. In particular, the failure of the Ariane 5 launch is the
result of the violation of a simple safety property about the integer conversions. A com-
mon approach to check such properties consists in computing such an over-approximation
of the real behavior of the programs, and to use this approximation in order to check that
the programs never break some safety conditions.

Another family of crucial properties are resource usage properties. Indeed, em-
bedded software are usually real-time programs, so that the overuse of memory or time
resources would result in the loss of the system. Functional properties state that the
system should perform some actions in some conditions. For instance, liveness properties
state that a program should eventually achieve some “good condition”. Security proper-
ties assert that non-authorized users should not be able to acquire any information about
private computation or to corrupt any critical process.

In this thesis, we focus on safety properties, and we more particularly attempt at
proving the absence of runtime errors. Though, most of the algorithms described in this
thesis would apply to other problems.

Verification methods: The verification of software designs used to consist mainly in
testing and debugging methods. The idea is to run a program with various (randomly or
manually generated) sets of inputs, and to check that the properties of interest are not
violated in the “test runs”. However, the drawback of these solutions is that the number
of possible real executions is near infinite and all situations cannot be tested. Moreover,
the cost of testing is cumbersome; in particular, a change in the program should be tested
exhaustively.

As a consequence, automatic, formal methods were proposed, so to increase the level
of confidence in the results and to cut the cost.

The principle of Abstract Interpretation [CC77] based Static Analysis is to elab-
orate a model of execution for programs, then to choose an over-approximation of the
program behaviors, and last, to derive analyzers for computing such over-approximation
automatically. This method is sound, but not complete: in case the over-approximation
satisfies all safety conditions, then the program is proved correct; otherwise, we should
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investigate the reasons for the failure in order to prove the safety, and conclude either
that there is a real bug, or that the abstraction should be refined. In the last few years,
several successful static analyzers were implemented so as to verify memory properties
[LAS00], the absence of runtime errors [BCC+02, BCC+03a], the absence of buffer over-
runs [DRS03], the correctness of pointer operations [VB04].

Model Checking is a technique based on the abstraction of a program into a (e.g.,
boolean) model and on the application of SAT-solving methods so as to determine whether
dangerous states are accessible. Modern developments in this area allowed for a refinement
of the model [CGJ+00] if the checking phase fails to establish the property of interest.
A major difficulty of this approach is to synthesize the model from the program and the
property to check; in particular the size of the model is critical for the checking phase
to be practical. These techniques have been successfully applied in many areas, such as
hardware verification [DSC98], software verification [BR01]...

Another approach consists in using Theorem Proving methods, in order to prove
the correctness conditions of the program. The definition of the model is critical (if
the model is wrong, the proof of correctness with respect to the model is useless), and
is difficult to automatize. Furthermore, the automation of the proofs can be a major
problem, whereas manual proofs incur major costs. Moreover, the adaptation of proofs
for modified programs may also turn out to be very costly, compared to fully automatic
methods. A major achievement of this approach was the generation of certified code
following the B method [Abr89] for the most critical parts of the control system of the
“Meteor” line of Paris subway, despite a high cost.

Perspectives: At this point, the use of formal methods in the development and veri-
fication of critical systems is not standard, even though we notice a growing interest in
these areas.

In the last few years, various quality and safety standards have been elaborated for the
most critical applications. For instance, the DO178-B regulation [TCoA99] requires the
observance of strict rules in the design of software for aircrafts: the level of criticality of
each part of the code should be determined, the relation between the result of successive
development stages should be established, the safety of the most critical sub-systems
should be ensured and verified –if possible, formally.

As a consequence, we notice an increasing need for verification tools able to tackle
large critical applications. Moreover, it seems that verification methods should apply to
the real code (the validation of a model may not be considered a sufficient guarantee).
In particular, the scalability of the analyses is crucial, due to the growing size of the
applications.

Last, it is utterly important that the method integrate naturally in the development
process. Indeed, the verification should help in the design of better software, and not
impede the development. In practice, the verification method should preferably be au-
tomatic and provide immediately usable results (readable invariants, help in the alarm
investigation process).

Traces Abstraction in Static Analysis and Program Transformation Xavier Rival



6 CHAPTER 1. INTRODUCTION

1.1.3 Context of the the thesis

This thesis was developed in the context of the Astrée project (http://www.astree.
ens.fr). Astrée [BCC+03a] is an academic, abstract interpretation [CC77] based
static analyzer developed in the École Normale Supérieure and in the École Polytech-
nique by Bruno Blanchet, Patrick Cousot, Radhia Cousot, Jérôme Feret, Laurent
Mauborgne, Antoine Miné, David Monniaux and myself. The Astrée static ana-
lyzer aims at proving the absence of runtime errors in large, embedded programs, written
in C [ANS99]; it can also be used in order to prove other classes of safety properties.

This project greatly impacted the choices made in this thesis, and the choice of the
areas to investigate:

1. trace partitioning, i.e., design of trace domains, which allow to express disjunc-
tion of properties and use properties about the history of executions in order to
discriminate different elements of the disjunctions;

2. alarm investigation, i.e., assistance to the user, when facing alarms raised by As-

trée, which could be either the sign of true errors or the consequence of imprecisions
in the analysis;

3. certified compilation, so as to bring the results of analyses like Astrée to the
assembly level and to provide a functional certification of the compiled programs.

These three topics turn out to present strong relations: indeed, they all focus on ab-
stractions of traces. For instance, trace partitioning is formalized as a trace abstract
domain. The alarm investigation algorithms greatly benefit from the trace partitioning
technique. Moreover, the abstractions used in the formalization of slicing and compilation
are similar. As a consequence, the core of this thesis consists in the study of abstractions
of sets of traces.

Last, we implemented and tested on real-world, large applications most of the algo-
rithms and techniques presented in this Thesis.

1.2 Outline of the Thesis

In this section, we motivate, review, and summarize the main parts of the thesis.

1.2.1 Traces abstractions

In the first part, we set up our main mathematical notations and review common abstrac-
tions for sets of traces. This part should ensure the self-contained-ness of the thesis, so
that a reader who is not familiar with either of the basic notions used in the following
should find here the fundamental notions, whereas the knowledgeable reader can safely
skip Chapter 2 and Chapter 3 and use them as a reference.

Chapter 2 sets up the syntax and the semantics of a simple imperative language, which
we use throughout the rest of the thesis; it also gives a short introduction to abstract
interpretation [CC77].
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Chapter 3 introduces three common abstractions for sets of traces, which are widely
used in the thesis:

• the static analysis based on numerical abstractions allows to derive insightful invari-
ants about programs;
• the denotational semantics abstracts sets of traces into functions; it allows to derive

efficient analyzers;
• the projection abstractions allow to focus on some observation of the history of

programs.

1.2.2 Trace partitioning

The second Part is devoted to trace partitioning.

Chapter 4 sets up a framework for defining trace partitioning domains, which allow to
state properties about the history of program executions and to rely on these properties
in order to let disjunctions of abstract properties be handled in abstract analyses. This
framework is generic; a set of partitions of the traces is taken as a parameter. Moreover,
static and dynamic analyses are allowed: dynamic partitioning analyses do not fix the
partitions in the beginning, which makes them rather powerful. The following two chapters
instantiate this framework, so as to solve specific problems.

Chapter 5 focuses on the design and implementation of a trace partitioning domain
in Astrée. Basically, this domain performs a control-history based partitioning; for
instance, it allows to remember what branch of a conditional statement was taken, long
after the exit of the conditional (and many other similar refinements).

This domain can be seen as a generalization of [HT98], and of data-flow analyses
techniques, like qualified paths-based analyses [HR80], call-string analyses [SP81]. In
particular, it allows for more partitioning criteria, for more flexibility in the handling of
partitions (partitions can be merged, when disjunctions are not useful anymore) and for
dynamic strategies.

This technique is particularly adapted to the analysis of imperative programs, since it
tends to find the properties which should guide disjunction in the control history (e.g., in
tests). We provide extensive experimental data, showing the effectiveness of the approach
in Astrée.

Chapter 6 proposes a second instantiation of the trace partitioning framework, which
is adapted to a finer analysis of the behavior of programs.

The principle is to analyze a kind of synchronous product [HLR93] of the program with
an abstract system, which expresses some property about the history of executions. For
instance, the abstract system may state that two properties occurred a same number of
times, or that some property has just occurred for the first time. We found two application
for this technique: we introduced it in order to assist the alarm investigation (Part III),
but it could also be used in order to prove functional properties of programs (even though
we have not deeply investigated this possibility yet).
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1.2.3 Alarms diagnosis

The third Part focuses on the issue of the diagnosis of alarms raised by the Astrée ana-
lyzer. Indeed, Astrée is sound (it reports all possible errors), but not complete: it may
fail to prove the correctness of a correct program. This is the price to pay for soundness
and automation: indeed, the properties Astrée attempts to prove are undecidable.

As a consequence, alarms represent a major issue for end-users. Indeed, an alarm may
correspond either to an imprecision in the analysis, or to a true error. In the former case,
the end-user usually expects a counter-example, so as to document the bug found by the
analysis; in the latter, the user also expects some help in order to tune the parameters
of the analysis or to understand the need for a new domain. The purpose of this Part is
to provide the user with some assistance in this task, even if we do not propose a fully
automatic solution yet (this would be a major long-term challenge).

In Chapter 7, we describe a semantic slicing technique, which allows to compute
invariants for a subset of the traces of a program. The semantic slices are defined by
abstractions, such as the data of some set of final states, some condition on the inputs
of the program and some abstract system (in the sense of Chapter 6). The principle of
semantic slicing is to compute abstract invariants thanks to a forward-backward static
analysis.

In case the set of traces leading to the error condition of an alarm can be proved empty,
then the alarm is false; otherwise, the semantic slice should help characterizing the alarm
in a more precise way. Moreover, the specification of a more precise semantic slice may
allow to check the occurrence of an error in some given conditions.

Early experimental results show that this techniques can be significantly helpful in the
diagnosis of alarms reported by Astrée. A prototype was able to prove an alarm to be
false, and produced relevant semantic slices, showing several alarms real errors, in large
real-world applications.

Chapter 8 introduces several notions of dependences, so as to help the alarm investiga-
tion process. Observable dependences restrict to the dependences, which can be observed
in a semantic slice of a program, so that we can focus on the dependences generated by a
program in a specific error context, and track the source for the error more precisely.

Abstract dependences allow for further restrictions: only dependences, which can be
observed through some abstraction are retained. For instance, when looking for the cause
of an overflow alarm, we suggest to look at the way large values propagate in the program,
first; this way, we can find unstable retractions, or the point where values grow above some
bound. We propose early experimental results as well.

1.2.4 Certification of assembly code

The fourth Part is devoted to certified compilation.

Indeed, the regulations for critical software (e.g., in aeronautics [TCoA99]) require the
final code to be certified; the certification of the source code is not considered a strong
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guarantee, since the compiler may be buggy, and should not be trusted (if the compiler is
wrong, then the compiled code may be unsafe, even though the source code is sound). We
need to verify two properties: first, the compiled program should be safe (i.e., it should
cause runtime errors); second it should implement the functions specified at the source
level.

We formalize compilation in Chapter 9. The goal of our formalization is to state the
strongest property of the source code which is retained in the compiled program, so that
we can design, formalize, and compare techniques for certified compilation. Moreover,
this generic framework allows for certification methods to be defined in a generic way:
the algorithms of Chapter 10 and Chapter 11 are largely independent of the compiler, the
optimizations and the target architecture.

In practice the correctness of the compilation of two programs boils down to the
existence of a bijection between an abstraction of the semantics of the source program
and an abstraction of the semantics of the compiled program. In the most simple case,
this bijection can be defined by a mapping between source and assembly control states
(resp. memory locations). In the case of optimizing compilation, further abstractions
should be applied, which account for the loss of structure inherent in the optimizations.

We propose to translate invariants produced by a source analyzer (e.g., Astrée) in
Chapter 10. The idea is to use the relation between source and compiled programs, which
we set up in Chapter 9 so as to derive a sound assembly invariant from a source invariant.
However, the translation relies on the assumption that the compilation is correct. There-
fore, we perform an independent checking of the correctness of the translated invariant:
if this phase succeeds, the translated invariant can be trusted, even if the translation of
the source invariant is wrong. This technique allows to prove the safety of the compiled
program independently. We implemented this method and report experimental results.

We consider the equivalence checking (or translation validation) methods in Chapter
11. This technique reduces the verification of the equivalence of the source and of the
compiled program to the checking of local equivalence conditions, which is the task of a
theorem prover. We propose a full implementation of this technique and apply it to large
programs.

Since it proves the compilation correctness, it also allows to replace the invariant
checking procedure of Chapter 10, and also reduces the amount of invariants to translate.
Therefore, we compare the invariant checking and the translation validation methods in
the theoretical point of view and in the light of the experimental results.
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Chapter 2

Semantics and Abstraction

The purpose of this chapter is to introduce the main notations to be used in the following of
this thesis. We do not attempt to provide a full description of the Abstract Interpretation
theory or of program semantics, so we also provide bibliographic references.

We define in Section 2.2 a syntax and semantics for a simple imperative language,
which we use in the parts devoted to static analysis, slicing and certified compilation. We
provide a short introduction to Abstract Interpretation in Section 2.3.

2.1 Basic mathematical notations

An order relation is a transitive, reflexive and antisymmetric binary relation; an ordering
is a set together with an order relation. A complete lattice is an ordering (E,<), such
that any subset of E has a lower upper bound (lub) and a greater lower bound (glb);
in particular the lub (resp. glb) of ∅ is denoted with ⊥ (resp. >); it is the least (resp.
greatest) element of E. We denote lubs (resp. glbs) with ∨ (resp. ∧).

The existence of lubs and glbs for arbitrary sets of elements is usually considered a
very strong assumption; hence, we may only assume the existence of binary lubs and glbs.
A lattice is an ordering with binary lubs and glbs.

If (D,⊆) is a lattice and F : D → D, then a fixpoint of F is an element x ∈ D such
that F (x) = x; a post-fixpoint of F is an element x ∈ D such that F (x) ⊆ x. The most
important results about fixpoints are:

• the set of fixpoints of a monotone function F over a lattice is a lattice [Tar55]; in
particular, such a function enjoys a least fixpoint (denoted lfpF ) and a greatest
fixpoint (denoted gfpF ). In particular, lfpF is the least post-fixpoint of F and
F (x) ⊆ x =⇒ lfpF ⊆ x.
• in case F is defined over a complete lattice, and continuous (i.e., preserves lubs),

then lfpF = ∪{F n(⊥) | n ∈ � }.
Last, we write Card(E) for the number of elements of a set E.
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2.2 Syntax and Semantics of a Simple Language

2.2.1 Syntax

We describe an imperative program with a transition system.
More precisely, we let � denote a set of values; � denote a finite set of memory locations

(aka variables). A memory state (or store) describes the values stored in the memory at
a precise time in the execution of the program; it is a mapping of program variables into
values. A store is a function σ ∈ � , where � = � → � .

A control state (or program point) roughly corresponds to the program counter at a
precise time in the execution of the program; we usually write � for the set of control
states.

A state s is a pair made of a control state l ∈ � and a memory state σ ∈ � . We write�
for the set of states, so

�
= � × � . We will consider programs may cause errors. For

this purpose, we introduce an error state, which we denote with Ω.
A program is defined by a set � of control states, a set of initial states

�
i, and a

transition relation (→) ⊆ � × �
, which describes how the execution of the program may

step from one state to the next one.
In practice,

�
i = {l i} × � , where l i ∈ � is the entry control state, i.e. the first point

in the program.
An error may occur at state s , if s → Ω; an error occurs at state s if s → Ω is the only

transition from s . If an error may occur at state s , we say that s is a dangerous state. Of
course, the error state shall be supposed to be blocking: ∀s ∈ �

, ¬(Ω→ s).
We call edge a pair (l0, l1) ∈ � 2, such that there exists a transition from l0 to l1.

2.2.2 Semantics

We assume here that a program P is defined by the data of a tuple ( � , � ,→,
�

i). The
most common semantics for describing the behavior of transition systems is the operational
semantics, which we sketch here. It was introduced, e.g. in [Plo81].

An execution of a program is represented with a sequence of states, called a trace; the
semantics of the program collects all such executions:

Definition 2.2.1. Trace, Semantics.

A trace σ is a finite sequence 〈s0, . . . , sn〉 where s0, . . . , sn ∈
�
. We write

�
? (or, Σ for

short) for the set of such traces, and length(σ) for the length of σ.
A trace of P is a trace such that any two successive states are bound by the transition
relation: ∀i, si → si+1. The semantics JP K of P is the set of traces of P , i.e. JP K =
{〈s0, . . . , sn〉 ∈ Σ | s0 ∈

�
i ∧ ∀i, si → si+1}.

Note that we restrict to finite traces. Other classical definitions of operational se-
mantics include infinite traces [Cou97a]. The infinite traces of a system correspond to
non-terminating executions; they can be deduced from the finite traces.
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Our choice proves sufficient for our needs in this thesis.

2.2.3 A simple language

We propose a simple instantiation for the general definitions of labeled transition systems
and semantics, with a simple imperative language, which we use in the following. This
language intends to modelize a small, fragment of the C language [ANS99].

Types: We consider a subset � of the types of the C language, including:
• float: floating point numbers [CS85];
• int: machine integers;
• bool: booleans – which are usually defined as an enumeration type in C;
• τ []: arrays of elements of type τ .

Other data types should be considered (various integers and floating point sizes, pointers,
structures, enumerations types, unions).

Values: Each basic type corresponds to a set of values:
• �

is the set of n bits IEEE-754 floating point values
• � = {−2m, . . . , 2m − 1} denotes the machine integer values
• � = {true, false} denotes the set of booleans

Hence, the set of values is � =
� ] � ] � , unless specified otherwise.

L-values and memory locations: An l-value l ∈ � is a special expression, which eval-
uates into a memory location(s): variables, array look-ups are l-values (See the grammar
on Figure 2.1(a)).

A scalar variable (i.e. integer, boolean, floating point) corresponds to a unique memory
location. A variable t of type array τ [] corresponds to a pointer to a region in the memory;
an array has a length n ∈ �

, which denotes the size of the corresponding region. The
l-value t[i] stands for the i-th cell of the array t; it corresponds to the i-th sub-region of t.

The semantics of an l-value maps a store into a memory location (in the case where
non-determinism is allowed in expression, it would return a set of memory locations). We
do not define it formally here, since it would be straightforward, yet technical: hence, in
the following, we consider the case of variables only and abusively do not distinguish a
variable and the corresponding memory location.

Expressions: An expression e ∈ � is either a constant, or an l-value, or a unary operator
ª ∈ {−,¬, castτ→τ ′} applied to one expression, or a binary operator ⊕ ∈ {+, ?,∧, . . .};
it evaluates into a scalar type value. Note that the semantics of an expression JeK maps
a store into a value; this definition rules out non-determinism and errors at the level of
expressions (they will be handled at the level of statements). The syntax of expressions
can be found on Figure 2.1(a). The semantics of expressions is defined by straightforward
induction on the syntax:
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• if v ∈ � , then JvK(ρ) = v;
• if x is a variable, then JxK(ρ) = ρ(x) (the case of general l-values would be: JlK(ρ) =

ρ(JlK(ρ)));
• if e ∈ � , then JªeK(ρ) = fª(JeK(ρ)) where fª is the semantic interpretation of ª

(the case of binary expressions is similar).
In case, we consider non-determinism (e.g., if we introduce a random expression rnd(V ),
which may evaluate to any value in V ⊆ � ), then the semantics of an expression maps a
store into a set of values (JeK : � → P( � )).

Statements: Programs are made of statements. A statement s ∈ � is either a sequence
of statements s0; . . . ; sn (also called block, denoted with b), or an assignment x := e
(where x ∈ � , e ∈ � ), or a conditional if(e) s0 else s1 (where e is an expression and s0, s1

are statements), or a loop statement while(e) s0 (where e is an expression and s0 is a
statement). Moreover, we define the two following kinds of statements, so as to model
non-determinism and errors:
• The input(l ∈ V ) statement (where l ∈ � and V ⊆ � ) reads a random value in V

and writes it into the memory location corresponding to x.
• The assert(e) statement (where e ∈ � ) checks that the condition e holds; otherwise,

it causes an error.

Control states: We defined control states in Section 2.2.2. We assign a control state
to each statement, which corresponds to the status of the execution right before the
statement is executed. Moreover, there is a control state right at the end of each block.

Transition relation: The rules defining the transition relation are defined on Figure
2.1(b). If ρ ∈ � , x ∈ � , v ∈ � , we write ρ[x ← v] for the store obtained by writing
the value v into variable x in the store ρ; ρ[x ← v] is such that (ρ[x ← v])(x) = v and
y 6= x⇒ (ρ[x← v])(y) = ρ(y).

2.2.4 Extension with procedures

In some cases, we will consider procedures as well. Figure 2.2 displays a very rough
extension of the mini-language introduced in Section 2.2 into a language with procedures.
Basically, a function call statement branches to the control state at the beginning of
the called function; the function return branches back to the point right after the call
statement.

Of course, a function might be called during the execution of another function, so that
a stack is required in order to recover the right calling point: the function call pushes the
calling point onto the stack, whereas the function return pops the last calling point on
the top of the stack and branches to this point. As a consequence, we have to extend
the states with a stack (Figure 2.2(b)) and extend the transition relation as well (Figure
2.2(c)).
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2.2. SYNTAX AND SEMANTICS OF A SIMPLE LANGUAGE 15

v(v ∈ � ) ::= n ∈ � | f ∈ � | b ∈ �
l (l ∈ � ) ::= x variable

| l [e] array look-up(l ∈ � , e ∈ � )
e(e ∈ � ) ::= v value

| l l-value
| ªe unary expression(ª ∈ {−,¬, castτ→τ ′})
| e⊕ e binary expression(⊕ ∈ {+, ?,∧, . . .})

s(s ∈ � ) ::= l := e assignment
| if(e) s else s conditional
| while(e) s loop
| input(x ∈ V ) reading of input, V ⊆ �
| assert(e) assert statement
| s; . . . ; s block

(a) Grammar

assignment l0 : x := e; l1
(l0, ρ)→ (l1, ρ[x← v]) where v = JeK(ρ)

conditional l0 : if(e) {l t
0 : st; l t

1 } else {l f
0 : sf ; l f

1 } l1
(l0, ρ)→ (l t

0 , ρ) if JeK(ρ) = true

(l0, ρ)→ (l f
0 , ρ) if JeK(ρ) = false

(l t
1 , ρ)→ (l1, ρ)

(l f
1 , ρ)→ (l1, ρ)

loop l0 : while(e) {l b
0 : st; l b

1 } l1
(l0, ρ)→ (l b

0 , ρ) if JeK(ρ) = true
(l0, ρ)→ (l1, ρ) if JeK(ρ) = false
(l b

1 , ρ)→ (l0, ρ)

input l0 : input(x ∈ V ); l1
(l0, ρ)→ (l1, ρ[x← v]) if v ∈ V

assertion l0 : assert(e); l1
(l0, ρ)→ (l1, ρ) if JeK(ρ) = true
(l0, ρ)→ Ω if JeK(ρ) = false

(b) Transition relation

Figure 2.1: A simple language
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16 CHAPTER 2. SEMANTICS AND ABSTRACTION

Programs containing functions with arguments and/or return values can be encoded
into this extension of the language, thanks to variables; therefore, we do not introduce
such features formally in the language.

2.2.5 Extensions

In practice, the analyses described in this thesis (and the tools implemented in the Astrée

project) focus on a large fragment of the C language (or of some assembly language in
the last Part of the thesis). The choice of a restricted language was made so as to allow
for a more concise presentation.

Among the other features of the language, which we consider, we can cite:

• all arithmetic data-types, including integer, floating-point and bit-fields (which
mostly results in more cases to consider);
• more general data structures, including structures, enumerations, pointers, unions

(though, dynamic memory allocation is currently not addressed);
• variables scopes (local, global...) and kinds (auto, static, volatile);
• initializers in variable declarations;
• non recursive functions, with parameters and/or return values;
• classical control structures, including switch statements, forward goto statements;
• library functions can be handled thanks to stubs, i.e. pieces of code modelizing their

effect (or the observation of their effect we wish to consider), by over-approximating
the possible modification of the values in the environment.

Most of the above features could be added into the simple language, which we introduced
above either by adding some extra cases or by encoding new features into the simpler
constructions.

The main C language features which are currently not considered are:

• recursive functions;
• dynamic memory allocation.

The reason for the choice of this fragment of the C language stems from the nature of the
programs considered in the Astrée project: at the time we write this thesis, we mostly
considered families of critical embedded programs (more precisely described in Section
5.1.1), which should include neither recursion nor dynamic memory allocation due to
specific safety constraints for real-time systems.

2.3 Abstract Interpretation

In most cases, the concrete semantics is not adequate for automatic reasoning, since it is
infinite, and not decidable. In particular, the operational semantics introduced in Section
2.2.2 is not decidable. In this section, we recall the most basic results of the abstract
interpretation framework [CC77, CC79], which we use in the following in order to design
sound, decidable or useful, approximate semantics, in order to prove properties about
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2.3. ABSTRACT INTERPRETATION 17

Set of function names a finite set
�

Extension of statements s(∈ � ) ::= . . . | call f
Functions a function is a pair (f, s) ∈ � × �

Program a program p is defined by:
a set of functions fp

a main function mp

(a) Syntax

Stacks � = (
� × � )? (finite sequences of function names)

States
�

f = � × � × �

(b) States

We define a new transition relation (→f) ∈
�

f ×
�

f , as follows:

Call statement l0 : call f ; l1 :
(κ, l0, ρ)→f ((l1, f) · κ, l , ρ)

where





l is the entry control state of f
l0 is the calling point
l1 is the return point

Return ((l1, f) · κ, l , ρ)→f (κ, l , ρ)

where





l is the exit point of procedure f
l1 is the return point saved on the stack
κ is the stack before the call

Other statements if (l , ρ)→ (l ′, ρ′) in the code of function f , then:
∀κ ∈ � , lc ∈ � , ((lc, f) · κ, l , ρ)→f ((lc, f) · κ, l ′, ρ′)

Initial states:
�

i
f = {(li, ε)} × �

an initial state is defined by



the empty stack ε
the entry point li of the main function mp

any memory state ρ ∈ �

(c) Semantics

Figure 2.2: Procedural extension of a simple language

Traces Abstraction in Static Analysis and Program Transformation Xavier Rival



18 CHAPTER 2. SEMANTICS AND ABSTRACTION

programs and program transformations.

2.3.1 Notion of abstraction

Section 2.2.2 described a form of operational semantics, which is very convenient in order
to express the meaning of programs, by completely detailing their executions. Indeed, the
trace semantics fully describe the behavior of programs. However, part of the peculiar
details of the operational semantics can or should generally be abstracted away in order
to design static analyses and program transformation schemes. In this section, we write
(D,⊆) for the ordering underlying the concrete domain.

An abstract semantics assigns denotations to programs in an abstract domain. An ab-
stract domain [CC77] is an ordering (D],v), related with the concrete domain. Intuitively,
an element of D] can be seen as a property of programs; the ordering can be considered a
precision ordering: x] v y] means that the property x] is stronger than the property y].
Note that other orderings might be considered in the abstract level (decidable subset of v,
termination ordering). A comprehensive discussion of abstract interpretation frameworks
can be found in [CC92b].

The correspondence between the concrete and the abstract domains is the most crucial
step in the definition of an abstraction. A soundness relation is a set R ⊆ D ×D], such
that (x, x]) ∈ R if and only if x enjoys the abstract property x]. In practice, tighter
relations can often be exhibited between the concrete domain and the abstract domain:
• a concretization function γ : D] → D maps an abstract property x] into the greatest

concrete element (e.g., the largest set of traces) which enjoys property x];
• an abstraction function α : D → D] maps a concrete element x into the strongest

abstract property x] which holds true for x.
If they exist, these “adjoint” functions are monotone.

Obviously these functions may not always exist, as shown in the following example:

Definition 2.3.1. Non-existence of α.

We consider sets of points in the 2-dimensions plane. Abstract elements are convex
polyhedra [CH78], i.e. conjunctions of constraints of the form ax + by ≤ c, where a, b, c
are real numbers. Let E be the disc x2 + y2 ≤ 1. It is well-known that there is no
best approximation of E in the set of polyhedra, even if one can find “arbitrarily good”
approximations of the E in the domain of polyhedra, as shown on Figure 2.3.

In this thesis, we always assume the existence of a concretization function; in some
cases abstraction functions will be available as well.

In favorable cases, both functions exist and form a Galois connection [CC77]:

Definition 2.3.1. Galois-connection.

A Galois connection between (D,⊆) and (D],v) is a pair of function (α, γ) such that:

∀x ∈ D, ∀y ∈ D], α(x) v y ⇐⇒ x ⊆ γ(y)

Xavier Rival Traces Abstraction in Static Analysis and Program Transformation



2.3. ABSTRACT INTERPRETATION 19
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Figure 2.3: Approximations of the disc x2 + y2 ≤ 1 with polyhedra

Such a Galois connection is denoted (D,⊆) −−−→←−−−α
γ

(D],v)

For a complete overview of the many properties of Galois-connection and abstraction
relations, we refer the reader to [CC92a].

2.3.2 Semantics as fixpoints and Semantic approximation

We now show how one can design a sound approximation for a concrete semantics in
some given abstract domain; in practice, the construction does not depend on the abstract
domain, which can be seen as a parameter.

Semantics as fixpoints: We can define the concrete semantics introduced in Section
2.2.2 as a least fixpoint, in the complete lattice (P(Σ),⊆):

Lemma 2.3.1. Fixpoint form for program semantics.

The semantics of P is such that:

JP K = lfp⊆S iF−→P

where F−→
P

is the semantic function, defined by:

F−→
P

: Σ → Σ
E 7→ E ∪ {〈s0, . . . , sn, sn+1〉 | 〈s0, . . . , sn〉 ∈ E ∧ sn → sn+1}

and S i collects the “initial traces”, i.e. the traces made of one initial state (since any
state is supposed initial in JP K, so S i = {〈s〉 | s ∈ �

i}).

Proof.

First, let us note that the function F−→
P

is a monotone function over the lattice (P(Σ),⊆),
so it has a least-fixpoint (as mentioned in Section 2.1). Second, F−→

P
is continuous, defined

on a complete lattice, so its least-fixpoint satisfies the following equality:

lfpS iF−→
P

=
⋃

n∈ �

F n
P (∅)
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20 CHAPTER 2. SEMANTICS AND ABSTRACTION

where F n
P denotes the n-th iterate of F−→

P
.

Proving that JP K is equal to the least-fixpoint amounts to proving by induction on n
the property

∀σ ∈ Σ, length(σ) ≤ n + 1 =⇒
(

σ ∈ JP K ⇐⇒ σ ∈
n⋃

k=0

F k(S i)

)

(the induction is straightforward) Â

In practice most semantics can be written as least-fixpoints in a similar way.

Relations among fixpoints: The design of an abstract semantics usually follows from
choice of a concrete semantics and of an abstraction by applying a “fixpoint-transfer
theorem”, such as:

Theorem 2.3.2. Fixpoint transfer.

We assume that D,D] are complete lattices, and we let x ∈ D, y ∈ D]. Let F : D → D
and F ] : D] → D]. Then:

• if α : D → D] is an abstraction function, α(x) = y and α ◦ F = F ] ◦ α, then
α(lfpxF ) = lfpyF

].
• if γ : D] → D is a concretization, x ⊆ γ(y), and F ◦ γ ⊆ γ ◦ F ], then lfpxF ⊆

γ(lfpyF
]).

Proof.

Such results can be proved by straightforward inductions on the sequences of iterates. Â

Another noticeable fact is that a fixpoint might be checked by computing only one
iterate:

Theorem 2.3.3. Fixpoint checking.

Let F ] : D] → D], and x] ∈ D]. We write x for γ(x]). Let us assume that:

• there is a concretization function γ : D] → D (as usual, we assume it is monotone);
• the concrete semantic function F : D → D is monotone;
• F ] abstracts F , i.e., F ◦ γ ⊆ γ ◦ F ];
• F ](x]) v x]

Then, lfpF ⊆ x.

Proof.

Since F ] abstracts F , F (x) = F ◦ γ(x]) ⊆ γ ◦ F ](x]); moreover, γ is monotone, so
γ ◦ F ](x]) ⊆ γ(x]) = x; by transitivity, F (x) ⊆ x, so lfpF ⊆ x. Â
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2.3.3 Enforcing termination

The fixpoint-transfer scheme presented in Section 2.3.2 leaves one issue to be addressed:
the sequences of abstract iterates might be infinite, in case the abstract domain has infinite
increasing chains. Therefore, in case we wish the abstract semantics to be computable,
we replace the abstract join operator with a widening operator [CC77], which is an ap-
proximate join [CC92b], with additional termination properties:

Definition 2.3.2. Widening operator.

A widening is a binary operator ∇ on D], which satisfies the two following properties:
1. ∀x], y] ∈ D], x] v x]∇y] ∧ y] v x]∇y]

2. For any sequence (xn)n∈ � , the sequence (yn)n∈ � defined below is not strictly increas-
ing: {

y0 = x0

∀n ∈ �
, yn+1 = yn∇xn+1

It is possible to replace property 1 with the weaker property γ(x])∪γ(y]) ⊆ γ(x]∇y]),
and recover the same properties of the widening operator.

The following theorem [CC77] shows how widening operators makes it possible to
compute in a finite number of iterations a sound over-approximations for the concrete
properties:

Theorem 2.3.4. Abstract iteration with widening.

We assume a concretization γ : D] → D is defined and that F ] is such that F ◦γ ⊆ γ◦F ].
Let x ∈ D, x] ∈ D], such that x ⊆ γ(x]). We define the sequence (xn)n∈ � as follows:

{
x0 = x]

∀n ∈ �
, xn+1 = xn∇F ](xn)

Then, the sequence (xn)n∈ � is ultimately stationary and its limit lim(xn)n∈ � is a sound
approximation of lfpxF :

lfpxF ⊆ γ(lim(xn)n∈ � )

Proof.

The termination follows from Definition 2.3.2, property 2 applied to the sequence
(yn)n∈ � = (F ](xn))n∈ � .
The soundness can be proved by induction over the iterates:

∀n ∈ �
,

n⋃

k=0

F k(∅) ⊆ γ(xn)
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(this proof relies on the fact that the widening approximates concrete joins). Â
Theorem 2.3.4 describes the scheme of a classical static analysis: apply a sound ab-

stract counterpart to the concrete semantic function and widening until success of a ter-
mination test (i.e., F ](xn) = xn).

Definition 2.3.2. Non monotonicity of widening.

A classical widening on the abstract domain of intervals removes non-stable constraints.
For instance, if we consider only widening on the right bound, then [a, b]∇[a, c] is [a, c] if
c ≤ b (stable constraint) and [a, +∞[ otherwise (unstable constraint).
This operator obviously enforces the convergence of any sequence of iterates after two
iterations.
Let us consider the abstract function F ] : [a, b] 7→ [a+5, min(b+10, 50)]. Carrying out an
abstract iteration from I = [0, 50] converges in one iteration (I∇F ](I) = I); the iteration
starting from I ′ = [0, 10] requires converges after the second iteration and the limit is
[0, +∞[, which is a less precise limit even though I ′ v I. This simple case exemplifies
the non-monotonicity induced by widening operator. In practice, abstract transformers
are rarely monotone.

In practice, the result of a widening iteration can often be improved:

Remark 2.3.1. Decreasing iteration.

We keep the notations of Theorem 2.3.4 and let x]
l be the limit of the widening sequence.

Since lfpxF ⊆ γ(x]
l ) and F (lfpxF ) = lfpxF , and γ is monotone, we can conclude that

lfpxF ⊆ γ(F ](x]
l )). By induction, we can show that we can apply an arbitrary number

of times the operator F ], and still get a sound over-approximation of the concrete least
fixpoint.
In practice, such a sequence may noticeably improve the precision. The termination of
this “post-widening” sequence is usually enforced with a narrowing operator [CC77].

Last, we point out that other, more general definitions for widening operators might be
used in practice; in particular, the termination assumption may be asserted for a different
ordering than the precision ordering (See [CC92b] for more details).

2.3.4 Program transformations

We shall also use the notion of abstraction in order to compare the semantics of programs
resulting from program transformations. Basically, a program transformation is a function
F mapping a program into another program.

Semantic abstraction allows to describe the transformation in the semantic level. This
approach was suggested by [CC02].

Let Ds (resp. Dt) be the concrete domain for expressing the semantics of source (resp.
target) programs. We assume two abstractions (D]

s, αs, γs) and (D]
t , αt, γt), of Ds and Dt
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respectively, can be defined such that there exists a function JFK : D]
s → D]

t such that, for
all program p, then αt(JF(p)K) = JFK(αs(p)). Then, we say that JFK provides a semantic
definition for the program transformation as shown on the diagram below.

P
F

- F(P )

JP K

semantics
?

JF(P )K

semantics
?

αs(JP K)

αs
?

JFK
- αt(JF(P )K)

αt
?

In particular, in case both semantics are defined using least-fixpoints, then we expect JFK
to relate the execution steps of the source and compiled programs.

Next chapter provides suitable abstractions of sets of traces, for the formalization of
program transformations; in particular, an example will be provided in Section 3.4.
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Chapter 3

Abstractions of Sets of Traces

This chapter is devoted to simple abstractions for sets of traces, which will be thoroughly
used in the following of the thesis: Section 3.1 describes abstraction for static analysis;
Section 3.2 defines denotational abstractions for sets of traces, as functions mapping states
into states. Section 3.3 introduces a backward semantics. Section 3.4 deals with projection
abstractions.

3.1 Static Analysis

This section introduces the structure of a simple abstract interpreter. We detail the struc-
ture and the implementation of the Astrée analyzer [BCC+02, BCC+03a, CCF+05] later,
in Section 5.1: Astrée is quite different from the simple abstract interpreter described
here. However, the abstractions introduced here will be used throughout the rest of the
thesis.

3.1.1 The abstraction

Set of traces of interest: In this section, we consider a program P defined by the data
of a tuple ( � , � ,

�
i,→). We focus on the approximation of the executions of P , i.e. on the

states which appear in a trace of P . As a consequence, we wish to approximate the set of
traces T = {〈s0, . . . , sn〉 | ∃ρ0, s0 = (l i, ρ0)}. We recall that that T = lfp � iF .

We proceed to the abstraction of traces into reachable states: we wish to abstract the
traces into an approximation for the set of states S which appear in at least one tract in
T . In the following, we approximate all the states distinct from Ω: deciding whether Ω
is reachable from the set of all reachable, non-error states is usually straightforward (it
amounts to checking whether there exists a state s such that s → Ω in the set S).

Abstraction of traces: We assume that an abstract domain (D]� ,v) for representing
sets of stores is defined, together with a concretization function γ

�
: D]� → P( � ).

We let the abstraction for approximating the concrete semantics be defined by:
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• the abstract domain D] = � → D]� , with the pointwise ordering induced by v
(which we also write v);
• the concretization function γ : I ∈ D] 7→ {〈(l0, ρ0), . . . , (ln, ρn)〉 | ∀i, ρi ∈ γ

�
(I (li)).

Intuitively, this very simple abstraction collects the memory states corresponding to each
control state and applies the store abstraction to the resulting sets of stores.

Abstract operations: Moreover, we assume that the domain D]� provides some sound
abstract operations:
• a least element ⊥, such that γ

�
(⊥) = ∅;

• a greatest element >, such that γ
�
(>) = � ;

• an abstract join operator t, approximating the concrete operator (∀x, y ∈ P( � ), x], y] ∈
D]� , x ⊆ γ

�
(x]) ∧ y ⊆ γ

�
(y]) =⇒ x ∪ y ⊆ γ

�
(x] t y])) and a widening operator ∇

(Section 2.3.3).
• a sound counterpart guard : � × � ×D]� → D]� for the concrete testing of conditions:

∀ρ ∈ � , e ∈ � , b ∈ � , d ∈ D]� ,
ρ ∈ γ

�
(d)

∧ JeK(ρ) = b

}
=⇒ ρ ∈ γ

�
(guard (e, b, d))

Since the operator guard : (e, b, d) 7→ d trivially satisfies the above assumption, we as-
sume that the guard operator is reductive: ∀ρ ∈ � , e ∈ � , b ∈ � , γ

�
(guard (e, b, d)) ⊆

γ
�
(d).

• a sound counterpart assign : � × � ×D]� → D]� for the concrete assignment:

∀ρ ∈ � , ∀l ∈ � , e ∈ � , d ∈ D]� ,
ρ ∈ γ

�
(d)

∧ JlK(ρ) = x
∧ JeK(ρ) = v



 =⇒ ρ[x← v] ∈ γ

�
(assign(l, e, d))

• a sound counterpart forget : � ×D]� → D]� for the “variable-forget” operation, which
writes a random value into a variable:

∀ρ ∈ � , ∀l ∈ � , ∀v ∈ � , ∀d ∈ D]� ,
ρ ∈ γ

�
(d)

∧ JlK(ρ) = x

}
=⇒ ρ[x← v] ∈ γ

�
(forget(l, d))

Intuitively, each of these operators should mimics a common operation of the language in
a sound (or conservative) way. For instance, the assign operation inputs a pre-condition d
and an assignment and returns an over-approximation of the post-conditions, which may
be reached after carrying out the assignment operation from d. Soundness is a critical
requirement for the results of the analysis to be proved correct with respect to the concrete
semantics; as a consequence it is considered the most important characteristic of abstract
operations.
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An abstract operator may be imprecise: for instance, assign may return an element
including many spurious stores (for instance, it may return >). Such imprecisions may
result in useless invariants (e.g., it may result in a large number of false alarms, when
trying to prove the safety of a program); therefore, the design of transfer functions usually
attempts to avoid coarse imprecisions whenever they may affect the result of the analysis.

Section 3.1.2 defines a simple abstract interpreter for the language introduced in Sec-
tion 2.2.3; Section 3.1.3 proposes ways of building instantiations for D]� .

3.1.2 Abstract interpretation of a simple semantics

First, we define a family (transfer l ,l ′)l ,l ′∈ � of sound abstract transfer functions, using the
abstract operations provided in Section 3.1.1, which are displayed on Figure 3.1. It is

assignment l0 : x := e; l1
transfer l0,l1

: d 7→ assign(x, e, d)

conditional l0 : if(e) {l t
0 : st; l t

1 } else {l f
0 : sf ; l f

1 } l1
transfer l0,l t

0
: d 7→ guard (e, true, d)

transfer l0,l f
0

: d 7→ guard (e, false, d)

transfer l t
1 ,l1

= transfer l f
1 ,l1

: d 7→ d

loop l0 : while(e) {l b
0 : st; l b

1 } l1
transfer l0,l b

0
: d 7→ guard (e, true, d)

transfer l0,l1
: d 7→ guard (e, false, d)

transfer l b
1 ,l0

: d 7→ d

input l0 : input(x ∈ V ); l1
transfer l0,l1

: d 7→ guard ((x ∈ V )], true, forget(x, d))

where the condition (x ∈ V )] soundly approximates (x ∈ V ) :
(ρ(x) ∈ V ) =⇒ J(x ∈ V )]K(ρ) = true

assertion l0 : assert(e); l1
transfer l0,l1

: d 7→ guard (e, true, d)

Figure 3.1: A simple abstract interpreter

designed so as to satisfy the following soundness property:

Lemma 3.1.1. Transfer functions soundness.

Let l , l ′ ∈ � , ρ, ρ′ ∈ � , d ∈ D]� . Then:

ρ ∈ γ
�
(d)

∧ (l , ρ)→ (l ′, ρ′)

}
=⇒ ρ′ ∈ transfer l ,l ′(d)
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Proof.

Straightforward case analysis. Â
Furthermore, we note that the element I0 ∈ D] defined below safely approximates the

set of initial traces
�

i (
�

i ⊆ γ(I0)):

I0 :

{
l i 7→ >
l 6= l i 7→ ⊥

Following Theorem 2.3.2, we define the abstract interpreter as a function F ] defined by:

F ] : D] → D]

I 7→ λ(lpost ∈ � ) ·⊔{transfer lpre,lpost
(I(lpre)) | lpre ∈ � }

This interpreter is sound:

Theorem 3.1.2. Soundness of the simple abstract interpreter.

The sequence (In)n∈ � defined by the element I0 above and ∀n ∈ �
, In+1 = In∇F ](In)

is monotone, ultimately stationary; so it has a limit I ]. Moreover, the limit I ] is such
that:

T ⊆ γ(I ])

Proof.

It follows from Lemma 3.1.1 that F ] is a sound approximation for the concrete semantic
function F .

The result follows from Theorem 2.3.4, since T = lfp � iF . Â
Note that the interpreter provided here is not particularly efficient. In particular,

more care needs to be taken for the iteration strategy. Any fair strategy for applying
abstract transfer functions results in a sound analysis [Cou81]; however, not all strategies
are efficient:
• Applying all local transfer functions for each iteration would turn out costly and

useless, since most local transfer functions would not refine any invariant, as is the
case of a block of instructions with no branching. Common analyzers rely on a fair,
asynchronous iteration strategy: each iteration applies some local transfer functions,
and any local transfer functions is applied eventually. Such strategies are usually
based on work-lists containing the control states a new invariant could be computed
for. More details are provided on this topic in [HDT87].
• Secondly, applying the widening operator at any control state in the control flow

graph would turn costly and imprecise; therefore, an adequate set of widening control
states should be determined prior to the analysis, using e.g. the algorithm presented
on [Bou93].
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We describe the approach followed in the Astrée project in Section 3.2.5. This approach
follows the syntax tree of programs and only requires local invariants to be saved at loop
heads (minimal invariant storage during the analysis).

Definition 3.1.1. Issues in iteration strategies.

Let us consider the transition system below:

(l0, t)

(l1, t) (l2, t)

(l3, t)

Then, the strategy which computes invariant for l0, l1, l3 first, and then for l2 is not opti-
mal: the invariant at point l3 needs to be computed twice, so the first computation of this
invariant is useless.
Iteration strategies based on the program structure rather than the control flow (as in
Section 3.2.5) eliminate this issue.

Backward analysis: We may want to restrict to a set of final states instead of a set of
initial states as done previously. Then, we would need to implement a backward analysis,
which is conceptually dual of a forward analysis.

Indeed, let
�

f ⊆ �
be a set of final states and Tf be the set of traces {〈s0, . . . , sn〉 ∈ Σ |

sn ∈
�

f ∧ ∀i, si → si+1}. Then, Tf boils down to a least fixpoint:

Tf = lfpS fF←−
P

where:

F←−
P

: P(Σ) → P(Σ)
E 7→ E ∪ {〈s−1, s0, . . . , sn〉 ∈ Σ | 〈s0, . . . , sn〉 ∈ E ∧ s−1 → s0}

and S f = {〈s〉 | s ∈ �
f} (see Lemma 2.3.1).

An approximation for Tf can be computed by abstract interpretation, by defining
backward abstract transfer functions for each language construction and computing an
abstract post-fixpoint in the same way as in Theorem 3.1.2. Backward analysis was
studied, e.g. in [Cou78, Cou81].

3.1.3 Numerical abstract domains

In Section 3.1.1, we left the domain for representing sets of stores as a parameter and
only assumed such a domain to provide a series of “abstract operations”. We discuss now
common choices for the instantiation of this domain.
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Numerical domains: A very large range of domains have been introduced for handling
numerical constraints:
• Non-relational domains abstract each variable separately, such as:

– intervals [CC77] (constraints of the form a ≤ x ≤ b, where x ∈ � and a, b are
constants);

– congruence [Gra89] (constraints of the form x ∈ a
�

+ b, where x ∈ � and a, b
are constants);

• Relational domains allow constraints involving several variables, at a higher cost,
such as:

– Karr domain [Kar76] expresses linear equalities among program variables, such
as a ? x + b ? y + c ? z + . . . = c;

– polyhedra [CH78] handle linear inequalities among program variables, such as
a ? x + b ? y + c ? z + . . . ≤ c;

– octagons [Min04b] restrict to inequalities of the form ±x±y ≤ c where x, y ∈ �
and c is a constant;

Some examples are displayed in Figure 3.2

�������������
�������������
�������������

�����������
�����������
�����������

�
�
�

PSfrag replacements

x

y

(a) Intervals

PSfrag replacements

x

y

(b) Congru-
ences

���������
���������
���������
���������
���������
���������

���������
���������
���������
���������
���������
���������

PSfrag replacements

x

y

(c) Octagons

�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������

�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������

PSfrag replacements

x

y

(d) Polyhe-
dra

Figure 3.2: A few numerical domains (for two variable environments)

Boolean abstractions: As in the case of numeric variables, we can use
• Non-relational abstractions: for instance, we can use P( � ) so as to describe the

set of possible values for a boolean variables;
• Relational abstractions, e.g. based on binary decision diagrams (BDDs) [Bry86].

Combining domains: First, the mapping of concrete variables into abstract memory
locations should be addressed in general, when in presence of unbounded structures. The
literature is this domain is rather broad: we can cite memory and domain combination
[CL05], analyses targeted at inferring properties about the memory layout [SRW02].

Second, the abstract domain for representing sets of stores should usually account for
various kinds of predicates evoked in the previous paragraphs:
• in some cases, a new domain can be obtained directly from a more simple one, as

is the case of the relations among boolean and numerical values used in Astrée :
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this domain inputs a domain for representing numerical values as a parameter (see
above).
• in most cases, a product allows to build a new domain from several domains. Then,

a reduction operation [CC79] is usually required so as to allow the constraints of
one domain to refine the information in the other domains.

The following definition formalizes the notion of reduced product:

Definition 3.1.1. Reduced product.

Let (D]
0, γ0) and (D]

1, γ1) be two abstractions of a same concrete domain D.
Then, the product abstraction (D]

p, γp) is defined by:

• D]
p = D]

0 ×D]
1;

• ∀(x0, x1) ∈ D]
p, γp(x0, x1) = γ0(x0) ∩ γ1(x1).

A drawback of this domain is that distinct abstract element may have the same con-
cretization; for instance, it is common that γp(x0,⊥) = γp(⊥, x1) = ∅
The reduced product is the quotient of D]

p for the relation R defined by:

(x0, x1)R(x′0, x
′
1) ⇐⇒ γp(x0, x1) = γp(x

′
0, x
′
1)

In practice, only an approximation of it may be computed.

3.2 Denotational Abstraction

The denotational abstraction is one of the most common abstractions of sets of traces is;
it basically amounts to forgetting all about the history of program execution, and keeping
only some kind of relation between the original state and the final state of traces.

3.2.1 Denotational semantics

Abstraction into functions: The classical definition of denotational semantics [Sco70]
introduces functions mapping initial states into final states, as a way do define the mean-
ing of programs. Intuitively, it forgets about all intermediate states and collects the
relation between initial and final states. Denotational semantics is an abstraction of the
operational semantics [Cou97a].

In this thesis, we factor the control states out of the states, when using the denotational
semantics, by partitioning this functional representation into sets of traces from a control
state l` to a control state la or into sets of traces following some paths in the control flow
graph. This amounts to defining functions mapping memory states into sets of memory
states (there may be several output states due to non-determinism). Therefore, we write
Den for the set of functions � → P( � ) (we also make a slight abuse of notation and let
◦ be defined over Den by ∀φ0, φ1 ∈ Den, φ1 ◦ φ0 : ρ 7→ ∪{φ1(ρ

′) | ρ′ ∈ φ0(ρ)}).
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Hence, we define an abstraction of a set of traces into a function mapping a store into
a set of stores, that throws away the control states, as follows:

Definition 3.2.1. Abstraction to function.

We let the functional abstraction of sets of traces be defined by:

(P(Σ),⊆) −−−→←−−−
αF

γF

( � → P( � ),⊆)

αF : P(Σ) → ( � → P( � ))
E 7→ λ(ρ0 ∈

�
).{ρn | 〈(l0, ρ0), . . . , (ln, ρn)〉 ∈ E}

γF : ( � → P( � )) → P(Σ)
Φ 7→ {〈(l0, ρ0), . . . , (ln, ρn) ∈ E〉 | ρn ∈ Φ(ρ0)}

(we use the same notation for the pointwise ordering over � → P( � ) as for the conven-
tional ordering over P( � )).

Note that this definition abstracts the initial and final control states away; more careful
abstractions are presented in the following two subsections, by composing this abstrac-
tion with several abstractions that aim at defining what set of traces the abstraction of
Definition 3.2.1 should be applied to.

Remark 3.2.1. Relational semantics and predicate transformers.

It has been observed in [Cou97a] that the denotational semantics is also equivalent to other
common forms of semantics, including relational semantics [MT91], predicate trans-
former semantics [Dji75] We follow the denotational presentation for the sake of con-
venience.

Collecting sub-traces: Before we set up definitions of denotational semantics along
paths or between control states in programs, we need to solve the following problems: our
current definition of JP K collects traces starting from the initial points only; however, we
need to collect all “sub-traces” in order to capture the behavior of P , say, between l0 and
l1; otherwise, if l0 is not the entry point, we would not be able to isolate the “parts” of
executions of P starting from l0.

Two traces σ0, σ1 such that the last state of σ0 and the last state of σ1 can be combined
together in a single, longer execution trace:

Definition 3.2.2. Concatenation of traces, sub-trace.

Let σ = 〈s0, . . . , sn〉 and σ′ = 〈s ′0, . . . , s ′m〉 be two traces. If sn = s ′0, we define the
concatenation σ _ σ′ of σ and σ′ by:

σ _ σ′ = 〈s0, . . . , sn, s ′1, . . . , s ′m〉

We let this operation be defined for sets of traces as well (and abusively use the same
notation for the concatenation of sets of traces).
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We say that σ is a sub-trace of σ′ (and we write σ 4 σ′) if and only if there exist two
traces σ0, σ1 such that σ′ = σ0 _ σ _ σ1.

We can now define what kind of sets of traces we are interested in:

Definition 3.2.3. closed set of traces.

Let E be a set of traces. We say that E is:
• closed if and only if:

∀σ, σ′,∈ Σ such that (σ _ σ′) is defined, (σ _ σ′) ∈ E =⇒ (σ ∈ E ∧ σ′ ∈ E)

• strongly closed if and only if:

∀σ, σ′,∈ Σ such that (σ _ σ′) is defined, (σ _ σ′) ∈ E ⇐⇒ (σ ∈ E ∧ σ′ ∈ E)

We write C[Σ] for the set of strongly closed sets of traces.

Intuitively a set of traces E is closed in the sense of Definition 3.2.3 if and only if it
is closed under the 4 relation: if σ 4 σ′ and σ′ ∈ E , then σ ∈ E . Strongly closed sets of
traces are also closed under concatenation.

We remark that it is possible to complete any set of traces into a closed set of traces:

Definition 3.2.4. Trace closure operator.

We let clos : P(Σ) → P(Σ) be the closure operator defined by clos(E) = {σ ∈ Σ | ∃σ ′ ∈
Σ, σ 4 σ′}.

Clearly, clos is an upper closure operator (it is extensive, monotone and idempotent),
and ∀E ⊆ Σ, clos(E) is closed.

Finally, we can express the “new” semantics, which we are interested in by: JP Kc =
clos(JP K); clearly, JP Kc is closed. We note that JP Kc is strongly closed: if σ and σ′ are two
traces of P , which can be concatenated, then σ _ σ′ ∈ JP Kc.

This new semantics can be written as a least fixpoint as well. In fact, this new
semantics is equivalent to JP K: we can write a Galois-bijection which relate Σ and C[Σ],
and prove the equivalence between JP K and JP Kc by a trivial fixpoint transfer arguments
(Theorem 2.3.2).

In the following, we may simply write JP K for JP Kc (and mention that we are using the
strongly closed semantics), since both semantics express the same behaviors. Of course,
we consider the closed version in this section.

3.2.2 Functions “From-To”

We introduce an abstraction that keeps only the traces between two control points:
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Definition 3.2.5. From-To abstraction.

For any pair of control points l `, la ∈ � , we define the following Galois-connection:

(P(Σ),⊆) −−−−−−→←−−−−−−
αt [l`,la]

γt [l`,la]

(P(Σ),⊆)

αt [l`,la] : P(Σ) → P(Σ)
E 7→ {〈(l0, ρ0), . . . , (ln, ρn)〉 ∈ E | l0 = l` ∧ ln = la}

This defines a family of Galois-connections (i.e., one Galois-connection for each pair
(l`, la)).

A first partitioned denotational semantics is obtained by composing this abstraction
with the functional abstraction introduced in the previous subsection:

Definition 3.2.6. Functional, From-To abstraction.

For any pair of control points l `, la ∈ � , we define the following Galois-connection:

(P(Σ),⊆) −−−−−−−→←−−−−−−−
αtF [l`,la]

γtF [l`,la]

(Den,⊆)

αtF [l`,la] = αF ◦ αt [l`,la]

γtF [l`,la] = γt [l`,la] ◦ γF

This abstraction is mostly useful when we need to consider only the effect of a piece of
code on the memory state. In particular, we will use this kind of abstractions in order to
define dependences induced by fragments of programs and to reason about the semantic
equivalence of programs.

Definition 3.2.1. From-To semantics.

Let us consider the P program below:

l0 : if(x < 4) {
l1 : x = 4;
l2 : } else {
l3 : y = x + 3;
l4 : }
l5 : . . .

Then, the semantics αtF [l0,l5]JP K maps initial stores into final stores; for instance if ρ(x) =
0, then αtF [l0,l5]JP K(ρ) = {ρ[x← 4]}.
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3.2.3 Functions “Along paths”

Path in the control flow: A path p is a sequence of control states l0 · l1 · . . . · ln. The
length of such a path is n (number of control states involved minus one or equivalently,
number of edges considered) and is denoted len(p). We write P (l `, la) for the set of paths
from l` to la.

The semantics of s restricted to a path is the set of traces in JsK that follow this path;
it defines an abstraction of the standard, trace semantics:

Definition 3.2.7. Path abstraction.

For all path p, we let the path abstraction be defined by the following Galois-connection:

P(Σ) −−−−→←−−−−
αp[p]

γp[p] P(Σ)

αp[p] : P(Σ) → P(Σ)
E 7→ {〈(l0, ρ0), . . . , (ln, ρn)〉 ∈ E | p = l0 · l1 · . . . ln}

Similarly as in the last subsection, we can apply the abstraction of traces into functions
to this semantics:

Definition 3.2.8. Functional, path abstraction.

For any path p, we define the following Galois-connection:

(P(Σ),⊆) −−−−−→←−−−−−
αpF [p]

γpF [p]

(Den,⊆)

αpF [p] = αF ◦ αp[p]

γpF [p] = γp[p] ◦ γF

It defines a Galois-connection for each path.

This abstraction is useful when we need to isolate the behavior of programs on some
path(s) e.g., in order to prove some semantic equivalence between paths in different pro-
grams.

The restriction of the semantics to paths allows to partition the from-to semantics, as
shown in the following lemma:

Lemma 3.2.1. Partitioning of the graph-denotational semantics.

Let l`, la ∈ � . Then, for any set of traces E ⊆ Σ,

αt [l`,la](E) =
⋃
{αp[p](E) | p ∈ P (l`, la)}

Moreover, if p, p′ are two distinct paths, then, clearly αp[p](E) ∩ αp[p′](E) = ∅.
Furthermore, for any ρ ∈ � ,

αtF [l`,la](E)(ρ) =
⋃
{αpF [p](E)(ρ) | p ∈ P (l`, la)}
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(in other words {αpF [p](E)(ρ) | p ∈ P (l`, la)} partitions αtF [l`,la](E)(ρ) since the elements
of this set are pairwise disjoint.)

Proof.

Straightforward. Â

Definition 3.2.2. Path semantics.

We consider the program of Example 3.2.1, and the semantics between l0 and l5. There
are two paths between these two points: pt = l0 · l1 · l2 · l5 and pf = l0 · l3 · l4 · l5. Let ρ ∈ � ,
such that ρ(x) = 0. Then:

• αpF [pt](JP K)(ρ) = {ρ[x← 4]};
• αpF [pf ](JP K)(ρ) = ∅.

3.2.4 Composition

We now relate two natural operations:

• the concatenation of traces;
• the composition of functions.

Composition as an approximation of composition: We propose a characterization
of the composition of the semantics along paths for closed sets of traces:

Lemma 3.2.2. Composition along paths.

Let E be a closed set of traces. Let p = l0 · . . . · ln · . . . · lm be a path. We let p′ = l0 · . . . · ln
and p′′ = ln · . . . · lm. Then:

αpF [p](E) ⊆ αpF [p′′](E) ◦ αpF [p′](E)

In case E is strongly closed:

αpF [p](E) = αpF [p′′](E) ◦ αpF [p′](E)
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Proof.

(case where E is closed). Let ρ, ρ′′ ∈ � . Then:

ρ′′ ∈ αpF [p](E)(ρ)
⇐⇒ ∃〈(l0, ρ0), . . . , (ln, ρn), . . . , (lm, ρm)〉 ∈ E , ρ0 = ρ ∧ ρm = ρ′′

⇐⇒ ∃σ′ = 〈(l0, ρ0), . . . , (ln, ρn)〉, σ′′ = 〈(ln, ρn), . . . , (lm, ρm)〉,
σ′ _ σ′′ ∈ E ∧ ρ0 = ρ ∧ ρm = ρ′′

=⇒ ∃〈(l0, ρ0), . . . , (ln, ρn)〉, 〈(ln, ρn), . . . , (lm, ρm)〉 ∈ E , ρ0 = ρ ∧ ρm = ρ′′

since E is closed
⇐⇒ ∃ρ′ ∈ � , ∃〈(l0, ρ0), . . . , (ln, ρn)〉, 〈(ln, ρn), . . . , (lm, ρm)〉 ∈ E ,

ρ0 = ρ ∧ ρn = ρ′ ∧ ρm = ρ′′

⇐⇒ ∃ρ′ ∈ αpF [p′](E)(ρ), ρ′′ ∈ αpF [p′′](E)(ρ′)
⇐⇒ ρ′′ ∈ αpF [p′′](E) ◦ αpF [p′](E)(ρ)

which concludes the proof.
In case E is strongly closed, the implication in the middle of the proof can be turned into
an equivalence. Â

Closed sets of traces and fixpoint-definitions: The following theorem shows that
a strongly closed set of traces can be described by a least fixpoint equation:

Theorem 3.2.3. Strongly set of traces as a least fixpoint.

Let E ⊆ Σ. Then, there exists F : Σ→ Σ and a set I ⊆ Σ such that:
• if E is closed, then E ⊆ lfpIF
• if E is strongly closed, then E = lfpIF .

Proof.

We let:
• I = E ∩ {〈s〉 | s ∈ � };
• R is the relation {(s , s ′) ∈ �

2 | 〈s , s ′〉 ∈ E}.
We let:

F : P(Σ) → P(Σ)
E 7→ I ∪ {〈s0, . . . , sn, sn+1〉 | 〈s0, . . . , sn〉 ∈ E ∧ (sn, sn+1) ∈ R}

Clearly, F is continuous, so lfpF =
⋃

n∈ � F n(∅). Let us assume that E is closed. Then,
we can show by induction on the length of σ that σ ∈ E =⇒ σ ∈ F n(∅):
• if n = 1, then σ ∈ I = F 0(∅);
• if n ≥ 1 and the property is holds for n, and σ has length n + 1, then σ = σ ′ _ σ′′,

where σ′ has length n and σ′′ = 〈sn−1, sn〉 has length 2. Therefore, the induction
hypothesis implies that σ′ ∈ F n(∅); moreover, (sn−1, sn) ∈ R; as a consequence,
σ ∈ F n+1(∅).

Traces Abstraction in Static Analysis and Program Transformation Xavier Rival



38 CHAPTER 3. ABSTRACTIONS OF SETS OF TRACES

As a consequence, σ ∈ lfpF .
The proof of the converse implication is similar. Â

This theorem could be used as a basis in order to relate fixpoint definitions for trace
semantics and denotational semantics. We shall use it in order to provide fixpoint defini-
tions for semantics derived by applying some abstractions to more simple semantics.

3.2.5 Static analysis

We propose here to build a denotational abstract interpreter from the denotational se-
mantics, that gives similar results as the simple interpreter described in Section 3.1.2. We
use the same notations.

Definition and soundness of the interpreter: Let s ∈ � be a statement; we write l `
(resp. la) for the control point before (resp. after) s. We let the denotational semantics
of s be the function JsKδ = αtF [l`,la](JsK). The abstract semantics of s is the function

JsK] : D]� → D]� , which inputs an abstract pre-condition and returns a strongest post-
condition. It should be sound in the sense that the output of the abstract semantics
should over-approximate the set of output states of the underlying, concrete denotational
semantics.

We propose on Figure 3.3 the definition of a very simple denotational semantics-based
interpreter.

statement s abstract semantics

x := e; JsK] : d 7→ assign(x, e, d)

if(e){s0}else{s1} JsK] : d 7→ Js0K
](guard (e, true, d)) t Js1K

](guard (e, false, d))

while(e){s} JsK] : d 7→ guard (e, false, lfp]F ]) where

F ] : D]� → D]�

d0 7→ d0 t JsK](guard (e, true, d))

and lfp] computes an abstract post-fixpoint

input(x ∈ V ); JsK] : d 7→ guard (x ∈ V ], forget(x, d))

assert(e); JsK] : d 7→ guard (e, true, d)

Figure 3.3: A simple abstract interpreter

The abstract semantics displayed in Figure 3.3 is sound:

Theorem 3.2.4. Soundness of the analysis.
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The abstract semantics soundly approximates the denotational semantics:

∀ρ, ρ′ ∈ � , d ∈ D]� , ρ ∈ γ
�
(d) ∧ ρ′ ∈ JsKδ(ρ) =⇒ ρ′ ∈ γ

�
(JsK](d))

Proof.

By induction on the structure of the code.
The case of the loop is based on the soundness of the lfp] operator; in practice, it is
derived from a widening operator ∇ �

over D]� , so the soundness and termination of lfp]

follow from Section 2.3.3. Â
As a corrolary, the abstract semantics is sound with respect to the standard, opera-

tional semantics. Indeed, if l` : s; la is a program, then:

∀〈(l`, ρ`), . . . , (la, ρa)〉 ∈ JsK, ∀d ∈ D]� , ρ` ∈ γ
�
(d) =⇒ ρa ∈ γ

�
(JsK](d))

Comparison with iterations over a control flow graph: This approach is currently
used in Astrée and presents many advantages, due to the fact that no global iteration
strategy should be implemented (since the abstract interpretation proceeds recursively on
the syntax of the programs):
• This abstract semantics is based on an efficient iteration strategy. In particular,

no work-list or other strategy algorithm is needed, since the strategy is fully defined
by the control flow of the programs. Moreover, the order abstract transfer functions
are applied in is optimal in the sense that the issue mentioned in Example 3.1.1
never occurs.
• This approach requires no local invariant storage, except for the computation of

loop invariants with lfp]; in practice, the analyzer need to keep one invariant at the
head of each loop while analyzing its body.
• The set of widening point is also completely defined; it corresponds to loop heads.

Computation of an invariant over D]: We propose to derive from the interpreter in
Figure 3.3 an abstract interpreter computing an invariant in D] = � → D]� : we still wish
to get a local invariant for each control state as a result of the analysis.

Similarly, we may be interested in other outputs from the analyzer, such as alarm
reports, in case the result of the analysis does not prove all critical operations safe.

We propose a “two-modes” analyzer:
• a Check mode, for any phase in the analysis except iterations in loops before a

post-fixpoint is reached (i.e., before an over-approximation of the concrete states is
reached); all analysis side effects should be performed in this mode;
• an Iter mode, for the post-fixpoint iterations in loops; this mode does not carry out

any analysis side effect (computation of the final, safe local abstract invariants or
alarm reports).
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This way, we can note that the analyzer interprets any statement exactly once in Check
mode (the case of interprocedural programs requires taking into account all the calls to
the function).

The delay of all side effects to the last phase of the analysis is important for several
reasons. First, some earlier iterations may involve less precise invariants if the analyzer
computes a sequence of decreasing iterations (Remark 2.3.1) in the end, so that the alarms
or exported invariants would be less precise (more false alarms, or worse invariants than
the one actually available in the end of the analysis). Second, the export of local invariants
requires a lot of memory, so it is practically preferable to delay it to the end of the analysis.

We let M denote {Check , Iter}. We write JP K]M for the extended abstract interpreter;

it is a function from M ×D]×D]� into M ×D]×D]� (we focus on the computation of the
approximation of all reachable states; the computation of a superset of alarms would be
similar). The definition of this extended abstract interpreter follows the rules in Figure
3.3. Here are two rules:
• case of an assignment l` : x := e; la:

JsK]M : (Iter , d, I) 7→ (Iter , assign(x, e, d), I)

(Check , d, I) 7→ (Check , d′, I′)where





d′ = assign(x, e, d)
I′(la) = d′

I′(l) = I(l) if l 6= la

• case of a loop l` : while(e){s}; la:
– in Iter mode (loop in another loop), then:
JsK](Iter , d, I) = (Iter , guard (e, false, lfp]F ]), I)

– in Check mode, then we let d ∈ D]� , I ∈ D] and let d′, I′ be defined by

(Iter , d′, I′) = lfp]F ]

F ] : D]� → D]�

d0 7→ d0 t JsK](guard (e, true, d))

We also write d′′ = guard (e, false, d′), and I′′ derived from I′ by I′′(la) = d′′

Then: JsK](Check , d, I) = (Check , d′′, I′′).
We could extend Theorem 3.2.4, by proving that this interpreter not only computes a
sound output invariant, but also a sound over-approximation of all reachable states for
the given input invariant (just as in Section 3.1) (or a safe superset of alarms).

3.2.6 Symbolic Representation

The denotational semantics, which we introduced in Section 3.2.1 is not computable: it
does not provide a more convenient way to represent the functions mapping initial stores
to final stores for a piece of program than the program itself. We propose here a way of
doing so, which is based on symbolic transfer functions [CL96].
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Expressions:
e(∈ ��� ) ::= . . . | is alias(l, l′) (where l, l′ ∈ � ) | rnd(V ) (where V ⊆ � )

Symbolic transfer functions:
δ(∈ �

) ::= ¤

| bx0 ← e0, . . . , xn ← enc x0, . . . , xn ∈ � , e0, . . . , en ∈ �
∀i, j, i 6= j ⇒ xi 6= xj

| be ? δ0 | δ1 c e ∈ � , δ0, δ1 ∈
�

Figure 3.4: Grammar of symbolic transfer functions

Syntax: A symbolic transfer function is:
• either the “void” function ¤, which denotes the absence of transition (blocking func-

tion);
• or a parallel assignment bx0 ← e0, . . . , xn ← enc where ∀i, j, i 6= j =⇒ xi 6= xj;
• or a conditional be ? δ0 | δ1 c where e is an expression and δ0, δ1 are symbolic

transfer functions.
We write

�
for the set of symbolic transfer functions. We note that the empty assignment

does not modify the content of the memory, and just returns the input store; hence, it
corresponds to the identity function; we will write ι for it.

The requirement that the l-values in the parallel assignment should be pairwise distinct
is crucial for the semantics of the function to be properly defined. In practice, we always
make sure to define only symbolic functions that fulfill this requirement.

In the following, we assume that the expressions in symbolic transfer functions provide
two additional features:
• alias testing: is alias(l, l′) (where l, l′ ∈ � ) returns true if l and l′ evaluates to the

same memory location and returns false otherwise (this operator allows to guarantee
that all l-values in a parallel assignment should be distinct, by introducing alias
testing);
• non-determinism: rnd(()V ) returns any value in V (where V ⊆ � ).

The full grammar of symbolic transfer functions is displayed in Figure 3.4.

Semantics: The semantics of expressions is defined straightforwardly. Note that the
semantics of an expression e ∈ ��� is a function JeK : � → P( � ), since we allowed non-
determinism.

Intuitively, a symbolic transfer function δ denotes a store transformer; hence, the
semantics of a symbolic transfer function δ ∈ �

is a function JδK : � → P( � ). We let it
be defined as follows:
• ∀ρ ∈ � , J¤K(ρ) = ∅;
• Let ρ ∈ � , l0, . . . , ln ∈ ��� , e0, . . . , en ∈ ��� , and ∀i, xi = JliK(ρ) and Vi = JeiK(ρ).

Then, if ∀i, j, i 6= j =⇒ xi 6= xj, then

Jbl0 ← e0, . . . , ln ← encK(ρ) = {ρ[x0 ← v0, . . . , xn ← vn] | ∀i, vi ∈ Vi}
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• If e ∈ ��� , δ0, δ1 ∈
�
, then

Jbe ? δ0 | δ1 cK(ρ) =





Jδ0K(ρ) if JeK(ρ) = {true}
Jδ1K(ρ) if JeK(ρ) = {false}
Jδ0K(ρ) ∪ Jδ1K(ρ) if JeK(ρ) = {true, false}

(note that there is no case JeK(ρ) = ∅; intuitively, the evaluation of the semantics of
any expression for any store should contain at least one value).

Symbolic transfer functions-based definition: We propose on Figure 3.5 the sym-
bolic transfer functions corresponding to all one-step transitions, for the simple language
we introduced in Section 2.2.3. This definition simply mimics the transition rules provided
in Figure 2.1(b). The soundness of the encoding writes down as follows:

∀l , l ′ ∈ � , ∀ρ, ρ′ ∈ � , (l , ρ)→ (l ′, ρ′) ⇐⇒ ρ′ ∈ Jδl ,l ′K(ρ)

Remark 3.2.2. Errors.

If a statement l0 : s; l1 : . . . causes an error, then the corresponding transition between l0
and l1 is described by the transfer function ¤ (blocking situation).
We may also choose to define explicitly the transitions from l1 to Ω with a transfer function
δl0,Ω; we choose not to define these transitions explicitly.

Composition and semantics along paths or sets of paths: A syntactic composition
operator ⊕ :

� × � → �
is defined for this language, such that:

∀δ0, δ1 ∈
�
, Jδ1 ⊕ δ0K = Jδ1K ◦ Jδ0K

Basically, this operator:
• substitutes in the expressions that appear in δ1 the l-values assigned in δ0 with the

assigned values;
• stacks the conditions from δ0 and δ1 (this corresponds to a kind of product);
• handles possible aliasing problems by inserting tests of the form is alias(l, l′) (where

l and l′ are l-values which maybe aliased) in order to carry out sound memory
updates.

The soundness of such an operator is described in details and proved in, e.g. [Col96].
We can note that ∀δ ∈ �

, ι ◦ δ = δ ◦ ι = δ, so ι indeed is an identity element for ◦.
Another important point is that symbolic simplifications may take place either when

computing the composition of a series of symbolic transfer functions or at any time (before,
after, or in the middle of the composition of functions), by applying any computable sim-
plification function simplify :

� → �
, such that ∀δ ∈ �

, Jsimplify(δ)K = JδK (and simplify(δ) is
simpler to analyze, to compose, or for other tasks). Among the simplifications one may
envisage, we can cite:
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assignment l0 : x := e; l1
δl0,l1 = bx← ec

conditional l0 : if(e) {l t
0 : st; l t

1 } else {l f
0 : sf ; l f

1 } l1
δl0,l t

0
= be ? ι | ¤ c

δl0,l f
0

= be ? ¤ | ι c
δl t

1 ,l1 = ι

δl f
1 ,l1

= ι

loop l0 : while(e) {l b
0 : st; l b

1 } l1
δl0,l b

0
= be ? ι | ¤ c

δl0,l1 = be ? ¤ | ι c
δl b

1 ,l0 = ι

input l0 : input(x ∈ V ); l1
δl0,l1 = bx← rnd(V )c

assertion l0 : assert(e); l1
δl0 l1 = be ? ι | ¤ c

Figure 3.5: Semantics defined with symbolic transfer functions

• the boolean simplifications due to assignments followed by condition testings;
• the removal of redundant is alias expressions (with might be simplified in true or

false thanks to a trivial alias analysis);
• various arithmetic simplifications, depending on data-types: for instance, x−x = 0,

x + x = 2x and x + (y + z) = (x + y) + z hold for modular integer arithmetic;
however the latter identity does not hold in floating point computations (indeed,
the “+” operator is not associative due to the overflows).

At this point, we can use symbolic transfer functions in order to define the denotational
semantics along a path:

Lemma 3.2.5. Semantics on a path.

We consider a program s and let E = JsK. Let p = l0 · l1 · . . . · ln be a path. Then,

αpF [p](E) = Jδln−1,ln ⊕ δln−2,ln−1 ⊕ . . .⊕ δl0,l1K

Proof.

The proof is done by induction on the length of the path:
• case of a path of length 0: αpF [l0](E) = JιK
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• case of a path of length 1: αpF [l0·l1](E) = Jδl0,l1K, by definition of δl0,l1 ;
• case of a path of length n + 1 (we assume the property holds for paths of length

lesser than n):
We let p = l0 · . . . · ln+1 be a path of length n + 1; we write p′ for l0 · . . . · ln, and
p′′ = ln · ln+1. The induction assumption states that αpF [p′](E) = δln−1,ln ⊕ . . .⊕ δl0,l1 .
Then:

αpF [p](E) = αpF [p′′](E) ◦ αpF [p′](E) by Lemma 3.2.2
= Jδln,ln+1K ◦ Jδln−1,ln ⊕ . . .⊕ δl0,l1K by induction hypothesis
= Jδln,ln+1 ⊕ δln−1,ln ⊕ . . .⊕ δl0,l1K syntactic composition

This concludes the proof. Â

We may also be interested in the denotational semantics defined for a collection of
paths, which would be defined as the join of the semantics over each paths. We propose a
result for finite sets of paths starting from a single point (sets of paths which do not start
from the same point are not relevant in practice):

Lemma 3.2.6. Semantics over finite sets of paths.

Let l0 ∈ � and P be a finite set of paths starting from l0, such that p ∈ P implies that
no prefix of p belongs to P (i.e., P can be see a set of paths in a tree, from the root to
the leaves; in particular, P does not contain a path to an inner-node of the tree). We
let αpF [P](E) be defined by:

αpF [P](E) : � → P( � )
ρ 7→ ⋃{αpF [p](E)(ρ) | p ∈ P}

Then, there exists a symbolic transfer function δ such that αpF [P](E) = JδK.

Proof.

The proof relies on the assumption made on the structure of P : it can be seen as a
tree with root l0; a path p ∈ P represents a branch inside the tree, starting at the roof,
ending at a leaf. Hence, the proof can be done by induction on the depth of the tree
underlying P and by case analysis over the statement at l0.

Note first that the case where the tree has depth 0 is straightforward: either P = ∅ and
δ = ¤ or P = {l0} and δ = ι.

We now consider the inductive case and handle separately each possible definition for
the label l0:
• case of an assignment l0 : x = e; l1:

Either P = {l0 · l1} or P is made of paths of the form l0 · l1 · . . .. In the former case,
δ = δl0,l1 ; in the latter case, the induction property ensures that there exists δ ′ ∈ �

,
such that Jδ′K is equal to αpF [P ′](E) where P ′ = {l1 · . . . ln | l0 · l1 · . . . · ln ∈ P}, so δ
is obtained by composition.
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• case of a condition l0 : if(e){l t
0 · · · }else{l f

0 · · · }:
We let Pt = {l t

0 · . . . · ln | l0 · l t
0 · . . . · ln ∈ P} and Pf = {l f

0 · . . . · ln | l f
0 · . . . · ln ∈ P}.

By induction, we know we can represent the semantics of Pt (resp. Pf ) with δt ∈
�

(resp. δf ). Therefore, we can represent {l0 · l t
0 · . . . · ln ∈ P} with δt⊕be ? ι | ¤ c =

be ? δt | ¤ c; similarly, we get be ? ¤ | δf c in the case of the false branch. In the
end, we get:

αpF [P](E) = be ? δt | δf c

• other cases can be handled similarly (with composition of transfer functions and
joins for conditions).

This concludes the proof. Â

Use in static analysis: Similar symbolic transfer functions were originally introduced
by [CL96] as a means to increase the precision of static analyses.

Let us assume that D]� defines a Galois-connection (Definition 2.3.1) (we let α
�

denote
the abstraction function). We write δ] for α

� ◦ JδK ◦ γ
�

(most precise abstract transfer
function corresponding to δ; an upper approximation of it is usually computed).

If ζ = Jδ0K ◦ . . . ◦ JδnK then ζ] v δ]
0 ◦ . . . ◦ δ]

n since λx · x v γ
� ◦ α

�
. In general,

ζ] @ δ]
0 ◦ . . . ◦ δ]

n: this strict inequality corresponds to a loss of precision.

For instance, relational abstract domains often handle more precisely complex op-
erations (assignments and guards of complex expressions) when done in one step as is
the case for the octagons [Min01] for some linear assignments like y := Σi ai ? xi where
ai ∈

�
. Symbolic transfer functions help in such cases, since they group atomic assign-

ments together and form larger expressions, which the domain may analyze better than
the sequence of simple assignments.

Use in program transformations: Symbolic transfer functions allow to express and
handle in a computer the denotational semantics along paths and along finite sets of paths
(introduced in Section 3.2.2 and Section 3.2.3); this is most useful in order to prove e.g.,
that a program transformation preserves some abstraction of the standard semantics, as
will be done for compilation, in Chapter 9.

3.3 Backward Semantics and Analysis

The previous section introduced denotational semantics as a function from inputs to
outputs. However, in some cases, one may be interested in the converse; therefore, we
define a backward semantics as well. Furthermore, we extend the abstract interpretation
of the denotational semantics.
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3.3.1 Backward semantics

Abstraction into backward functions: The backward abstraction is a function map-
ping any output state to the set of input states, which may lead to it:

Definition 3.3.1. Backward semantics.

The backward abstraction of sets of traces is defined by:

(P(Σ),⊆) −−−−→←−−−−
α←−

F

γ←−
F

( � → P( � ),⊆)

αF : P(Σ) → ( � → P( � ))
E 7→ λ(ρ0 ∈

�
).{ρn | 〈(l0, ρ0), . . . , (ln, ρn)〉 ∈ E}

(the concretization γ←−F can be derived from α←−F straightforwardly)

This semantics is equivalent to a backward predicate transformer [Dji75].
Obviously, this abstraction is equivalent to the (forward) denotational abstraction

introduced in Section 3.2.1, as remarked in [Cou97a]. Indeed, we can turn an “input-
to-output” mapping into an “output-to-input” mapping (and vice-versa) by applying the
following function, which is defined for any pair of sets (A,B):

Inv : (A→ P(B)) −→ (B → P(A))
f 7→ λ(b ∈ B) · {a ∈ A | f(a) = b}

In particular, for any set of traces E , the following properties hold:

αF (E) = Inv(α←−F (E)) α←−F (E) = Inv(αF (E))

Extension to backward semantics: In Section 3.2, we composed the abstraction to
functions with “path” or “from-to” abstractions, so as to choose the granularity of the
backward semantics. The same step should also be done in the case of the backward
semantics. In particular, we can define the backward semantics between two control
states. For each pair (l`, la) ∈

�
2:

α←−tF [l`,la]
(E) = αF ({〈(l0, ρ0), . . . , (ln, ρn)〉 ∈ E | l0 = l` ∧ ln = la})

3.3.2 Backward static analysis

The approximation of the co-reachable states from a set of final states proceed in a similar
way as the forward analysis described in Figure 3.3.

We write
←−−
JsK] : D]� → D]� for a backward semantics for statements. Such a function

should be sound in the usual way: it should compute an over-approximation of the set of
input states which may lead to some output state.

Such a backward interpreter is displayed in Figure 3.6 This interpreter is sound:
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statement s abstract semantics

x := e;
←−−
JsK] : d 7→ ←−−−assign(x, e, d)

if(e){s0}else{s1}
←−−
JsK] : d 7→ guard (e, true,

←−−
Js0K

](d)) t guard (e, false,
←−−
Js1K

](d))

while(e){s} JsK] : d 7→ lfp]

guard (e,false,d)F
] where

F ] : D]� → D]�

d0 7→ guard (e, true,
←−−
JsK](d0))

and lfp] computes an abstract post-fixpoint

input(x ∈ V );
←−−
JsK] : d 7→ forget(x, d)

assert(e);
←−−
JsK] : d 7→ guard (e, true, d)

Figure 3.6: Backward abstract interpreter

Theorem 3.3.1. Soundness of the backward abstract interpreter.

Let l` : s : la be a program, ρ`, ρa ∈ � , and d ∈ D]� . Then,

ρa ∈ γ
�
(d)

ρ′ ∈ α←−tF [l`,la]
(JsK)(ρa)

}
=⇒ ρ` ∈ γ

�
(
←−−
JsK](d))

A number of refinements to this simple analysis could be implemented. In particular,
we may use the forward analysis to refine the resulting invariants, by doing local iterations
[Gra92].

3.4 Projection Abstractions

In some cases, we may wish to forget only part of the information about the history of
the execution of programs, while keeping other relevant parts of the history of executions.
Therefore, we propose some families of “projection” abstractions, which allow to forget
about part of the execution of programs, by fixing some “granularity” for the observation
of states and projecting states in traces according to this observation.

Along this section, we consider a very simple program transformation as an example to
illustrate the various definitions: constant propagation [Kil73] with dead code elimination
[WM94]. We derive the semantics of the target program by applying some projections to
the semantics of the source program.

In this section, we focus on the following running example:
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l0 : int i = 4;
l1 : int j = 5;
l2 : int k, l;
l3 : if(i < j){
l4 : k = i + j;
l5 : } else {
l6 : k = k − j;
l7 : }
l8 : l = l + k;
l9 : . . .

(a) Source program Ps

l2 : int l;
l8 : l = l + 9;
l9 : . . .

(b) Transformed program Pr

Figure 3.7: Constant propagation

Definition 3.4.1. Constant propagation and dead code elimination.

Let us consider the program in Figure 3.7(a). Constant propagation reveals that i, j are
constant, and the condition i < j evaluates to true; hence, k is also constant. As a result
most statements (and variables) can be removed: the program in Figure 3.7(b) produces
the same result, as far as l is concerned.

3.4.1 Variable projection

The first kind of projection we consider proceeds by abstracting away some memory
locations. More precisely, if � denotes the set of memory locations, then, we let � ⊆ � be
a restricted set of memory locations, collecting the memory locations, which still appear
in the transformed program. We write � for � → � , and we also let Σ denote the set of
traces over � . We let the store projection operator Πstore� be defined by:

Πstore� : � → �
ρ 7→ λ(x ∈ � ) · ρ(x)

This function can be lifted into a projection of traces in a straightforward way. It allows
to define an observation of the semantics of programs, which takes into account only part
of the variables of the program.

In the case of constant propagation, a variable which is proved constant by the initial
analysis can be removed from the program; therefore, it should not be included in � .

Definition 3.4.2. Constant propagation and variable removal.

For instance, in the example in Figure 3.7, the variables i, j, k are proved constant and
propagated; hence, they should be removed: � = {l}.
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3.4.2 Control states projection

The second kind of projection we consider abstracts away some control states. More
precisely, if � denotes the set of control states, then, we let � ⊆ � denote the set of
restricted set of control states, which still appear in the transformed program. We let the
trace projection operator Πtrace

� be defined by:

Πtrace
� : Σ → Σ

〈(l0, ρ0), . . . , (ln, ρn)〉 7→ 〈(li0 , ρi0), . . . , (lik , ρik)〉
where

{
i0 < i1 < . . . < in
{ij | j ∈ L0, kM} = {i ∈ L0, nM | li ∈ � }

Intuitively, it erases any state corresponding to a control state not in � . In case we added
an error state Ω, it should also be preserved by Πtrace

� .

Definition 3.4.3. Control states removal.

In the case of constant propagation and dead code removal we should abstract away:
• control states corresponding to unreachable states (though, this projection does not

change the semantics, since it erases states which are not reachable): this is the case
of l6 and l7 in the example;
• control states corresponding to propagated, constant assignments, as is the case for

l4, l5 in the example (note that the conditional at l3 can be removed as well).

3.4.3 General case

In practice, both control states and memory location projections need to be used in the
same time. For instance, the example displayed in Figure 3.7 requires both the removal
of some control states and of some memory locations. Therefore, we use the following
notations:
• Πstore� and Πstate� were defined in Section 3.4.1;
• Πtrace�

, � carries out the control states projection mentioned in Section 3.4.2 and applies

Πstate� to the remaining states.
The projection abstraction of sets of traces is defined by:

Definition 3.4.1. Projection abstraction.

Let the functions αΠ〈
�

, � 〉 and γΠ〈
�

, � 〉 by defined by:

αΠ〈
�

, � 〉 : P(Σ) → P(Σ)

E 7→ {Πtrace�

, � (σ) | σ ∈ E}

γΠ〈
�

, � 〉 : P(Σ) → P(Σ)

E 7→ {σ ∈ Σ | Πtrace�

, � (σ) ∈ E}
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Then, there is a Galois connection (P(Σ),⊆) −−−−−−→←−−−−−−
αΠ〈 � , � 〉

γΠ〈 � , � 〉
(P(Σ),⊆).

Definition 3.4.4. Constant propagation and dead code elimination.

In the example given in Figure 3.7, the following restricted sets shall be used:
• � = {l} ( � = {i, j, k, l});
• � = {l2, l8, l9} ( � = {li | i ∈ L0, 9M}).

The correctness of the constant propagation and dead code removal transformation can
be described by the abstraction relation:

JPrK = αΠ〈
�

, � 〉(JPsK)

Intuitively, all traces of the transformed system are obtained from the traces of the original
system by removing all control states and memory locations, but those in � , � .

This relation is a particular case of the scheme introduced in Section 2.3.4. The
formalization of program transformations often requires this kind of abstraction, e.g. when
some parts of the source program are deleted. A similar approach shall be used in the
formalization of other program transformations, such as slicing and compilation.

3.4.4 Fixpoint-based definition

A fixpoint based definition is always very convenient in order to establish semantic prop-
erties of programs (e.g., static analysis); therefore, we attempt to give some fixpoint
definition for the projection of the semantics of a program P .

We consider the case of control state projection first (i.e., we assume that � = � ):

Lemma 3.4.1. Fixpoint definition.

Let P be a program, and � ⊆ � .
Then, αΠ〈 � 〉(JP K) is strongly closed.
Moreover, αΠ〈 � 〉(JP K) writes down as a least fixpoint: there exists F : P(Σ) → P(Σ),
such that:

αΠ〈 � 〉(JP K) = lfp∅F

Proof.

We write E for αΠ〈 � 〉(JP K).
We start with the proof of strong closeness. Let σ′0, σ

′
1 ∈ E such that σ′0 _ σ′1 is defined.

Therefore, we can write down σ′0 = 〈. . . , (l, ρ)〉 and σ′1 = 〈(l, ρ)〉 (the concatenation of σ′0
and σ′1 exists; hence, the last state in σ′0 is the same as the first state in σ′1). Moreover,
there exist σ0, σ1 ∈ JP K such that αΠ〈 � 〉(σ0) = σ′0 and αΠ〈 � 〉(σ1) = σ′1 and we can choose
σ0, σ1 such that the last state of σ0 is (l, ρ), and the same for the first state of σ1. As a
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consequence, σ0 _ σ1 exists. Last, we can prove easily that αΠ〈 � 〉(σ0 _ σ1) = σ′0 _ σ′1,
so σ′0 _ σ′1 ∈ E .
The converse implication is straightforward (i.e., E is closed: if σ ′0 _ σ′1 ∈ E , then
σ′0, σ

′
1 ∈ E).

Last, the fixpoint definition follows from Theorem 3.2.3. Â
In the case of store projection, such a result is not automatic. Indeed, the property

(σ′0, σ
′
1 ∈ E) =⇒ σ′0 _ σ′1 ∈ E does not hold, because the last state of σ0 and the first

state of σ1 (where σ0, σ1 are defined as above) may not be equal: in fact the assumption
only guarantees the equality of the abstractions of these states to � .

3.5 Hierarchies of abstractions

We presented several semantics in this chapter, and stated abstraction relations between
some of them. For instance, we described a common static analysis framework as an
abstraction of trace semantics in Section 3.1.

This approach can be used in a systematic way, for defining, comparing, and integrating
different semantics in hierarchies of abstractions. In particular, [Cou97a] relates various
abstraction of trace semantics in a hierarchy of abstractions. Other authors applied this
approach to other families of semantics: for instance, [GM03] extended the standard
traces into transfinite traces (i.e., sequences of elements indexed with ordinal numbers)
and derive other kinds of semantics as abstractions.

In the following, we use the common abstractions recalled in this chapter and define
new abstractions, so that we could relate them in hierarchies as well, even though we
do not present it this way. For instance, the formalization of the invariant translation
technique (Chapter 10) will require a common abstraction of the static analysis of Section
3.1 and of the semantic projection of Section 3.4 to be defined.
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Chapter 4

A Framework for Partitioning Traces

As mentioned in Section 3.1, generic abstract interpreters can be defined, which compute
an over-approximation of the reachable states, and which accept an abstract domain
for representing sets of stores as a parameter. This domain expresses various kinds of
constraints among variables. Most of the domains cited in Section 3.1.3 cannot express
any non trivial disjunction, which might be necessary for some property (such as the
absence of runtime errors) to be proved. Indeed, many commonly used abstract domains
like intervals, octagons, polyhedra only express convex constraints; therefore the abstract
join operation incurs a loss of precision as depicted in the Figure below, which may not
allow the property of interest to be proved successfully.

Furthermore, some disjunctions might be necessary, that do not involve only program
variables but more complex properties, such as (an abstraction of) the history of execution,
therefore it is desirable to provide abstractions, which allow to express disjunctions and
to take the properties of program executions into account. The purpose of this Part of
the thesis is to introduce families of abstractions of traces, which allow to express such
constraints. These abstractions perform a partitioning of the set of traces, based on the
observation of the history of executions.
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�������������
������������� �������������

�������������
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�������������

PSfrag replacements

octagon o1

octagon o2

imprecision in

the computation of o1 t o2

This chapter aims at introducing a general framework for control-based trace parti-
tioning [MR05]. Section 4.1 reviews common cases of partitioning and motivates the need
for further abstractions to be developed. Section 4.2 introduces and formalizes the core
trace partitioning framework. Section 4.3 focuses on the application of this framework to
static analysis, using static or dynamic partitions.
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4.1 Partitioned Systems

4.1.1 Partitioning control states

First of all, we underline that partitioning the reachable states with the control states is a
rather common approach in static analysis. Later, we generalize drastically this technique.

Non procedural case: Indeed, the analysis proposed in Section 3.1 relies on this kind
of partitioning. The abstraction of sets of traces can be seen as a two steps abstraction:

1. abstraction of traces into states, with partitioning:

(P(Σ),⊆) −−−−−→←−−−−−
α � ( � )

γ � ( � )

( � → P( � ),⊆)

α � ( � ) : P(Σ) → ( � → P(
�
))

E 7→ λ(l ∈ � ) · {ρ | 〈. . . , (l , ρ), . . .〉 ∈ E}

Whenever the concretization function is defined straightforwardly from the abstrac-
tion function, we provide the abstraction function only: in a complete lattice, any
monotone abstraction function defines a unique concretization [CC77].

2. abstraction of sets of states, defined by the concretization function γ
�

: D]� →
P( � ).

Note that the abstraction in step 1 collects the stores in the end of traces; this is equivalent
to collecting all stores in traces since we consider closed sets of traces (Section 3.2.4): if
σ is an execution of a program P , then any prefix of σ is also an execution of P .

The first step includes a partitioning in the sense of [CC92a, §4.2.3.2]. Indeed, it
amounts to partitioning the set of sets of states using the partition {{(l , ρ) | ρ ∈ � } | l ∈

� }; the resulting domain is in bijection with � → P( � ).

Procedural case: In case the language features procedures, similar abstractions are
usually implemented.

We consider the procedural extension introduced in Section 2.2.4. When designing
an analysis for such a procedural language, one faces the problem of deciding how to
replace the abstraction mentioned in step 1 above. Among the possible choices, we can
cite [SP81]:
• the full abstraction of the stack: we may abstract away the stack and keep only

the control states (analysis insensitive to the calling context):

α � ( � ) : P(Σ) → ( � → P( � ))
E 7→ λ(l ∈ � ) · {ρ | ∃κ ∈ � , ∃〈. . . , (κ, l , ρ), . . .〉 ∈ E}

• the partitioning with the stack: we may keep the stack, i.e. abstract traces into
functions mapping pairs made of a stack and a control state into a set of memory

Xavier Rival Traces Abstraction in Static Analysis and Program Transformation



4.1. PARTITIONED SYSTEMS 57

states (analysis completely sensitive to the calling context):

α � ( � ) : P(Σ) → (( � × � )→ P(
�
))

E 7→ λ((κ, l ) ∈ ( � × � )) · {ρ | 〈. . . , (l , ρ), . . .〉 ∈ E}

This approach amounts to inlining functions; it works only in the case of non-
recursive function calls (the stack may grow infinite in the case of recursive calls).
At the time this thesis is written, this is the technique implemented in Astrée.

Many intermediate abstractions exist, which allow to retain a good level of precision in
some cases and abstract long sequences of calls (the main such technique is k-limiting).

Another approach to the analysis of procedural programs is to modelize the effect of
each function (intra-procedural phase) and then, to perform a global iteration [RHS95].
This technique relies on the resolution of the reachability along“interprocedural realizable
paths”, which is also based on some abstraction of the stack (this method was also used
in slicing [HRB88]).

4.1.2 Partitioning memory states

Another interesting approach to partitioning consists in partitioning the set of memory
states. Let us consider the program on Figure 4.1(a), computing the absolute value of x.
We assume that the variables x, sgn have mathematical integer values (we do not consider
machine integers, modular arithmetics or possible overflows into account here). Then, this
program is safe in the sense that it never crashes whatever the initial value for x (in the
case of 32-bits machine integers, it would not work as expected for x = −232, which is the
reason for the above assumption). However, if we analyze it with the domain of intervals
(using the abstract interpreter introduced in Section 3.1), we would find:

• sgn = −1 at l2;
• sgn = 1 at l4;
• sgn ∈ [−1,−1] t [1, 1] at l5, i.e. sgn ∈ [−1, 1].

As a consequence, the analysis would report a possible division by 0 at point l5, since
0 ∈ [−1, 1]. We note that this stems from an imprecision due to the abstract join computed
at the exit of the conditional. Furthermore, the analyzer would not prove that y ≥ 0 at
l6, due to the lack of relation between sgn and the sign of x in the abstract environment.

A first possible refinement relies on disjunctive completion [CC79], i.e., the possible
values for a variable are abstracted into the union of a set of intervals. An important
drawback of disjunctive completion is its cost: when applied to a finite domain of cardinal
n, it produces a domain of 2n elements, with chains of length n + 1. Moreover, the design
of a widening for the domains obtained by disjunctive completion is a non-trivial issue;
in particular, a good widening operator should decide which elements of a partition to
merge or to widen.

A second solution to these issues is to refine the abstract domain, so as to express a
relation between x and sgn. For instance, we would get the following constraint, at point
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int x, sgn;
l0 if(x < 0){
l1 sgn = −1;
l2 }else{
l3 sgn = 1;
l4 }
l5 y = x/sgn;
l6 . . .

(a) Absolute value

int x, y;
l0 n = 0;
l1 y = 0;
l2 while(true){
l3 y = y + (−1)n ∗ 5;
l4 n = n + 1;
l5 }
l6 . . .

(b) Alternating iterations

int i;
float x, y;
x is assumed to be in a range [0, n]

l0 int i = 0;
l1 i = castfloat→intx;
l2 y = ty[i] + (x− castint→floati)∗

(ty[i + 1]− ty[i])
l3 . . .

(c) Interpolation

Figure 4.1: Examples
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l5: {
x < 0 ⇒ sgn = −1
x ≥ 0 ⇒ sgn = 1

Such an abstraction would be very costly if applied exhaustively, to any variable (especially
if the program to analyze contains thousands of variables, as is the case of the applications
mentioned in Section 5.1.1), therefore a strategy should be used in order to determine
which relations may be useful to improve the precision of the result. However, the choice
of the predicate which should guide the partitioning (i.e., x < 0 in the above example)
may not always be obvious.

4.1.3 Other partitioning criteria

The two previous subsections presented partitioning abstractions which are necessary in
order to produce relevant results (partitioning with control states) and precise results (par-
titioning with the values of some variables). However, these techniques are not completely
satisfactory.
• First of all, we noted in Section 4.1.2 that the design of partitioning numerical

abstract domains is not easy, due to the cost and the need for choosing accurately
what relation to use for the partitioning and to issues in the design of efficient
widening operators.
• Secondly, this kind of partitioning will not allow to express all the constraints we

might be interested in. For instance, in the program displayed in Figure 4.1(b), a
naive interval analysis will not bound the value of y. However, the values of y are
cyclic: at l3, after an odd number of iterations in the loop, y = 0 and, after an even
number of iterations, y = 5, so that y is bounded.
Consequently, one would succeed in proving the property of interest by performing
a partitioning of the memory states based on the parity of the variable i. Again,
this solution presents a major drawback: the analyzer would have to choose what
predicate to use in order to perform the right partitioning; in particular, it should
choose the variable i, possibly among thousands of other variables.
However, the above property is clearly based on a case analysis on an abstraction
of the history of the execution of the program (case analysis on the parity of the
number of iterations).
In this example, the goal for the partitioning is to prove the safety of the program;
however, it may be to express some properties of programs. For instance, we may
want to prove that some property holds for certain iteration numbers or to show that
if some property holds at iteration n, then some other property holds at iteration
n − 1 or n + 1. All these cases involve similar disjunctions based on the history of
the control flow: most of the time, the disjunctions of interest can be read in the
control flow.
• In the program in Figure 4.1(a), the disjunction which is needed in order to prove

the safety of the program also amounts to a case analysis on the history of the
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PSfrag replacements
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Figure 4.2: Analysis of an interpolation and imprecision

execution. Indeed, at point l5:
– if the execution flowed through the true branch, then sgn = −1;
– if the execution flowed through the false branch, then sgn = 1.

• Other kinds of disjunctions, which do not naturally follow from tests can be ex-
pressed easily in this framework.
For instance, let us consider the case of the interpolation function in Figure 4.1(c),
which aims at approximating a function f :

� → �
(for instance, f = sin, cos . . .),

using a discretization, and an approximation with floating point numbers and linear
interpolations. Basically, the array ty represents the value of f for integer values:
ty[i] approximates the value of f(i).
When analyzing this program with, e.g. the domain of intervals, a range is computed
for i at l1, and then, the assignment at l2 is performed: since the memory locations
corresponding to the array lookups depend on i, the analyzer should consider any
value in the range known for i at l2 and compute the join of all the results. Not only
this join would incur a loss of precision, but also, the application of the formula on
the right hand side for a value of x and a value of i such that i 6= |x| may lead to
very imprecise results We can see this imprecision in Figure 4.2, where x is not in
the range [i, i + 1] and the abstract computation generates a very imprecise result
y], compared to the concrete result f(x):
This issue can be solved either by a partitioning by the value of i inside the domain
D]� or by a partitioning of the traces by the value of i at point l1. The advantage
of the latter approach is that the partitions do not need to be recomputed if i is
assigned again at some point. Indeed, the partitioning is guided by the value of i as
a result of the statement at l1, and not by the value of i at any time.

Last, a crucial point is that the partitions should not be global: making them local should
help in reducing the cost of partitioning to a minimum.
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4.2 Control Partitioning of Transition Systems

4.2.1 Partitions and coverings

We first set up the notions of partitioned set and partitioned system.

Partitioning function: A covering of a set F is a family of subsets of F , such that any
element of F belongs to some element of the family. A partition is a covering such that
any two distinct elements of the family are disjoint; in particular, for any element x ∈ F ,
there exists a unique element A of the partition such x ∈ A. In the following, we need to
index the elements of coverings (resp. partitions); hence, the following definition resorts
to functions, defined on a set of indexes.

Definition 4.2.1. Partitioned set.

Let E,F be two sets, and δ : E → P(F ). Then:
• δ is a covering of F if and only if:

∀x ∈ E, δ(x) 6= ∅

and,

F =
⋃

x∈E

δ(x)

• δ is a partition of F if and only if it is a covering and:

∀x, y ∈ E, x 6= y =⇒ δ(x) ∩ δ(y) = ∅

We note that a covering (resp. partitioning) δ of F defines an abstraction of (P(F ),⊆):

Lemma 4.2.1. Partitioning abstraction.

Let αP(δ) and γP(δ) be defined by:

αP(δ) : P(F ) → (E → P(F ))
E 7→ λ(x ∈ E) · E ∩ δ(x)

γP(δ) : (E → P(F )) → P(F )
φ 7→ ⋃

x∈E φ(x)

Then, if δ is a covering, we have a Galois-connection (P(F ),⊆) −−−−−→←−−−−−
αP(δ)

γP(δ)

(E → P(F ),⊆
), and αP(δ) is into (Galois injection).
Moreover, if δ is a partition, then αP(δ) is one-to-one (Galois bijection).
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Proof.

Straightforward application of the definition of coverings. Â
Definition 4.2.1 would allow to set up very general notions of trace partitioning. In

particular, the partitioning of traces using the control state of the traces (Section 4.1.1)
of the last state fits in this framework (with E = � ); the case of calling stacks is similar
(with either E ≡ � , or E = � × � , or other partitions). We may even design some
weaker partitions: for instance, we may decide to merge together the state corresponding
to several distinct control states (with E a partition of � ). However, we wish to derive
the partitions from the history of executions; therefore the following paragraph introduces
the notion of partitioned system.

Partitioning transitions: In the following, we assume that a program P is given, and
defined by ( � ,

�
i,→). We consider partitions finer than the partition defined by E = �

only. More precisely, we let � be a set of tokens, and T = P( � ).
We define extended transition systems as transition systems over the sets of labels

extended with a set of tokens T ⊆ � ; it is basically defined by T and by extensions of
the set of initial states and of the transition relation. Such a system P0 is a covering of
P1 if and only if it simulates the transitions of P1; moreover, P0 is a partition if and only
if any transition in P1 is simulated by exactly one transition in P0 (and the same for the
initial states). System P0 is complete in case it does not add any fictitious transition,
when compared to P1. Intuitively, a complete partition or covering P0 shall describe the
same set of traces as P1, up-to some information added in the control states. The main
difference between a covering and a partition is that the covering may not ensure the
unicity of the counterpart of the traces of the initial program.

The extra information embedded in the control structure of the extended system will
be the basis of the partitioning abstraction. The notions of covering, partitioning and
complete systems are formalized in the following definition.

Definition 4.2.2. Partitioned system.

Let T ∈ T. We write � T for the set of partitioned control states � ×T ,
�

T for the set of
partitioned states � T × � , and

�
i
T ⊆

�
T for a set of partitioned initial states, and →T

for a transition relation among partitioned states. An extended system is defined by the
data of a tuple (T,

�
i
T ,→T ). Last, ΣT denotes the set of traces made of states in

�
T .

For all T, T ′ ∈ T and τ : T → T ′, we define the forget functions for control states, for
states and for traces as follows:

π �
τ : � T → � T ′

(l , t) 7→ (l , τ(t))
π

�
τ :

�
T → �

T ′

((l , t), ρ) 7→ (π �
τ (l , t), ρ)

πΣ
τ : ΣT → ΣT ′

〈s0, . . . , sn〉 7→ 〈π �
τ (s0), . . . , π

�
τ (sn)〉
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(l0, t)

(l1, t) (l2, t)

(l3, t)

(l4, t)

(a) System P0

(l0, t0)

(l1, t1) (l2, t2)

(l3, t1) (l3, t2)

(l4, t0)

(b) System P1

(l0, t0)

(l1, t1) (l2, t2)

(l3, t1) (l3, t2)

(l4, t1) (l4, t2)

(c) System P2

Figure 4.3: Partitioned systems

We consider the extended systems PT = ( � T , � i
T ,→T ) and PT ′ = ( � T ′, � i

T ′,→T ′), and
the function τ : T → T ′.

1. PT is a τ -covering of PT ′ if and only if:
• �

i
T ′ ⊆ π

�
τ (

�
i
T )

• ∀s0 ∈
�

T , s ′1 ∈
�

T ′, π
�
τ (s0)→T ′ s ′1 =⇒ ∃s1 ∈

�
T ,

{
s ′1 = π

�
τ (s1)

s0 →T s1
2. PT is a τ -partition of PT ′ if and only if:

• ∀s ′ ∈ �
i
T ′, ∃!s ∈

�
i
T , s ′ = π

�
τ (s)

• ∀s0 ∈
�

T , s ′1 ∈
�

T ′, π
�
τ (s0)→T ′ s ′1 =⇒ ∃!s1 ∈

�
T ,

{
s ′1 = π

�
τ (s1)

s0 →T s1
3. PT is τ -complete with respect to PT ′ if and only if:

• ∀s ∈ �
i
T , π

�
τ (s) ∈ �

i
T ′

• ∀s0, s1 ∈
�

T , s0 →T s1 =⇒ π
�
τ (s0)→T ′ π

�
τ (s1)

The notions of “complete covering” or “complete partition” are derived from the above
definition as well.

Definition 4.2.1. Partitioned systems.

We make the assumption that � is a singleton here, so that transitions relations are mere
relations among control states. Let us consider the two extended systems P0 and P1,
displayed respectively in Figure 4.3(a) and in Figure 4.3(b).

• the original system represents a program with a conditional statement followed by
one statement (each branch of the conditional contains exactly one statement);
• P0 is isomorphic to the original system; it corresponds to T0 = {t}
• P1 is an extended system defined by T1 = {t0, t1, t2}.

We consider the following forget function τ : λ(ti ∈ T1) · t .
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Then, any execution of P0 corresponds to exactly one execution of P1: for instance,
〈(l0, t), (l1, t), (l3, t), (l4, t)〉 corresponds to 〈(l0, t0), (l1, t1), (l2, t1), (l4, t0)〉. In particular,
any transition step in P0 is mimicked by a transition step in P1 as mentioned in Definition
4.2.2, 2. Therefore, P1 is a τ -partition of P0.
Similarly, we can check that any execution, including one-step transitions of P1 corre-
sponds to some execution of P1. Hence, P1 is τ -complete with respect to P0.
These two properties make P1 a very useful extended system, in the analysis of P0.
Intuitively, the extended system P1 corresponds to a partition of P0 obtained by delay-
ing the merge in the exit of the conditional statement after the statement following the
conditional, i.e. at point l4; this amounts to doing the following rewriting:

l0 : if(e){
l1 : s1

}else{
l2 : s2

}
l3 : s3

l4 : . . .

−→

(l0, t0) : if(e){
(l1, t1) : s1;
(l3, t1) : s3

}else{
(l2, t2) : s2;
(l3, t2) : s3

}
(l4, t0) : . . .

In particular, applying this partitioning to the example presented in Figure 4.1(a) would
solve the imprecision. Indeed, it would allow proving that sgn cannot be equal to 0 at l5,
so that the division by sgn is safe; moreover, it allows proving that the absolute value of
x computed in y is always positive.
The System P2 displayed in Figure 4.3(c) is also a complete partition of P0. It amounts do
performing a similar partitioning of the conditional structure without merging the traces
at point l4. Such a partitioning would be more costly if applied to many if-statements in
a large program.
In fact, we can also note that P2 is a complete partition of P1.

Remark 4.2.1. Extending the notion of covering.

We may extend the definition of covering, by replacing the τ function with a relation
(⇒τ ) ⊆ T × T ′. Then, the function π �

τ becomes a relation (⇒ �
τ ) ⊆ � T × � T ′.

Intuitively, t ⇒ �
τ t ′ means that the token t is “simulated” by t ′ in PT ′. Clearly, this

definition is weaker, since a token t may be simulated by several tokens in PT ′.
The results in the following would extend to this weaker definition of covering system.

At this point, we do not require the set of partitions to be finite. This assumption is
not required in order to prove the partitioning correct. However, we shall assume that

� T (hence, T ) is finite whenever partitions must be computer representable; in particular,
when defining the partitions used in the static analysis, T will always be supposed finite.
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Trivial extension: We let tε ∈ � and write Tε = {tε}. The trivial extension of P is the
extended system Pε = ( � ε,

�
i
ε,→ε), where:

• � ε = � × Tε;
• �

i
ε = {((l , tε), ρ) | (l , ρ) ∈ �

i};
• ((l0, tε), ρ)→ε ((l1, tε), ρ) ⇐⇒ (l0, ρ)→ (l1, ρ).

This extended system is isomorphic to P (the traces of both programs are equal up to
isomorphism); it is the “simplest” extension of P . We write πΣ

ε for the trivial mapping of
traces of Pε into traces of P .

4.2.2 Soundness of control partitioning

The ultimate goal of this chapter is to define an abstraction as the data of a partition
(or covering) and an abstraction of the semantics of the corresponding extended system.
Therefore, in the two following subsections, we set up an ordering, so as to compare the
semantics of partitioned systems and build an ordering among partitioned systems.

The semantics of extended systems is defined in the usual way, as in Section 2.2.2.
Furthermore, we propose to partition the semantics with the partitioned control states
including the token (i.e., we choose E = � T = � × T ), of the last state in the traces,
which amounts to applying the same abstraction as α � ( � ) (Section 4.1.1) in the case of
the extended system:

Definition 4.2.3. Partitioned semantics.

If PT is the extended system (T,
�

i
T ,→T ), we let JPT K

p be the partitioned semantics
defined by:

JPT K
p = αP(δ � T

)(JPT K)

where δ � T
is defined by:

δ � T
: P(Σ) → ( � T → P(Σ))
E 7→ λ((l , t) ∈ � T ) · {σ ∈ E | ∃ρ ∈ � , σ = 〈. . . , ((l , t), ρ)〉}

The properties of covering (resp. partitioning, complete) systems extend to their
semantics, as pointed out in the following lemma (the definitions for covering, partitioning
and complete extended systems were designed so as to achieve these properties): for
instance, a complete partition PT of PT ′ provides a unique counterpart σ for any trace
σ′ of PT ′ . In the following, we consider the programs PT = (T,

�
i
T ,→T ) and PT ′ =

(T ′,
�

i
T ′,→T ′), and τ : T → T ′.

Lemma 4.2.2. Semantic adequation – traces.

Then:
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• If PT is a τ -covering of PT ′, then:

∀l ′ ∈ � T ′, ∀σ′ ∈ JPT ′K
p(l ′), ∃l ∈ � T ,

{
l ′ = π �

τ (l )
∃σ ∈ JPT K

p(l ), σ′ = πΣ
τ (σ)

• If PT is a τ -partition of PT ′, then:

∀l ′ ∈ � T ′, ∀σ′ ∈ JPT ′K
p(l ′), ∃!(l , σ) ∈ � T × ΣT ,





l ′ = π �
τ (l )

σ ∈ JPT K
p(l ),

σ′ = πΣ
τ (σ)

• If PT is τ -complete with respect to PT ′, then:

∀l ∈ � T , ∀σ ∈ JPT K
p(l ), πΣ

τ (σ) ∈ JPT ′K
p(π �

τ (l ))

Proof.

The proofs for these properties are similar, so we consider the last one only.
Therefore, we assume that PT is τ -complete with respect to PT ′ , and that l ∈ � T , σ ∈
JPT K

p(l ), and we attempt to prove that πΣ
τ (σ) ∈ JPT ′K

p(π �
τ (l )).

We write σ = 〈s0, . . . , sn〉 and ∀i, s ′i = π
�
τ (si) (so that σ′ = 〈s ′0, . . . , s ′n〉 = πΣ

τ (σ)).
• First, we prove by induction on the length of σ that σ ′ ∈ JPT ′K:

– s0 ∈
�

i
T ; since PT is τ -complete with respect to PT ′ , s ′0 = π

�
τ (s0) ∈

�
i
T ′;

– Let i ∈ �
, 0 ≤ i < n. Since σ ∈ JPT K, si →T si+1; hence, s ′i →T ′ s ′i+1, because

PT is τ -complete with respect to PT ′ .
• Second, we prove that πΣ

τ (σ) ∈ JPT ′K
p(π �

τ (l )): since σ ∈ JPT K
p(l ), σ ∈ JPT K; hence,

πΣ
τ (σ) ∈ JPT ′K (as proved in the first point). Moreover, σ′ ends at point π �

τ (l ), since
s ′n = π

�
τ (sn). Hence, πΣ

τ (σ) = σ′ ∈ JPT ′K
p(π �

τ (l ))
The cases of partitioning and covering systems are similar. Â

Let Γτ be the function defined as:

Γτ : ( � T → P(ΣT )) → ( � T ′ → P(ΣT ′))
Φ 7→ λ(l ′ ∈ � T ′) ·

⋃{πΣ
τ (Φ(l )) | l ∈ � T , τ(l ) = l ′}

Here are a few trivial properties of the Γτ functions:

Lemma 4.2.3. Properties of Γτ .

For all τ , Γτ is monotone.
If τ0 : T0 → T1, τ1 : T1 → T2, then Γτ1◦τ0 = Γτ1 ◦ Γτ0.

The following theorem comes as a straightforward consequence of Lemma 4.2.2; it is
an important step in proving the soundness of the partitioning abstractions.

Theorem 4.2.4. Semantic adequation.

With the above notations:
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• If PT is a τ -partition or a τ -covering of PT ′, then JPT ′K
p ⊆ Γτ (JPT K

p) (soundness).
• If PT is τ -complete with respect to PT ′, then Γτ (JPT K

p) ⊆ JPT ′K
p (completeness).

• Hence, if PT is a τ -complete partition of PT ′, or a τ -complete covering of PT ′, then
JPT ′K

p = Γτ (JPT K
p) (adequation).

• If PT is a partitioning system of PT ′, then:

∀l , l ′ ∈ � T , l 6= l ′ =⇒ Γτ (JPT K
p)(l ) ∩ Γτ (JPT K

p)(l ) = ∅

4.2.3 Pre-ordering properties of partitions

In the following, we use an ordering among partitions. Therefore, we study the pre-
ordering properties of the following relations, among extended transition systems:
• “is a covering of” (for some forget function τ);
• “is a partition of” (for some forget function τ);
• “is complete with respect to” (for some forget function τ).
Then, we can prove that, any such ordering 2 is transitive:

Lemma 4.2.5. Transitivity.

Let us consider PT = (T,
�

i
T ,→T ), PT ′ = (T ′,

�
i
T ′,→T ′), and PT ′′ = (T ′′,

�
i
T ′′,→T ′′).

Furthermore, we consider the forget functions τ : T → T ′, and τ ′ : T ′ → T ′′. Then:
• if PT is a τ -covering (resp. τ -partition) of PT ′ and PT ′ is a τ ′-covering (resp. τ -

partition) of PT ′′, then PT is a (τ ′ ◦ τ)-covering (resp. (τ ′ ◦ τ)-partition) of PT ′′.
• if PT is τ -complete with respect to PT ′ and PT ′ is τ ′-complete with respect to PT ′′,

then PT is (τ ′ ◦ τ)-complete with respect to PT ′′.

Proof.

We can first remark that π �
τ ′◦τ = π �

τ ′ ◦ π �
τ (and similarly for the other forget functions).

Let us prove the second point (transitivity of completeness).
• Let s ∈ �

i
T . Then, π

�
τ (s) ∈ �

i
T ′, since PT is τ -complete with respect to PT ′ . Moreover,

π
�
τ ′◦τ (s) = π

�
τ ′ ◦ π

�
τ (s) ∈ � i

T ′′, since PT ′ is τ ′-complete with respect to PT ′′ .
• Let s0, s1 ∈

�
T , such that s0 →T s1. Again, we apply successively the two assumptions

of completeness and derive π
�
τ (s0) →T ′ π

�
τ (s1) (since PT is τ -complete with respect

to PT ′ and then π
�
τ ′◦τ (s0)→T ′′ π

�
τ ′◦τ (s1), since PT ′ is τ ′-complete with respect to PT ′′ .

The proof of the first point is similar. Â
Moreover, the relations mentioned above are clearly reflexive

Lemma 4.2.6. Reflexivity.

Let PT = (T,
�

i
T ,→T ) and τ : T → T ; t 7→ t . Then, clearly PT is a τ -covering (resp.

partition) of PT and PT is τ -complete with respect to itself.

Such an ordering should allow to compare the precision of partitions (yet, note that
the more precise partition is the greater element, instead of the smaller, as is usually the
case in static analysis) and to define valid computational orderings [CC92b], which we will
illustrate in the next section.
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4.3 Trace Partitioning Abstract Domains

The last section described the partitioning of transition systems. We now build on top of
this material a partitioning domain of traces, with partitions based on the control flow, and
define further partitioning abstractions, by composing stores and numerical abstractions.

4.3.1 The trace partitioning domain

Definition of the basis: In this section, we assume that a transition system P =
( � ,

�
i,→) is given, and we consider the complete coverings of P ; we write B for the set

of the extended systems which satisfy these properties.
First, we let 2 be the order among extended systems defined by:

PT0 2 PT1 ⇐⇒ ∃τ : T1 → T0, PT1 is a τ -covering

As remarked in Section 4.2.3, we may choose other definitions for 2, such as:

PT1 2 PT1 ⇐⇒ ∃τ : T1 → T0,

{
PT1 is a τ -partition of PT0

PT1 is τ -complete with respect to PT0

In case the property on the right side is satisfied, we also write PT0 2τ PT1 for τ , so as to
make τ explicit.

The trivial extension of P is clearly the least element of B for 2.
Note that other choices for B and 2 could have been made and would have allowed

to prove the same results in the following.

Definition 4.3.1. The ordering over the basis.

We showed in Example 4.2.1 that the systems P0, P1 and P2 are such that:

P0 2 P1 2 P2

The domain: At this point we can define the trace partitioning domain. An element
of this domain should denote:
• a covering PT of the original transition system;
• and a semantic denotation for each control state l of the covering PT :

– in the basic domain, this denotation shall be a set of traces ending at point l );
– in the abstract domain, this denotation shall be an invariant in D]� .

More formally:

Definition 4.3.1. Trace partitioning domain.

An element of the trace partitioning domain is a tuple (T, PT , Φ), where:
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• T ∈ T;
• PT denotes a complete covering (T,

�
i
T ,→T ) of P ;

• Φ is a function Φ : � T → P(ΣT ).
We write � for the set of such tuples.
Let (T0, PT0 , Φ0), (T1, PT1 , Φ1) ∈ � . Then, we write (T0, PT0 , Φ0) 0τ (T1, PT1 , Φ1) –or, for
short (T0, PT0 , Φ0) 0 (T1, PT1 , Φ1)– if and only if:
• PT0 2τ PT1 for τ ;
• Φ0 ⊆ Γτ (Φ1).

It follows from the results presented in Section 4.2.3 that 0 defines a pre-ordering on
� .

The concretization function: The concretization of an element (T, PT , Φ) of � is a
set of traces of the initial system, which is computed by:

1. merging all the partitions together, by projecting Φ onto the trivial extension Pε of
P (i.e., applying function Γτε) and then collapsing the partitions with γP( � T );

2. applying the isomorphism πΣ
ε between traces of Pε and P .

It is defined formally in the following definition:

Definition 4.3.2. Concretization function.

We let γ � be the concretization function defined by

γ � = πΣ
ε ◦ γP( � T ) ◦ Γτε

Or equivalently, by:

γ � : � → Σ
(T, PT , Φ) 7→ {πΣ

ε (σ) | ∃l ∈ � T , σ ∈ Φ(l )}

Clearly, this function is monotone.

Soundness of the partitioned systems: A last, trivial yet very important remark is
that the partitioning of the initial system is sound:

Theorem 4.3.1. Soundness of control partitioning.

Let (T0, PT0), (T1, PT1) ∈ T × B, such that PT0 2τ PT1. Then, (T0, PT0 , JPT0K
p) 0τ

(T1, PT1 , JPT1K
p).

In particular, in case (T0, PT0) = (Tε, Pε), then we get the soundness with respect to the
original transition system: JP K ⊆ γ � (T1, PT1 , JPT1K

p).

Proof.

The first point follows from Theorem 4.2.4; the second is a corrolary of the first point. Â
This domain structure can be related to the cofibered domain structure defined in

[Ven96]. More precisely, the element of the basis fixes a partition of the original system,
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PSfrag replacements

Structure

Hierarchy of domains

(tε, Pε)

(T0, PT0)

(T1, PT1)
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τ1⇀ε

Γτ1⇀ε

τ1⇀0

Γτ1⇀0

τ0⇀ε

Γτ0⇀ε

least element

Figure 4.4: Structure of the partitioning domain

and the last argument of the tuple corresponding to an element of the domain � provides
a semantic denotation defined in a domain relative to the basis element. Figure 4.4 gives
an overall intuition about the structure of the partitioning domain � .

The presentation in [Ven96] relies on categories; we use orderings instead, but the
principle is similar: the structure of the basis provides the frame for a hierarchy of domains.
The comparison of elements across different domains can be done thanks to the projection
functions Γτ provided by the ordering on the basis.

Gain in precision: Let (T, PT , Φ) ∈ � be an element of the domain. This element
describes the same set of traces as the initial program P . However, it allows for a more
precise description of sets of traces ending at each control state than the usual abstractions
(i.e., the α � ( � ) abstraction defined in Section 4.1.1), if there exists a control state l ∈ � ,
σ, σ′ ∈ JP K, such that σ and σ′ both end at l but are not in the same partitions, when
mapped into the extended system PT . This gain in precision really pays off, when a
further abstraction (such as the abstraction defined by γ

�
) is composed, as done in the

next subsection.

Comparison with other approaches to partitioned systems: Our approach con-
siderably generalizes the trace partitioning technique of [HT98], since we leave the choice
of partitions as a parameter: various partitioning strategies can be implemented (for in-
stance, we allow the merge of partitions).

The path sensitive techniques [HR80] proposed in data flow analysis context do not
allow for abstractions of sets of paths to be considered. In our settings, a token stands for
an approximation for a set of paths, which renders the design of analyses more flexible.

Other authors proposed to perform a partitioning of memory states or to convert part
of the data into control structures, as can be done for booleans [JHR99]. However, this
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solution presents several drawbacks in our opinion. In particular, the relations partitions
are based on may not be found straightforwardly in the memory states; in the other hand,
a partitioning guided by the conditions is rather intuitive. Another drawback comes from
the fact that the method exposed in [JHR99] is based on a refinement process, which
would not be so effective in the case of the Astrée analyzer. By contrast this approach
seem to be more effective for the analysis of synchronous programs.

The following subsections express fundamental properties of � :
• composition of further abstractions (such as the abstraction of sets of stores into

collections of predicates), in Section 4.3.2;
• application to static analysis and definition of widening operators on such domains,

in Section 4.3.3;
• implementation of efficient analyzers in Section 4.3.4.

4.3.2 Composing store abstraction

We derive from Definition 4.3.1 the definition of a new partitioning abstraction, by ab-
stracting sets of stores into collections of constraints in the same way as in Section 3.1.1.
Therefore, we assume that an abstraction (D]� ,v) is defined for representing sets of stores
is defined, together with a concretization function γ

�
: D]� → P( � ), which defines the

meaning of a set of abstract constraint as the set of stores which satisfy them.
The partitioning abstract domain is derived from � by replacing functions mapping

extended labels into sets of traces with functions mapping extended labels into elements
of D]� :

Definition 4.3.3. Partitioning abstract domain.

An element of the partitioning abstract domain is a tuple (T, PT , Φ]), where:
• T ∈ T;
• PT is a complete covering of P (T,

�
i
T ,→T );

• Φ] is a function Φ] : � T → D]� .
We write � ] for the set of such tuples.

Remark 4.3.1. Representation of abstract values.

An abstract value is a value in � T → D]� = ( � × T ) → D]� . By curryfication; it is
isomorphic to a value in � → (T → D]� ). This latter representation turns out to be very
natural in practice: each control state corresponds to an abstract value in the partitioning
domain D]� ,

� = T → D]� , mapping partitioning tokens into sets of stores; hence, it allows
to describe precisely the partitions associated to each program point.

The ordering is also inherited from Definition 4.3.1. Indeed, we let:

Γ]
τ : ( � T → D]� ) → ( � T ′ → D]� )

Φ] 7→ λ(l ′ ∈ � T ′) ·
⊔{Φ(l ) | l ∈ � T , τ(l ) = l ′}
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If the join operator t of D]� is not associative, commutative, the definition of Γ]
τ would

not be unique, which would cause various technical complications; therefore, we assume
that t is associative and commutative in our presentation. Then:

Definition 4.3.4. Ordering.

Let (T0, PT0 , Φ
]
0), (T1, PT1 , Φ

]
1) ∈ � , and a function τ : T1 → T0. Then, we write

(T0, PT0 , Φ
]
0) 0

]
τ (T1, PT1 , Φ

]
1) (or, for short (T0, PT0 , Φ

]
0) 0

] (T1, PT1 , Φ
]
1)) if and only

if:
• PT0 2τ PT1 for τ ;
• Φ]

0 v Γ]
τ (Φ

]
1).

It follows from the results presented in Section 4.2.3 that 0 defines a pre-ordering on
� .

The concretization of an element of � ] into an element of � applies the concretization
function γ

�
pointwise, i.e. by applying it to Φ].

Definition 4.3.5. Concretization.

γ]� : � ] → �
(T, PT , Φ]) 7→ (T, PT , λ(l ∈ � T ) · γ � ◦ Φ](l ))

We remark, that (T, PT , Φ]) may provide a better approximation of JP K than an ele-
ment in D] = � → D]� whenever the extended systems distinguishes traces of P , i.e., if
there exists a control state l , and σ, σ′ ∈ JP K such that σ and σ′ both end at l and are in
different partitions, when mapped into traces of PT .

In the other hand, any approximation for JP K in D] can be translated in an equivalent
abstraction in (T, PT , Φ]), for any choice of (T, PT ). As a consequence, we expect the
partitioning domain to provide results at least as good as the non partitioning domain,
and strictly better results when the (T, PT ) allows to distinguish real traces of P .

At this point, we can state a few remarks, which should give a better understanding
of the structure of the partitioning domain.

Remark 4.3.2. Computational ordering and precision ordering.

The ordering introduced in Definition 4.3.4 is essentially a computational ordering [CC92b].
Indeed, an analysis starts with a coarse partition, defined by the program control structure
and then may perform some refinements of the system. When a refinement is performed,
the basis element is replaced with a greater element, and so is the current abstract invari-
ant. Therefore, the abstract computation should produce monotone sequences of elements
for the ordering of Definition 4.3.4.
Next subsection proposes the definition of an extrapolation operator based on the same
computational order.
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Remark 4.3.3. Direction of the ordering on the basis.

We pointed out in that the ordering among elements of the basis is an inverse for the pre-
cision ordering the end of section 4.2.3: the greater for 2, the more precise the partition.
Therefore, one may suggest using the opposite ordering. However, this approach has
several drawbacks:
• It would not capture the precision ordering better than the current ordering. In-

deed, we may have (T0, PT0 , Φ
]
0) 0

] (T1, PT1 , Φ
]
1) even though PT0 and PT1 are not

comparable for 2; opposing the ordering on the basis would not help here.
• It would be possible to write the analysis so that it starts with a completely parti-

tioned system (which may not be easy to define, depending on the instantiation of
the partitioning framework) and use the opposite ordering as a computational order-
ing also (the analysis should merge partitions so as to ensure termination): however,
we found this idea less intuitive; in particular, it is easier to reason about creating
partitions instead of not deleting partitions.

4.3.3 Static analysis with partitioning and a widening operator

The domain introduced in Section 4.3.2 allows to carry out a static analysis of P , with a
partitioning domain. However, several approaches to such analyses are feasible:
• static partitioning relies on the choice of a fixed partition;
• dynamic partitioning allows for the partition to be changed during the static

analysis.
The latter approach is more powerful but may also result in a more involved implemen-
tation. In particular, in case infinitely many partitions might be chosen and different
partitions can be used for successive iterations in an abstract fixpoint computation, the
termination of the analysis shall be enforced by the use of a widening operator. For in-
stance, it may start analyzing a loop by unrolling the first iterates and decide to give up
the unrolling at some point, so as to guarantee termination of the analysis.

The definition of a widening operator on � ] is necessary when infinite or very large
sets of partitions shall be used, and when (quick) termination is required, e.g. for static
analysis. This issue would not occur in case the set of partitions was chosen once for all.

We propose to define a widening operator for � ] by:
• choosing a widening ∇ �

over D]� ;
• choosing a widening ∇B over the basis;
• defining a pairwise widening over � ].

Formally, the widening operator for the partitioning domain is defined by:

Definition 4.3.6. Widening for the partitioning domain.

If (T0, PT0 , Φ
]
0), (T1, PT1 , Φ

]
1) ∈ � , then, we let:

(T0, PT0 , Φ
]
0)∇p(T1, PT1 , Φ

]
1) = (T2, PT2 , Φ

]
2)
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where:
• PT2 = PT0∇BPT1, so that PT0 2τ0 PT2 and PT1 2τ1 PT2;
• Φ]

2 = (Φ]
0 ◦ τ0)∇ �

(Φ]
1 ◦ τ1) (pointwise application of ∇ �

to elements of � T2 → D]� ).

Indeed, this approach leads to a widening over the partitioning abstract domain, as
shown in the following theorem:

Theorem 4.3.2. Widening for partitioning domains.

The operator ∇p is a widening operator on � , in the sense of Definition 2.3.2.

Proof.

Proving point 1 in Definition 2.3.2 is straightforward, so we consider point 2.
Let (Tn, PTn , Φ]

n)n∈ � be a sequence elements of � , and (T ′n, PT ′n
, Φ′]n)n∈ � be defined as:

(T ′0, PT ′0
, Φ′]0 ) = (T0, PT0 , Φ

]
0)

(T ′n+1, PT ′n+1
, Φ′]n+1) = (T ′n, PT ′n

, Φ′]n)∇p(Tn, PTn , Φ]
n)

Then:
• by definition of the widening over the basis ∇B, the element of the basis stabilizes

after a finite number of iterations: ∃n ∈ �
, ∀m ∈ �

, m ≥ n =⇒ PTm = PTn .
• if we consider the subsequence (T ′m, PT ′m

, Φ′]m)m∈ � ,m≥n, then ∀m ≥ n, T ′m = T ′n ∧
PT ′m

= PT ′n
and the sequence of the last arguments form a widening sequence in

� T ′n
→ D]� ; � T ′n

is finite and ∇ �
is a widening over D]� , therefore this sequence is

ultimately stationary.
This proves that the sequence (T ′n, PT ′n

, Φ′]n)n∈ � is ultimately stationary; hence, ∇p is a
widening operator over � . Â

Again, the proof of the widening operator can be compared with the definition of
a widening on cofibered domains [Ven96]. Basically, a widening operator for � should
stabilize the basis first (i.e., enforce the termination of the refinement of the partition),
and then stabilize the image in the abstract domain D]� ; therefore, an alternate definition
for ∇p would delay the widening in D]� until the element of the basis reaches a limit.

4.3.4 Denotational style partitioning static analysis

The design of static analyzers as abstractions of the denotational semantics of statements
was proposed in Section 3.2.5. In particular, we showed that this design allows for nat-
ural and efficient iteration strategies. Therefore, we propose to adapt this scheme to
partitioning analyses.

Partitioning denotational semantics: First, we apply the “from point to point” de-
notational abstraction αtF [l`,la].

More precisely, we consider in this subsection an extended system PT , such that P 0τ

PT , and let l`, la ∈ � . The concrete denotational semantics from l ` to la maps an “input”
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state at l` to the set of possible “output” states at l a. Hence, the denotational semantics
in the extended system should map tuples made of a partitioning token and a store into
similar tuples:

Definition 4.3.7. Partitioned denotational semantics.

We define the abstraction function αtF � [l`,la] : P(Σ) → (( � × � ) → P( � × � )), where
αtF � [l`,la](E) is defined by:

αtF � [l`,la](E) : ( � × � ) → P( � × � )
(t`, ρ`) 7→ {(ta, ρa) | ∃σ ∈ E , σ = 〈((l`, t`), ρ`), . . . , ((la, ta), ρa)〉}

We write γtF � [l`,la] for the corresponding concretization function.
Last, the partitioned denotational semantics is αtF � [l`,la](JPT K

p).

Static, abstract partitioning denotational semantics: The denotational-style static
analyzer of Section 3.2.5 was derived as an abstraction of the denotational semantics;
therefore, we propose to derive a static analyzer for the partitioned system in the same
way. However, we should note a slight difference: in Definition 4.3.7, an initial state
consists in a pair made of a partitioning token and a store. Hence, the abstract semantics
follows the same scheme:

Definition 4.3.8. Partitioned abstract denotational semantics.

We write D]� ,
� for T → D]� . A function JPT K

]� [l`,la]
: D]� ,

� → D]� ,
� is a sound abstract

semantics of PT , between l` and la if and only if:

∀(t , ρ), (t ′, ρ′) ∈ � × � , ∀dp ∈ D]� ,
�

(t ′, ρ′) ∈ αtF � [l`,la](JPT K)(t , ρ)
ρ ∈ dp(t)

}
=⇒ ρ′ ∈ JPT K

]� [l`,la]
(dp)(t ′)

In this sense, JPT K
]� [l`,la]

should be an approximation of the denotational semantics
introduced in Definition 4.3.7.

The partitioned denotational abstract semantics is sound with respect to the standard
semantics of the initial system:

Theorem 4.3.3. Soundness of the static partitioning analysis.

Let (T, PT ) ∈ B such that (Tε, Pε) 2τ (T, PT ).
Let dt ∈ D]� ,

� , (t , ρ) ∈ � × � such that ρ ∈ dt(t). Moreover, we let ρ′ ∈ αtF [l`,la](JP K)(ρ).
Then, there exists t ′ such that:

ρ′ ∈ JPT K
]� [l`,la]

(dp)(t ′)
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Proof.

The above result follows from the soundness of the control partitioning (Theorem 4.3.1)
and the soundness of the abstract semantics JPT K

]� [l`,la]
(Definition 4.3.8). Â

In practice, an abstract semantics JPT K
]� [l`,la]

is defined in a similar way as the abstract
semantics of statements described in Section 3.2.5, and in Figure 3.3.

Moreover, we can remark that the abstract semantics JPT K
]� [l`,la]

may postpone the
computation of abstract joins so as to approximate flows in distinct partitions. This ability
allows in many cases for a greater precision (even if a local improvement in precision does
not always guarantee a global improvement, since several abstract operators including
widening usually are not monotone).

Definition 4.3.2. Denotational style abstraction of a if-statement.

We consider the program introduced in Example 4.2.1. In particular, this program is
equivalent to the transition system P0, displayed in Figure 4.3(a). We consider the parti-
tion defined by the system P1 (Figure 4.3(b)): the analysis partitions the traces depending
on the branch of the if-statement they visited until point l4 (the partitions are merged at
this point).
We present the static analysis of various statements in this piece of code (the analysis is
carried out on P1):
• statement s1 (true branch of the conditional): the only partitions before and after

this statement is t1, to Js1K
]� [l1,l3] is a function:

Js1K
]� [l1,l3] : ({t1} → D]� ) −→ ({t1} → D]� )

(the analysis propagates the partition t1);
• conditional structure (statement s = if(e) s1 else s2): it splits the partition t0 into

two sets of traces corresponding to t1 and t2; hence, JsK]� [l1,l3] is a function:

JsK]� [l1,l3] : ({t0} → D]� ) −→ ({t1, t2} → D]� )

• statement s3 (statement right after the conditional): it inputs two partitions cor-
responding to t1 and t2 and outputs similar partitions; however, the partitions are
merged right after the analysis of the statement (at point l4), so we can write down
Js3K

]� [l3,l4] as a function:

Js3K
]� [l3,l4] : ({t1, t2} → D]� ) −→ ({t0} → D]� )

• the whole program inputs and outputs only one partition, corresponding to t0, so its
abstract semantics is a function:

JP1K
]� [l1,l3] : ({t0} → D]� ) −→ ({t0} → D]� )

Xavier Rival Traces Abstraction in Static Analysis and Program Transformation



4.3. TRACE PARTITIONING ABSTRACT DOMAINS 77

Making the partitioning dynamic: The above definition introduces a static form
of partitioning: the analysis of the statement may not change the partitions, e.g. by
refining the system. Therefore, we propose a new definition for an abstract semantics for
statements, which may refine the partitions.

First, we define a new partitioning abstract domain for approximating sets of stores
and partitions:

Definition 4.3.9. Domain for dynamic partitioning.

An element of the domain is a tuple (T, PT , dT ), where:

• T ∈ � ;
• PT is a complete covering (T,

�
i
T ,→T ) of the initial system P ;

• dp ∈ D]� ,
� is such that ∀t ∈ � \ T, dp(t) = ⊥.

We write D]
δ � ,

� for this domain; the ordering is the pointwise extension of the orderings

on the basis and on D]� .

The latter condition ensures that dp assigns invariants to “relevant” tokens only: the
invariant corresponding to a token not in T (i.e., not in the current extended system)
should be ⊥.

A partitioning abstract semantics can be defined as follows:

Definition 4.3.10. Dynamic partitioning analysis.

The abstract semantics of PT between l` and la is a function JPT K
]� [l`,la]

: D]
δ � ,

� → D]
δ � ,

�

such that, if (T, PT , dT ), (T ′, PT ′ , dT ′) ∈ D]
δ � ,

� are such that (T ′, PT ′ , d
′
T ′) = JPT K

]� [l`,la]
(T, PT , dT ),

then, there exists τ : T ′ → T satisfying the following conditions:

• PT ′ refines PT , i.e. PT 2τ PT ′;
• d′T ′ approximates the output of PT ′ at la when the input at l` is described by dT in the

previous system in a sound manner, which is expressed by the following condition,
where dT ′ = dT ◦ τ :

∀(t , ρ), (t ′, ρ′) ∈ � × � ,
(t ′, ρ′) ∈ αtF � [l`,la](JPT ′K)(t , ρ)
ρ ∈ dT ′(t)

}
=⇒ ρ′ ∈ d′T ′(t ′)

Note that the soundness of the “abstract transfer function” in the second of point of
Definition 4.3.10 is expressed in the refined system: the input invariant dT is refined into
dT ′ first, and then the abstract transition is performed in T ′.

This abstract semantics is sound as well:

Theorem 4.3.4. Soundness of the dynamic partitioning analysis.
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Let (T, PT ) ∈ B such that (Tε, Pε) 2τ (T, PT ). Let dt ∈ D]� ,
� , (t , ρ) ∈ � × � such that

ρ ∈ dt(t). We write (T ′, PT ′ , d
′
T ′) for the result of the analysis JPT K

]� [l`,la]
(T, PT , dT ).

Moreover, we let ρ′ ∈ αtF [l`,la](JP K)(ρ). Then, there exists t ′ such that

ρ′ ∈ d′T ′(t ′)

Proof.

Similar to the proof of 4.3.3. Â
Again, the core of the soundness of the analysis lies in the definition of the abstract

transformer in the refined transition system, which should soundly approximate the par-
titioning of the transitions of the original system.

Definition 4.3.3. Denotational style abstraction of a if-statement.

Example 4.3.2 demonstrates the analysis of a conditional statement, based on a static
partitioning of P0 into P1.
In the case of dynamic partitioning, the main difference is that, before the analysis of the
conditional, the system under consideration is P0 and that the analysis refines P0 into P1

at point l1 (beginning of the conditional). After this refinement, the book-keeping of the
partitions is the same as in Example 4.3.2.
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Chapter 5

Control-based partitioning

In this chapter, we describe the implementation of a domain for control flow-based trace
partitioning inside the Astrée analyzer, and to provide experimental evidence of the
efficiency of the approach. This domain is enabled in all analyses, so as to improve the
precision of Astrée. We provide a few examples as well, so as to show how partitioning
contributes to improving the partition.

We give a quick description of the Astrée analyzer in Section 5.1. Section 5.2 de-
scribes the analysis, by instantiating the framework introduced in Chapter 4 and providing
abstract transfer functions for the partitioning and merging of traces. Section 5.3 pro-
vides facts about the implementation (in particular, about the strategies used in order
to determine when to perform partitioning); it concludes with experimental results and a
comparison with related work.

5.1 The Astrée analyzer

Astrée is an academic static analyzer developed in the École Normale Supérieure and
in the École Polytechnique by Bruno Blanchet, Patrick Cousot, Radhia Cousot,
Jérôme Feret, Laurent Mauborgne, Antoine Miné, David Monniaux and myself.
The Astrée static analyzer aims at proving the absence of runtime errors in large, em-
bedded programs, written in C [ANS99]. Various aspects of the Astrée static analyzer
were described in [BCC+02, BCC+03a, CCF+05]. A user manual was written as well
[BCC+03b].

5.1.1 The programs analyzed by Astrée

The development of the Astrée analyzer started in fall 2001. First positive results were
reported in early 2002, with the analysis with 0 false alarms of some 10 000 LOCs
example program.

At this point, the analyzer was designed in order to analyze large embedded applica-
tions, written in C. The main specificities of these programs are:
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• the large size: up to more than 100 000 LOCs, and 10 000 global variables;
• the control structure: these programs implement synchronous applications trans-

lated into C programs. Form more information about synchronous programming,
we refer the reader to the definition of the synchronous languages Lustre [HCRP91],
Esterel [BG92], and Signal [ABG95]. More precisely, they consist in a large loop,
which should be executed every t milliseconds. For each iteration of the main loop,
some routines read a large set of inputs, perform computations involving both the
inputs and some state variables storing the state of the system and send some out-
puts:

while(true){
HLoop executed every t msI

HRead inputs from sensorsI
input(xin); input(yin); . . .

HComputation of the new internal stateI
X0 = . . . ; X1 = . . . ;

HSending of outputsI
xout = . . . ; yout = . . . ;

}

• the floating point computations: most of the routines involve floating point com-
putation, including linear filtering, non linear control with feed-back, interpolations
from input values, limiters, conversions into/from integer values and bit fields...
• the large number of conditions, and control flow stored in boolean vari-

ables: a large number of boolean variables store the state of the computer and
greatly impact the control flow in the core of the main loop (e.g., initialization and
reset variables, raising edge detectors...).

These specificities led to crucial implementation choices, so as to ensure scalability first;
and then, to refine the analysis whenever a false alarm was discovered. This strategy
allowed us to discover the nature of the predicates required for inferring precise invariants
of these families of programs and then, to implement the adequate abstract domains.
Whenever the addition of a new domain was required, we strove to maintain the scalability
of the analysis.

This approach allowed us to report on the successful analysis of a large part of the
Airbus A340 aircraft fly-by-wire device in 2003. Several versions of the next generation of
fly-by-wire systems (developed for the Airbus A380 aircraft) were successfully analyzed in
2004 and 2005. A more detailed report of the performances of Astrée will be provided
in Section 5.3.3.

At the time of the writing of this thesis, other families of programs are being considered
as well.

Xavier Rival Traces Abstraction in Static Analysis and Program Transformation



5.1. THE ASTRÉE ANALYZER 81

5.1.2 The purpose of the analysis

The purpose of the analysis is to discover all possible runtime errors (i.e., failed operation
causing the computer to crash or to switch to an abnormal state), detailed below. Of
course, Astrée over-approximates the behaviors of the program being analyzed; there-
fore, it may report false alarms, i.e. Astrée may report not being able to prove the
correctness of some critical operation, despite no real execution crashes at this point. In
case Astrée raises no alarm after analyzing a program, then the program can be con-
sidered safe in the sense that it should neither crash nor produce an erroneous value at
runtime. Of course, this conclusion depends on the soundness of the analyzer and on the
correctness of the assumptions made about the system (including, compliance to the C
semantics [ANS99], to the choices made compiler, correctness of the assumptions made
about the input values such as their range...).

The ultimate goal in the design of the analyzer is to reduce the number of false alarms,
while preserving the efficiency of the analysis. In case the analysis generates some alarms,
the program may be erroneous or the alarms may be due to the approximation inherent
in the static analysis. Therefore, all alarms should be investigated. Part III deals with
the issue of the investigation of the alarms.

The purpose of Astrée is to discover any possible runtime error, where the definition
of “runtime error” collects the following cases:

• fatal errors and unspecified behaviors in the sense of the ANSI’99 C semantics
[ANS99], including memory errors (e.g., array index out of bounds), integer division
by 0. Some architecture dependent behaviors may not be considered errors (then,
the analyzer should comply with the specification of the target architecture, and of
the compiler).
• generation of infinite floating point values (floating point overflows) or of the

“Not-A-Number” floating-point value (e.g., after a division 0/0).
• non-compliance with programming guidelines, which forbid, e.g. the over-

flow of short integer variables out of the rangle [−32 768, 32 767], even though the
result may be well-defined on some specific platform: for instance, if short integers
values are stored in 32 registers during computations, then a value resulting from
an overflow may be exactly representable, so the behavior of the system may not be
affected.
• failure of a user-defined assertion.

It follows from the success of the analysis of a program that the only possible interrupts
are clock ticks, which is an essential requirement for the safety of synchronous programs.

5.1.3 The analyzer

Overall structure of the analyzer: A run of the Astrée analyzer consists in a
sequence of phases:

1. Preprocessing and preparation of the analysis:
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• parsing, and merging of programs implemented in multiple files: this phase
produces a very low level syntax tree, without explicit types;
• typing and synthesis of a higher level syntax tree, for a limited, yet rather

large subset of ANSI C 99 [ANS99] (for instance, some peculiar C-initializers
are rejected at this stage);
• code simplification, including Kildall constant propagation [Kil73] and re-

moval of dead statements;
• verification of the semantic definition of the code independently from

the evaluation order (since the [ANS99] norm leaves the evaluation order
implementation undefined): more precisely, we check that the order side effects
are performed in should not depend on the C compiler; this property is cru-
cial for the analysis to be sound (the analyzer cannot simulate many different
execution orders);
• inclusion of analysis directives, which should guide the analysis of the

code, either by suggesting hints to the relational abstract domains about what
packs of variables relations should be computed for (aka, “packing strategy”),
and partitioning directives (we discuss the insertion of partitioning directives
in Section 5.3.2;
• translation into a last internal representation, with all expressions “flat-

tened”: at this point, there should be no control flow in expressions (i.e., lazy
logical operators, conditional evaluations) containing side-effects; moreover,
function calls are expanded in atomic operations;

2. Analysis and output of the results:
• initialization of the abstract domains, following the parameterization of the

analyzer;
• analysis, i.e. computation of invariants for the program, following Section

3.2.5;
• checking of the safety of the critical operations, in the check phase of

the iteration;
• optional export to invariant into files.

A large number of options allow to tune the analysis (by enabling or disabling abstract
domains, modifying iteration strategy parameters), to configure the parallel mode or dis-
able it, the output of the analyzer (verbosity of the text messages, enabling or disabling
of warnings for some alarms), the export of invariants (by selecting what domains and
what control states information should be exported for), the pre-processing steps and to
require the analyzer to produce various debug outputs.

A separate tool provides an interface for visualizing invariants (it requires the invariants
being exported into a file in the end of the analysis).

The iterator: The iterator is designed in the denotational style presented in Section
3.2.5. However, the analysis of a statement outputs not only an invariant but also some
reports for the alarms (in case the analyzer does not prove the execution of the statement
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is safe) during the last iteration of the analysis (check mode), and it also allows to store
local invariants to the disk (producing a result similar to those of the interpreter presented
in Section 3.1.2).

Hence, the interpreter function carries out several parameters, which impact greatly
the iteration strategy and the application of the transfer functions:
• a flag indicates the iteration mode, i.e. whether or not the analyzer should check the

safety of critical operations and report alarms (in the case of a loop, the analyzer
should not do so before it computes an over-approximation of the semantics of the
loop; hence, only the last iteration is performed in “check” mode);
• some flags describing the state of the iterator; in the case of the analysis of loops, they

guide the widening strategy and the definition of transfer functions (e.g., reductions).

The abstract domains: Astrée is based on a large collection of abstract domains.
The core of the abstract domain aims at approximating sets of stores in a similar way
as D]� in Section 3.1.1. In fact, this domain is split into two parts: a structure domain
describes a mapping of concrete program variables into abstract memory cells, and a
relational domain, which approximates sets of functions from abstract memory cells into
values. This abstraction is performed after the following abstractions:

1. partitioning abstraction of traces, as explained in this Chapter;
2. abstraction of forward branching flows, following a principle based on continuation

semantics: an abstract element encloses not only the current abstract flow, but also
abstract branching flows, together with label they are branching to (function exit,
control state after a cases-statement...).

The numerical abstract domain is built as a reduced product of a series of domains; each
of them allows to express specific kinds of constraints:
• the interval domain [CC77] collects range constraints of the form:

x ∈ [a, b]

All safety properties of interest (except user defined assertions) can be expressed
with such invariants; however, this domain does not allow for precise invariants to
be inferred.
• the octagon domain [Min01, Min04b] expresses relations of the form

±x± y ≤ c

This domain allows for relational invariants to be computed for pieces of code im-
plementing limiters, absolute value...
• a dedicate domain performs the translation of arithmetic expressions into interval

linear forms [Min04a], i.e. expressions of the form
∑

k Ik ·xk, where Ik is an interval
and xk a variable for all k. This domain has several purposes:

– allow the transfer functions of relational domains like octagons to be used, even
in the case of complex expressions;
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– take rounding errors into account in the abstract interpretation of floating point
expressions.

• a symbolic domain [Min04b] collects symbolic equalities relations among variables,
which can be used so as to perform a reduction of the abstract values of other
domains;
• a domain for the analysis of filters [Fer04b] represents predicates useful for

proving the stability of filters. For instance, in the case of a second order filter, the
value of xn of x at iteration n is computed from the previous values using a formula
like xn = a ?xn−1 + b ? xn−2. If the filter is stable, we would usually be able to prove
that any pair made of two successive values lies in an ellipsöıd. However, when
this proof need to be performed automatically, it may require the use of polyhedra
with a large number of faces (very costly abstraction, complex transfer functions);
therefore, a specific domain represents ellipsöıd predicates explicitly and detects
filters.
• a domain of arithmetic geometric progressions [Fer04a] allows to bound slowly

diverging floating point computations, so as to prove that they do not diverge after
a long (yet not infinite) time of execution.
• a domain of boolean relations using the principles of BDDs [Bry86] in order to

express relations among boolean variables and mixed relations (relations among
boolean and arithmetic variables). In the latter case, the elements of the domain
consist in trees with boolean relations at the nodes and numerical relations at the
leaves.

Implementation: Most of the analyzer is written in Objective Caml [OCa]; however,
it uses a few libraries written in C. At the time of the writing of this thesis, it amounts
to 70 000 lines of Objective Caml and 9 000 lines of C code (mainly, the octagon library,
and some low level routines used for setting the rounding mode).

It is noticeable that the soundness of the analysis does not depend on the architecture
the analysis is performed on: at this time, Astrée has been successfully used on a large
number of architectures, including Intel Pentium, AMD 64, Sun UltraSparc, and Pow-
erPC architectures, running various operating systems including Linux, Unix, Microsoft
Windows and Mac OSX.

We provide detailed results about performances in execution time, memory usage, and
precision in Section 5.3.3.

5.2 Partitioning Analysis

We now introduce the trace partitioning domain integrated in the Astrée analyzer,
together with some examples showing how it contributes to improving precision.
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5.2.1 Partitioning criteria

First, we list the criteria for trace partitioning in Astrée :

1. Partitioning of conditional structures, by delaying the merge of flows in the
end of the conditional;

2. Partitioning of loop structures, by distinguishing the first iterations in the
analysis of the loop body and delaying the merge of flows after the end of the loop.
This criteria allow for:
• more precise invariants to be derived in the first iterations, thanks to unrolling;
• relations between numbers of iterations and values to be inferred and used after

the loop, thanks to the delayed abstract join;
3. Partitioning guided by the value of a variable x at some point l (the partitions

are computed at point l and not modified by an assignment to x): this partitioning
is similar to a case analysis based on the value of a variable (this partitioning scheme
is most useful when dealing with weak updates, and array accesses);

4. Inlining of functions (as suggested in Section 4.1.1);
5. Merge of partitions: the cost of successive creations of partitions would be pro-

hibitive in practice. For instance, the partitioning of a conditional structure multi-
plies by 2 the number of partitions in the current flow, so a series of n conditional
structures would lead to a 2n blow-up, which is not acceptable (no scalable analy-
sis can afford an exponential cost). Therefore, we avail ourselves the possibility of
merging together unnecessary partitions (i.e. partitions which are not expected to
lead to further improvements in precision), in any order.

Some of these cases could be handled by rewriting the code. This approach is depicted
in Figure 5.1(a), in the case of the partitioning of a conditional structure (case 1), as
suggested in Example 4.2.1: the statements following the conditional are duplicated in
the end of both branches. Case 2 (loops) and case 4 (function inlining) could be handled
in a similar manner. For instance, Figure 5.1(b) displays the rewriting equivalent to the
unrolling of the first iteration of a loop.

However, we show in Section 5.2.3 that the design of a trace partitioning domain was
preferable, so that finer partitions can be handled.

5.2.2 Application of trace partitioning

Before we set up the partitioning domain, we provide a few examples, so as to show how
the main criteria for partitioning introduced in Section 5.2.1 are useful, in Astrée.

Linear interpolation function, via indirection arrays: We consider the case of the
interpolation function flin described in Figure 5.2 first.

The piece of code for this function determines what formula should be used by local-
izing in what range x can be found, using a loop and an array of input values. Then,
two arrays contain the coefficients which should be used in order to compute the value of
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l0 : if(e){
l1 : s1

}else{
l2 : s2

}
l3 : s3

l4 : . . .

−→

(l0) : if(e){
(l1) : s1;
(l3) : s3

}else{
(l2) : s2;
(l3) : s3

}
(l4) : . . .

(a) Partitioning of a conditional

l0 : while(e){
l1 : s;
l2 : }
l3 : . . .

−→

(l0) if(e){
(l1) s;
(l0) while(e){
(l1) s;
(l2) }
(l2) }
(l3) . . .

(b) Loop unrolling

Control states in parentheses denote partitioned control states.

Figure 5.1: Code rewriting

flin(x). Clearly, the output of this function is bounded: ∀x, flin(x) ∈ [−1, 2].

However, inferring this most precise range is not feasible with a standard interval
analysis, even if we partition the traces depending on the values of i at point l3. Let us
try with −100 ≤ x ≤ 0: then, we get i ∈ {0, 1} at point l3. The range for y at point l4 is
[−0.5 + 0.5× (−100.),−0.5] ≡ [−50.5,−0.5] (this range is obtained in the case i = 1; the
case i = 0 yields y = −1). Accumulating such huge imprecision during the analysis may
cause the properties of interest (e.g. the absence of runtime errors or the range of output
values) not to be proved. We clearly see that some relations between the value of x and
the value of i are required here.

Our approach is to partition the traces according to the number of iterations in the
loop. Indeed, if the loop is not iterated, then i = 0 at point l3 and x < −1; if it is iterated
exactly once, then i = 1 at point l3 and −1 ≤ x ≤ 1 and so forth. This approach yields the
most precise range. Let us resume the analysis, with the initial constraint −100 ≤ x ≤ 0.
The loop is iterated at most once and the partitions at point l3 give:

• 0 iteration: i = 0; x < −1; y = −1
• 1 iteration: i = 1; −1 ≤ x ≤ 0; −1 ≤ y ≤ −0.5.

Therefore, the resulting range is y ∈ [−1,−0.5], which is the optimal range (i.e. exactly
the range of all output values that can be observed in concrete executions).

This optimal result is obtained thanks to a partitioning of the traces by the number
of iterations in the loop. The partitions can be merged after the output of the function,
since they should not result in any further gain in precision.

Linear interpolation function, via discretization: The second example consists
in another kind of interpolation function: the input value is disctretized, and then a
formula depending on the discretized value is applied to it. More precisely, if |x| = n,
and f is the function to approximate, then the interpolation flin returns f(n) + (x− n)×
(f(n + 1) − f(n)). From the mathematical point of view, it is a particular case of the
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PSfrag replacements

x

y

0

1

1
y =





−1 if x ≤ −1
−0.5 + 0.5× x if − 1 ≤ x ≤ 1
−1 + x if 1 ≤ x ≤ 3
2 if 3 ≤ x

(a) Function

l0 : int i = 0;
l1 : while(i < n && x > tx[i + 1])
l2 : i ++ ;
l3 : y = tc[i]× (x− tx[i]) + ty[i]
l4 : . . .

tc = {0; 0.5; 1; 0}
tx = {0;−1; 1; 3}
ty = {−1;−0.5;−1; 2}

(b) Implementation

Figure 5.2: Linear interpolation, via indirection arrays

interpolation function considered in the previous paragraph, where the values of the array
tx are successive integer values. In the example presented in Figure 5.3, the array ty is
such that ty[n] = f(n). Any interpolation based on a regular partition of a bounded range
could be implemented in a similar way, by applying a linear function to the argument so
as to recover a partition of the form 0, 1, . . . , n.

We found that this kind of interpolations were rather common, e.g. for approximating
trigonometric functions. For the same reason as in the case of the previous interpolation
function, the computation of a precise range for the output of flin requires some precise
relation between n and x.

However, the possible values for n cannot be related to distinct control flow paths;
therefore, we propose to perform a partitioning guided by the value of n computed at l1.
Doing the same partitioning at point l2 would not allow for relations between x and i to
be obtained.

5.2.3 The domain

Need for a trace partitioning domain: As we pointed out in Section 5.2.1, some
of the partitioning configurations could have been carried out by rewriting the code.
However, we enumerate a number of reasons in favor of the design of a real domain.

First, the “syntactic transformation” approach is limiting. In particular, it
would not allow to represent and handle large sets of partitions in the same way as a
dedicate domain would:
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PSfrag replacements
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y

0 1 2 3 4 5

if n ≤ x < n + 1, where n ∈ �
y = f(n) + (x− n)× (f(n + 1)− f(n))

(a) Mathematical definition

l0 : int n = 0;
l1 : n = castfloat→intx;
l2 : y = ty[n] + (x− castint→floatn)∗

(ty[n + 1]− ty[n])
l3 : . . .

(b) Implementation

Figure 5.3: Linear interpolation function, via discretization

• a domain allows to represent more partitions than mere syntactic rewriting, since not
all possible partitions need to be generated during the analysis despite the syntactic
approach would require to generate them all prior to the analysis;
• a syntactic rewriting of the code would be inherently static, which is not practically

compatible with very large sets of partitions. For instance, a partitioning guided
by the values of a variable may generate a huge number of partitions if the variable
may take a large number of values (e.g., thousands of values); in this case, a built-in
strategy would not perform the partitioning (by not sending the partitioning order
to the domain), whereas the decision whether to partition or not would need to be
made prior to the analysis in the case of syntactic partitioning. In this case, the
implementation of a partitioning domain allows to tune the partitioning strategy
during the analysis, so that better decisions can be taken about whether or not
some partitions should be generated.

Secondly, as we pointed out above, the partitions sometimes need to be merged
together. Currently, where and which partitions are merged is the result of some strategies
(Section 5.3.2). However, the last partition created may not be merged first, which implies
that the structure of partitions should be found in abstract elements (as a consequence,
the code rewriting approach would fail to offer the same flexibility).

Thirdly, in some cases, partitions could be created in a lazy way only not only for
cost reasons, as in the following cases:

• in the case of a function call, where the function is the result of the dereference of
a pointer, the control flow can only be known at analysis time;
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• some strategies may determine that a loop should be unrolled n times and the
analysis may prove that after m < n iterations the execution of the loop terminates;
then a syntactic unrolling would not make sense.

Last, the inspection of analysis results is easier, when the invariants can be related
to the original program, with accurate partition names (i.e., tokens in the scheme of
Chapter 4). Rewriting large pieces of code as suggested in Figure 5.1 would make the
understanding of the result of static analyses more difficult, since the user would have
to relate the invariants computed for the transformed program to the original program.
By contrast, the values of the partitioning domain should tell what partitions numerical
constraints correspond to, thanks to the partitioning tokens.

Elements: We now define formally the instantiation of the framework presented in
Chapter 4 corresponding to the criteria listed in Section 5.2.1.

Intuitively, the creation of a partition corresponds to a partitioning directive, as defined
in Section 5.2.1. We provide the formal definition of directives in Figure 5.4(a). The name
of each directive corresponds very intuitively to a criterion listed in Section 5.2.1, except
for the last one: the directive part〈None〉 is included here for the sake of implementation
only, and stands for a void directive (we explain the use of this directive in Section 5.3.1).

The name of a partition (i.e., token corresponding to it, in the sense of Section 4.2.1)
consists in the series of the partitioning directives encountered before creating this par-
tition. We give the formal definition for tokens in Figure 5.4(b). We note that each
partitioning directive encloses a control state, which stands for the point the partition
was created at. The directive part〈None〉 stands for a void directive, and as such, it can
be removed from tokens without changing their meaning: in other words, the equality on
tokens is defined modulo removal of void directives (i.e., part〈None〉 :: part〈If , l , b〉 =
part〈If , l , b〉).

For instance, in the case of a conditional at point l , two partitions are created right
after the testing of the condition, corresponding to the directives “true branch of the
conditional at point l ” and “false branch of the conditional at point l ”. When these
partitions are merged, these directives are removed from the names of the partitions.

As usual, we write D]� for the domain for representing sets of stores (Section 3.1.1).
In the same way as in Section 4.3.4, the domain D]� ,

� is defined as � → D]� .

Hints (or directives) in the code: A pre-processing phase inserts directives as special
commands in the source code. We do not introduce them formally here (the directives are
represented as text between braces in programs). Intuitively, directives in the code cause
directives to be added in tokens (partition creation) or be deleted from tokens (partition
merge).

Widening: The set of tokens is clearly infinite, since the length of tokens as sequences
of directives is not bounded. Even in case we limit the length of tokens the number of
tokens is very large: indeed, if we fix l ∈ � and x ∈ � , the number of directives of the

Traces Abstraction in Static Analysis and Program Transformation Xavier Rival



90 CHAPTER 5. CONTROL-BASED PARTITIONING

d ::= part〈If , l , b〉 traces in the b branch of the conditional at point l
| part〈While, l , n〉 traces with exactly n iterations in the loop at point l
| part〈While, l , > n〉 traces with more than n iterations in the loop at point l
| part〈Val, l , x = n〉 traces such that x = n at point l
| part〈Fun, l , f〉 traces calling f at point l
| part〈None〉 void directive

(a) Directives (notation for directives: d ∈ D)

t ::= ε empty stack, initial partition
| d :: t ′ addition of a directive on top of t ′

(b) Tokens (t ∈ � )

Figure 5.4: Naming partitions

form part〈Val, l , x = n〉 is equal to the number of integer values in the language (i.e.,
in practice 232). Therefore, the termination of the analysis should rely on a widening
operator, designed as in Section 4.3.3.

In practice,

• the widening operator on the basis forbids the synthesis of arbitrary long tokens, by
preventing the generation of tokens containing two directives corresponding to the
same control point: basically, this operator interrupts the generation of partitions;
• the generation of partitions after a directive recommending the partitioning guided

by the values of a variable x is performed only if the size of the set of possible values
for x determined by the analysis is small enough (e.g., below 1000);
• the current partitioning strategy is designed so as not to keep partitions beyond the

scope they should improve the precision in; this strategy allows to merge partitions
soon enough, so that the widening operator does not need to collapse partitions
down (widening is applied at loop heads only [Bou93]).

5.2.4 Structure of the abstract interpreter

As stated in Section 5.1.3, the iterator consists in a function mapping statements into
abstractions of their denotational semantics, as defined in Section 3.2.5. As a consequence,
the design of the abstract interpreter follows the principle described in Section 4.3.4: the
abstract interpretation JsK] of a statement s should map a pair (PT , dT ) ∈ B × D]� ,

� ,

where ∀t 6∈ T, dT (t) = ⊥ into a pair (PT ′ , d
′
T ′) ∈ B × D]� ,

� , where PT ′ is a refinement
of PT and d′T ′ is an over-approximation of the output of s when applied to the input dT

(Definition 4.3.10).

The iterator of Astrée does not keep track of the whole refined program PT . Instead,
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it keeps track of the current partitions, i.e. of the tokens corresponding to a set of partitions
covering the ongoing flows:

Definition 5.2.1. Ongoing token set.

The ongoing token set corresponding to the abstract flow dT ∈ D]� ,
� is tokensT 〈dT 〉 =

{t ∈ � | dT 6= ⊥}.

This notion was implicitly illustrated in Example 4.3.2 (we described the partitioning
abstract interpretation of an if -statement).

If (T, PT , dT ) is the result of the static analysis of a statement, then, the property
tokensT 〈dT 〉 ⊆ T is straightforward.

The abstract interpretation JsK] of a statement s simply maps an element dT ∈ D]� ,
�

into a second element d′T ′ ∈ D]� ,
� : all the information about the partitioning carried out

by the analysis are enclosed in the dT element.

This is a common advantage of denotational style abstract interpreters: this iteration
scheme keeps only the information which are useful for the end of the analysis and discards
the values which were useful only in the past and will not be required anymore. For
instance, we remarked that the analyzer presented in Section 3.2.5 does not need to store
invariants at every control point. The restriction to the set of tokens corresponding to the
ongoing flows is similar.

This approach is feasible, since the partitioning tokens contain all the information
about the transitions associated to them.

Last, we note that the pre-processing phase inserts hints in the code and selects this
way a family of extended systems which may be used during the analysis. As a conse-
quence, most of the partitioning decisions are made statically; the only decisions taken at
analysis time are whether or not to obey to some directives. In this sense, the partition-
ing implemented in Astrée is dynamic, but mostly determined statically; reducing the
number of choices made at analysis time simplifies the implementation.

5.2.5 Transfer functions

We consider three kinds of transfer functions:

• the “partition creation” transfer function generate new partitions;
• the “partition merge” folds partitions together;
• the“standard”transfer functions (i.e., which are not specific to partitioning analyses)

stand for e.g., abstract assignments, condition testing...

“Usual” transfer function, e.g. assignment: we extend pointwisely the usual trans-
fer functions presented in Section 3.1.1 to D]� ,

� .
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Partition creation: we let generate : D×D]� ,
� → D]� ,

� be the partition creation abstract

transfer function. It inputs a directive ∂ and an abstract element d ∈ D]� ,
� and adds the

directive ∂ to all ongoing tokens in d. Formally, it outputs an element d′, defined by:
{

tokensT 〈d′〉 = {(∂ :: t) | t ∈ tokensT 〈d〉}
∀t ∈ tokensT 〈d〉, d′(∂ :: t) = d(t)

Partition merge: we let merge : P(D) × D]� ,
� → D]� ,

� be the transfer function for
merging partitions. It folds partitions by removing any directive in D for the partition
names (tokens). Therefore merge inputs a set of directives D and an abstract element d
and returns a new abstract element d′, where any reference to the directives in D are
removed. Formally, if D = {∂}, then d′ is defined by:




(∂i0 :: . . . :: ∂im) ∈ tokensT 〈d′〉 ⇐⇒





(∂0 :: . . . :: ∂n) ∈ tokensT 〈d〉
{ik | k ∈ L0,mM} = {i ∈ L0, nM | ∂i 6= ∂}
i0 < . . . < im

With the above notations, d′(∂i0 :: . . . :: ∂im) = d(∂0 :: . . . :: ∂n)

The above definition extends straightforwardly to the general case (D not necessarily a
singleton).

Definition 5.2.1. Transfer functions in a partitioning analysis.

Figure 5.5 displays a simple piece of code, containing an if-statement (Figure 5.5(a)).
The pre-processing phase of Astrée includes some directives in the code, which specify
what partitions should be created. We assume that the strategies recommend to partition
the traces in the beginning of the if-statement and to merge the partitions at point l5, as
shown in Figure 5.5(b)).
• at point l0, only one partition exist; it corresponds to the void token ε;
• when entering the if-statement, the analyzer creates two partitions corresponding

to the directives part〈If , l0, true〉 (true branch) and part〈If , l0, false〉 (false branch):
at this step it applies the transfer functions d 7→ generate(part〈If , l0, true〉, d) and
d 7→ generate(part〈If , l0, false〉, d);
• the analysis of the body of both branches involve usual transfer functions;
• at point l4 the join of the invariants corresponding to both branches should be com-

puted, so that we get an invariant d4, such that tokensT 〈d4〉 = {part〈If , l0, true〉 ::
ε, part〈If , l0, false〉 :: ε};
• at point l5 the analyzer merges the partitions together, by applying the transfer func-

tions d 7→ merge({part〈If , l0, true〉, part〈If , l0, false〉}, d).

5.3 Implementation and Experimental Evaluation

Last, we provide some details about the implementation of the partitioning domain, of
its use in practice (i.e., the partitioning strategies) and the performances of the resulting
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l0 : s0;
l1 : if(c){
l2 : s1

}else{
l3 : s2

}
l4 : s3;
l5 : s4;

(a) Initial
program

l0 : s0;
HPartition the traces in the following if statementI

l1 : if(c){
l2 : s1

}else{
l3 : s2

}
l4 : s3;

HMerge the partitions of the if statement at this pointI
l5 : s4;

(b) Program with directives added

Here are the main steps of the analysis:

Figure 5.5: Partitioning analysis of a if -statement: directives

analyzer.

5.3.1 Implementation of the domain

The data-structure: In practice, tokensT 〈dT 〉 can be considered the set of paths into
the leaves of a tree, where each branch in the tree is labeled with a directive. Therefore,
trees are a natural representation for the elements of D]� ,

� , with elements of D]� at the
leaves and with directives as labels for the branches:

Definition 5.3.1. Representation of the elements of D]� ,
� .

The physical representation of the elements of D]� ,
� is defined by induction by:

dT ::= leaf[d] where d ∈ D]� (leaf D]� element)

| node[φ] where φ ∈ D → D]� ,
� (function mapping directives into D]� ,

� )

The use of this representation is exemplified in Example 5.3.1, after we define the
transfer functions.

Remark 5.3.1. Use of the part〈None〉 directive.

In some cases, we may have to represent an invariant dT , such that t ∈ tokensT 〈dT 〉
and (∂ :: t) ∈ tokensT 〈dT 〉 (for some token t and some directive ∂). Then, the above
definition does not provide a way to represent the invariant corresponding to t since t
is a prefix of ∂ :: t and Definition 5.3.1 does not allow for numerical invariants to be
assigned to nodes of the trees (numerical invariants correspond to leaves only).
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The part〈None〉 directive solves this problem: indeed, part〈None〉 :: t is equivalent to t ,
and a numerical invariant can be assigned to the leaf corresponding to part〈None〉 :: t .
Such configurations do not occur in the analysis; they may arise in the invariant export
(Section 5.1.3), when all local invariants corresponding to a control state l0 (possibly in
different contexts, e.g., for different function calls) should be represented together. In
particular the abstract join operator may generate part〈None〉 directives.

The transfer functions: The implementation of the transfer functions proceeds by
induction on the structure of the trees. Indeed, let us consider the three kinds of transfer
functions, which we introduced in Section 5.2.5 (in the following, we augment the names
of the transfer functions for the partitioning domain with the index � ):
• Abstract binary operators, e.g. join are defined by induction on the structure

of trees.
If the join of the set of paths in both trees contains two tokens t0, t1 such that t0 is
a strict prefix of t1, then t0 is replaced with part〈None〉 :: t0 so that the result can
be represented, as explained in Remark 5.3.1.
• “Usual” transfer functions: we consider the case of the guard � : � × � ×D]� ,

� →
D]� ,

� transfer function, which inputs a condition e ∈ � , a boolean b ∈ � , and an
abstract element d and outputs an over-approximation of the stores in d which
evaluate e into b (in the case of assignments, variable forget... are similar). The
definition of guard � is based on the function guard defined over D]� :

∀e ∈ � , ∀b ∈ � ,

{
guard � (e, b, leaf[d]) = leaf[guard (e, b, d)]

guard � (e, b, node[φ]) = node[∂p 7→ guard (e, b, φ(∂p))]

• Partition creation: the partition creation abstract transfer function generate :

D ×D]� ,
� → D]� ,

� inputs a partitioning directive ∂ and an abstract element d and
pushes the token ∂ on top of the tokens. Basically, it mimics the creation of a
partition triggered by the directive ∂, which amounts to adding a node on top of
each leaf in d, with a branch indexed by ∂ in between:

∀∂ ∈ D,

{
generate(∂, leaf[d]) = node[∂ 7→ leaf[d]]

generate(∂, node[φ]) = node[∂p 7→ generate(∂, φ(∂p))]

In practice, the partition generation function takes into account the names of the
partitions, so as to create only some partitions.
• Partition merge: the transfer function merge : P(D) ×D]� ,

� → D]� ,
� inputs D ⊆

D, d ∈ D]� ,
� ; it goes recursively through the tree representing d and removes all

occurrences of a directive in D. The implementation follows the following algorithm:

∀D ∈ P(D),





merge(D, leaf[d]) = leaf[d]
merge(D, node[φ]) = node[φ′]

where φ′ :

{
∂ 6∈ D 7→ merge(D,φ(∂))
part〈None〉 7→ ⊔{d at a leaf of φ(∂) | ∂ ∈ D}

Xavier Rival Traces Abstraction in Static Analysis and Program Transformation



5.3. IMPLEMENTATION AND EXPERIMENTAL EVALUATION 95

The directive part〈None〉 allows to fold together some branches leaving from a node.
In case all branches can be folded, then these directives can be safely removed from
trees:

node[{part〈None〉 7→ d0}]→ d0

Definition 5.3.1. Application to the partitioning of an if-statement.

We consider the program considered in Example 5.2.1, with the partitioning strategy dis-
played in Figure 5.5(b). We assume that the analysis starts with a single partition (i.e.,
only one ongoing token at point l0).
Figure 5.6 displays the partitions obtained when the analysis reaches each control state in
this program:
• statement s0 does not generate any new partition, so the layout of the abstract

element for l1 (Figure 5.6(a)) is the same as for l0 (Figure 5.6(b));
• the conditional causes a partitioning of the traces at l1, so two trees are created after

this point (yet, the partition corresponding to false is not created explicitly in the
true branch, since it would be empty), which are depicted in Figure 5.6(c) and Figure
5.6(d);
• the abstract join outputs a new abstract element, with two partitions corresponding

to both sides of the conditional at point l4 (Figure 5.6(e));
• the merge of partitions is performed after the analysis of s3, so that the tree in l5

consists in only a leaf (Figure 5.6(f)) at in l0.
As a shortcut, we write ∂t for part〈If , false, l1〉 and ∂f for part〈If , true, l1〉, and d for
any invariant in D]� . Dotted lines denote the partitions which are not generated, since
the analysis proves them empty.
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Figure 5.6: Application to the partitioning of an if -statement

5.3.2 Strategies for trace partitioning

Implementation of a partitioning strategy: As mentioned in Section 5.1.3, a pre-
processing phase generates hints for the abstract domains, including the partitioning do-
main. Such hints specify the cases where partitions might be helpful in order to compute
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tighter invariants. In the analysis phase, partitioning may or may not be performed at
these points, depending on the choice of the interpreter. Indeed, in case the pre-processing
phase recommends a partitioning guided by the values of a variable v and the analyzer in-
fers too large a range for v (i.e., the number of generated partitions would be prohibitive),
the analyzer will not perform the partitioning. Similarly, it will not create empty parti-
tions: for instance, in the case of a conditional statements which should be partitioned,
if the analysis proves the condition always evaluates to true, then, the partition corre-
sponding to the false branch will not be generated.

Strategies for generating “good” partitions: At the time we are writing this thesis,
the design of the partitioning strategies was mostly done by Laurent Mauborgne. We
enumerate a few cases where the current pre-processing phase suggests partitions to be
generated:
• sequences of conditional statements: partitioning the traces in the first if -statement

may greatly improve the precision in the following conditional statements, if the
condition of the second if -statement depends on the content of the branches of the
first one, or if its value depends on the value of the condition of the first if -statement.
• assignment to an integer variable i used as an array index: the partitioning guided

by the value of i generates some relations with the variables in the right hand side
of the assignment and may improve the precision of the subsequent array operation,
since distinct array cells are treated separately, in a refined environment. This
criterion causes the right partitions to be generated in the case of the interpolation
function with regular discretization of the input, which we presented in Section 5.2.2,
and Figure 5.3.
• small loops assigning an integer variable i used e.g., as an array index: the unrolling

of the loop allows for the same kind of relations to be computed as in the previous
point; hence, it results in the same opportunities for gains in precision. This criterion
triggers the generation of the right partitions in the case of the interpolation function
with indirection arrays, which we described in Section 5.2.2 and Figure 5.2.

5.3.3 Experimental results

This last subsection provides a few experimental data, which were collected when running
the analyzer on several families of programs described in Section 5.1.1.

Methodology for the benchmarks: The results below were obtained on 2 GHz Bi-
opteron machines, with 8 Gb of RAM (total) and 1 Mb of cache memory (per processor),
running Linux. All the analyses reported below used only one processor, despite Astrée

also features the ability of being ran in “parallel” mode.
The analyzer was ran on a series of programs, chosen among two families of embedded

codes, which we detail in the table below. Programs in family 1 (denoted with P 1
i ) are

older, and of smaller size than programs in family 2 (denoted with P 2
i ).
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Program Size Functions Variables
(LOCs) Global and static Local

int float int float

P 1
1 370 20 23 87 2 0

P 1
2 9 500 236 35 100 835 4 8

P 1
3 70 000 2 010 11 700 27 400 22 516

P 2
1 70 000 1 150 71 400 8 670 11 700 5 700

P 2
2 226 000 3 410 35 700 24 900 44 300 21 900

P 2
3 400 000 5 680 58 700 35 500 83 400 35 100

Partitioning strategy: The following table displays the results of the partitioning
strategy. We give the total number of conditional structures, and the number of partitioned
conditional structures. We provide similar information about the partitioning of loop
structures; however, only the internal loops are taken into account here (we recall that
a program in either families consists in a main loop, which contains most of the code).
Last, we mention the number of directives recommending a partitioning guided by the
values of a variable.

Program Size Conditional Loops Value-
based

(LOCs) partitioned total partitioned total partitioning

P 1
1 370 4 28 1 1 0

P 1
2 9 500 18 283 1 3 0

P 1
3 70 000 498 4617 3 5 112

P 2
1 70 000 300 2624 106 106 0

P 2
2 226 000 1805 9381 591 591 19

P 2
3 400 000 2802 17562 906 916 32

Overall, partitioning directives are inserted in the case of 10 % to 20 % of the conditional
structures and for almost all internal loops. The partitioning guided by the values of
variables tend to have less importance (much fewer directives inserted, and only in the
larger applications).

Analysis with partitioning enabled: In the following T.p.I. stands for “Time per
iteration”; it corresponds to the average time spent in one iteration of the main loop
of the program being analyzed. This time is roughly representative of the efficiency of
the transfer functions and of the precision of the abstract control flow. The number
of iterations assesses the efficiency of the convergence. The global time of the analysis
depends both on the efficiency of transfer functions and the speed of the convergence.

Times are written in seconds (s); amounts of memory in megabytes (Mb).
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The first benchmark displays the result of the analysis with the default settings: trace
partitioning is enabled and the directives are inserted by the automatic strategy, evoked
in Section 5.3.2.

Size Memory
peak (Mb)

Analysis
time (s)

Iterations T.p.I.
(s)

False
alarms

P 1
1 370 45 1.96 9 0.21 0

P 1
2 9 500 175 104 17 6.1 8

P 1
3 70 000 636 2 818 35 80.5 0

P 2
1 70 000 434 1 064 20 53.2 0

P 2
2 226 000 1 533 17 035 51 334 0

P 2
3 400 000 2 423 36 480 72 507 0

Global impact of partitioning: First, we compare the results of the analyses with
or without trace partitioning enabled: the table below displays the results without trace
partitioning. Note that the partitioning inherent in the function calls (function inlining)
is not affected by the disabling of trace partitioning: turning off partitioning removes the
partitioning relative to loop iterations, conditional and variables values only.

The number in parentheses allow to compare with the default, partitioning analyses.

Size Memory peak Analysis time Iterations, T.p.I. Alarms

P 1
1 370 45 (-) 1.55 (-21 %) 9, 0.17s 0 (0)

P 1
2 9 500 170 (- 3 %) 87 (- 17 %) 17, 5.1s 8 (8)

P 1
3 70 000 660 (+ 3 %) 1 614 (- 43 %) 35, 46.1s 750 (0)

P 2
1 70 000 376 (-13 %) 921 (- 13 %) 20, 46s 443 (0)

P 2
2 226 000 1 341 (- 12 %) 37 274 (+ 112 %) 282, 134s 5 402 (0)

P 2
3 400 000 2 040 (- 16 %) 34 147 ( - 6 %) 127, 269s 7 524 (0)

This first comparison shows the great impact of partitioning in most cases, and especially
in the case of the large applications, i.e., the programs which compare most closely with
real applications due to their size and structure. The first two programs are experimental
programs, which do not comprise all the features of the largest applications and involve
smaller chains of computations, so the trace partitioning does not impact the number of
alarms. Yet, the invariants are noticeably less precise, even in the case of the first example.
The analyses of larger, real-world applications generate dramatic number of alarms: trace
partitioning proves a crucial technique in Astrée.

Secondly, we remark that the execution time is not necessarily better when trace
partitioning is disabled. In particular, the analysis of the two largest programs require
a much larger number of iterations when trace partitioning is turned off: this effect was
most noticeable in the case of the second program in the second family (282 iterations
instead of 52!). In fact, a lower precision may result in a longer analysis time for many
reasons related to the exploration of a larger state space:
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• the widening of the analyzer attempts to stabilize variables, with a widening thresh-
old scale [BCC+03a]; therefore, if some variable cannot be stabilized to a small range
(for instance, because some property cannot be proved due to the trace partitioning
being turned off), it goes through a longer sequence of widened ranges (the analyzer
attempts to find a larger, stable range), before it eventually reaches the “top” value
(i.e., range containing all concrete values). This is an explanation for larger numbers
of iterations in the case of less precise analyses.
• the control flow of the static analysis need to be more exhaustive when the precision

is worse: for instance, in the case of a conditional, a less precise input invariant
may require the analysis of both branches of the conditional whereas a more pre-
cise invariant may require analyzing only one branch, hence, require less time to
complete.

Overall, we remark that the time per iteration is lower in the case of non-partitioning
analyses and the partitioning analyses tend to require a lower number of iterations How-
ever, it is difficult to say for sure what is the most important factor: we may guess that
only the first factor plays a significant role here (longer analyses due to longer widening
chains), however, we should remark that the non-partitioning transfer functions handle
much simpler data-structures; the latter factor may explain the shorter iterations.

Moreover, it is rather intuitive that one iteration of a partitioning analysis should
take longer than one iteration of a non-partitioning analysis; however, the cost in time
of trace partitioning (whether global analysis time or time per iteration) never turns out
prohibitive.

Last, we remark that partitioning analyses require more memory in most cases; this
result is to be expected, since partitioning analyses generate more data-structures and
handle more numerical invariants. Yet, this cost is rather reasonable, since it never goes
above 20 % (10 % average). This is mostly due to the fact that most partitioning criteria
are local: they do not yield to huge sets of global partitions, thanks to the insertion of
merge directives (Section 5.2.1).

In the following, we focus on several kinds of partitioning criteria and measure their
impact on the results of the analysis.

Impact of the partitioning of conditional structures: Second, we compare the
default, partitioning analysis with analyses carried out without some partitions. The table
below reports the result of the analysis without partitioning of conditional structures.

Size Memory peak Analysis time Iterations, T.p.I. Alarms

P 1
1 370 45 (-) 1.96 (-) 9, 0.17s 0 (-)

P 1
2 9 500 173 (- 1 %) 88 (- 15 %) 17, 5.2s 8 (-)

P 1
3 70 000 616 (- 3 %) 5 004 (+ 76 %) 32, 156s 398 (0)

P 2
1 70 000 467 (+ 8 %) 1 466 (+ 38 %) 20, 73.2s 389 (0)

P 2
2 226 000 1 680 (+ 10 %) 199 500 (+ 1071 %) 290, 688s 5 190 (0)

P 2
3 400 000 2 735 (+ 12 %) 187 773 (+ 415 %) 125, 1502s 5 542 (0)

Traces Abstraction in Static Analysis and Program Transformation Xavier Rival



100 CHAPTER 5. CONTROL-BASED PARTITIONING

The results in precision fall between the results of the partitioning analysis and the results
of the non-partitioning analysis. In the case of the largest applications, the number of
alarms is still dramatic.

In the resource usage point of view, these results are much worse than those of the non-
partitioning analysis and of the partitioning analysis. Not only the number of iterations
but also the time per iteration tend to be worse than those of the partitioning analysis
(despite simpler structures being used). At this point, we can imagine that not only the
disabling of the partitioning of if -statements caused the analyzer to go through longer
widening chains but also that it resulted in a coarser approximation of control flow.
Another possibility is that the imprecision due to the absence of partitioning after if -
statement may cause more imprecise partitions based on other criteria (loops, values of
variables) to be generated, resulting in worse performances.

Inner loops partitioning: The table below reports the result of the analysis without
partitioning of loops.

Size Memory peak Analysis time Iterations, T.p.I. Alarms

P 1
1 370 45 1.96 (-) 9, 0.21s 0 (-)

P 1
2 9 500 173 (-1 %) 85 (-18 %) 17, 5s 8 (-)

P 1
3 70 000 596 (- 6 %) 3 928 (+ 39 %) 63, 62.3s 529 (0)

P 2
1 70 000 391 (- 10 %) 12 319 (+1 058 %) 292, 42.2s 208 (0)

P 2
2 226 000 1 400 (- 9 %) 14 277 (- 16 %) 75, 190s 2 954 (0)

P 2
3 400 000 2 204 (- 9 %) 41 932 (+ 15 %) 115, 364s 4 017 (0)

Again, we remark that loop partitioning is crucial for the precision of the analyses in
the case of large applications, since the analysis of the four larger applications generate
hundreds or thousands of false alarms. The invariants generated for the other programs
are also significantly less precise (even though, the imprecision does not cause a larger
number of alarms).

In the analysis time point of view, the same comments as above apply: in general the
number of iterations is bigger, the time per iteration is smaller. In some cases (P 2

2 ), the
analysis is faster; in other cases (P 1

3 , P 2
1 , P 2

3 ) it is slower. We note that P 2
1 requires a very

large number of iterations.

Impact of value-guided partitioning:

Size Memory peak Analysis time Iterations, T.p.I. Alarms

P 1
1 370 45 (-) 1.58 (- 27 %) 9, 0.18s 0 (-)

P 1
2 9 500 173 (-) 82 (- 20 %) 17, 4.8s 8 (8)

P 1
3 70 000 682 (+ 7 %) 2 236 (+ 26 %) 33, 67.8s 563 (0)

P 2
1 70 000 438 (+ 1 %) 1 335 (+ 25 %) 20, 66.7s 4 (0)

P 2
2 226 000 1 550 (+ 1 %) 16 589 (- 3 %) 66, 251s 3 (0)

P 2
3 400 000 2 434 (-) 26 165 (- 28 %) 64, 409s 8 (0)

Xavier Rival Traces Abstraction in Static Analysis and Program Transformation



5.3. IMPLEMENTATION AND EXPERIMENTAL EVALUATION 101

The impact of partitioning guided by values is less significant than the impact of the
previous partitioning criteria, except in the case of the program P 1

3 (dramatic number of
alarms).

We report no very important difference in execution time. Yet, we note that the more
precise analysis of P 2

2 requires more iterations.
Overall, it turns out extremely difficult to explain all variations in resources required

by static analyses: no rule allows to predict the speed of an analysis; and, in practice,
too many factors play a role, even though one may be able to tell in some cases what the
most important ones are.

5.3.4 Related work

As a conclusion of this chapter about the implementation of trace partitioning in the
Astrée static analyzer, we provide some data about related work.

We can find several occurrences of refinements of the control structure in the literature
about data-flow analysis. For instance, [SP81] studied the most common approaches to
interprocedural analyses. A finer handling of paths in control flow graphs was proposed
in [HR80]: it proceeds by integrating some information about the paths in the edges of
the control flow graph, so as to allow for a finer approximation of the control flow to be
computed. In particular, this technique was used in order to infer sets of feasible paths,
so as to allow for more precise data-flow analyses. Similarly [BGS97] determines branch
correlations so as to detect incompatible branchings and cut down the approximation set
of feasible paths. Our approach not only performs intuitive abstractions of the paths, but
also takes the path into account dynamically during the analysis.

The qualified flow analysis technique was extended with path profiles [BL96] in [AL98]:
profiling data should determine a set of hot paths (i.e., more frequently taken); then,
these paths can be analyzed separately, with a higher precision (no path joins). Similarly,
the express lane transformation [MR03] aims at duplicating hot paths, so as to improve
precision. However, this approach does not apply in our case. First, profiling very large
applications with very large numbers of variables does not seem a realistic solution (at
least in the time point of view). Secondly, this approach analyzes all “non-hot paths”
together (i.e., with no partitioning), which would result in a low precision, with possibly
many alarms. Indeed, the precision required in the analysis of a path for proving it safe
is not related to how frequently it is used; therefore, our approach ignoring the frequency
of paths is more adapted to program certification.

A trace partitioning static analysis framework was proposed in [HT98]; however, this
framework does not allow for the merge of partitions. Therefore, it incurs an exponential
cost (in the number of if and while statements). Moreover, it does not allow for the
dynamic partitioning guided by the values of a variable.

Recently, a large number of path sensitive analyses were proposed and implemented
in various frameworks, such as [BR01, FLL+02] and contributed to the verification of
complex properties. However, path sensitivity is very costly in practice: we could not
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apply this technique to a single iteration of the main loop of either of the programs
considered in Section 5.3.3. An interesting solution to the cost of path sensitivity (yet,
not applicable in our case) proposed in [DLS02] relies on the encoding of the property of
interest into an automaton (finite state machine): the transitions in the automaton can
be used as criteria for partitioning the paths, and a heuristic is introduced so as to merge
paths as well.
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Chapter 6

Partitioning and Synchronous
Product

We propose a second instantiation for the trace partitioning framework, which we set up
in Chapter 4. The purpose of this instantiation is to partition traces according to an
abstraction of the history of program executions defined by a collection of “events”.

This approach should allow to discriminate traces which satisfy some conditions de-
fined from the history of program executions (such as: condition P was satisfied at point
l0 at the previous iteration in a loop and is violated at the current iteration) prove some
functional properties of programs.

We define a collecting semantics for expressing these properties in Section 6.1; then,
we set up a framework for defining generic abstractions of this collecting semantics in
Section 6.2, in order to derive some decidable approximation of it: Section 6.3 specializes
it with automata. Section 6.4 specializes it with numerical domains.

6.1 The Partitioning

6.1.1 Motivation for a new instantiation of the trace partition-
ing framework

We proposed a framework for partitioning traces in Chapter 4 and a first instantiation
of it in Chapter 5, so as to improve the precision of static analyzers (the approach was
integrated into Astrée and contributed to the precision and efficiency of the analyses).
The purpose of this chapter is to provide a second instantiation of the trace partitioning
framework.

We wish to use partitions of traces in order to:
• discriminate sets of executions satisfying certain properties, such as“some event

occurred an even number of times”or“some property occurs during the next iteration
of some loop”. These properties cannot be expressed by the instantiation of the
partitioning framework proposed in Chapter 5, yet they clearly amounts to partitions
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of the traces in the sense of Chapter 4. In particular, the constructions presented
in this Chapter will be thoroughly used in the definition of semantic slicing, which
we introduce in Chapter 7.
• integrate the properties of interest in the static analysis so as to let the

analyzer make more sensible abstractions, and allow the proof to succeed. This
goal was secondary, when we developed the abstractions mentioned in this chapter.
However, it seems that these abstraction could play a great role in the verification
of simple functional properties of programs by Astrée.

The trace partitioning framework of Chapter 4 is most adapted to the definition of
such a collecting semantics and of such abstractions.

The approach proposed in this chapter is related to the synchronous product of the
program to analyze with an adapted control structure: this method has been proposed
and widely used for the verification of synchronous programs [HLR93]. For instance,
[Jea03] carries out a partitioning of the boolean control structure of a product of Lustre
programs with their specification (implemented as a monitor), so as to check that the
programs abide by the specifications.

This method is most popular in model checking [EMCP02]; it allows to take the
property of interest to be taken into account during the model refinement phase and the
model checking phase.

The purpose of this chapter is two folds:

• we wish to integrate these methods into an existing analyzer; the definition of a
trace partitioning domain turns out an efficient solution towards that goal;
• we intend to set up a collecting semantics, which takes into account a broad family

of “monitors”; the choice of the monitor amounts to choosing an abstraction of sets
of tokens (moreover, this approach allows “abstract” monitors to be defined, hence,
allows for more flexibility in the analyses).

6.1.2 Language extension

We first extend the syntax of the simple language defined in Section 2.2 with a new
statement, called cnt. Intuitively, the cnt statements count the number of times they are
executed, and remember in which order.

First, we define the syntax and standard semantics of this new kind of statement, in the
same way as in Section 2.2.2; this standard semantics basically ignores the cnt statements.
Indeed, keeping track of the execution of cnt statements requires carrying some tokens in
the sense of Section 4.2, so that Section 6.1.3 defines a non standard semantics, so as to
keep track of the execution of the cnt statements; it will be based on extended systems.

Definition 6.1.1. cnt-statement.

The syntax of the cnt-statement is: l : cnt; l ′ : . . ..

The standard semantics of a cnt-statement is the same as the semantics of a skip state-
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ment. For instance, in the case of the statement l : cnt; l ′ : . . .

∀ρ ∈ � , (l , ρ)→ (l ′, ρ)

6.1.3 Semantic extension

As mentioned in Section 6.1.2, the semantics of the cnt-statement should keep track of
the number of times they are executed and in which order. This requires some extension
of the semantics to be defined, which amounts to choosing a suitable extended system, as
defined in Definition 4.2.2.

We assume that a program P is chosen. First, we define a set of extended tokens:

Definition 6.1.2. Tokens.

The set of directives is D = {∂l | l ∈ � }.
The set � of tokens is made of stacks of tokens, hence is generated by the following
grammar:

t(t ∈ � ) ::= ε (empty stack, initial partition)
| ∂l :: t where l ∈ � , t ∈ � (push, stack)

Intuitively, a directive corresponds to the control state of a cnt statement, and a token
collects the list of the cnt statements in the order they are executed in: ε stands for the
empty list (initial configuration); the token ∂l :: t is generated after running a l : cnt;
statement, from the configuration t . The following definition sets up the corresponding
extended transition system:

Definition 6.1.3. Extended system.

The transition relation of the extended system is defined by:
• for the counter statement l : cnt; l ′:

∀ρ ∈ � , t ∈ � , ((l , t), ρ)→ � ((l ′, ∂l :: t), ρ)

• for any other transition in the original system, if (l , ρ)→ (l ′, ρ′), then for any token
t ∈ � , ((l , t), ρ)→ � ((l ′, t), ρ′).

The initial states of the extended system is � i
� = (l i, ε).

We write P � for this extended system.

The following remark is straightforward:

Theorem 6.1.1. A complete partition.

The system P � is a τ -complete partition of the trivial extension Pε of the initial program
P , where τ : t 7→ tε.
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Proof.

The properties listed in Definition 4.2.2 can be established straightforwardly. Â

Definition 6.1.1. Infinite loop, with cnt-statement.

Let us consider the following infinite loop:

l0 : bool b;
l1 : while(true){
l2 : cnt;
l3 : input(b);
l4 : if(b){
l5 : cnt;
l6 : }
l7 : }
l8 : . . .

We give fragments of some traces of both programs in the table below (we show only
the control states, and abstract the stores away for the sake of concision); note that σi

stands for a trace of the initial system, whereas σ ′i denotes the corresponding trace in the
extended system:

initial program P extended system P �

σ1 = 〈l0, l1, l2, l3, l4, l7,
l1, l2, l3, l4, l7〉

σ′1 = 〈(l0, ε), (l1, ε), (l2, ε), (l3, ∂l2 :: ε), (l4, ∂l2 :: ε), (l7, ∂l2 :: ε),
(l1, ∂l2 :: ε), (l2, ∂l2 :: ε), (l3, ∂l2 :: ∂l2 :: ε),
(l4, ∂l2 :: ∂l2 :: ε), (l7, ∂l2 :: ∂l2 :: ε)〉

σ2 = 〈l0, l1, l2, l3, l4, l5,
l6, l7, l1, l2, l3,
l4, l7〉

σ′2 = 〈(l0, ε), (l1, ε), (l2, ε), (l3, ∂l2 :: ε), (l4, ∂l2 :: ε), (l5, ∂l2 :: ε),
(l6, ∂l5 :: ∂l2 :: ε), (l7, ∂l5 :: ∂l2 :: ε), (l1, ∂l5 :: ∂l2 :: ε),
(l2, ∂l5 :: ∂l2 :: ε), (l3, ∂l2 :: ∂l5 :: ∂l2 :: ε),
(l4, ∂l2 :: ∂l5 :: ∂l2 :: ε), (l7, ∂l2 :: ∂l5 :: ∂l2 :: ε)〉

σ3 = 〈l0, l1, l2, l3, l4, l7,
l1, l2, l3, l4, l5, l6〉

σ′3 = 〈(l0, ε), (l1, ε), (l2, ε), (l3, ∂l2 :: ε), (l4, ∂l2 :: ε), (l7, ∂l2 :: ε),
(l1, ∂l2 :: ε), (l2, ∂l2 :: ε), (l3, ∂l2 :: ∂l2 :: ε),
(l4, ∂l2 :: ∂l2 :: ε), (l5, ∂l2 :: ∂l2 :: ε),
(l6, ∂l5 :: ∂l2 :: ∂l2 :: ε)〉

These three examples show that the tokens retain the order and the control states corre-
sponding to the cnt statements which were executed:
• in the case of σ1, the branch of the conditional is taken neither in the first iteration

nor in the second: hence, ∂l5 does not appear in σ′1;
• in the case of σ2, the conditional is ran in the first iteration and not in the second:

hence, ∂l5 appears in σ′2 after the first occurrence of ∂l2 only;
• in the case of σ3, the conditional is ran in the second iteration only: hence, ∂l5

appears in σ′2 after the second occurrence of ∂l2 only.
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Clearly, the number of tokens which may appear in the semantics of the extended
system is infinite. However, the static analyses defined in Section 4.3 require the number
of tokens to be finite, or at least that only a finite number of tokens is generated during
the analysis. Therefore, we propose to design abstractions for these tokens defined as
sequences of directives.

6.2 Abstractions of the concrete extension

6.2.1 Abstractions of the extension

We introduce in this section an abstraction for the extended system presented in Section
6.1.3, which proceeds by abstracting the sets of tokens � introduced in Section 6.1.2.

Definition 6.2.1. Token abstraction.

A token abstraction is defined by a set � ] and a function γ � : � ] → P( � ). A element of
� ] is called an abstract token; the function γ � is called token concretization.

A token forget relation can be defined from γ � , in the like of⇒ �
τ in Remark 4.2.1. We

write (⇒γ � ) ⊆ ( � × t ]) for this relation; it is defined by:

∀t ] ∈ � ], ∀t ∈ � , (t ⇒γ � t ]) ⇐⇒ (t ∈ γ � (t ]))

In case the abstract tokens form a partition of P( � ), then, for all t ∈ � there exists a
unique t ] ∈ � ] such that t ∈ γ � (t ]) so the relation ⇒γ � can be turned into a function.

Given an abstraction for tokens, we can design an abstract extended system as follows:

Definition 6.2.2. Abstract extended system.

An abstract extended system is an extended system P � ] = ( � � ] ,
�

i
� ] ,→ � ]) using abstract

tokens and such that P � ] is a ⇒γ � -covering of P � , in the sense of Remark 4.2.1:
• ∀s ∈ �

i
� , ∃s ′ ∈ �

i
� ], s ′ ⇒γ � s;

• ∀s0, s1 ∈ � � , s ′0 ∈ � ], (s0 ⇒γ � s ′0 ∧ s0 → � s1) =⇒ ∃s1,

{
s1 ⇒γ � s ′1
s ′0 → � ] s ′1

Clearly, the abstract extended system can be systematically derived from the extended
system P � and from the definition ( � ], γ � ) of the token abstraction. As noted above,
in case � ] forms a partition of P( � ), ⇒γ � can be turned into a function, so that the
above definition can be based on the standard notion of covering, defined by a function
(Definition 4.2.2).

Overall, our approach proceeds by a two steps extension of the original system, as
depicted in the diagram below:

1. extension of P into the complete partition P � , so as to define the non-standard
semantics;
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2. choice of an abstraction of P � , defined by an abstraction ( � ], γ � ) of � , so as to
abstract the non-standard semantics.

P � ]
1

P
non standard semantics

- P �
� ]

2

-

� ]
1

-

P � ]
2

. . .
-

Theorem 6.2.1. Abstract extended systems as coverings.

An abstract extended system P � ] is a covering of the initial system P , with respect to
the trivial projection function.

Proof.

The transitivity result in Theorem 4.2.5 applies. Â
We now present an abstraction of the extended system defined in Example 6.1.1:

Definition 6.2.1. Abstraction.

We write occurencesL∂ ∈ tM for the number of occurrences of ∂ in t .
We propose a very simple abstraction of tokens, with two abstract values:
• t ]

= stands for the tokens where the number of occurrences of ∂l2 is the same as the
number of ∂l5;
• t ]

< stands for the tokens where the number of occurrences of ∂l5 is smaller than the
number of ∂l2 (t ]

> is defined similarly).
Formally,

γ � : t ]
< 7→ {t | occurencesL∂l5 ∈ tM < occurencesL∂l2 ∈ tM}

t ]
= 7→ {t | occurencesL∂l5 ∈ tM = occurencesL∂l2 ∈ tM}

t ]
> 7→ {t | occurencesL∂l5 ∈ tM > occurencesL∂l2 ∈ tM}

Basically, the elements in the partition corresponding to the token t ]
= are such that the

true branch in the conditional is always taken, whatever the iteration number.
Then, the abstract extended system is defined by:
• in the beginning, the number of the execution, occurencesL∂l2 ∈ tM = occurencesL∂l5 ∈

tM, since t = tε in the beginning of the execution (neither ∂l2 nor ∂l5 have been en-
countered yet);
• the transitions related to the statement l5 : cnt; l6 are the following:

∀ρ ∈ � ,





((l5, t ]
<), ρ) → � ] ((l6, t ]

<), ρ)

((l5, t ]
<), ρ) → � ] ((l6, t ]

=), ρ)

((l5, t ]
=), ρ) → � ] ((l6, t ]

>), ρ)

((l5, t ]
>), ρ) → � ] ((l6, t ]

>), ρ)
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The transitions defined by the other cnt statement are similar. The other transitions
can be derived straightforwardly from the standard semantics (Section 2.2.2).

We can note that the abstract tokens form a partition of the set of concrete tokens, so
that the abstract extended system is a covering of P � defined by a function instead of a
mere relation ⇒γ � .

6.2.2 Design of the interpreter

We now propose to extend the abstract interpreter defined in Section 3.2.5.

Abstract operations: The definition of such an interpreter requires � ] to provide an
initial abstract token and an abstract counterpart for the operation which adds a directive
on top of a token.

Definition 6.2.3. Abstract initial token.

An abstract initial token is an element t ]
ε ∈ � ] such that ε ∈ γ � (t ]

ε ).

Definition 6.2.4. Abstract push operation.

An abstract push operation is a function push : � ] ×D → P( � ]), such that:

∀t ]
0 ∈ � ], ∂ ∈ D, t ∈ γ � (t ]

0), ∃t ]
1 ∈ push(t ]

0, ∂), (∂ :: t) ∈ γ � (t ]
1)

We exemplify the above definitions in the case of Example 6.2.1:

Definition 6.2.2. Abstract initial token and push operation.

We let:

• t ]
ε = t ]

= be the abstract initial token;
• push be defined by:

push : (t ]
<, ∂l2) 7→ {t ]

<}
(t ]

<, ∂l5) 7→ {t ]
<, t ]

=}
(t ]

=, ∂l2) 7→ {t ]
<}

(t ]
=, ∂l5) 7→ {t ]

>}
(t ]

>, ∂l2) 7→ {t ]
>, t ]

=}
(t ]

>, ∂l5) 7→ {t ]
>}
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Partitioning, forward abstract interpreter: In the same way as in Section 3.2.5,
Section 4.3.4 and Section 5.2.4, we define an abstract interpreter in denotational style, by
induction on the syntax of programs. The abstract interpretation of a statement s should
be defined as usual by a function JsK] : D]� ,

� → D]� ,
� , satisfying the usual soundness

condition that it approximates the behavior of the statement.
We treat the case of a few statements:
• the most interesting case is of the cnt-statement, which should recompute partitions,

by applying the push function to abstract tokens:

Jl : cntK] : d 7→ λ(t ]
0 ∈ � ]) ·

⊔
{d(t ]

1) | t ]
0 ∈ push(t ]

1, ∂l )}

• the case of the other statements is rather straightforward, since they do not affect
the abstract partitions; for instance, in the case of the assignment:

Jx := eK] : d 7→ λ(t ] ∈ � ]) · assign(x, e, d(t ]))

Basically, the semantics of other statements proceeds by a pointwise extension of
the abstract operations defined in D]� .

An abstract join operator in D]� ,
� can also be defined by extending pointwisely the stan-

dard operator. In case the domain � ] is infinite, a widening operator can be defined for
D]� ,

� in the same way.
The resulting analysis is sound, in the sense of Theorem 4.3.3, since the abstract

interpreter satisfies the assumption in Definition 4.3.8.

Partitioning, backward interpreter: The extension of the backward abstract inter-
preters defined in Section 3.1.2 and Section 3.3.2 is similar. The only difference is that
the abstract transfer function for the cnt-statement should be based on a counterpart for
the removal of directives from the top of tokens:

Definition 6.2.5. Abstract pop operation.

An abstract push operation is a function pop : � ] ×D → P( � ]), such that:

∀t ]
0 ∈ � ], ∂ ∈ D, (∂ :: t) ∈ γ � (t ]

0), ∃t ]
1 ∈ pop(t ]

0, ∂), t ∈ γ � (t ]
1)

This operator corresponds to the converse of push .

Implementation of the partitioning domain: We implemented a generic domain
for this form of trace partitioning in Astrée, i.e. a layer (below the control-based trace
partitioning described in Chapter 5: an abstract value consists in a control-based partition
of partitions based on the cnt-statements of abstract elements in D]� ) which inputs the
abstraction � ], γ � as a parameter. It currently works only for finite abstractions, which
are specified by automata chosen by the user, as explained in Section 6.3.
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Possible extension with dynamic partitioning: At the time of the writing, dynamic
partitioning was not implemented, since it has not turned out necessary yet. In fact, the
partitioning domain is largely related to the nature of the properties we wish to express,
e.g. in semantic slicing .(introduced in Chapter 7), so that we do not expect the choice
of the partitions to come out of the analysis.

However, the approach presented in this Section could be extended into a dynamic
partitioning by:
• fixing a hierarchy of token abstractions for P � ;
• choosing an initial abstraction (for instance, the trivial extension of P , i.e. the

abstraction mapping any token t ∈ � into tε);
• defining an abstract semantics for the cnt-statement which may refine token ab-

straction, e.g. by creating new abstract tokens;
• implementing a widening operator, which should enforce the termination of the

token abstraction refinement process.
In the following of this chapter, we provide several instantiations for the abstract

domain � ]. Despite dynamic partitioning has not been implemented yet, we propose
some domains, which may lead to powerful analyses, even though the design of adapted
widening operators appears like a major issue.

6.3 Automata as Abstractions

6.3.1 Languages and automata

In this section, we propose to do a simple restriction: we assume that � is finite; hence, it
is naturally equivalent to an automaton. As a consequence, the partitioning of the traces
is based on the state reached in a finite automaton, by reading the word corresponding
to the token defined in Definition 6.1.2.

Before we state the abstractions, we fix some notations. For a comprehensive intro-
duction to automata, we refer the reader to [Knu62].

We write � for a set of states; an automaton defines a transition relation over a subset
of � , indexed with directives in D:

Definition 6.3.1. Automaton.

An automaton A is a triple ( � A, qi
A,ÃA), where:

• � A ⊆ � is a finite set of states;
• qi

A is the initial state;
• (ÃA) ⊆ � A ×D × � A is the transition relation.

In case (q, ∂, q′) ∈ (ÃA), we also write q
∂
ÃA q′.

Moreover, we use the standard graphical representation for automata. We write � for
the set of finite automata over the set of directives.
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Definition 6.3.2. Semantics of an automaton.

Let A be an automaton ( � A, qi
A,ÃA). Each state q of A recognizes a language L[q] ⊆ � ,

defined by induction by the following rules (this definition is equivalent to a least fixpoint
definition):
• ε ∈ L[qi

A];

• if t ∈ L[q] and q
∂
ÃA q′, then (∂ :: t) ∈ L[q′].

We say that an automaton is adequate if it satisfies the following property:

∀q ∈ � A, ∂ ∈ D, ∃q′ ∈ � A, q
∂
ÃA q′

Intuitively, an adequate automaton should have “enough transitions” so that there is no
blocking configuration; as a consequence, any concrete token can be represented: ∀t ∈
� , ∃q ∈ � A, t ∈ L[q].

6.3.2 Abstraction based on automata

The abstraction: Clearly, an adequate finite automaton provides exactly the structure
required for a finite token abstraction (Section 6.2.1) and an abstract interpreter (Section
6.2.2) to be defined, as stated in the following theorem, which also defines the automata-
based abstraction:

Theorem 6.3.1. Automata-based abstraction.

Let A be an adequate automaton. Then, the following set-up defines a valid token
abstraction:
• � ] = � A;
• γ � : (q ∈ � A) 7→ L[q];
• t ]

ε = qi
A;

• push : ((q, ∂) ∈ � A ×D) 7→ {q′ ∈ � A | q ∂
ÃA q′}.

We write P � A � for the abstract extended system resulting from the application of the
abstraction defined by A to the extended system P � .
Proof.

The above elements straightforwardly define an abstract extended system in the sense of
Definition 6.2.2. Â

Issues about a dynamic partitioning domain: The extension of this family of static
abstractions into a dynamic partitioning abstraction would require a widening operator
to be defined on the set � of finite automata and also a dynamic process to refine the
structure during the analysis.

One the most promising approaches to the first problem consists in tree schemata
[Mau00]. Tree schemata are designed so as to represent possibly infinite sets of trees;
moreover, they and can be extended with counters [Mau99, §5], which could be used as
the basis for defining widening operators on abstractions for sets of trees.
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6.3.3 Examples

We now give a few examples of abstractions based on automata.

Control-based partitioning: Some cases of control-based partitioning described in
Section 5.2.1 can be handled with the partitioning based on automata approach, as shown
in the two following examples:

Definition 6.3.1. Loop unrolling.

Let us consider the program below:

l0 : while(b){
l1 : cnt;
l2 : . . .
l3 : }

Then, the abstraction defined by the automaton below allows to perform a loop unrolling
of the first two iterations:

q0 q1 q2
∂l1 ∂l1

∂l1

Indeed, q0 stands for the traces which did not enter the loop; q1 stands for the traces which
entered the loop body exactly once; q2 stands for the traces which went through point l1
at least twice (i.e., after two or more iterations in the loop). Therefore, the abstraction
based on this automaton is adapted to the partitioning of the first iteration of the loop in
the program.

Definition 6.3.2. Conditional partitioning.

Let us consider the program below:

l0 : s0;
l1 : if(c){
l2 : cnt;
l3 : s1

}else{
l4 : cnt;
l5 : s2}
l6 : s3;

Then, the partitioning of the traces by the branch of the if-statement they went through
can be simulated by a partitioning based on the automaton below:
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q0

q1 q2

∂l2

∂l3

Indeed, q1 (resp. q2) should collect the traces which entered into the true (resp. false)
branch of the conditional.

However, the abstraction presented in Section 6.3.2 does not implement the dynamic
partitioning strategies, which we designed in Section 5.2; in particular it is not adapted
to the analysis of value-based partitioning. Moreover, the data-structures described in
Section 5.3 allow for more efficient algorithms.

Discriminating traces: Therefore, we propose now a series of abstractions, which allow
to discriminate sets of traces achieving various properties. In this paragraph, we elaborate
on the theme of the simple loop of Example 6.3.1:

l0 : while(b){
l1 : cnt;
l2 : . . .
l3 : }

Definition 6.3.3. Iterations parity.

The automaton below allows to partition the traces with the parity of the number of
iterations in the loop as a criterion:

qe qo

∂l1

∂l1

Clearly, qe (resp. qo) abstracts the executions which went through l1 an even (resp. odd)
number of times. This automaton is adequate to analyze the program displayed in Figure
4.1(b).
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Definition 6.3.4. Last iterations.

The automaton below allows to partition the traces so that the last two iterations are
distinguished.

q0 q1 q2

lc

∂lc ∂lc

This is particularly useful in order to analyze the behavior of a program under the as-
sumption that some even occurs in the last iteration, and to infer that some other property
holds in the previous iteration(s). Semantic slicing (Chapter 7) will exploit this kind of
abstractions, so as to characterize the states in the last iterations before some event occurs
(e.g., an error).

More complex properties: Now, we come back to the example with two counter
statements, which was presented in Example 6.1.1. More precisely, we envisage a program
derived from the code in Example 6.1.1 and attempt to prove some property about it.

First, we formalize the abstraction introduced in Example 6.2.1:

Definition 6.3.5. Back to Example 6.2.1.

We let A be the automaton depicted in Figure 6.1(a). Then, this automaton defines the

t ]
< t ]

= t ]
>

∂l5

∂l2

∂l5

∂l2

∂l2 , ∂l5 ∂l2 , ∂l5

(a) Initial abstraction

t ]
< t ]

=

∂l5

∂l2

∂l2 , ∂l5

(b) Simplified automaton

Figure 6.1: Abstractions as automata

same abstraction as we described in Example 6.2.1 and Example 6.2.2.
Basically, a simple reachability analysis would prove that the state t ]

> is useless: the
statement l2 : cnt is executed at least as often as l5 : cnt. Therefore, we could use a
more simple automaton as well, with only two states t ]

<, t ]
=, despite it is not adequate;

this automaton is displayed in Figure 6.1(b) (it can be used in the analysis since the token
t ]
> simply is not generated during the analysis).

A simple program, with the same structure is displayed in Figure 6.2. This program
contains two counters (which we assume to have natural integer values): i is incremented
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whenever l2 : cnt is executed; j is incremented whenever l5 : cnt is executed (in the
beginning, both counters are equal to 0). Our purpose is to provide an instantiation
automaton to the generic partitioning abstract interpreter defined in Section 6.2.2, so as
to prove the property:

i = j at point l1 =⇒ b is always true

l0 : bool b;
int i, j = 0;

l1 : while(true){
l2 : cnt;

i = i + 1;
l3 : input(b);
l4 : if(b){
l5 : cnt;

j = j + 1;
l6 : }
l7 : }
l8 : . . .

(a) Program

{
i = j at point l1

=⇒ b is always true
or equivalently:{

i = j at point l1
=⇒ ∂l5 = ∂l2

(b) Property

t ]
< t ]

=

∂l5

∂l2

∂l2 , ∂l5

(c) Initial abstraction

t ]
<−1 t ]

=−1 t ]
=

∂l5

∂l2

∂l5

∂l2

∂l2 , ∂l5

(d) Successful abstraction

Figure 6.2: Two counters

Definition 6.3.6. Failed partitioning analysis.

We first attempt to prove it using the automaton proposed in Example 6.3.5, after sim-
plification (Figure 6.2(c)).
We assume that the analysis resorts to the octagon abstract domain [Min01]; in fact
we mostly care about the range for i − j. We assume that the analyzer uses the trivial
iteration strategy, i.e. it computes a local invariant for li+1 after an invariant is found
for li except for the loop: after an invariant is found for l7, it re-computes an invariant
for l1. Stabilization should be observed at the loop head l1. Last we assume that the
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first iterations use the t operator (so that delaying widening would not improve the final
invariant).
The table below displays the most significant first steps in the analysis (note that local
invariants are functions from tokens into numerical invariants):

Point Invariant

l1

{
t ]
= 7→ i− j = 0

t ]
< 7→ ⊥ initialization

l3

{
t ]
= 7→ ⊥

t ]
< 7→ i− j = 1

first iteration in the loop

l6

{
t ]
= 7→ i− j = 0

t ]
< 7→ i− j = 1

l7

{
t ]
= 7→ i− j = 0

t ]
< 7→ i− j = 1

l1

{
t ]
= 7→ i− j = 0

t ]
< 7→ i− j ∈ [0, 1]

abstract join

l3

{
t ]
= 7→ ⊥

t ]
< 7→ i− j = 1

second iteration in the loop

l6

{
t ]
= 7→ i− j ∈ [0, 1]

t ]
< 7→ i− j ∈ [0, 1]

l7

{
t ]
= 7→ i− j ∈ [0, 1]

t ]
< 7→ i− j ∈ [0, 2]

l1

{
t ]
= 7→ i− j ∈ [0, 1]

t ]
< 7→ i− j ∈ [0, 2]

union, property lost

l1

{
t ]
= 7→ i− j ≥ 0

t ]
< 7→ i− j ≥ 0

widening, and stabilization

l3

{
t ]
= 7→ ⊥

t ]
< 7→ i− j ≥ 1

stable, final invariant

l6

{
t ]
= 7→ i− j ≥ 0

t ]
< 7→ i− j ≥ 0

stable, final invariant

l7

{
t ]
= 7→ i− j ≥ 0

t ]
< 7→ i− j ≥ 0

stable, final invariant

Clearly, the analysis fails to prove the property of interest, from the beginning of the third
iteration in the loop. The reason for this failure is that all traces of the program ending
in point l3 are in the partition corresponding to t ]

<; from this point, the analysis does not
distinguish a trace such that b is always true (i.e., which always went through the true
branch of the conditional) and a trace such that b is not always true (e.g., not in the first
iteration).
Therefore, another abstraction should be considered.
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Definition 6.3.7. Successful partitioning analysis.

We propose a new abstraction so as to distinguish the traces such that b has always been
true but the conditional has not been ran in the last iterations and the traces which do
not enjoy that property. The corresponding automaton is depicted on Figure 6.2(d); note
that the state t ]

< is split into two states t ]
=−1 and t ]

<−1, with the following concretizations:

γ � : t ]
=−1 7→ {t | occurencesL∂l5 ∈ tM = occurencesL∂l2 ∈ tM− 1}

t ]
<−1 7→ {t | occurencesL∂l5 ∈ tM < occurencesL∂l2 ∈ tM− 1}

We sketch the analysis in the table below:
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Point Invariant

l1





t ]
= 7→ i− j = 0

t ]
=−1 7→ ⊥

t ]
<−1 7→ ⊥

initialization

l3





t ]
= 7→ ⊥

t ]
=−1 7→ i− j = 1

t ]
<−1 7→ ⊥

first iteration in the loop

l6





t ]
= 7→ i− j = 0

t ]
=−1 7→ ⊥

t ]
<−1 7→ ⊥

l7





t ]
= 7→ i− j = 0

t ]
=−1 7→ i− j = 1

t ]
<−1 7→ ⊥

l1





t ]
= 7→ i− j = 0

t ]
=−1 7→ i− j = 1

t ]
<−1 7→ ⊥

union, second abstract iteration

l3





t ]
= 7→ ⊥

t ]
=−1 7→ i− j = 1

t ]
<−1 7→ i− j = 2

l6





t ]
= 7→ i− j = 0

t ]
=−1 7→ i− j = 1

t ]
<−1 7→ i− j = 1

l7





t ]
= 7→ i− j = 0

t ]
=−1 7→ i− j = 1

t ]
<−1 7→ i− j ∈ [1, 2]

end of the second iteration

l1





t ]
= 7→ i− j = 0

t ]
=−1 7→ i− j = 1

t ]
<−1 7→ i− j ∈ [1, 2]

union, beginning of the third iteration

. . . . . .

l1





t ]
= 7→ i− j = 0

t ]
=−1 7→ i− j ∈ [1, 2]

t ]
<−1 7→ i− j ∈ [1, 3]

union, beginning of the fourth iteration

The invariant would stabilize if we apply widening right after this point. After stabiliza-
tion, we get the following invariant:
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l1





t ]
= 7→ i− j = 0

t ]
=−1 7→ i− j ≥ 1

t ]
<−1 7→ i− j ≥ 1

loop invariant

l3





t ]
= 7→ ⊥

t ]
=−1 7→ i− j = 1

t ]
<−1 7→ i− j ≥ 2

l6





t ]
= 7→ i− j = 0

t ]
=−1 7→ i− j ≥ 1

t ]
<−1 7→ i− j ≥ 1

l7





t ]
= 7→ i− j = 0

t ]
=−1 7→ i− j ≥ 1

t ]
<−1 7→ i− j ≥ 1

Obviously, the property of interest is proved, since at l1, for t ]
=, i = j.

The above example shows how the trace partitioning proposed in this chapter can be
helpful in proving user properties. The same kind of technique will also be most useful in
the case of semantic slicing, introduced in Chapter 7.

6.4 Numeric Abstractions

6.4.1 Parikh abstraction

We propose a second family of abstractions, which is based on the number of occurrences of
each directive in a token. More precisely, if we let p denote the number of cnt-statements
in the program, each abstraction is defined by a numeric abstractions for sets of vectors
of

�
p, where a vector collects the number of times each directive was encountered.

The first step consists in the Parikh vector [Par66] abstraction:

Definition 6.4.1. Parikh abstraction.

We let � ]
P = P(D → �

) be the Parikh abstraction domain, with the pointwise ordering.
The abstraction function γ � P : � ]

P → P( � ) is defined by:

γ � P : Φ 7→ {∂l0 :: . . . :: ∂ln | ∃φ ∈ Φ, ∀∂ ∈ D, Card((){i ∈ � | ∂li = ∂) = φ(∂)}

Moreover, we define:
• the abstract initial token t ]

εP = {λ(∂ ∈ D) · 0;
• the abstract push operation push

P
: � ]

P ×D → � ]
P defined by:

push
P

: ({φ}, ∂) 7→
{

λ(∂′ ∈ D) ·
{

φ(∂) + 1 if ∂ = ∂ ′

φ(∂′) otherwise

}

(Φ, ∂) 7→ {push
P
(φ, ∂) | φ ∈ Φ}
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The Parikh abstraction maps any token t into a function which associates to any
directive ∂ the number of times it appears in t . The initial token t ]

εP maps any directive to 0
(the abstract initial token contains no directive). The abstract push operation increments
by one the image of the token pushed in the Parikh abstraction (which corresponds to the
action of a concrete token push).

This set up straightforwardly defines an abstract extended system in the sense of
Definition 6.2.2.

6.4.2 Composing numerical abstractions

Definition: The second steps consists in applying a numerical abstraction to the sets
of vectors (Definition 6.4.1).

Definition 6.4.2. Vector abstraction.

Let D]� be a numeric domain, for representing sets of functions from ∂ to integer values.

Such an abstraction trivially composes with the Parikh abstraction. In particular,
• the initial token should be an abstract value approximating t ]

εP;
• the abstract push operation derives from the common assign operator.

Examples of abstractions: Various numerical abstractions can be used as a vector
abstraction:
• k-Limiting, which amounts to replacing any value larger than some integer k with
> in the Parikh vectors (so that we ge a finite domain);
• Congruences, so as to express, e.g., cyclic behaviors, properties on counters, cyclic

buffers (like buffers stored in arrays).
• Affine equalities (Karr), so as to express that the number of times two events hap-

pened are equal up to some constant;
• Difference bound matrices, so as to express that the number of times event e1 hap-

pened is smaller than the number of times event e2 happened plus some constant;
At the time of the writing of this thesis, we found only k-limiting and congruences ab-
straction useful. These abstractions were used in semantic slicing (Chapter 7).

Remark 6.4.1. Widening operators.

If we use an infinite numeric domain to abstract Parikh vectors, a widening operator is
needed so as to ensure the convergence of the iteration (Definition 4.3.6). Note that this
operator apply to partitions, i.e. to elements of P(D]� ). As a consequence, the definition
of widening operators for such domains is a non-trivial issue.
At this time, we have not implemented such a domain yet, so this is a major area for
future work.
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Comparison with the “automaton-based abstraction”: We proposed two families
of domains. The first one involves automata, and is adapted for the case of finite, known
in advance abstractions. In particular, it allows to express properties about the order the
events occur in. On the other hand, the extension into a dynamic partitioning seems a
rather tedious issue, which should require completely new domains to be defined.

The second one is purely based on numerical abstractions; it forgets everything about
the order the event occur in. A finite numerical abstraction may be reduced into an
automaton as well; however, the advantage with the numerical approach is that only
the tokens which are needed are created at analysis time, since this approach creates
abstract tokens dynamically (whereas the automata should be completely defined before
the analysis starts).

Overall, both families of domains are rather complementary, so that it seems interesting
to implement an equivalent for the reduced product (Definition 3.1.1), in the case of token
abstractions.
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Chapter 7

Semantic Slicing

Static analyzers like Astrée [BCC+02, BCC+03a] are sound but incomplete: the results
of an analysis are provably sound, but the analysis mail fail to establish true properties.
The alarms produced by a static analyzer are a major issue for end-users, since an alarm
may result either from a true error or from an imprecision of the analysis.

We propose to extract semantic slices, i.e. to characterize a subset of the trace seman-
tics of a program with abstract invariants, so as to provide a better view of the concrete
context of an alarm raised by a static analyzer. Semantic slices can be used either to
prove an alarm false or to design and check real error scenarios.

We proposed this framework in [Riv05b].
We detail the motivations for semantic slicing in Section 7.1. We describe semantic

slicing criteria in Section 7.2. Then, we provide algorithms for the extraction of semantic
slices in Section 7.3. We conclude in Section 7.4 with examples, early results in the
implementation of our technique in the Astrée analyzer and comparisons with other
techniques.

7.1 Why to Extract Semantic Slices ?

7.1.1 Incompleteness of static analysis: alarms and errors

In this chapter, we consider static analyses that aim at proving the absence of runtime
errors such as Astrée ; yet, our algorithms could apply to other safety analyses as well.
The most favorable result of a static analysis is the success of the proof that the analyzed
program is safe, i.e. that it causes no a runtime error whatever the inputs. However,
buggy programs exist, so one may expect errors to be found by static analyzers.

However, static analyzers usually are not complete: analyzers like Astrée cannot
compute the most precise invariant for any program, due to the imprecision inherent in
the abstraction, in the abstract operations, in the join and in the widening. In particular,
they may fail to prove a program safe, despite the fact that it is not dangerous, due to
excessively imprecise invariants. In this case, the analyzer will also report an alarm.
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As a consequence, alarms are a major issue for end-users. Indeed, an alarm reported
by the analyzer means that the program may be unsafe but does not prove that it is
indeed unsafe; therefore, the user needs to tell the “true” alarms from the “false” alarms,
in order to decide whether to fix the program or to consider it safe. Figure 7.1 presents
three examples of programs causing an analyzer to raise an alarm.

• Let us consider the code in Figure 7.1(a); in particular, we focus on the assertion in
the end of the program. This program is safe, since |x| > 10 ⇒ (x < −10 ∨ 10 <
x). Not all analyzers would infer this property. Indeed, proving the safety of the
assertion at l8 requires carrying out a relation among boolean and integer variables.
For instance, Astrée handles such relations, but may not infer any relation between
b, x, y, in case the relation packing strategy mentioned in Section 5.1.3 chooses not
to include these variables in a same pack; in this case, the assertion at l8 would not
be proved correct and the analyzer would raise an alarm. A very simple tuning of
the packing strategy would solve the alarm; yet, a user may need some help from
the analyzer before proposing the right hint, especially if non specialist in static
analysis. We would also expect a refining analysis to help proving the safety of this
program.
• The program displayed in Figure 7.1(b) is not safe. Indeed, if the input at l4 is

negative, then the assertion at l5 fails in the next iteration. Obviously, an analyzer
like Astrée would report an alarm in such a case; yet, a non-experienced user may
need some more precise information in order to understand the problem and fix the
program. In particular, an error scenario would be particularly helpful in order to
understand the origin of the failure.
• For the sake of the example, we assume that machine integer values are mathematical

integers (no overflows). Then, the program presented in Figure 7.1(c) is safe, since
it is well known that ∀x, y, z ∈ �

, ∀n ≥ 3, xn = yn + zn =⇒ x = y = z = 0
(Fermat’s theorem, proved in [Wil95]). However, the proof for this property is far
beyond the abilities of any static analyzer at the time we write this thesis: the proof
basically required more than 300 years of research since the theorem was stated for
the first time; and it does not seem feasible to automatize such a process (note that
there exist simpler proofs for small values of n, but proving the program safe would
require proving the property for any integer n, so it amounts to proving Fermat’s
theorem). Therefore, any analyzer like Astrée would fail on this example, because
the abstract domain would be limited to a set of properties and logical formulas
which does not allow expressing a proof of the mathematical theorem involved. As
a consequence, we do not intend to provide a verification of any safe program.

The above series of examples shows two cases we intend to improve the analysis of: in the
case of Figure 7.1(a), we expect to refine an analysis and show the safety of the program;
in the case of Figure 7.1(b), we expect an example of error; finally, the case of Figure
7.1(c) is particularly involved and is not addressed in this thesis.
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l0 : float x, y; bool b;
l1 : input(x);
l2 : if(x > 0){
l3 : y = x;
l4 : }else{
l5 : y = −x;
l6 : }
l7 : b = (y > 10);
l8 : assert(b⇒ (x < −10 ∨ 10 < x));

(a) False alarm (absolute value)

l0 : int x, y;
l1 : x = 1;
l2 : y = 1;
l3 : while(true){
l4 : input(x);
l5 : assert(y > 0);
l6 : y = x;
l7 : }

(b) True error

l0 : int x, y, z, n;
l1 : input(x);
l2 : input(y);
l3 : input(z);
l4 : input(n);
l4 : if(n ≥ 3 ∧ x > 0

∧y > 0 ∧ z > 0){
l5 : assert(xn 6= yn + zn);
l6 : }

We assume machine integers are not bounded
(no modular arithmetics; � =

�
)

Mathematical property:
∀(x, y, z) ∈ � 3,
(∃n ∈ �

, n ≥ 3 ∧ xn = yn + zn)
=⇒ x = 0 ∨ y = 0 ∨ z = 0

(c) Verification requiring a very complicated theorem

Figure 7.1: Cases of alarms

7.1.2 Semantic slices

Our goal is to provide some support in the alarm investigation process. We propose
resorting to automatic, sound static analysis techniques so as to refine an initial static
analysis into an approximation of a subset of traces that actually lead to an error (aka,
set of erroneous traces).

In particular, if we consider the case of a safe program, such as the piece of code
presented in Figure 7.1(a), the set E of erroneous traces is empty. The alarm follows
from the failure of the analyzer to prove the emptiness of E . In case a refinement of the
initial analysis proves that E = ∅, then the program is proved safe by the refining analysis
despite the failure of the initial analysis. We propose to perform this refinement by taking
the error condition into account. Therefore, the refining analysis should include some
backward phases.

In the case of a dangerous program, such as the fragment presented in Figure 7.1(b),
the set of erroneous traces E is definitely not empty. Moreover, we wish to extract an
error scenario, i.e. a set of conditions on the execution of the program, which entails the
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occurrence of an error at the alarm point. Therefore, we wish to exhibit a witness, i.e. a
set of erroneous traces E ′ ⊆ E , such that E ′ 6= ∅.

In the following, a subset of the traces of the program is called a semantic slice. The
purpose of this chapter is to extract relevant semantic slices.

7.1.3 Extraction of semantic slices

A semantic slice is defined by a criterion, which combines a collection of constraints on
program executions. Among the criterion we are going to consider, we can cite:
• initial and final states, so as to restrict to e.g., traces leading to some dangerous

state(s);
• execution patterns, so as to restrict to some sets of paths in the control flow: for

instance, we may choose to focus on the traces which iterate a loop at least twice,
or on the traces which iterate a loop an even number of times;
• input constraints, so as to fix a set of inputs and to restrict to the traces corre-

sponding to these inputs.
Semantic slicing criteria are abstractions for sets of traces. We describe precisely the
various semantic slicing criteria in Section 7.2.

As usual, we wish to compute approximations for semantic slices. Therefore, we resort
to the same approximations for sets of traces, derived from an approximation for sets of
stores, as in Section 3.1.1. The extraction of a semantic slice will be based on a sequence
of forward and backward analyses, which refine more and more the invariants. Static
analyses for approximating semantic slices are described in Section 7.3.

Last, the ultimate goal would be to synthesize accurate semantic slicing criteria au-
tomatically, so as to propose a helpful scenario for an alarm. At the time we write this
thesis, this point is still work in progress. Yet, an important tool for that is presented
in the Chapter 8: abstract dependences aim at discovering chains of dependences among
variables, which may cause an error to occur.

7.2 Semantic Slicing Criteria

7.2.1 Criteria as Abstractions

In this chapter, we consider a program P , defined by a tuple ( � , � ,→,
�

i) and its semantics
JP K ⊆ Σ, which we introduced in Definition 2.2.1.

A criteria for semantic slicing aims at defining a set of traces. Therefore, we define
a criterion as an abstraction for a set of traces, and let a set of criteria be an abstract
domain for representing sets of traces.

Definition 7.2.1. Semantic slicing criterion.

A semantic slicing domain is an abstraction of sets of traces defined by a domain
�

and
a concretization function γ � :

� → P(Σ).

Xavier Rival Traces Abstraction in Static Analysis and Program Transformation



7.2. SEMANTIC SLICING CRITERIA 129

The ordering v of
�

is inherited from γ � and the inclusion ordering over P(Σ):

∀c0, c1 ∈
�
, c0 v c1 ⇐⇒ γ � (c0) ⊆ γ � (c1)

remove We call an element c ∈ �
a semantic slicing criterion.

In practice, we will use semantic slicing in order to extract sets of traces of programs
that do satisfy some conditions (described by the semantic slicing criterion); as a conse-
quence, we define a semantic slice as the set of traces of a program, which also belong to
the concretization of the criterion:

Definition 7.2.2. Semantic slice.

Let
�

be a semantic slicing domain, c ∈ �
. Then, the semantic slice of the set of traces

E (resp. of the program P ) defined by the criterion c is the set of traces Slice � 〈E , c〉
(resp. Slice � 〈JP K, c〉) defined by:

Slice � 〈E , c〉 = JP K ∩ γ � (c)

(resp. Slice � 〈JP K, c〉 = JP K ∩ γ � (c))

At this point, all the abstractions of sets of traces presented before would work: ab-
straction with numerical invariants, with functions, with projections of traces... However,
most of these abstractions would not be of the greatest interest here. Therefore, the
following subsections review various useful semantic slicing criteria:
• initial and final states in Section 7.2.2;
• execution patterns in Section 7.2.3;
• constraints on the input values in Section 7.2.4.

7.2.2 Initial and Final States

The first semantic slicing criterion we consider is the restriction to a set of initial and final
states. A slicing criterion consists in the data of a set of initial states and a set of final
states; the concretization of such a criterion is the set of all traces from an initial state to
a final state:

Definition 7.2.3. Final states slicing criterion.

The semantic slicing domain capturing “initial and final states” criteria is defined by:
• �

i−f = P(
�

i)× P(
�
);

• γi−f : (I,F) 7→ {〈s0, s1, . . . , sn−1, sn〉 | s0 ∈ I, sn ∈ F}.

Note that we assume that the initial states specified in the criterion is a subset of the
initial states of the program. We could remove this assumption and study slices defined
by any set of initial states; however, such slices may not consist only in (parts of) real
executions.
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The most important application for such criteria consists in fixing a set of traces ending
in a dangerous state. Then, deciding whether the program is unsafe amounts to checking
that this slice is empty (the program is safe) or non empty (the program has an erroneous
trace), as pointed out in Section 7.1.2.

In the following, we make the assumption that both I and F are of the form {l }×M ,
where M ⊆ � : the set of initial states of interest is defined by one control state and a set
of memory states (and the same for the set of final states). This assumption is made so
as to make the notations and technical developments more simple, even though it is also
rather natural:

• a program has only one entry control state; I should just refine the initial condition
on the executions;
• the purpose of F is to specify a final condition to investigate; it usually corresponds

to an alarm raised by the static analyzer, so it usually also corresponds to only one
control state.

A very efficient way to represent such criteria proceeds by choosing a control state l ,
and an abstract invariant d ∈ D]� : indeed, such a pair defines a set of states {l }×γ

�
(d).

Definition 7.2.1. Semantic slicing based on the final state.

For instance, in the case of the program presented in Figure 7.1(a), we should study the
semantic slice defined by the set of final states

F = {(l8, ρ) | ρ ∈ � , ρ(b) ∧ −10 ≤ ρ(x) ≤ 10}

This set of states can be represented as a pair (l , d), as suggested above.

7.2.3 Execution Patterns

A second family of slicing criteria select sets of traces that satisfy some control properties,
defined by abstractions introduced in Chapter 6. For instance, we may decide to focus on
traces which spend an even number of iterations in a loop.

In this section, we assume that the user inserted some cnt-statements in the program,
which correspond to special actions like “entering in a loop” or “running statement s”.
The criteria should account for sets of sequences of such actions (each action corresponds
to the control state of the cnt-statement).

A criterion is defined by:

• an automaton A = ( � A, qi
A,ÃA);

• a final states qf
A ∈ � A, which recognizes the set of sequences of actions we want to

extract.

We use the same notations as in Chapter 6: for instance, � denotes the set of sequences
of actions; P � stands for the extended system introduced in Section 6.1.3.

The criterion is defined formally as follows:
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Definition 7.2.4. Execution patterns criterion.

The domain ��� of execution patterns criteria is defined by ��� = � × � .
Let (A, qf

A) ∈ ��� , where A = ( � A, qi
A,ÃA). We write τ : ( � A× � )→ � for the standard

erasure function. Then, we define the concretization γ � (A, qf
A) of (A, qf

A) by:

γ � (A, qf
A) = πΣ

τ (JP � A � K
p(qf
A))

The above definition uses the abstract extended system to state the set of traces of P
which also correspond to a path from qi

A to qf
A in A (the operator πΣ

τ removes the states
of A in the traces of P � A � ).

This family of criteria applies nicely to the distinction of loop iterations, as shown in
the following example:

Definition 7.2.2. Criterion for the specification of execution patterns.

Let us consider the program in Figure 7.1(b). Obviously, it will not fail at the first
iteration, since y = 1; however, it may fail at any other iteration. Therefore, it would
seem wise, to exclude the first iteration, when looking for a witness (i.e., erroneous trace).
First, we add a cnt-statement anywhere inside the loop so as to count actions correspond-
ing to some point in the loop body, i.e. the iteration number (Figure 7.2(a)).
Second, we select an automaton, which allows to distinguish the “positive” iterations and
a state in the automaton corresponding to this selection. For instance, we could choose
the automaton A displayed in Figure 7.2(b) and the state qn (q0 corresponds to the first
iteration; qn to any other iteration).

l0 : int x, y;
l1 : x = 1;
l2 : y = 1;
l3 : while(true){
l4 : input(x);
l5 : assert(y > 0);
l6 : y = x;
l8 : cnt()
l7 : }

(a) Modified code

q0 qn

∂l8

∂l8

(b) Automaton

Figure 7.2: Exclusion of the first iteration

Similarly, we could slice the traces with an even number of iterations in a loop (as
in Example 6.3.3) or the traces with at least 2 iterations and distinguish the last two
iterations 6.3.4.
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Remark 7.2.1. Precision improvement inherent in partitioning.

Here, the partitioning of the program guided by the choice of an automaton is targeted at
the specification of a set of traces to extract, as a semantic slice. However, we shall note
in the following sections that this choice may also improve the precision of the semantic
slice, by helping the static analysis to infer more precise invariants, in a similar way as
we did in Chapter 5.
For instance, distinguishing the last two iterations before some event occurs may help the
backward analysis to produce better results, in the same way as forward analyses may
benefit from the unrolling of the first iterations in a loop.

7.2.4 Input Constraints

A third family of slicing criteria discriminates traces characterized by the values read by
input-statements: a criterion defines a set of valid inputs for each input-statement; the
semantic slice is the set of traces satisfying the property that all input values satisfy the
criterion.

In fact, we can define a wider family of criterion, by enforcing constraints not only on
the input values but also on any value, at any point in the program.

In the formal definition below, the criterion is represented with a function, which
defines the set of valid input values.

Definition 7.2.5. Input constraints criterion.

The domain
�

in of “input constraints criteria” is defined by
�

in = ( � × � )→ � .
Let ν ∈ �

in. Then, the concretization of ν is defined by:

γin(ν) = {〈(l0, ρ0), . . . , (ln, ρn)〉 ∈ Σ | ∀i ∈ L0, n− 1M, ∀x ∈ � , ρi+1(x) ∈ ν(li, x)}

Of course, in practice, only a few points and a few variables should be affected by the
slicing, so that a sparse representation for function ν ∈ �

in should be used.
Such a family of criteria is most useful in order to study the behavior of a program in

presence of some special inputs, and also, in order to check that some set of inputs result
in a crash of the program (i.e., to check an error scenario).

Definition 7.2.3. Input constraints and errors.

Let us consider again the program in Figure 7.1(b). We observed that an error occurs
when the value of the input value for x at l4 is negative. Indeed, if this value is negative,
then at the next iteration, y < 0, so that the program crashes at l5.
Therefore, we let ν be defined by:

ν : ( � × � ) → �
(l4, x) 7→ {−1}
(l , v) 6= (l4, x) 7→ �
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This criterion defines all the traces satisfying the condition that the input statement
always reads the negative value −1.

However, not all these traces cause the program to fail. Indeed, a trace which does not
complete more than one iteration in the loop does not end in an error state (we recall
that the semantics we consider is prefix-closed).

Intuitively, we need to combine the above criterion with the criterion introduced in
Example 7.2.2; this is the goal of the next subsection.

7.2.5 Combination of Criteria

Criteria can be combined thanks to a kind of product.

Definition 7.2.6. Product of criteria.

Let (
�

0, γ0) and (
�

1, γ1) be two semantic slicing criterion domains. We let the product
semantic slicing criterion domain (

�
p, γp) be defined by:

• �
p =

�
0 ×

�
1;

• ∀(c0, c1) ∈
�

p, γp(c0, c1) = γ0(c0) ∩ γ1(c1).

In particular, we can apply this construction to the semantic slicing criterion domains
introduced in the previous subsections and combine the criteria introduced in Example
7.2.2 and Example 7.2.3:

Definition 7.2.4. Combination of semantic slicing criteria.

We consider the same program as in Example 7.2.2. Two semantic slicing criteria were
introduced so as to study this example: the first one restricts to traces with more than
one iteration in the loop; the second to traces characterized with negative inputs only.

The combination of both criteria following Definition 7.2.6 results in a set of traces which
all crash at point l5. Moreover, the corresponding semantic slice is non-empty: clearly,
this program has traces with more than one iterations and which always read negative
values at l4. As a consequence, this semantic slice defines a valid error scenario, which
proves the program to be indeed buggy.

7.3 Approximation of Slices Defined by Final States

7.3.1 Approximation of a Slice

We study the semantic slices defined by the data of a (set of) final state(s) (Section 7.2.2)
first; the case of other semantic slicing criteria is the subject of the Section 7.4.
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Principle of the abstraction: In this section, we consider a program P defined as
usual and a pair of sets of states: I represents initial states; and F represents final
states. We focus on the criterion c = (I,F) ∈ �

i−f , and wish to approximate the slice
Slice �

i−f
〈JP K, c〉.

The static analysis approximates the semantics of P with an invariant in the domain
D] = � → D]� (Section 3.1): it associates a local invariant to each control state l ,
which approximates the set of memory states observed at point l . Semantic slices should
improve the understanding of the results of static analyses, and should be computed
statically. As a consequence, we propose to define the semantic slice as an invariant in
D], which characterize a set of traces defined by the concretization of D], introduced in
Section 3.1.1. As a consequence, the domain for representing semantic slices takes an
abstract domain for representing sets of stores as a parameter (in practice, we use the
domain described in Section 5.1.3), which might be based on the many relational and
non-relational abstractions available today (Section 3.1.3).

Definition 7.3.1. Approximation of semantic slices.

We keep the above notations. Formally, an approximation of the semantic slice Slice �
i−f
〈JP K, c〉

is an invariant I ∈ D], such that:

Slice �
i−f
〈JP K, c〉 ⊆ γ(I)

In particular, semantic slicing strongly differs from regular slicing methods. In syn-
tactic slicing [Wei81, HRB90], a criterion defines some control state and some variable
of interest; the goal of syntactic slicing is to generate a syntactic slice, i.e. a syntactic
subset of the program, including all statements which may affect the observation of the
semantics defined by the criterion. The advantage of this approach is that the result of
slicing is very easy to interpret (since, it is just a piece of code).

However, syntactic slicing presents several drawbacks. First, it may generate large
slices, if the criterion depends directly or indirectly on most of the statements in the
program. Second, it does not provide much information about the runtime behavior of
the program being analyzed. Indeed, we expect semantic slices to characterize some set
of executions and not only their trajectories in the code. Moreover, the sets of traces we
intend to characterize should be defined by some semantic property (e.g., sets of initial
and final states), and we expect the semantic slice to account for this property.

Fixpoint definition: Abstract invariants are usually computed by abstract interpreta-
tion of the program, i.e. computation of an abstract post-fixpoint. Therefore, we seek for
a fixpoint-based definition of the semantic slice.

By definition, Slice �
i−f
〈JP K, c〉 = {〈s0, . . . , sn〉 ∈ JP K | s0 ∈ I ∧ sn ∈ F}. Therefore,

Slice �
i−f
〈JP K, c〉 =

−→T ∩←−T , where:

−→T = {〈s0, . . . , sn〉 ∈ JP K | s0 ∈ I}
←−T = {〈s0, . . . , sn〉 ∈ JP K | sn ∈ F}
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l0 : b := true;
l1 : if(b) {

. . .
} else {

. . .
}

l2 : b′ := ¬b ∨ b′′

l3 : input(b ∈ � );
l4 : . . .

assumption:
b is not modified
in any branch of the if -statement

Figure 7.3: Backward analysis of a simple program

We proved the trace semantics semantics to be definable as a least fixpoint of some forward

semantic functions F−→
P

in Lemma 2.3.1. We note that
−→T is defined in a similar way as the

trace semantics of P , except that we replace the set of initial states with I. Therefore,

Lemma 2.3.1 implies that
−→T is the least fixpoint of F−→

P
from the set TI of traces made of

a single state in I.
Similarly, we remarked that the set of traces which terminate in some set of states

can be expressed as a least fixpoint, when we introduced backward analysis in the end of

Section 3.1.2: therefore,
←−T is the least fixpoint of the backward semantic function F←−

P
,

from the set of traces TF made of a single state in F .
As a conclusion:

Slice �
i−f
〈JP K, c〉 = lfpTIF−→P ∩ lfpTFF←−

P

7.3.2 Forward Interpreter

First, let us note that the forward fixpoint
−→T = lfpTIF−→P can be approximated by a

standard, forward static analysis as shown in Section 3.1 and Section 3.2.5.
In practice, the implementation of this analyzer follows the structure proposed in

Section 3.2.5. We need the analyzer to generate an invariant for each control state,
so we use in practice the analyzer with two modes Check and Iter . When considering
large programs, not all local invariants can be saved in the memory, so we used refined
implementation techniques, detailed in Section 7.4.4.

In the following, we write I0 for the result of this forward analysis. The soundness

boils down to
−→T ⊆ γ(I0).

7.3.3 Backward Semantics and Backward Interpreter

Approximation of the backward fixpoint: Second, we need to perform a backward
analysis, so as to approximate the second least fixpoint.

However, the backward analysis of some operations may be rather imprecise. For
instance, let us consider the statement program displayed in Figure 7.3.
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The backward analysis of the last statement forgets the value of b: indeed, when
starting the backward analysis from point l4, there is no way to guess the value of b before
its value is modified. Hence, at point l3, the backward analysis considers that b may have
any boolean value. As a consequence, the backward analysis of the assignment at l2 cannot
provide any information about the value of b′′ at point l2, even if we know that b′ is equal
to true in the end of the program: in this case, we would expect the backward analyzer
to infer that b′′ is equal to true at point l2. Furthermore, the backward analysis executes
both branches of the if -statement, even though only the true branch is executed.

In fact, this kind of issue occurs whenever a variable is assigned. Overall, a purely
backward analysis would fail to compute a precise approximation of semantic slices due
to these shortcomings.

As a consequence, we propose to take the results of the forward analysis into account,
when performing the backward analysis. Indeed, in the above program, the forward
analysis would produce a rather precise invariant, including the following predicates:

• b is equal to true until l4;
• the true branch of the conditional only is taken; any point in the false branch can

be considered unreachable in the semantic slice.

These properties should be taken into account during the backward analysis, so as to
produce precise slices.

The interpreter: The conclusion of the previous paragraph is that the backward anal-

ysis should not approximate
←−T ; it should rather input the approximation I0 of

−→T , which
was computed by the forward analyzer and refine it into a new invariant, approximating

the intersection
−→T ∩←−T .

Therefore, we need a new backward interpreter which associates to any statement s

a function
←−−
JsK] : (D] × D]� ) → (D] × D]� ), defined by induction over the syntax of the

statements. This interpreter should input a pair made of a “global invariant” I and a
“local invariant” d representing a set of input states for s we wish to over-approximate
the ancestors of; then it should output a pair made of a refined “global invariant” I′ and
of an approximation d′ of the input stores. Basically, I′ should be a refinement of I (i.e.,
I′ v I) such that:

• for all control state l in s, I′(s) is derived from I(s) and from the approximation of
the output d;
• for all control state l not in s, then I′(s) = I(s) (the analysis does not modify the

invariant outside of the analyzed statement).

In fact, such the definition of such an analyzer would be more technical and would
involve more arguments:

• First, this analyzer performs side effects, whenever it refines the “global invariant”;
therefore, it should carry out an argument specifying a mode for the analysis (Check
or Iter ), as in Section 3.2.5.
• Second, the backward analysis should start from the set of final states F specified
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assignment l0 : x := e; l1←−−−−−−
transfer l0,l1

: (d`, da) 7→ ←−−−assign(x, e, d`, da)

conditional l0 : if(e) {l t
0 : st; l t

1 } else {l f
0 : sf ; l f

1 } l1←−−−−−−
transfer l0,l t

0
: (d`, da) 7→ d` u da or guard (e, true, d` u da)

←−−−−−−−
transfer l0,l f

0
: (d`, da) 7→ d` u da or guard (e, false, d` u da)

←−−−−−−
transfer l t

1 ,l1
= (d`, da) 7→ d` u da

loop l0 : while(e) {l b
0 : st; l b

1 } l1←−−−−−−
transfer l0,l b

0
: (d`, da) 7→ d` u da or guard (e, true, d` u da)

←−−−−−−
transfer l0,l1

: (d`, da) 7→ d` u da or guard (e, false, d` u da)←−−−−−−
transfer l b

1 ,l0
: (d`, da) 7→ d` u da

input l0 : input(x ∈ V ); l1←−−−−−−
transfer l0,l1

: (d`, da) 7→ d` u forget(x, da)

assertion l0 : assert(e); l1←−−−−−−
transfer l0,l1

: (d`, da) 7→ d` u da

Figure 7.4: Backward transfer functions

in the slicing criterion. When the backward analysis starts, s is the whole program;
but F may specify some states inside the program and not necessarily in the end of
the program. In this case, the backward analysis should start from the control state
specified in F , and not from the end of the program as the backward interpreter in
Section 3.3.2 does.

These two issues make the definition of the backward analyzer in the style of the interpreter
of Figure 3.3 very technical and not intuitive. Therefore, we provide the definition of the
backward transfer functions instead (without accounting for the refinement of the “global

invariant”, which is done in Check mode only), in Figure 7.4. We write
←−−−−−−
transfer l0,l1

for
the backward abstract transfer function between l0 and l1. Each transfer function inputs
two invariants: d` stands for the invariant at the point right before the statement (which
should be refined in the backward analysis), and da represents the invariant after the
statement. As a consequence, the backward assignment operator is also supposed to
input two arguments now.

Note that several transfer functions can be chosen, e.g., for conditions. Indeed, com-
puting the meet of d` and da seems a standard way of computing the “backward effect”
of these edges; however, one may also want to enforce the condition with the help of the
guard operator, so as to refine further the invariants. This issue will be considered more
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carefully in the next section.
The backward interpreter inputs I0 and produces a refined invariant I1, which satisfies

the soundness condition:

Theorem 7.3.1. Soundness: backward approximation of the semantic slice.

Let us assume that I0 is a sound approximation of
−→T ∩←−T (e.g., the invariant resulting

from the forward abstract interpretation (Section 7.3.2). The invariant I1 is sound:

−→T ∩←−T ⊆ γ(I1)

Moreover, it refines I0: I1 v I0.

The backward assignment: All the transfer functions used in Figure 7.4 but the
backward assignment are common, so we propose to discuss the latter in depth here.

Let us consider an assignment lpre : x := e; lpost, and a pair of local invariants d` and da
which respectively denote the invariants available at point lpre and lpost (after the forward
analysis, d` = I0(lpre) and da = I0(lpost)). Basically, we expect the analyzer to refine the
local invariant d`, by taking into account the fact that the post-condition da should hold.

In the proofs below, we let ρ ∈ γ
�
(d`); we write v = JeK(ρ) and we also assume

ρ[x← v] ∈ γ
�
(da).

We distinguish boolean and scalar types for the assigned variable:
• case where x is a boolean variable:

←−−−
assign(x, e, d`, da) =

{
guard (e, forget(x, guard (x, da)) u d`)

t guard (¬e, forget(x, guard (¬x, da)) u d`)

Indeed, let us assume v = true. Then ρ ∈ γ
�
(forget(x, guard (x, da))), due to the

hypothesis on ρ[x ← true]. Moreover, JeK(ρ) = true, so ρ ∈ γ
�
(guard (e, forget(x,

guard (x, da)))), which shows the soundness of the transfer function defined above.
• case where x is a scalar (i.e., integer or floating point) variable:

1. Linearization: First, the expression e can be linearized into an interval linear
form lin(e, d`) = af +

∑
k ak · xk, where xk is a variable and Ik is an interval

(the arithmetic operators for scalars are extended to intervals). Note that this
linear interval form can be computed only from d` (using da would not be
sound, if x appears in the right side of the expression, i.e., if x is modified by
the assignment).

2. Refinement of interval invariants: For any variable y ∈ {x} ∪ {xk | k}, we
write Ipre

y (resp. Ipost
y ) for the interval constraint for y in d` (resp. da).

Our purpose is to compute a refined interval I ref
xk

for any variable xk in the
right hand side of the assignment in interval linear form (if x does not appear
in the right-hand side, then I ref

x = Ipre
x ).

Let us focus on variable xj. The soundness of linearization implies that:

v ∈ (
∑

k 6=j

ak · Ipre
xk

) + aj · ρ(xj)
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Hence, if 0 6∈ aj:

ρ(xj) ∈
(
v − (

∑
k 6=j ak · Ipre

xk
)
)

/aj since we can divide by aj

∈ (Ipost
x −

(∑
k 6=j ak · Ipre

xk
)
)

/aj since v ∈ Ipost
x

Therefore, if we let

Iref
xj

=

((
Ipost

x − (
∑

k 6=j

ak · Ipre
xk

)

)
/aj

)
∩ Ipre

xj

then, we get a sound, refined invariant for xj before the assignment. This
formula is the core of a backward assignment operator for the interval domain.
If 0 ∈ aj, we cannot use this method to refine the constraint Ipre

xj
.

Note that the d` is used not only for computing the refined intervals but also
to derive the interval linear form.

3. Other abstract domains: other abstract domains may or may not provide
any support for backward analysis; for instance, the filter domain of [Fer04b]
does not. We consider the case of the octagon abstract domain; this domain
provides backward transfer functions for assignment using interval linear forms
[Min04b]. We should distinguish two cases:

– If x ∈ {xk | k} (i.e., x appears in the right side of the interval linear form
assignment):
The default backward assignment operator provided by octagons is the
function interv substitute var; it takes a linear interval form as an
argument, yet it currently works in the exact case only (and behaves as a
forget operator otherwise), so it infers new relations for variable xk if and
only if ak = [−1,−1] or ak = [1, 1]. In this case, we compute dref

` defined
by:

dref
` = interv substitute var(x, (

∑
k(ak · xk)) + af , da)

– If x 6∈ {xk | k} (i.e., x does not appear in the right side of the assignment):
The operator interv add constraint behaves like a guard operator, in-
volving an interval linear form; hence, it allows for more precise handling
of the expression but this will only work in the case the corresponding
variables are not modified by the assignment (this is the reason why we
assume here that x 6∈ {xk | k}; the assumption that x is a sure l-value is
also important here).
In this case, we compute dref

` defined by:

dref
` = forget(x, d0)
d0 = interv add constraint(d1, (

∑
k(ak · xk)) + af − x ≤ 0)

d1 = interv add constraint(da, (
∑

k(ak · xk)) + af − x ≥ 0)
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The following examples show how this backward transfer functions can be applied to a
few simple assignments.

Definition 7.3.1. Backward assignment; case of a boolean variable.

We extract the boolean assignment l2 : b′ := ¬b ∨ b′′; l3 from the program displayed in
Figure 7.3, and we consider the invariants (for the sake of the example, we assume that
the abstract elements collect collection of non relational boolean constraints; hence, an
invariant maps each boolean variable to the set of possible values for this variable):

d` = {b = true, . . .}
da = {b = true, b′ = true, . . .}

Let us apply the formula for the boolean backward assignment:

guard (¬(¬b ∨ b′′), forget(b′, guard (¬b′, da)) u d`) = ⊥
guard ((¬b ∨ b′′), forget(b′, guard (b′, da)) u d`) = guard ((¬b ∨ b′′), forget(b′, da) u d`)

= guard ((¬b ∨ b′′), {b = true, . . .} u d`)
= guard ((¬b ∨ b′′), {b = true, . . .})
= {b = true, b′′ = true, . . .}

As a consequence,
←−−−
assign(b, (¬b ∨ b′′), d`, da) = {b = true, b′′ = true, . . .}, so that this

backward transfer function is able to infer that b′′ is equal to true before the assignment.

We recall that we shown that this would not be possible to achieve with a transfer function
which would not take d` into account.

Definition 7.3.2. Backward assignment; domain of intervals.

We consider the assignment x := y · x + z, with the invariants:

d` = {x ≥ 0, y ∈ [1, 2], z ∈ [1, 2], . . .}
da = {x ∈ [3, 4], . . .}

Let us assume that the linearization stage converts the right-hand side y · x + z into
x := [1, 2] · x + z (another choice would be to turn x into an interval; however, note that
the range for x in d` is infinite so it would be a very bad choice).

Then, the backward assignment refines the range for x into [0.5, 3].

Obviously, additional issue arise, when the left-hand side of the assignment is not a
“sure-l-value”; for instance, if it is an array cell, which cannot be determined precisely
using d`, then, not all formulae above apply (in particular, the transfer functions for
octagons), so a rough approximation may need to be computed instead.
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7.3.4 Combination of Forward and Backward Analyses

Need for a sequence of forward-backward analyses: In Section 7.3.1, we wrote
the semantic slice as the intersection of two fixpoints; this formula served as a basis for
the derivation of an abstract interpretation based approximation of the semantic slice.

However, the invariant I1 (Theorem 7.3.1) may not be the optimal approximation for
the semantic slice one can compute in the abstract domain. For instance, let us assume
that the backward analysis reveals that no trace is going through the true branch of a
conditional in the program below:

l : if(e) {
st;
} else {

sf ;
}

l ′ : s′;
l ′′ . . .

Then, a refining forward analysis from I1 may refine the local invariants inside s′, since
the possible imprecision due to the least upper bound at l ′ no longer occurs. Note that a
further backward analysis would likely improve the results inside sf also.

Therefore, we propose to implement a refining forward analysis and to iterate the
refining forward-backward process as proposed, e.g., in [Cou78, CC92a].

Refining forward iteration: We derive the refining forward interpreter from the stan-
dard forward interpreter mentioned in Section 7.3.2 (in particular, the transfer func-
tions and the iteration strategy are the same). The main difference is that the refin-
ing interpreter should input a global invariant I ∈ D] approximating the semantic slice
(Slice �

i−f
〈JP K, c〉 ⊆ γ(I)) to refine and use it so as to restrict each forward step.

Therefore, when analyzing a statement l0 : s; l1 : . . ., the refining analyzer should:
• input an invariant d0 ∈ D]� for point l0 and an invariant I ∈ D];
• compute a refined invariant d1 ∈ D]� for point l1;
• return the local invariant d1 u I(l1);
• if in Check mode, store d1 u I(l1) as the refined invariant for point l1.

As a consequence, this refining forward analyzer is similar to the backward analyzer of
Section 7.3.3, regarding to the side effects of the analysis. In the end of the analysis, it
produces a refined invariant I′ v I, which is still a sound approximation of the semantic
slice:

Slice �
i−f
〈JP K, c〉 ⊆ γ(I′)

Sequence of analyses: We now state the definition for the sequence of forward and
backward analyses:
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Definition 7.3.2. Refining sequence.

We define the refining sequence of invariants (In)n∈ � .

• I0 was defined in Section 7.3.2, as the result of the initial forward analysis;
• I1 was defined from I0 in Section 7.3.3, as the result of the refining backward anal-

ysis; for all n ∈ �
, we let I2n+1 be derived from I2n in the same way;

• for all n ∈ �
, we compute I2n+2 by applying the refining forward analysis to I2n+1.

Obviously, this sequence of invariants is sound and decreasing:

Theorem 7.3.2. Properties of the refining sequence.

The sequence (In)n∈ � is:

• sound: ∀n ∈ �
, Slice �

i−f
〈JP K, c〉 ⊆ γ(In);

• decreasing: ∀n ∈ �
, In+1 v In.

Proof.

Both results follow from the properties of the refining forward and backward interpreters.
Â

Local iterations: The above refinement process is not optimal from the efficiency point
of view. In the case of the if statement considered above, it amounts to completing the
backward analysis of the whole program before doing a new forward analysis so as to
refine the invariant at label l.

We might want to do local iterations [Gra92], that is carrying out forward and backward
local analysis steps in a single iteration phase. For instance, Figure 7.4 displays transfer
functions without and with one local iteration for conditions. Let us consider the backward
analysis of the condition in the statement l0 : if(e) {l1 . . . (we consider the transfer function
between l0 and l1):

• the standard backward transfer function is
←−−−−−−
transfer l0,l0

: (d`, da) 7→ d` u da;
• if we apply the forward transfer function from l0 to l1, then we get a function

(d`, da) 7→ guard (e, true, d`u da); applying the backward function again would lead
to (d`, da) 7→ guard (e, true, d` u da)u d` = guard (e, true, d` u da) (since we assume
that guard is supposed to be reductive –see Section 3.1.1).

The same local forward-backward strategy may be applied to large pieces of code; however,
the choice for such strategies is very broad and most of them turn out costly.

In practice, we found that the refinement process done with an expressive, relational
abstract domain (like the domain present in Astrée) does not require much local it-
erations (except in the case of condition as described above). Carrying out iterative
refinements on large blocks of code (e.g. functions) was a more efficient strategy.
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7.4 Approximation of Semantic Slices

7.4.1 Extension of the Analysis

Before we can exemplify the computation of approximations for semantic slices, we need
to extend the algorithm described in Section 7.3 to other semantic slicing criteria.

We use the same notations as in Section 7.3; in particular, we still consider a program
P , characterized as usual by ( � , � ,

�
i,→).

Execution patterns: Let us assume that some cnt-statements have been inserted in
P and that a criterion (A, qf

A) ∈ ��� is given, as in Section 7.2.3.
Intuitively, the semantic slice collects traces of the extended system P � A � starting from

a state indexed with qi
A, and ending in states indexed with qf

A. Consequently, the semantic
slice is defined (up to the removal of partitioning tokens) in P � A � by the following sets
of initial and final states:

I = {((l , qi
A), ρ) | (l , ρ) ∈ �

i}
F = {((l , qf

A), ρ) | (l , ρ) ∈ � }

Therefore, the algorithm of Section 7.3 applies to the extraction of such a slice; the main
difference is that the algorithm should be applied to P � A � .

Remark 7.4.1. More powerful partitioning domains and analyzes.

First, we note that the numeric abstractions proposed in Section 6.4 can be used instead
of the automaton-based abstraction, both for the definition of the criterion and for the
analysis.
Second, we mentioned, e.g., in Section 6.3.2, that the extension of the partitioning analy-
sis into a dynamic partitioning analysis could be envisaged as well. For instance, we may
assume that
• the criterion specifies an abstraction defined by the automaton A;
• the analysis starts with the abstraction defined by A, but may refine it as suggested

in Section 4.3.3 so as to compute a more precise approximation of the semantic
slice.

These extensions have not been implemented yet; however, we consider these solutions
significant ideas for future work.

Input values: Let us consider a criterion ν ∈ �
in (constraints on the values), defined as

in Section 7.2.4. For the sake of simplicity, we consider a input-statement l0 : input(x ∈
V ); l1 : . . ., and assume that ν only bounds the value of x at point l1.

Let σ = 〈. . . , (l0, ρ0), (l1, ρ1), . . .〉 be a trace in the semantic slice associated to ν (σ ∈
Slice �

in
〈JP K, ν〉). Then, ρ1(x) ∈ ν(l1, x). As a consequence, all the traces in the semantic

slice are also traces of the program P ′ derived from P by replacing the above input
statement with l0 : input(x ∈ ν(l1, x)); l1 : . . ..
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Therefore, the semantic slice can be approximated in the same way as in Section 7.3,
using a (slightly) different transfer function between points l0 and l1.

7.4.2 Examples

This section examines the examples proposed in Section 7.2, and focuses on the approxi-
mation of the corresponding semantic slices.

Definition 7.4.1. Resolution of a false alarm (Example 7.2.1 continued).

We recall the program under consideration in Figure 7.5. As previously, the semantic

l0 : float x, y; bool b;
l1 : input(x);
l2 : if(x > 0){
l3 : y = x;
l4 : }else{
l5 : y = −x;
l6 : }
l7 : b = (y > 10);
l8 : assert(b⇒ (x < −10 ∨ 10 < x));

Figure 7.5: A false alarm solved

slice is defined by the following set of final states:

F = {(l8, ρ) | ρ ∈ � , ρ(b) ∧ −10 ≤ ρ(x) ≤ 10}

The table sums up the invariants computed in the first iterates of the refinement process
(we perform a non-relational analysis).

point I0 I1 I2

l1 > ⊥ ⊥
l2 > ⊥ ⊥
l7 y ≥ 0

{
x ∈ [−10, 10]
y > 10

⊥

l8

{
y ≥ 0
b ∈ {true, false}

{
x ∈ [−10, 10]
b = true

⊥

The last column shows that the semantic slice is proved empty by the second refining
iteration (second forward phase), even though the analysis is rather rough (non-relational
invariants only).

Xavier Rival Traces Abstraction in Static Analysis and Program Transformation



7.4. APPROXIMATION OF SEMANTIC SLICES 145

l0 : int x, y;
l1 : x = 1;
l2 : y = 1;
l3 : while(true){
l4 : input(x);
l5 : assert(y > 0);
l6 : y = x;
l8 : cnt()
l7 : }

(a) Modified code

q0 qn

∂l8

∂l8

(b) Automaton

ν : ( � × � ) −→ P( � )
(l4, x) 7→ {−1}
(l , z) 6= (l4, x) 7→ �

(c) Input constraint

Figure 7.6: Scenario for a true error

Definition 7.4.2. Alarm pointing out a true error (Example 7.2.4 continued).

We recall the program under consideration on Figure 7.6, together with the automaton
and the input function specifying the slicing criterion.
We observed in the previous subsection that this program was unsafe; if it inputs a negative
value for x, it crashes at the next iteration. Therefore, the criterion:
• restricts to the traces characterized with negative inputs at point l4;
• distinguishes the first iteration in the loop and the following iterations.

The table below summarizes the result of the forward analysis (i.e., I0):

point q0 qn

l3

{
x = 1
y = 1

{
x = −1
y = −1

l5

{
x = −1
y = 1

{
x = −1
y = −1

l6

{
x = −1
y = −1

{
x = −1
y = −1

The above approximation of the semantic slice shows that the program reaches an erro-
neous state in the second iteration in the loop. Since this semantic slice is not empty
(this program clearly has executions lasting more than one iteration and such that the
inputs are negative), it proves the error scenario, we previously gave the intuition of. As
a conclusion, this program is indeed flawed.
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7.4.3 Use of syntactic slicing for reducing the size of programs

Program slicing: The algorithm for the extraction of semantic slices, which w pre-
sented in the previous sections suffers some significant practical weaknesses:
• it requires each analysis to save a local invariant for each control state, i.e., at each

statement, which would result in a dramatic memory cost, when applied to large
programs;
• it leads to the forward-backward analysis of the whole program, which would result

in rather long execution times due to the analysis of the full program, even if only
part of the program is relevant to the alarm to investigate.

Therefore, we propose to use regular, syntactic slicing techniques [Wei81, HRB90] so as
to restrict the amount of code to apply the refining analyses to.

Let us assume that a program s is given, that contains a statement l0 : assert(e).
Whether or not an error occurs at this point depends on the variables which appear in
the expression e. Therefore, the idea is to restrict to the syntactic slice defined by the
control point l0 and the variables which appear in e.

The correctness of slicing guarantees that the observation of the slice restricted to l0,
and to the variables in e includes the corresponding observation of the original program.
As a consequence, applying the semantic slicing technique to the syntactic slice is a sound
solution.

Reducing the size of slices: Even though slicing should reduce significantly the size
of slices, we may want even smaller slices. Various methods serve that goal:
• First, we can use a more precise dependence analysis in order to determine a smaller

slice. We investigate dependences analyses in Chapter 8, and observable depen-
dences (Section 8.3) provide an adequate solution for restricting to the dependences,
which can be observed on some subset of the program executions.
• Second, we may perform “aggressive slicing”, i.e., remove some statement s0, even

though the alarm under investigation may depend on s0. Of course, this solution
would not be sound, since it would not take into account the effect of s0 during the
semantic slicing. Therefore, we approximate the effect of s0. For instance, if s0 is an
assignment x := e, we can simply approximate s0 with the statement input(x ∈ � ).
We detail this approach in [Riv05b].

7.4.4 Implementation

The semantic slicing algorithm were implemented in the Astrée analyzer, and applied
to simple programs and to large applications.

Alarm investigation process: A typical alarm investigation session proceeds as fol-
lows:

1. do a forward analysis, determine a superset of the possible errors;
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2. choose an alarm to investigate; restrict to a syntactic slice [Wei81] including the
alarm point;

3. define I,F , attempt to prove the alarm wrong with forward-backward refinement;
otherwise, a more precise alarm context slice is found;

4. in case of failure, specialize even more the alarm context, by defining more restrictive
slicing criteria

5. in case no attempt to get the analyzer to prove the emptiness of the semantic slice
as we did in Example 7.4.1 succeeds, then attempt to prove the alarm corresponds
to a true error by choosing a set of inputs and alarm context, in the same way as in
Example 7.4.2.

Parameterization of the forward-backward analysis: The refining analysis can be
applied either to the whole program or to some user-specified functions. Currently, it
requires the storage of local invariants at all control points, in the functions the forward-
backward analysis should be performed in.

The number of forward-backward iterations is also left as a parameter. The default
value is 10, but we observe stabilization after 3 to 4 iterations in most cases.

We use the backward assignment operator defined in Section 7.3.3; the other abstract
transfer functions are defined as usual.

More details about the implementation of the slicer will be given in Chapter 8.

Application to some large applications: We applied this technique to the alarms
raised by Astrée on a series of 3 early development versions of some critical embedded
programs (bugs were not unlikely in the development versions).

The table below presents the results of the initial analysis. For each program, we give
the size of the code, the number of functions, the analysis time and the number of alarms;
each alarm was assigned a label, so that we can name it in the following discussion.

Size of the C code (lines) 70 000 226 000 400 000
Number of functions 650 1 900 2 900
Analysis time (I0) in sec. 1 300 16 200 37 500
Number of alarms 4 1 0
Alarm names a1, a2, a3, a4 a5 -

Syntactic slicing showed that a2 (resp. a4) is a direct consequence of a1 (resp. a3); hence,
we restricted to the investigation of a1, a3 and a5.

The computation of a semantic slice for the corresponding dangerous states on the
slices revealed rather informative conditions on the inputs. Specializing some inputs and
carrying out a new, forward analysis allowed to prove the alarms true, thanks to an input
specification as in Ex. 7.4.2.

The table below provides some data about the process: the number of input con-
straints is the number of points an input constraint (Definition 7.2.5) had to be specified
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for; the number of execution patterns corresponds to the number of criteria in � � (Defi-
nition 7.2.4). The size of the slices (number of lines, functions and variables) involved in
the alarms show that a1, a3 were rather subtile; a5 was much simpler. The number of ad-
ditional constraints generated during the forward-backward refinement is rather difficult
to express simply due to the trace partitioning, and to the use of sophisticated numerical
domains; we can only mention that it is much higher than the number of variables or
of program points. One forward-backward iteration necessitates a reasonable amount of
resources for these slices (up to 1 min., 80 Mb).

Alarm a1 a3 a5

Size of the slice (lines) 1280 4096 244
Number of functions in the slice 29 115 8
Number of variables in the slice 215 883 30
including: int, bool, float variables 15, 60, 146 122, 553, 208 7, 11, 23
Execution patterns 2 2 2
Input constraints 4 4 2

The only manual step is the choice of adequate execution patterns and of constraints on
inputs, so as to get an error scenario; in all the above cases, these numbers are very low,
which shows the amount of work for the user is very reasonable: only 4 inputs had to
be chosen in the most complicated case (a3). However each of these choices had to be
made carefully, with respect to complex conditions on bit-fields and arithmetic values.
The choices for the execution patterns to examine only required considering very few
simple pattern criteria, akin to the automaton used for distinguishing the first iteration
in Example 7.2.2 (the automaton is displayed in Figure 7.2(b)).

All errors found involve intricate floating point computations. For instance, a5 is due to
a mis-use of (interpolated) trigonometric functions, leading to a possibly negative result,
causing a square root computation to fail.

Use for alarm resolution: We could also experiment the ability of the system to solve
an alarm. Indeed, we considered a“legacy”alarm in the second development version, i.e. a
false alarm, which was solved by a refinement of the analysis (improvement of the relational
domain packing options evoked in Section 5.1.3), before semantic slicing was implemented.
We disabled these relational domain packing strategies and could successfully prove the
alarm false (as we did in Example 7.4.1).

Early experimental conclusions: The use of the system reduced the alarm inves-
tigation time to a few hours in the worst case we faced; the refining analyses are fully
automatic and default parameters (fixed number of global forward-backward steps, no
local iterations) did not have to be twicked too much to give good results. Fully manual
inspection of such alarms would have required days of work and would have made the def-
inition of an error scenario much more involved. Moreover, we could successfully classify
all alarms, which means that no false alarm remains.
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7.4.5 Comparison with related work

The idea of characterizing a set of program executions is not new.

For instance, some forms of“conditioned” slicing [KL88, CCL98] attack a similar prob-
lem. However, these methods are essentially based on a purely syntactic process, not only
for the extraction but also for the shape of the result: a slice is defined in [Wei81] as a
subset of the program statements, and these forms of slicing also produce syntactic slices.

Such forms of slicing have been employed for debugging tasks. Recent advances in
this area led to the implementation of conditioned slicing tools like ConSIT [FDHH04],
that could be applied to testing and software debugging [HHF+02]. However, our sys-
tem is able to produce semantic slices, i.e., to provide global information about a set of
executions instead of a mere syntactic subset of the program; this is a major advantage
when investigating complex errors. The downside is that our technique relies on more
sophisticated algorithms; however, syntactic slicing alone would not help significantly the
alarm inspection process in Astrée.

The search for counter-examples and automatic refinement has long been a motivation
in the model-checking-based systems, such as [CGJ+00, BNR03, PHR04, GRS00]. In
particular, the automatic refinement process plays a great role in the determination of
the set of predicates (i.e. abstract domain) needed for a precise analysis [BMMR01]. Our
goal is to bring such methods in static analyzers like Astrée for a different purpose, i.e.
to solve the few, subtile alarms, after an already very precise analysis [BCC+03a] (the
construction of the domain requires no internal refinement process).

Forward-backward analysis schemes have been applied, e.g. in [Jea03], to the inference
of safety properties. Some static analysis systems have been extended with counter-
examples search facilities: [GJJM03] relies on random test generation; [Ere04] uses a
symbolic under-approximation of erroneous traces and theorem proving. The main dif-
ference is that we chose to start with an over-approximation of erroneous traces until
conditions on inputs are precise enough so that a counter-example could be found since
the search space for counter-examples was huge in our case, due to the size of the pro-
grams. For instance, the systematic exploration of paths as in [Ere04] over length above
1 000, with hundreds of variables would not work. Moreover, we allow abstract error sce-
nario to be tested unlike [GJJM03, Ere04]: this reduces the amount of input constraints to
fix to a minimum. On the other hand, at this time, we still do not perform the automatic
generation of counter-examples, which is left as a future work.

7.4.6 Future work

At the time of the writing, we have plans for extending the framework for semantic slicing
presented in this chapter, in addition to the improvement of the current implementation,
which is still not really usable by a non-specialist.

Traces Abstraction in Static Analysis and Program Transformation Xavier Rival



150 CHAPTER 7. SEMANTIC SLICING

Allow for automatic refinement of criteria: A first, very important area for future
work would consist in refining the criteria in a semi-automatic or automatic way. For
instance, we would like to allow some kind of dynamic partitioning of the execution
pattern criteria.

The two main difficulties to solve to achieve that goal are:
• the choice of refinements: for instance, choosing sensible refinements for the au-

tomaton given in the“execution pattern”criterion (Section 7.2.3) from the numerical
invariants is a difficult task, which requires efficient strategies to be found;
• the definition of a widening for the domain of criteria is also a tedious issue,

even if tree schemata may provide the basis for some solution (Section 6.3.2).

Automatizing the search for error scenarios: Second, the automatic generation
for error scenarios is a very challenging and important goal. The semantic slicing exposed
here should help to determine precise over-approximation for erroneous traces; however,
a more convincing result would be a counter-example, which would precisely tell the user
what the bug is.

For instance, [Ere04] collects and then solves symbolic constraints so as to find a
counter-example. We plan to attempt to implement similar techniques in the near future.

Obviously, the generation for counter-examples would require the computation of an
under-approximation of the erroneous traces; yet, such an under-approximation may turn
out to contain fictitious traces only, which is a major issue.
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Chapter 8

Computation of Abstract
Dependences

We study various forms of dependences, so as to localize the cause for some behaviors
of programs. In particular, we wish to track the cause for erroneous behaviors, such as
division by 0, overflows...

We choose to set-up definitions of dependences, which are close to the common defi-
nition of non-interference [GM82], so as to start with a semantic notion of dependence,
which is rather more adapted for defining extensions than classical syntactic definitions.
We state this framework in Section 8.2.

Then we propose several extension of this classical notion of dependence. First, we
define observable dependences in Section 8.3, by restricting to a subset of the traces of a
program, i.e., to a semantic slice. Second, we introduce Abstract dependences in Section
8.4, as a way to relate abstract properties in programs as well. We provide algorithms for
approximating each form of dependence.

Then, we discuss informally the extraction of slices in Section 8.5, using the various
forms of dependences, which we introduced in the chapter.

We conclude the chapter in Section 8.6 with a short case study, a comparison with
related work and an outline of the main perspectives for continuing this work.

8.1 Motivation

We introduced semantic slicing in Chapter 7 as a means to extract effectively a subset
of the traces of a program, so as to attempt to solve the alarms generated by a static
analysis. In particular, semantic slicing can prove an alarm false, by proving that no real
execution causes the corresponding runtime error. It can also be helpful in producing and
checking an error scenario, i.e., a trace resulting in a runtime error. Therefore, semantic
slicing is helpful in the alarm investigation process.

However, this technique does not solve all the issues, which arise, when trying to
understand the origin of an alarm:
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• the origin of imprecision or errors is not found: semantic slicing only provides
refined conditions for an error to happen; yet, finding what part of the program may
cause an error is a completely different issue, which we definitely want to address.
• the amount of data to inspect may still be cumbersome: indeed, the in-

variants computed during semantic slicing may contain a huge amount of relevant
information, and a user would expect some help about what to look at first.
• the synthesis of semantic slicing criteria is still not automatic: we did not

provide any automatic way to guess useful slicing criteria in Chapter 7; however,
this might turn out a difficult task –especially for non-experienced users.

Obviously, the first point present some similarities with a dependence problem. In fact,
it is very difficult to define what the “cause” for an error is. In practice, a programmer
investigating a bug attempts to reconstitute the sequence of events, which caused a failure
to occur: the investigation starts from the point where the error occurs; then, the origin
values of the variables affecting the error should be checked and so on recursively. The
manual alarm investigation technique proceeds similarly, by looking at invariants. This
approach can clearly be assimilated to a kind of dependence analysis, starting from the
error or alarm point.

The second point, i.e., choosing what part of the invariants should be investigated first
also reduces to the resolution of a problem of dependences: indeed, it is very natural to
focus first on the dependence of the variables incriminated in the alarm, and to focus on
what the error condition depends on.

The third point does not reduce straightforwardly to a dependence problem. However,
we can distinguish the following issues:
• the initial criterion should be determined by an alarm raised by the analyzer; more

precisely, it should specialize the analysis to a case where the error does occur;
• the refined criteria should refine the semantic slice, and try to improve the character-

ization of the traces leading to an error; moreover, it should refine first the analysis
of the statements encountered before the alarm, and which impact the variables
involved in the alarm, so as to provide a better understanding of the immediate
context of the alarm first.

Clearly, the dependences from the error condition, in the semantic slice should be useful in
the case of refined criteria, since the dependences computed from the alarm point should
tell what part to refine first.

Syntactic slicing [Wei81] is based on dependence analysis as well; however, it focus on
the extraction of all the statements the criterion depends on. By contrast, we would be
interested in dependence chains rather than the whole slice, even though the slice may
also be useful in a second step.

However, program slicing techniques [Wei81, HRB90] usually rely on syntactic de-
pendences: indeed, the dependences collected in the slicing process are characterized by
“def-use” conditions. We may wish to focus on more informative dependences, so as to
track and characterize the causes for errors. We illustrate this issue in the following
example.
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Definition 8.1.1. Semantic slice and dependences.

Let us consider the program P in Figure 8.1(a); in particular, we focus on the semantic
slice defined by the constraints displayed in Figure 8.1(b). Intuitively, the criterion spec-
ifies some initial condition (e.g., a condition on the dynamic inputs of the program) and
it aims at studying the traces which result in a large value of y.

l0 if(x > 5){
l1 y = 1 000 ? x;
l2 } else {
l3 y = y + z;
l4 }
l5 . . .

(a) Code

Initial condition (l0):
x ∈ [0, 10]
y ∈ [0, 5]
z ∈ [−4, 15]

Final condition (l5):
y ≥ 1 000

(b) Semantic slicing cri-
terion

Figure 8.1: Dependence analysis for alarm investigation

We provide in the table below a synthetic characterization of the semantic slice defined
by the criterion (we use interval invariants).

Point Invariant
x y z

l0 [0, 10] [0, 5] [−4, 15]
l1 [6, 10] [0, 5] [−4, 15]
l2 [6, 10] [6 000, 10 000] [−4, 15]
l3 ⊥ ⊥ ⊥
l4 ⊥ ⊥ ⊥
l5 [6, 10] [6 000, 10 000] [−4, 15]

Obviously, no trace in the semantic slice goes through the ∆ = ∆ branch of the condi-
tional, since this branch would only generate small values for y under the input condition
given above. Moreover, we can see in the semantic slice that the first occurrence of a
large value in the program occurs at point l2, after the assignment y = 1 000 ? x.
As a consequence, we intend to define a dependence analysis such that:
• the dependences induced in the false branch are not collected;
• the dependence from (l5, y) to the assignment y = 1 000?x is more important, hence

should be collected in priority.

Before we tackle the definition of dependences fulfilling the requirements stated in
Example 8.1.1, we need to choose a framework for expressing dependences, which is the
goal of the next section.
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8.2 Notion of Dependences and Approximation

First, we set up a framework for reasoning about dependences. The notions and notations
used in this section will be used thoroughly further in the chapter.

The definitions of dependences we are going to set up are based on denotational ab-
stractions; as a consequence, we assume that JP K is the “strongly closed” version of the
semantics of programs defined in Section 3.2.1. In fact, we go even further and assume
that JP K collects all traces of the transition system P starting from any state, i.e., we let
JP K = lfp∅FP , where:

FP : P(Σ) −→ P(Σ)
E 7→ {〈s〉 | s ∈ � } ∪ {〈s0, . . . , sn, sn+1〉 ∈ Σ | 〈s0, . . . , sn〉 ∈ E ∧ sn → sn+1}

We will refine this assumption in Section 8.3; indeed the definition of observable traces
will allow to restrict –among others– to the traces starting from some initial state.

8.2.1 Dependences induced by a function

Defining dependences: Dependences have a nicer formulation when considering func-
tions instead of mere traces: an output depends on the inputs that may affect its result.
Hence, we start with a study of the dependences expressed on functions. Later, we shall
use the abstraction of traces into functions (Section 3.2).

Definition 8.2.1. Dependences.

Let φ ∈ Den, x0, x1 ∈ � . We say that φ induces a dependence of x1 on x0 if and only
if there exist ρ0 ∈ � , va, vb ∈ � such that φ(ρa)(x1) 6= φ(ρb)(x1) where ρi = ρ0[x0 ← vi].

Such a dependence is written x1
φ
Ã x0 (or x1 Ã x0 when there is no ambiguity about the

function φ).

Intuitively, there is a dependence of x1 on x0 if a single modification of the input value
of x0 may result in a different result for x1. In other words, there is a dependence of x1

on x0 if and only if the observation of output value for x1 gives any information about
the input value for x0.

Definition 8.2.1. Dependences of functions.

Let x, y ∈ � . Let us consider the function φ ∈ Den defined by

φ(ρ) =

{
{ρ[y ← x]} if ρ(b) = true
∅ if ρ(b) = false

Then, if ρ0 ∈ � , and z ∈ � , φ(ρ0[b← false])(z) = ∅ 6= φ(ρ0[b← true])(z); hence, z
φ
Ã b.

Similarly, we would show that y Ã x.

Last, if z ∈ � \ {y}, we could prove that z
φ
Ã z, and that φ has no other dependence.
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Dependences and non-secrecy: Definition 8.2.1 presents some deep similarities with
the notion of non-interference (or secrecy) [GM82], which is commonly used in the area
of security. In this setting, the set of variables � is usually partitioned into two parts:
• the “low” variables ( � L) should be public (their value may be read by anyone);
• the “high” variables ( � H) should be private: only authorized users should access

them; moreover, other users should not be able to derive any information about
high variables, e.g., by observing low variables.

We assume that such a partition is given; then, secrecy usually boils down to:

Definition 8.2.2. Secrecy.

Let φ ∈ Den. We say that φ is secure if and only if the following condition holds:

∀ρ0, ρ1 ∈ � ,
(
∀x ∈ � L, ρ0(x) = ρ1(x)

)
=⇒ ∀x ∈ � L, φ(ρ0)(x) = φ(ρ1)(x)

Intuitively, if φ is secure, then observing the low outputs does not provide any infor-
mation about the high inputs: indeed, if two inputs may only differ in the value of the
high variables, then the resulting outputs have the same low observation.

Other authors used similar formalisms in order to describe, e.g., information flows in
programs [Den76, DD77].

By contrast, in the case of the definition of dependences (Definition 8.2.1), we can
note two important differences:
• the partition of � in low and high variables is not the same for the inputs and for

the outputs, as summarized in the table below (we keep the notations of Definition
8.2.1):

Input Output
High � H

in = {x0} � H
out = � \ {x1}

Low � L
in = � \ {x0} � L

out = {x1}
• we say that there is a dependence if we can observe a modification of the value of

x0 before applying φ by observing the value of x1 after: therefore, the existence of a
dependence is the opposite of secrecy (a function is secure if there is no dependence).

Consequently, our notion of dependence is a equivalent to a form of non-secrecy. The
reason why we adopt such a definition is that we wish to start with a semantic definition
of what a dependence is, so as to be able to design various extensions and refinements
later; the syntactic definitions traditionally used in slicing would not allow this to be done.

Dependence abstraction: We now define the set of dependences of a function:

Definition 8.2.3. Dependence set.

We use the same notations as in Definition 8.2.1. We let the dependence set Df [φ] of
φ be the set of dependences induced by φ:

Df [φ] = {(x0, x1) | x1
φ
Ã x0} ∈ Depf
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We write Depf = P( � 2), so that Df [φ] ∈ Depf .

Definition 8.2.2. Non-determinism and dependences.

We let x1 ∈ � , and φ be the function defined by φ : ρ 7→ {ρ[x1 ← v] | v ∈ � }. Intuitively,
φ represents the semantics of a random statement.
Let x0 be any variable and ρ be a store. Then, ∀v ∈ � , φ(ρ[x0 ← v])(x1) = � . Therefore,
(x0, x1) 6∈ Df [φ].

Let x0 ∈ � , x0 6= x1. Then, we can check straightforwardly that x0
φ
Ã x0, since φ(ρ)(x0) =

{ρ(x0)}.
Hence,

Df [φ] = {(x0, x0) | x0 ∈ � ∧ x0 6= x1}

We derive an abstraction for sets of elements of Den from the function φ 7→ Df [φ]:

Definition 8.2.4. Dependence abstraction.

We consider Depf = P( � × � ), with the usual set inclusion ordering. Then, we have a
Galois connection:

(P(Den),⊆) −−−−→←−−−−
αD

γD

(Depf ,⊆)

where:
αD : P(Den) → Depf

Φ 7→ {(x0, x1) | ∃φ ∈ Φ,
x1
Ã φx0}

γD : Depf → P(Den)
D 7→ {φ ∈ Den | Df [φ] ⊆ D}

The proof that (αD, γD) define a Galois-connection is straightforward.
Please note that a dependence set is an abstraction of a set of functions and not for a

single function. In particular, the function φ 7→ Df [φ] is not even monotone, as stated in
the following remark, so that it is not possible to define a Galois connection, where Df [.]
would be the abstraction function.

Remark 8.2.1. Non monotonicity.

The function φ 7→ Df [φ] is non monotone: ∃φ, φ′, ∀ρ ∈ � , φ(ρ) ⊆ φ′(ρ)∧Df [φ] * Df [φ
′].

For instance, the upper element of Den is φ> : ρ 7→ � ; and, Df [φ>] = ∅, so proving the
non monotonicity of the Df [.] operator reduces to finding a function which has at least
one dependence. This is possible if the number of elements of � is greater than 2, which
is always the case in practice.
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Approximation of composition: We noted in Section 3.2 that the ◦ operator is the
counterpart for the concatenation of statements, execution paths... Therefore, we propose
to determine the dependences of the composition of functions: if φ0, φ1 ∈ Den, then
we wish to derive an approximation for Df [φ1 ◦ φ0]. The Á operator simply composes
dependences:

Definition 8.2.5. Junction of dependence sets.

Let D,D′ ∈ Depf . We define the junction of D and D′ denoted with DÁD′ by

DÁD′ = {(x, x′′) ∈ � 2 | ∃x′ ∈ � , (x, x′) ∈ D ∧ (x′, x′′) ∈ D′}

Lemma 8.2.1. Monotonicity of the junction operator.

The operator Á is monotone: if D0,D
′
0,D1,D

′
1 ∈ Depf are such that D0 ⊆ D′0 and

D1 ⊆ D′1, then D0 ÁD1 ⊆ D′0 ÁD′1.

Proof.

Let (x, x′′) ∈ D0ÁD1. Then, there exists x′ ∈ � , such that (x, x′) ∈ D0 and (x′, x′′) ∈ D1.
By assumption, D0 ⊆ D′0, so (x, x′) ∈ D′0; similarly, (x′, x′′) ∈ D′1. As a consequence,
(x, x′) ∈ D′0 ÁD′1. Â

The operator Á over-approximates the dependences of the composition of functions:

Theorem 8.2.2. Composition of dependences –approximation.

The operator Á is a sound approximation for “;” (or ◦); that is, if φ0, φ1 ∈ Den such
that,

Df [φ1 ◦ φ0] ⊆ Df [φ0]ÁDf [φ1]

Proof.

We write D for Df [φ0]ÁDf [φ1]; we let φ = φ1 ◦ φ0. Let x0, x2 ∈ � . Let us assume that

(x0, x2) 6∈ D and show that ¬(x2
φ
Ã x0).

Since (x0, x2) 6∈ D, ∀x1 ∈ � ,
(
¬(x1

φ0
Ã x0) ∨ ¬(x2

φ1
Ã x1)

)
. Let ρ ∈ � , v, v′ ∈ � . We let:

ρ0 = ρ[x0 ← v] ρ′0 = ρ[x0 ← v′]
P1 = φ0(ρ0) P ′1 = φ0(ρ

′
0)

P2 = φ1(P1) P ′2 = φ1(P
′
1)

We intend to show that φ(ρ0)(x2) = φ(ρ′0)(x2), that is P2(x2) = P ′2(x2).
The execution of φ0 modifies the value of at most a finite number of variables. Let V
be the set of modified variables by executing φ0 either from ρ0 or from ρ′0 and W be the
set {x ∈ � | P1(x) 6= P ′1(x)}.
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Clearly, W is finite. Moreover, if x1 ∈W , then x1
φ0
Ã x0; hence, ¬(x2

φ1
Ã x1).

We prove straightforwardly by induction on Card(W ) that:

∀Q1, Q
′
1 ∈ P( � ),

W = {x ∈ � | Q1(x) 6= Q′1(x)}
x1 ∈W =⇒ ¬(x2

s1
Ã x1)

}
=⇒ φ1(Q1)(x2) = φ1(Q

′
1)(x2)

• if Card(W ) = 0, then, Q1 = Q′1, so the result is obvious;
• if Card(W ) = n + 1 and the property holds for n, then we can pick up an element

x1 ∈ W and let W ′ = W \ {x1}. We define Q′′1 = {ρ1[x1 ← ρ′1(x1)] | ρ1 ∈ Q1, ρ
′
1 ∈

Q′1}. Then:

φ1(Q1)(x2) = φ1(Q
′′
1)(x2) since ¬(x2

φ1
Ã x1) and ∀x ∈ � \ {x1}, Q1(x) 6= Q′′1(x)

= φ1(Q
′
1)(x2) by induction hypothesis, and since Card(W ′) = n

Therefore, the property applies to the above set W and P2(x2) = P ′2(x2). Â

8.2.2 Dependences induced by a set of traces

In the following a dependence observed on a set of traces states that “the value of variable
x1 at point l1 depends on the value of variable x0 at point l0”. We derive such dependences
from the dependences induced by a function obtained by applying to E either of the
abstractions, we introduced in Section 3.2.

Definition: First, we define the dependences between two fixed control states:

Definition 8.2.6. From-to Dependences.

Let E be a set of traces. For any pair of points l0, l1 ∈ � , the “from-to” dependence set
Df [E | l0, l1] is defined by:

Df [E | l0, l1] = Df [αtF [l0,l1](E)]

By extension, if s is a statement, then: Df [s | l0, l1] = Df [JsK | l0, l1] = Df [αtF [l0,l1](JsK)].

The dependences for the whole set of traces collect all from-to dependences:

Definition 8.2.7. Dependences.

The dependence set of E is:

Dt[E ] = {((l0, x0), (l1, x1)) | (x0, x1) ∈ Df [E | l0, l1]} ∈ Dept

By extension, Dt[s] = Dt[JsK].

Xavier Rival Traces Abstraction in Static Analysis and Program Transformation



8.2. NOTION OF DEPENDENCES AND APPROXIMATION 159

We can also restrict the observation of dependences to a path:

Definition 8.2.8. Dependences along a path.

Let l`, la ∈ � and p ∈ P (l`, la). We let DF [E | p] be the dependence sets induced by E,
restricted to the path p by taking into account the traces on the path p only:

DF [E | p] = Df [αpF [p](JEK)]

Path decomposition: In particular, we note that the set of dependences along all paths
between a pair of points partition the from-to dependences between these two points; this
result will play a significant role in the definition of a computable approximation for
dependences:

Theorem 8.2.3. Approximating the from-to dependences.

Let x0, x1 ∈ � and l0, l1 ∈ � . If (x0, x1) ∈ Df [E | l0, l1], then there exists p ∈ P (l0, l1),
such that (x0, x1) ∈ DF [E | p]:

Df [E | l0, l1] ⊆
⋃
{DF [E | p] | p ∈ P (l0, l1)}

Proof.

We show the contraposition: we assume that ∀p ∈ P (l0, l1), (x0, x1) 6∈ DF [E | p] and
we show that (x0, x1) 6∈ Df [E | l0, l1].
Let ρ ∈ � and v, v′ ∈ � . We intend to show that αtF [l0,l1](E)(ρ[x0 ← v])(x1) =
αtF [l0,l1](E)(ρ[x0 ← v′])(x1). Let us note that:

αtF [l0,l1](E)(ρ[x0 ← v])(x1)
=

⋃{αpF [p](E)(ρ[x0 ← v])(x1) | p ∈ P (l0, l1)} because of lemma 3.2.1

The assumption (x0, x1) 6∈ DF [E | p] implies that αpF [p](E)(ρ[x0 ← v])(x1) = αpF [p](E)(ρ[x0 ←
v′])(x1) for any path p ∈ P (l0, l1). Hence,

αtF [l0,l1](E)(ρ[x0 ← v])(x1) =
⋃{αpF [p](E)(ρ[x0 ← v′])(x1) | p ∈ P (l0, l1)}

= αtF [l0,l1](E)(ρ[x0 ← v′])(x1) (as above)

This concludes the proof. Â
We note that the approximation of Df [E | l0, l1] given in Theorem 8.2.3 is usually

strict, and might affect the precision of analyses, as shown in the following example:
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Definition 8.2.3. Dependences in a program.

Let us consider the program P below:

l0 : if(b) {
l1 : x = 4;
l2 : } else {
l3 : x = 4;
l4 : }
l5 : . . .

Then, there are two paths pt, pf (one path through each branch of the conditional) from l0
to l5, so Theorem 8.2.3 gives the approximation: Df [P | l0, l5] ⊆ DF [P | pt] ∪DF [P | pf ].
However,

• the same value is assigned to x whatever the path, so ¬((l5, x)
P
Ã (l0, b));

• αpF [pt](JP K) = Jbb ? bx ← 4c | ¤ cK, hence (b, x) ∈ DF [P | pt] (and the same for
DF [P | pf ]).

As a consequence, DF [P | pt]∪DF [P | pf ] is a strict over-approximation of Df [P | l0, l5].
In fact, this example reveals even worse imprecisions: for instance, if y ∈ � \ {b, x}, then
(b, y) ∈ DF [P | pt]. Such imprecisions will be addressed in the Section 8.2.4.

Errors and non-termination: Let us consider the program l0 : assert(b); l1. If b is
false, then the program crashes (the execution stops), so that the image of the denotational
semantics of this program is ∅; if b is true, then it behaves like the identity function. As a
consequence, for all x ∈ � , (l1, x)Ã (l0, b). We may not want to include such dependences.
Either this would amount to include ways too many dependences, or these dependences
would not have a practical interpretation, if we wish to understand the way x 6= b is
computed.

Note that the same issue occurs with non-termination: if we consider l0 : while(b){}; l1,
if b is true, the execution never reaches point l1.

The common solution to this issue consists in using a “lazy semantics” [CF89], allow-
ing erroneous executions to continue, with an “error-flag” turned on; similarly looping
execution can continue after diverging, with only the ultimately constant variables well-
defined after the point of divergence. The presentation used in [CF89] is denotational,
but other authors [GM03] also proposed lazy versions of trace semantics (roughly, they
allow “transfinite traces”).

Basically, our framework works in both cases (i.e., for standard semantics as well as
for lazy semantics).

8.2.3 Approximation of dependences

We address in this subsection the computation of an approximation of the dependence set
introduced in Definition 8.2.7.
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Local dependences: In a real program, the dependences induced by each statement
can be determined pretty easily by local rules.

In our present set-up, this local description of the dependences of the program can be
defined by an approximation of the dependences induced by one-step transitions.

Definition 8.2.9. Local dependences.

We define the local dependences induced by a set of traces E as the dependences that
can be observed on paths of length 1:

Dloc = {((l0, x0), (l1, x1)) ∈ ( � × � )2 | l0, l1 ∈ � ∧ (x0, x1) ∈ Df [αp[l0·l1](E)]} ∈ Dept

In the following we assume we are able to compute an over-approximation of Dloc and
write Da

loc for this approximation.

Approximation of the dependences along a path: We need to set up a counterpart
for Á on Dept; which should approximate the concatenation of traces.

Definition 8.2.10. Approximation for composition.

We let the » operator be defined on Dept by:

∀D0,D1 ∈ Dept,
D0 »D1 = {((l0, x0), (l2, x2)) |

∃l1 ∈ � , x1 ∈ � , ((l0, x0), (l1, x1)) ∈ D0 ∧ ((l1, x1), (l2, x2)) ∈ D1}

Lemma 8.2.4. Algebraic properties of ».

The operator » enjoys the following properties:
1. it is monotone: if D0,D

′
0,D1,D

′
1 ∈ Dept are such that D0 ⊆ D′0 and D1 ⊆ D′1, then

D0 »D1 ⊆ D′0 ÁD′1.
2. it is distributive over ∪:

∀D0,D
′
0,D1 ∈ Dept,

{
(D0 ∪D′0)»D1 = (D0 »D1) ∪ (D′0 »D1)
D1 » (D0 ∪D′0) = (D1 »D0) ∪ (D1 »D′1)

3. it is associative:

∀D0,D1,D2 ∈ Dept, D0 » (D1 »D2) = (D0 »D1)»D2

Proof.

Straightforward algebraic proofs. Â
Many definitions for dependence analyses and security analyses involve a type-system.

In fact, such type-system-based analyses hide a fixpoint definition [Cou97b], and we wish
to make the fixpoint explicit, so as to be able to perform various refinements, such as
using a better iteration strategy, computing a reduced product analysis, augmenting the
control states with partitioning tokens...
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Semantics as a strongly closed set of traces: We recall that we are using the
strongly closed version of the semantics of programs in this chapter.

Computable approximation: We intend to prove the correctness of the approxima-
tion of the dependences of a program with a least-fixpoint equation, defined as follows:

Theorem 8.2.5. Approximation of dependences.

We assume that E is a strongly closed set of traces; Da
loc is a sound approximation of

the local dependences in E. We let the backward dependence analysis function F←−
D

and
∆D be defined by:

F←−
D

: Dept → Dept

D 7→ D ∪Da
loc »D

∆D = {((l , x), (l , x)) | l ∈ � , x ∈ � } ∈ Dept

Then,

Dt[E ] ⊆ lfp∆D
F←−

D
=
⋃

n∈ �

F n
←−
D

(∆D)

First, we prove that F←−
D

computes over-approximations for the dependences along
paths.

Lemma 8.2.6. Path Composition.

Let l`, la ∈ � , p ∈ P (l`, la), and n = len(p). Then,

∀(x, x′) ∈ DF [E | p], ((l`, x), (la, x
′)) ∈ F n

←−
D

(∆D)

Proof.

We prove this property by induction on the length n of p:
• if n = 0, then p writes down p = l0; hence, αp[p](E) = {〈(l0, ρ0)〉 | ρ0 ∈ � },

αpF [p](E) = λ(ρ ∈ � ).{ρ} and DF [E | p] = {(x0, x0) | x0 ∈ � }. Therefore, if
(x, x′) ∈ DF [E | p], then x = x′ and ((l0, x), (l0, x′)) ∈ ∆D = F 0

←−
D

(∆D).
• if n ≥ 0, then, we assume that the property holds for any path of length n and prove

it for a path p of length n + 1.
We assume that p = l0 · l1 · . . . · ln · ln+1. We write p′ = l0 · l1 and p′′ = l1 · ln+1 (ie.
l` = l0 and la = ln+1). Then:

DF [E | p]
= Df [αpF [p](E)]
= Df [αpF [p′′](E) ◦ αpF [p′](E)] by lemma 3.2.2 and strong closure
⊆ Df [αpF [p′](E)]ÁDf [αpF [p′′](E)] by theorem 8.2.2
= DF [E | p′]ÁDF [E | p′′]
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Note that the closure of E would not be enough: it would give the inclusion
αpF [p](E) ⊆ αpF [p′′](E) ◦ αpF [p′](E) but Df [.] is not monotone, as we pointed out
in Remark 8.2.1.
Let (x0, xn+1) ∈ DF [E | p]. We draw from the above inequality that there exists x1 ∈

� such that (x0, x1) ∈ DF [E | p′] and (x1, xn+1) ∈ DF [E | p′′]. As a consequence:
– (x0, x1) ∈ DF [E | p′] and p′ is a path of length 1, so ((l0, x0), (l1, x1)) ∈ Da

loc;
– (x1, xn+1) ∈ DF [E | p′′], and p′′ has length n; therefore, we can apply the

induction hypothesis to p′′; we deduce that ((l1, x1), (ln+1, xn+1)) ∈ F n
←−
D

(∆D).
Hence,

((l0, x0), (ln+1, xn+1)) ∈ Da
loc » F n

←−
D

(∆D)

((l0, x0), (ln+1, xn+1)) ∈ Da
loc » F n

←−
D

(∆D) ∪ F n
←−
D

(∆D)

((l0, x0), (ln+1, xn+1)) ∈ F n+1
←−
D

(∆D)

As a consequence, ∀(x0, xn+1) ∈ DF [E | p], ((l0, x0), (ln+1, xn+1)) ∈ F n+1
←−
D

(∆D).

This concludes the proof of the lemma. Â
We now come back to the proof of the main theorem:

Proof.

We have two subproofs to complete:
• Definition of the least-fixpoint: Let us note that F←−

D
is continuous; hence, the

least-fixpoint is defined.
• Soundness: Let ((l0, x0), (l1, x1)) ∈ Dt[E ]. So, (x0, x1) ∈ Df [E | l0, l1]. Conse-

quently, we deduce from Theorem 8.2.3 that there exists some path p ∈ P (l0, l1)
such that (x0, x1) ∈ DF [E | p]. If we write n = len(p), then by application of lemma
8.2.6, ((l0, x0), (l1, x1)) ∈ F n

←−
D

(∆D). The conclusion is: ((l0, x0), (l1, x1)) ∈ lfp∆D
F←−

D
.

As a conclusion, lfp∆D
F←−

D
exists and Dt[E ] ⊆ lfp∆D

F←−
D

. Â

8.2.4 Dependence analysis

Theorem 8.2.5 provides a very useful approximation for the dependences of a transition
system, expressed as a least fixpoint. However, a few points should still be addressed
before an efficient and usable dependence analysis can be implemented:
• effective definition of Dloc;
• computability of the least fixpoint;
• refinement of the analysis.

Approximation of local dependences: First, we focus on the definition of an ap-
proximation Da

loc for Dloc. Theorem 8.2.8 gives a straightforward approximation for the
dependences induced by a symbolic transfer function, which we will refine later. This ap-
proximation corresponds to the syntactic approximation commonly used e.g., in slicing.
Before, we prove the main theorem, we mention that the value of an expression e depends
at most on the variables in e:
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Definition 8.2.11. Used variables.

The set use(e) of variables used in an expression e ∈ � is defined by a straightforward
induction over e:

∀v ∈ � , use(v) = ∅
∀x ∈ � , use(x) = {x}
∀e0, e1 ∈ � , use(e0 ⊕ e1) = use(e0) ∪ use(e1)

Lemma 8.2.7. Dependence of an expression.

Let e ∈ � , ρ ∈ � , x ∈ � , v, v′ ∈ � . Then,

JeK(ρ[x← v]) 6= JeK(ρ[x← v′]) =⇒ x ∈ use(e)

Proof.

Straightforward induction on the structure of e Â

Theorem 8.2.8. Dependence of a symbolic transfer function.

Let δ ∈ �
. The dependence Df [JδK] (Df [δ] for short) can be approximated by Da

f [δ], which
is computed by induction over δ as follows:

Da
f [¤] = ∅

Da
f [bx0 ← e0, . . . , xn ← enc] = {(x, xi) | x ∈ use(ei)} ∪ {(x, x) | ∀i, x 6= xi}

Da
f [be ? δt | δf c] = {(x, y) | x ∈ use(e), y ∈ � } ∪Da

f [δt] ∪Da
f [δf ]

Proof.

By induction on the structure of δ:
• case of ¤:

Let x0, x1 ∈ � , ρ ∈ � , and v, v′ ∈ � . Then, J¤K(ρ[x0 ← v])(x1) = ∅ = J¤K(ρ[x0 ←
v′])(y1), so (x0, x1) 6∈ Df [¤]. Hence, Df [¤] = ∅.
• case of δ = bx0 ← e0, . . . , xn ← enc:

Let (y0, y1) ∈ Df [¤], ρ ∈ � , v, v′ ∈ � such that JδK(ρ[y0 ← v])(y1) 6= JδK(ρ[y0 ←
v′])(y1). There are two cases:

– if y1 = xi: Then, JδK(ρ[y0 ← v])(y1) = JeiK(ρ[y0 ← v]) and JδK(ρ[y0 ←
v′])(y1) = JeiK(ρ[y0 ← v′]); so JeiK(ρ[y0 ← v]) 6= JeiK(ρ[y0 ← v′]); hence,
y0 ∈ use(ei).

– if ∀i, y1 6= xi: Then, JδK(ρ[y0 ← v]) = ρ[y0 ← v](y1) and JδK(ρ[y0 ← v′)](y1) =
ρ[y0 ← v′](y1); hence, JδK(ρ[y0 ← v])(y1) 6= JδK(ρ[y0 ← v′])(y1) entails that
y0 = y1.
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As a conclusion, Df [δ] ⊆ {(x, xi) | x ∈ use(ei)} ∪ {(x, x) | ∀i, x 6= xi}.
• case of δ = be ? δt | δf c:

Let (y0, y1) ∈ Df [¤], ρ ∈ � , v, v′ ∈ � such that JδK(ρ[y0 ← v])(y1) 6= JδK(ρ[y0 ←
v′])(y1). There are two cases:

– if JeK(ρ[y0 ← v]) = JeK(ρ[y0 ← v′]): then, either δt, or δf , or δt and δf are
executed in both cases, so it follows that (y0, y1) ∈ Df [δt] ∪Df [δf ].

– if JeK(ρ[y0 ← v]) 6= JeK(ρ[y0 ← v′]) then, y0 ∈ use(e).
Therefore, Df [δ] ⊆ {(x, y) | x ∈ use(e), y ∈ � } ∪ Df [δt] ∪ Df [δf ]. We apply the
induction hypothesis and draw the conclusion that Df [δ] ⊆ {(x, y) | x ∈ use(e), y ∈

� } ∪Da
f [δt] ∪Da

f [δf ].
As a consequence, ∀δ ∈ �

, Df [δ] ⊆ Da
f [δ]. Â

Remark 8.2.2. Dependences and aliases.

Let us assume we consider a language which features aliasing, and that x and y point to
the same memory location. Obviously, if z depends on ?x, then it depends also on ?y.
Therefore, in presence of aliasing, we would have to perform some kind of alias analysis
[CBC93, Deu94] first, and then use the results so as to compute the local dependences.

In the following sections, we will introduce many refinements for this approximation
of Df [δ]. In particular, the restriction of the inputs/outputs of a function (e.g., due to
semantic slicing) may remove dependences.

Another significant improvement in precision comes from the ability to compose sym-
bolic transfer functions and compute dependences globally for a path, instead of composing
several approximation. We already pointed out in Section 3.2.6 that the global approx-
imation of paths may improve the precision of static analysis. The following example
demonstrate this phenomenon in dependence analysis.

Definition 8.2.4. Precision improvement.

Let us consider the following transfer functions:

δ0 = bx ? ι | ¤ c δ1 = bz ← x ∨ yc
Then, Da

f [δ0] = {(u, u) | u ∈ � } ∪ {(x, u) | u ∈ � } and Df [δ1] = {(u, u) | u ∈ � , u 6=
z} ∪ {(x, z), (y, z)}; so:

Df [δ0]ÁDf [δ0]
= {(u, u) | u ∈ � }Á {(u, u) | u ∈ � , u 6= z}
∪ {(x, u) | u ∈ � }Á {(u, u) | u ∈ � , u 6= z}
∪ {(u, u) | u ∈ � }Á {(x, z), (y, z)}
∪ {(x, u) | u ∈ � }Á {(x, z), (y, z)}

= {(u, u) | u ∈ � , u 6= z} ∪ {(x, u) | u ∈ � , u 6= z} ∪ {(x, z), (y, z)} ∪ {(x, z)}
= {(x, u) | u ∈ � } ∪ {(u, u) | u ∈ � , u 6= z} ∪ {(y, z)}

However, simplify(δ1 ⊕ δ0) = simplify(bx ? bz ← x ∨ yc | ¤ c) = bx ? bz ← truec | ¤ c,
so that Df [simplify(δ1 ⊕ δ0)] = {(x, u) | u ∈ � } ∪ {(u, u) | u ∈ � , u 6= z}.
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We gave an encoding of all the one-step transitions in symbolic transfer functions in
Figure 3.5; therefore, an approximation for Dloc follows from the approximation of the
dependences induced by any transfer function (Theorem 8.2.8).

Computability: Theorem 8.2.5 provides a least-fixpoint approximation for the depen-
dences induced by a set of traces, hence by a program. We mentioned that function F←−

D

is continuous, so the least-fixpoint is reached after ω iterations: lfp∆D
F←−

D
= ∪{F n

←−
D

(∆D) |
n ∈ � }.

However, Dept is finite, since the number of control states in a program is finite and
so is the number of variables. Therefore, the least-fixpoint can in fact be reached after a
finite number of iterations.

Remark 8.2.3. Procedural programs.

If we consider a procedural analysis, then the calling stack is part of the control states. If
a program contains recursive functions, then the set of control states is no longer finite,
since there exist an infinity of control stacks; then, we should apply some abstractions to
the stacks, as in Section 4.1.1 (such abstractions can be defined as extended systems, as
in Section 4.2).
Similarly, in case dynamic memory allocation is allowed, then the number of possible
memory cells is infinite, so an abstraction for memory locations should be defined.

Improving precision: We pointed out in Example 8.2.3 some imprecision inherent in
the approximation of the dependences between two points with the join of the dependences
along all paths between these two points (Theorem 8.2.3).

Let l`, la ∈ � . Intuitively, if a variable x is not modified on any path between l ` and
la if l` precedes la (i.e., any execution reaching l ` eventually reaches la), then x at la
may not depend on any variable but x at l `. Let us formalize this argument:

Definition 8.2.12. Control state precedence.

Let l`, la ∈ � . We say that l` precedes la (implicitly: with respect to a set of traces E,
or with the semantics of program s), which we denote by l ` ≺ la if and only if:

∀ρ ∈ � , ∃〈s0, . . . , sn〉 ∈ E , s0 = (l, ρ) ∧ ∃ρ′ ∈ � sn = (l′, ρ′)

The relation ≺ is transitive; it is generally neither reflexive (case of unreachable states)
nor antisymmetric (case of e.g., loops).

Then, the criterion evoked above can be stated as follows:

Theorem 8.2.9. Precedence, dependence and variable update.

Let l , l ′ ∈ � such that l ≺ l ′, and x, x′ ∈ � such that ((l , x), (l ′, x′)) ∈ Dt[E ], and
x 6= x′. Then, there exists a path from l to l ′ where the value of x′ changes, ie. is
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updated at least once; in fact the following stronger result holds:

∃ρ ∈ � , ∃p ∈ P (l , l ′), ∃v ∈ αpF [p](E)(ρ)(x′) ∧ v 6∈ ρ(x′)

Proof.

Let us assume that l ≺ l ′, ((l , x), (l ′, x′)) ∈ Dt[E ], and x 6= x′. There exist ρ ∈
� , v0, v1 ∈ � , such that φ(ρ0)(x

′) 6= φ(ρ1)(x
′), where φ = αpF [l ]l ′(E), and ∀i ∈ {0, 1}, ρi =

ρ[x← vi].
The precedence property entails that ∀i ∈ {0, 1}, φ(ρi)(x

′) 6= ∅. The dependence entails
that ∃i, φ(ρi)(x

′) 6= {ρ(x′)}; hence, ∃v ∈ � , v ∈ φ(ρi)(x
′). The main result follows. Â

The precedence relation can be computed syntactically; moreover, the set of variables
modified between any pair of control states can be approximated by a simple static anal-
ysis, which we do not describe here. More precisely, this analysis would over-approximate
the set of tuples (l , l ′, x′) such that x′ is modified on at least one path from l to l ′.

Then, the dependence analysis is the result of a reduced product of the analysis de-
scribed in Theorem 8.2.5 and of the analysis approximating the variable updates.

Definition 8.2.5. Precedence among control states.

Let us consider the definition of the ≺ relation in the case of the simple language intro-
duced in Section 2.2:
• if P contains an assignment l0 : x := e; l1, then, clearly l0 ≺ l1 (the case of input

statements, sequences, if statements are similar);
• the case of an assert statements l0 : assert(e); l1 is more interesting:

– in the standard settings, some traces from l0 may not reach l1, due to the
assertion being violated; as a consequence l0 6≺ l1 (so we keep the spurious
dependences mentioned in the end of Section 8.2.2);

– by contrast, in the “lazy semantics” approach [CF89], then any trace from l0
eventually reaches l1 (since an erroneous trace continues, with an error flag
enabled), so that l0 ≺ l1.

The case of a loop statement l0 : while(e){. . .}; l1 is similar (i.e., l0 ≺ l1 holds only
in the lazy semantics approach). As a consequence, we confirm that our framework
accommodates both approaches; in practice though, we use the lazy one (since we
are interested in backward dependences from errors only).

Definition 8.2.6. Precedences among control states (Example 8.2.3 continued).

Clearly, l0 ≺ l5; moreover, if y ∈ � \ {x}, then y is not modified on any path between l0
and l5, so there is no dependence (l5, y)Ã (l0, b) (in fact, (l5, y)Ã (l0, z) =⇒ z = y).

In practice, most implementations of dependence analyses distinguish data and control
dependences, which avoid the need for this simple refinement. However, the advantage
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of our approach is to start with a semantic definition of dependences, to derive a rather
rough computable approximation and to refine it later. The price to pay for this approach
was the need to recover the distinction between data and control dependences.

8.2.5 Dependence graphs

Backward dependence: Theorem 8.2.5 provides a means to compute all the depen-
dences in a program. However, one usually does not need to compute all the dependences:
the purpose of the dependence analysis is usually to figure out what may affect the value
of a variable x at point l , or to extract a slice.

As a consequence, we define the notion of criterion, which states what part of the
program we wish to compute the dependences of:

Definition 8.2.13. Criterion.

A criterion C is a set of pairs made of a control point and a variable C ∈ P( � × � ).

In particular, if an alarm is raised at point l due to the possible failure of an assertion
assert(e);, then, we should consider the criterion C = {l } × use(e).

The set of entities the criterion depends on is defined as follows:

Definition 8.2.14. Backward dependence induced by a criterion.

Let E be a strongly closed set of traces, and C ∈ P( � × � ). Then, the backward depen-

dence induced by (E , c) is the set of dependences
←−
dep[E ](C) defined by:

←−
dep[E ](C) = {((l, x), (l′, x′)) ∈ Dt[E ] | (l′, x′) ∈ C} = Dt[E ] ∩

←−C π

where
←−C π = ( � × � )× C.

Extraction of a backward dependence: We propose to derive an algorithm for ex-
tracting the backward dependence induced by a criterion from the fixpoint-based definition
of all the dependences of a program.

In the following, we write ∆CD for C2.

Theorem 8.2.10. Backward dependence analysis.

We let
←−
depa[E ](C) = lfp∆C

D
F←−

D
.

The backward dependence can be safely approximated by
←−
depa[E ](C):

←−
dep[E ](C) ⊆ ←−depa[E ](C)

Proof.

First, we prove that F n
←−
D

(∆D) ∩←−C π = F n
←−
D

(∆CD) by induction over n:
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• if n = 0, then: F 0
←−
D

(∆D) ∩←−C π = ∆D ∩
←−C π = C2 = ∆CD = F 0

←−
D

(∆CD).
• if n ≥ 0, let us assume the property holds for n and show it for n + 1:

F n+1
←−
D

(∆D) ∩←−C π = Da
loc »

(
F n
←−
D

(∆D) ∪ F n
←−
D

(∆D)
)
∩←−C π

= Da
loc »

(
F n
←−
D

(∆D)
)
∩←−C π ∪

(
F n
←−
D

(∆D) ∩←−C π

)

Let l , l ′′ ∈ � , x, x′′ ∈ � and let us consider the first term:

((l , x), (l ′′, x′′)) ∈
(
Da

loc » F n
←−
D

(∆D)
)
∩←−C π

⇐⇒
{

((l , x), (l ′′, x′′)) ∈ Da
loc » F n

←−
D

(∆D)

((l , x), (l ′′, x′′)) ∈ ←−C π

⇐⇒ ∃l ′ ∈ � , x′ ∈ � ,





((l , x), (l ′, x′)) ∈ Da
loc

((l ′, x′), (l ′′, x′′)) ∈ F n
←−
D

(∆D)

(l ′′, x′′) ∈ C

⇐⇒ ∃l ′ ∈ � , x′ ∈ � ,

{
((l , x), (l ′, x′)) ∈ Da

loc

((l ′, x′), (l ′′, x′′)) ∈ F n
←−
D

(∆D) ∩←−C π

⇐⇒ ((l , x), (l ′′, x′′)) ∈ Da
loc »

(
F n
←−
D

(∆D) ∩←−C π

)

As a consequence,

F n+1
←−
D

(∆D) ∩←−C π

= Da
loc »

(
F n
←−
D

(∆D) ∩←−C π

)
∪
(
F n
←−
D

(∆D) ∩←−C π

)

= Da
loc » F n

←−
D

(∆CD) ∪ F n
←−
D

(∆CD) (induction hypothesis)

= F n+1
←−
D

(∆CD)

The intermediate result follows.
From this point, the proof of the theorem is straightforward. Indeed:

←−
dep[E ](C)
= Dt[E ] ∩

←−C π

⊆ (lfp∆D
F←−

D
) ∩←−C π by Theorem 8.2.5

=
(⋃

n∈ � F n
←−
D

(∆D)
)
∩←−C π

=
⋃

n∈ �

(
F n
←−
D

(∆D) ∩←−C π

)

=
⋃

n∈ � F n
←−
D

(∆CD) due to the intermediate result

= lfp∆C
D
F←−

D

This concludes the proof of the theorem.
Â
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In practice, a pre-analysis phase collects all the local dependences of the program in a
dependence graph [HRB90]. Then, backward dependences can be extracted by computing
a closure (i.e., fixpoint computation) of the dependences in the graph, starting from the
criterion.

Definition 8.2.7. Backward dependence (Example 8.1.1 continued).

Let us consider the program P displayed in Figure 8.1(a) (Example 8.1.1). We focus on
the backward dependence induced by the criterion (l5, y).

Then, all the local dependences involved in the computation of
←−
depa[JP K]({(l5, y)}) are

displayed in Figure 8.2. As a result
←−
depa[JP K]({(l5, y)}) is equal to the set of dependences,

(l5, y)

(l4, y)

(l2, y)

(l3, y)

(l3, z)

(l1, x)

(l0, y)

(l0, z)

(l0, x)

Figure 8.2: Local dependences involved in the approximation of the backward depen-
dence induced by {(l5, y)}

{(l5, y), (l4, y), (l3, y), (l3, z), (l2, y), (l1, x), (l0, x), (l0, y), (l0, z)} × {(l5, y)}

Forward dependences: The fixpoint algorithms proposed in Theorem 8.2.5 and Theo-
rem 8.2.10 work backwards: they seek for dependences in the opposite direction compared
to the execution paths. We could propose forward algorithms as well.

In particular, we let the forward dependence semantic function be defined by:

F−→
D

: Dept → Dept

D 7→ D ∪D »Da
loc

The forward analysis provides the same approximation of the dependences of a set of
traces:

Theorem 8.2.11. Forward approximation of dependences.

Let E be a strongly closed set of traces. Then, lfp∆D
F−→

D
= lfp∆D

F←−
D
. As a consequence,

Dt[E ] ⊆ lfp∆D
F−→

D
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Proof.

This result follows from the fact that the iterates in both fixpoints are equal: ∀n ∈
�
, F n
←−
D

(∆D) = F n
−→
D

(∆D). This equality can be proved by induction over n.

But, we prove first the following, by induction over n: ∀n ∈ �
, F n

←−
D

(Da
loc) » Da

loc =

Da
loc » F n

←−
D

(Da
loc).

• if n = 0, then F 0
←−
D

(∆D)»Da
loc = ∆D »Da

loc = Da
loc = Da

loc »∆D = Da
loc » F 0

←−
D

(∆D);
• if n ∈ �

, and the property holds for n, then:

F n+1
←−
D

(∆D)»Da
loc

= (Da
loc » F n

←−
D

(∆D) ∪ F n
←−
D

(∆D))»Da
loc

= (Da
loc » F n

←−
D

(∆D))»Da
loc ∪ F n

←−
D

(∆D)»Da
loc (distributivity ∪ over »)

= Da
loc » (F n

←−
D

(∆D)»Da
loc) ∪ F n

←−
D

(∆D)»Da
loc (associativity of »)

= Da
loc » (Da

loc » F n
←−
D

(∆D)) ∪Da
loc » F n

←−
D

(∆D) (induction hypothesis)

= Da
loc » (F n

←−
D

(∆D)»Da
loc » F n

←−
D

(∆D)) (distributivity ∪ over »)

= Da
loc » F n+1

←−
D

(∆D)

The proof of equality of the iterates from this point is straightforward.

Then, the equality of the forward and backward fixpoints follows from a straightforward
induction on the iterates. Â

Moreover, if we define the forward dependence induced by a criterion as the dual of←−
dep[E ], F−→

D
also provide an over-approximation for such forward dependences:

Theorem 8.2.12. Forward dependence analysis.

Let E be a strongly closed set of traces and C ⊆ P( � × � ).

The forward dependence induced by (E , C) is the set of dependences
−→
dep[E ](C) = {((l , x), (l ′, x′)) ∈

Dt[E ] | (l, x) ∈ C} = Dt[E ] ∩
−→C π, where

−→C π = C × ( � × � ).

Then, if we let
−→
depa[E ](C) by

−→
depa[E ](C) = lfp∆C

D
F−→

D
, then

−→
dep[E ](C) ⊆ −→depa[E ](C).

Proof.

Entirely similar to Theorem 8.2.10. Â

Forward dependences collect what depends on a criterion. In the following, we mostly
use backward dependences, since we are interested in causes of results rather than in
consequences. Hence, we usually let “dependence” mean “backward dependence”, unless
stated otherwise.

Most of the results and definitions given in the following sections would also apply in
the case of forward (observable or abstract) dependences.

For a discussion about the applications of forward dependences (e.g., in the extraction
of forward slices), we refer the reader to [HRB90, HDSS96].
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8.3 Observable Dependences

We now propose a first refinement for the notion of dependences. Indeed, when considering
a semantic slice, we do not consider all the traces of the program. As a result, we may
expect to refine somewhat the algorithm for computing dependences, which we described
in Section 8.2.3.

8.3.1 Dependences on semantic slices and non monotonicity

A natural approach would be to define the dependences for a semantic slice E ′ of E as the
dependences induced by E ′. However, this definition would result in very non-intuitive
dependences, which would not correspond to what we want to capture. Indeed, we recall
that the E 7→ Dt[E ] function is not monotone.

As a result, dependences of semantic slices would be plagued with meaningless fictitious
dependences, as illustrated in the following example.

Definition 8.3.1. Fictitious dependences in a semantic slice.

We consider the following program s, with two variables x, y:

l0 : input(x);
l1 : input(y);
l2 : . . .

This program does not induce any dependence across distinct variables. However, we may
consider the subset clos(E) of JsK, where:

E = { 〈(l0, (x = 0, y = 0)), (l1, (x = 4, y = 0)), (l2, (x = 4, y = 4))〉,
〈(l0, (x = 0, y = 0)), (l1, (x = 2, y = 0)), (l2, (x = 2, y = 2))〉 }

Clearly, E ⊆ JsK. However, we note that the value read for y at l1 is always the same
as the value of x at this point; hence, this new set of traces defines a dependence of
((l1, x), (l2, y)), which was not induced by JsK.

This example shows the non-monotonicity of the dependence operator, even when applied
to semantic slices of a same program.

We note that the dependence (l2, y)Ã (l1, x) in the above example has no satisfactory
interpretation. Indeed, the fact that y always has the same value of x stems from the
choice of the semantic slicing criterion rather than the actual behavior of the program, even
though we expect dependences to provide informations about the origin of the program
results (as opposed to the semantic slicing choices).

As a consequence, we propose to work on a definition for observable dependences
instead.
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8.3.2 Observable dependences induced by a function

First, we define observable dependences of functions, with constraints on the inputs and
on the outputs.

Definition 8.3.1. Function slice.

A slice of a function φ ∈ Den is defined by a pair (Mi, Mo) ∈ (P( � ))2, where Mi is an
input constraint and Mo is an output constraint. The meaning of this function slice is
described by:

φ̃ : ρ 7→
{

φ(ρ) ∩Mo if ρ ∈ Mi

∅ if ρ 6∈ Mi

Observable dependences: An observable dependence is a dependence, which is re-
vealed in the semantic slice under consideration:

Definition 8.3.2. Observable dependences.

Let φ ∈ Den, Mi, Mo ⊆ � , x0, x1 ∈ � . We say that φ induces an observable dependence
of x1 on x0 in the semantic slice (Mi, Mo) if and only if

∃ρ ∈ Mi, ∃va, vb ∈ Mi(x0), φ(ρ[x0 ← va])(x1) ∩Mo(x1) 6= φ(ρ[x0 ← vb])(x1) ∩Mo(x1)

We write x1
φ
ÃMi Z⇒Mo x0 if such a dependence exists. Last, we let Dsf [φ; Mi Z⇒ Mo] denote

the set {(x0, x1) ∈ � 2 | x1
φ
ÃMi Z⇒Mo x0} of dependences observable on the semantic slice.

Definition 8.3.2. Observable dependences.

Let us consider the input constraint b = true and the function φ introduced in Example
8.2.1:

φ(ρ) =

{
{ρ[y ← x]} if ρ(b) = true
∅ if ρ(b) = false

Then, if z ∈ � , we can show that z does not depend on b (it is not possible to exhibit two
distinct values for b in the input constraint). As a consequence,

Dsf [φ; Mi Z⇒ Mo] = {(x, y)} ∪ {(z, z) | z ∈ � }

Intuitively, we focus on the executions, which satisfy the condition of an if-statement. As
a consequence, we restrict to a single paths: all traces in the slice go through the same
branch of the if-statement. As a consequence, the absence of dependence on b was to be
expected.
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Hierarchy of observations: The definition of observable dependences allows to recover
a kind of monotonicity result:

Theorem 8.3.1. Hierarchy of observable dependences –case of functions.

Let Mi, M ′
i , Mo, M ′

o ⊆ � , such that Mi ⊆ M ′
i and Mo ⊆ M ′

o, and φ ∈ Den. Then:

∀x0, x1 ∈ � , x1
φ
ÃMi Z⇒Mo x0 =⇒ x1

φ
ÃM ′i Z⇒M ′o x0

An important corollary of this property is that ∀x0, x1 ∈ � , x1
φ
ÃMi Z⇒Mo x0 =⇒ x1

φ
Ã

�
Z⇒

�

x0. In other words, the observable dependences are a subset of the dependences:

∀x0, x1 ∈ � , x1
φ
ÃMi Z⇒Mo x0 =⇒ x1

φ
Ã x0

Proof.

We propose to prove two simple properties first:
• we assume that Mo = M ′

o and prove the monotonicity with respect to the
output constraint:

Let us assume that x1
φ
ÃMi Z⇒Mo x0. Then, there exist ρ ∈ Mi, va, vb ∈ � such that

∀i ∈ {a, b}, vi ∈ Mi(x0) and φ(ρa)(x1) 6= φ(ρb)(x1), where ρi = ρ[x0 ← vi]. Since

Mi(x0) ⊆ M ′
i (x0), ∀i ∈ {a, b}, vi ∈ M ′

i (x0), so x1
φ
ÃM ′i Z⇒Mo

x0.
• we assume that Mi = M ′

i and prove the monotonicity with respect to the input
constraint:
Let us assume that x1

φ
ÃMi Z⇒Mo x0. Then, there exist ρ ∈ � , va, vb ∈ � such that

φ(ρa)(x1)∩Mo(x1) 6= φ(ρb)(x1)∩Mo(x1), where ρa and ρb are defined as usual. Then,
Mo(x1) ⊆ M ′

o(x1), which entails φ(ρa)(x1) ∩M ′
o(x1) 6= φ(ρb)(x1) ∩M ′

o(x1), since:

∀E,E ′, A,B, E ∩B = E ′ ∩B ∧ A ⊆ B =⇒ E ∩ A = E ′ ∩ A

As a result, x1
φ
ÃMi Z⇒M ′o x0.

The result of the theorem follows from the composition of the two results above. Â

Approximation of composition: The approximation of the dependences of φ1 ◦ φ0

was a crucial step in the definition of an algorithm for approximating the dependences of
a program; therefore, we extend this result here.

Theorem 8.3.2. Composition of observable dependences –approximation.

Let M0, M1, M2 ∈ P( � ), and φ0, φ1 ∈ Den. Let φ̃ be the composition of the semantic

slice φ̃0 of φ0 defined by (M0, M1) with the semantic slice φ̃1 of φ1 defined by (M1, M2):

φ̃ : ρ 7→
{

φ1(φ0(ρ) ∩M1)M2 if ρ ∈ M1

∅ if ρ 6∈ M0
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Then, we have the following approximation:

Dsf [φ̃; M0 Z⇒ M2] ⊆ Dsf [φ0; M0 Z⇒ M1]ÁDsf [φ1; M1 Z⇒ M2]

Proof.

Similar to the proof of Theorem 8.2.2. Â

8.3.3 Observable dependences induced by a set of traces

In this section, we consider a set of traces E (typically, E = JP K for some program P ) and
a semantic slice E ′ ⊆ E . We propose to define the observable dependences, corresponding
to the semantic slice E ′. Note that we assume that E ′ is strongly closed (so that the
closeness of the semantic slices is addressed in the end of this subsection).

Remark 8.3.1. Strong closure of semantic slices.

The assumption that the semantic slice E ′ be strongly closed is crucial for the definition
of observable dependences to make sense and also for the algorithms, which we describe
in the following subsections for approximating such dependences to be sound.

As a consequence, we require that the semantic slicing function described in Chapter 7
inputs and returns strongly closed sets of traces only. In particular, we replace the defi-
nition of semantic slice (Definition 7.2.2) with the following definition (

�
is a semantic

slicing domain, c ∈ �
):

Slice � 〈E , c〉 = clos(JP K ∩ γ � (c))

We recall that clos completes a set of traces by adding all the sub-traces, so this operator
returns closed sets of traces.

Establishing the strong closure requires proving that, if σ, σ ′ ∈ Slice � 〈E , c〉 are such that
σ _ σ′ is defined, then σ _ σ′ ∈ Slice � 〈E , c〉. This property is trivial in the case of the
initial and final states slicing criteria and of the input constraints slicing criteria.

In the case of the execution patterns criteria, the property is clearly true if we consider
that the control states enclose the partitioning tokens (i.e., we should use � � instead of �
in the dependence analysis).

Definition: The definition of observable dependences of a semantic slice extends Def-
inition 8.3.2. The observable dependences between two points or along a path are the
dependences of the underlying function, constrained with the set of input and output
states which are observable in E ′, relatively to this transition.

The observable from-to dependences are defined by:
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Definition 8.3.3. Observable dependences.

Let l0, l1 ∈ � and x0, x1 ∈ � . We define the input and output constraints:

Mi = {ρ0 ∈ � | ∃〈(l0, ρ0), . . .〉 ∈ αt [l0,l1](E ′)}
Mo = {ρ1 ∈ � | ∃〈. . . , (l1, ρ1)〉 ∈ αt [l0,l1](E ′)}

We say that there exists an observable dependence of (l1, x1) on (l0, x0) and we write
(l1, x1)Ã[E ′] (l0, x0) if and only if:

(x0, x1) ∈ Dsf [αtF [l0,l1](E); Mi Z⇒ Mo]

We write Dst[E | E ′] for the observable dependences induced by the semantic slice E ′ of
E; it is defined by:

Dst[E | E ′] = {((l0, x0), (l1, x1)) ∈ ( � × � )2 | (l1, x1)Ã[E ′] (l0, x0)}

Note that the above definition is based on the definition of constraints on the input
and outputs of the function; however, it uses the function defined in the initial transition
system:

The definition of observable dependences Dst[p | E ]E ′ along a path p is similar (it is
based on αp[p] instead of αt [l0,l1]).

Hierarchies of observable dependences: The “monotonicity” of the observable de-
pendences with respect to the semantic slice follows straightforwardly from Theorem 8.3.1.

Theorem 8.3.3. Hierarchy of observable dependences –case of sets of traces.

Let E0, E1 be two semantic slices of E such that E0 ⊆ E1. Then:

Dst[E | E0] ⊆ Dst[E | E1]

In particular, if E ′ is a semantic slice of E, then Dst[E | E ′] ⊆ Dst[E | E ] = Dt[E ]: the
dependences observable in a semantic slice form a subset of the dependences of the initial
set of traces.

A very important consequence of Theorem 8.3.3 is that we can focus on the depen-
dences of an approximation E ′′ of a semantic slice E ′, when studying E ′. Indeed, we may
not be able to compute E ′; hence, we would not be able to compute any safe approximation
of the observable dependences of E ′ without the property proved in this Theorem.

At this point, we can illustrate the notion of observable dependences, induced by a
semantic slice:
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Definition 8.3.3. Dependences observable in a semantic slice (Example 8.1.1
continued).

Let us consider the observable dependences for the semantic slice, which we defined in
Example 8.1.1.
We completely described dependences induced by the criterion {(l5, y)} in Example 8.2.7.
The traces in the semantic slice all go through the true branch; as a result, the depen-
dences which were due to the false branch are no longer observable. As a result, we get
the following set of observable dependences

{(l5, y), (l2, y), (l1, x), (l0, x)} × {(l5, y)}

Obviously, this set of dependences is significantly smaller than the set of dependences
computed in Example 8.2.7.

8.3.4 Approximation of observable dependences

In this section, we still consider a strongly closed semantic slice E ′ of a set of traces E .

Approximation of local, observable dependences: As in Section 8.2.3, we define
an approximation for local dependences:

Definition 8.3.4. Local, observable dependences.

We let the local observable dependences Dloc[E | E ′] be defined by:

Dloc[E | E ′] =
⋃
{Ds � 〈l0·l1〉[E | E ′] | l0, l1 ∈ � }

As usual, only an over-approximation Da
loc[E | E ′] of Dloc[E | E ′] can be computed in

practice. Since Dloc[E | E ′] ⊆ Dloc (same proof as Theorem 8.3.3), we can use Dloc as an
approximation. We show in Section 8.3.5 how to refine Dloc into a more precise, yet still
safe, over-approximation of Dloc[E | E ′].

Computable approximations of observable dependences: The fixpoint approxi-
mation still holds in the case of the observable dependences:

Theorem 8.3.4. Approximation of observable dependences.

As in Theorem 8.2.5, we let ∆D = {((l , x), (l , x)) | l ∈ � , x ∈ � } and

F←−
D

: Dept → Dept

D 7→ D ∪Da
loc[E | E ′]»D

(note that the definition of F←−
D

is based on Da
loc[E | E ′] instead of Da

loc).
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Then:
Dst[E | E ′] = lfp∆D

F←−
D

Proof.

Follows the same steps as the proof of Theorem 8.2.5. Â
In particular, the computation of the observable dependences induced by a criterion

also generalizes straightforwardly (Theorem 8.2.10).

8.3.5 Refining observable dependences

In this section, we consider how to cut down an approximation of the observable depen-
dences induced by the semantic slice E ′. Most of the refinements can be applied to when
computing the approximation Da

loc[E | E ′] for the local dependences.

Removal of unreachable control states: In case some control state is unreachable in
the semantic slice E ′, then it does not appear in any observable dependence of this slice:

Theorem 8.3.5. Dependences and unreachable states.

Let l , l ′ ∈ � , x, x′ ∈ � . Then, ((l , x), (l ′, x′)) ∈ Dst[E | E ′] implies that l and l ′ are
reachable (i.e., there exists a trace 〈. . . , (l , ρ), . . .〉 in E ′, and the same for l ′).

Proof.

Let us assume that l is not reachable. If we use the same notations as in Definition
8.3.3, then Mi = ∅; moreover, we get the result Dsf [αtF [l ,l ′](E); ∅ Z⇒ Mo] = ∅ from the
definition of the observable dependences of a function (Definition 8.3.2), since we cannot
find two distinct values va, vb in Mi(x). We conclude that ((l , x), (l ′, x′)) 6∈ Dst[E | E ′].

Similarly, if l ′ is not reachable, then Mo = ∅ and Dsf [αtF [l ,l ′](E); Mi Z⇒ ∅] = ∅. As a
conclusion ((l , x), (l ′, x′)) 6∈ Dst[E | E ′]. Â

As a consequence, any non-reachable state does not appear in Dst[E | E ′] and should not
be considered in Da

loc[E | E ′]. If Da
loc[E | E ′] is a sound over-approximation of Dloc[E | E ′],

then so is the following:

Da
loc[E | E ′] \ {((l, x), (l′, x′)) ∈ ( � × � )2 | l or l′ is not reachable}

In practice, such an approximation should be computed by a sound static analysis of the
program (prior to dependence analysis).

Removal of constant variables: A similar argument holds for constant variables:

Theorem 8.3.6. Dependences and constant variables.

Let l ∈ � and x ∈ � . If x may take at most one value v at point l in any execution in
the semantic slice E, then, there is no dependence to (l, x).
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Proof.

Similar as the proof of Theorem 8.3.5: if x is constant at point l , then we cannot find
two distinct values for x at l and we cannot exhibit a dependence ((l , x), (l ′, x′)). Â

Definition 8.3.4. Removal of constant variables (Example 8.2.3 continued.

In the case of the program in Example 8.2.3, x = 4 at l5, for any execution of the program;
as a consequence, the dependence (l5, x)Ã (l0, b) does not hold.

Constant expressions: If an expression is constant in a semantic slice, then it does
not induce any dependence. Indeed, if e always evaluates to the same value v, then its
value depends on nothing, so we can provide a better approximation for the dependences
induced by an assignment or a condition than the result of Lemma 8.2.7. Of course, this
refinement also applies to sub-expressions. Note that this refinement somewhat extends
the previous one (removal of constant variables).

For instance, if static analysis proves that in the semantic slice under consideration
x = y, then the assignment t = u + 2 ? (x− y) a dependence tÃ u.

Partitioning and dependence analysis: The analysis carried out in the semantic
slicing may resort to some kind of trace partitioning: either control-based [MR05], as
in Chapter 5 or in order to distinguish execution patterns [Riv05b], as in Section 7.2.3.
Then, the same principle could be applied to the dependence analysis. In particular, this
approach allows to benefit from precise abstract invariants, so it may increase the number
of contexts the above refinements can be applied in.

Definition 8.3.5. Partitioning dependence analysis.

Let us consider the program below:

l0 : if(b) {x0 = y}
else {x1 = y};
if(b′) {z = x0}
else {z = x1};

l1 : . . .

We focus on the semantic slice collecting all executions going through the same branch in
both if statements. Then, the partitioning dependence analysis infers only one dependence
from (l1, z), namely (l0, y).

The non-partitioning analysis would also include dependences on (l0, b), (l0, b
′), (l0, x1), (l0, x0).

We can see that this refinement allows for global precision improvements.
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8.4 Abstract Dependences

We propose a further strengthening of the notion of dependences, after introducing the
observable dependences in Section 8.3. More precisely, we wish to distinguish dependences,
which can be observed even if we perform an abstraction of sets of control states: these
dependences are abstract dependences.

8.4.1 Definition of abstract dependences

Abstractions: When investigating the causes for an alarm, we are not interested in all
computations. Only the computations, which may cause an error are relevant.

For instance, if we focus on an alarm corresponding to a possible overflow, we are
usually interested in finding out where large values stem from, and how they may propa-
gate in the program. Similarly, if a specification provides normal ranges for the program
variables (for instance, the type system of the ADA programming language allows for such
information to be mentioned in programs), we may want to search how abnormal values
propagate.

As a consequence, we introduce dependences between abstractions. In the following,
we consider abstractions of sets of values: we write � �

� for the set of such abstractions,
which define a Galois-connection [CC77] (Definition 2.3.1). An element of � �

� is a tuple

(D,α, γ), defining a Galois connection (P( � ),⊆) −−→←−−α
γ

(D,v) (we do not explicit the
order when writing an element of � �

� , for the sake of concision). For short, we may let
�

0 denote the tuple (D0, α0, γ0).

Abstract dependences induced by functions: We now embed abstractions into
dependences (the case of observable dependences is postponed):

Definition 8.4.1. Abstract dependences.

Let �
0 = (D0, α0, γ0) and �

1 = (D1, α1, γ1) be two abstractions, x0, x1 ∈ � , and φ ∈ Den.
We say that there is an abstract dependence induced by φ of (x1,

�
1) on (x0,

�
0) if and

only if:

∃ρ ∈ � , ∃da, db ∈ D0,





α1(φ(ρa)(x1)) 6= α1(φ(ρb)(x1))
where γ0(di) 6= ∅
and ρi = ρ[x0 ← γ0(di)]

Such a dependence will be denoted by (x1,
�

1)
φ
Ã (x0,

�
0).

Furthermore, we let the abstract dependence set D
]
f [φ] of φ be defined by:

D
]
f [φ] = {((x0,

�
0), (x1,

�
1)) ∈ ( � × � �

� )2 | (x1,
�

1)
φ
Ã (x0,

�
0)}
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Intuitively, (x1,
�

1) depends on (x0,
�

0) if substituting to x0 two values which can be
distinguished by α0 results in x1 having different values, distinguished by α1 after the
execution of φ. The following example illustrate the usefulness of the approach:

Definition 8.4.1. Abstract dependences of a function.

In this example, we consider that the set of values is the set of natural integers
�

and
that the abstraction � = (D,α, γ) is defined by D = {⊥, d0, d1,>}, and:

γ :





⊥ 7→ ∅
d0 7→ {v ∈ � | |x| < 1 000}
d1 7→ {v ∈ � | |x| ≥ 1 000}
> 7→ �

Let us focus on the function:

φ : � −→ �
ρ 7→ ρ[z ← (x mod 2) ? y]

In the standard settings of Definition 8.2.1, φ induces two dependences z Ã x and z Ã y.
However, if we consider abstract dependences, though the situation is rather different:
• if we let ρ(x) = 1, then φ(ρ)(z) = ρ(y), so that we can verify straightforwardly that

φ induces an abstract dependence (z, � )Ã (y, � );
• however, whether the value of x is large or not does not affect the output of φ so

that (z, � ) does not depend on (x, � ).
Of course, we may consider different abstractions instead of � , and get different results.

For instance, if � ′ is the parity abstraction, then (z, � )
φ
Ã (x, � ′).

We now prove that this definition of abstract dependences generalizes “concrete” de-
pendences, which we introduced in Definition 8.2.1.

Theorem 8.4.1. Dependences are abstract dependences.

We write id for the identity abstraction, i.e. the tuple (D,α, γ) characterized by D =
P( � ), α = γ = λ(X ∈ P( � )) ·X.
Let φ ∈ Den, x0, x1 ∈ � . Then:

x1
φ
Ã x0 ⇐⇒ (x1, id)

φ
Ã (x0, id)

Proof.

Let us assume that x1
φ
Ã x0. Then, there exist ρ ∈ � , va, vb ∈ � , such that φ(ρa)(x1) 6=

φ(ρb)(x1), where ∀i, ρi = ρ[x0 ← vi]. Let di = {vi}. Then, clearly, ∀i, {ρi} = ρ[x0 ←
id(di)] and id(φ(ρa)(x1)) 6= id(φ(ρb)(x1)), which proves that (x1, id)

φ
Ã (x0, id).
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Let us assume that (x1, id)
φ
Ã (x0, id). Then, there exist ρ ∈ � , da, db ∈ P( � ), such

that id(φ(ρa)(x1)) 6= id(φ(ρb)(x1)) where ∀i, ρi = ρ[x0 ← di], and ∀i, di 6= ∅. Then,
∃v ∈ φ(ρa)(x1), v 6∈ φ(ρb)(x1) (or the converse holds and we may just permute a and b
and recover the above statement). As a consequence, ∃va ∈ � , v ∈ φ(ρ[x0 ← va])(x1)
(since φ(ρa) = {φ(ρ[x0 ← v]) | v ∈ da}). We can pick up any vb ∈ db. Clearly, v 6∈
φ(ρ[x0 ← vb])(x1). This shows that x1

φ
Ã x0. Â

Abstract observable dependences: We generalize the notion of observable depen-
dences in the same way:

Definition 8.4.2. Abstract dependences.

Let φ ∈ Den, Mi, Mo ⊆ � , x0, x1 ∈ � , α0, α1 ∈ � �
� . We say that φ induces an abstract

dependence of (x1,
�

1) on (x0,
�

0) in the semantic slice defined by (Mi, Mo) if and only
if:

∃ρ ∈ Mi, da, db ∈ D0,





α1(φ(ρa)(x1) ∩Mo(x1)) 6= α1(φ(ρ[x0 ← vb])(x1) ∩Mo(x1))
where γ0(di) ∩Mi(x0) 6= ∅
and ρi = ρ[x0 ← γ0(di) ∩Mi(x0)]

We write (x1,
�

1)
φ
ÃMi Z⇒Mo (x0,

�
0) if such a dependence holds.

Furthermore, we let the abstract dependence set D
]
sf [φ; Mi Z⇒ Mo] of φ be defined by:

D
]
sf [φ; Mi Z⇒ Mo] = {((x0,

�
0), (x1,

�
1)) ∈ ( � × � �

� )2 | (x1,
�

1)
φ
ÃMi Z⇒Mo (x0,

�
0)}

As we can see, this definition is obtained directly as a generalization of the defini-
tions for observable (Definition 8.3.2) and abstract (Definition 8.4.1) dependences. In the
following, we consider abstract dependences only, so as to make the presentation more
simple; however, all the results presented here generalize to the case of observable, abstract
dependences.

We can note that abstract dependences are a kind of dual of the notion of abstract
non-interference [GM04], even though [GM04] provides several definitions of “abstract”
secrecy and none of them clearly corresponds to our settings: it seems closer to the notion
of 〈η, ρ, φ〉-Secrecy, where η, ρ and φ respectively denote the abstraction applied to the
low inputs (in our case, the identity), the abstraction applied to the low outputs (in
our case, the observation of the results is defined by both the observation Mi and the
abstraction �

1) and φ is the abstraction on the high inputs (in our case �
0). Though,

the motivation for abstract non-interference is rather different than ours, and most of the
methods presented in [GM04] aim at proving secrecy or discovering for what domains
secrecy holds. By contrast, we focus on computing relevant sets of dependences (and not
proving the absence of dependences).
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Definition for sets of traces: We derive the abstract dependences of a set of traces
from the abstract dependences induced by a function as usual, i.e., by applying the defi-
nition of function dependences to denotational abstractions of the set of traces.

As a consequence, we focus on a strongly closed set of traces E :

Definition 8.4.3. Abstract dependences –case of sets of traces.

Let l0, l1 ∈ � , �
0,

�
1 ∈ � �

� and x0, x1 ∈ � . Then, we say that E induces an abstract
dependence of (l0, x0,

�
0) on (l1, x1,

�
1) if and only if:

((x0,
�
0), (x1,

�
1)) ∈ D

]
f [αtF [l0,l1](E)]

As usual, we let (l1, x1,
�

1)
φ
Ã (l0, x0,

�
0) denote such a dependence.

Moreover, we write D
]
t[E ] for the abstract dependence set defined by:

D
]
t[E ] = {((l0, x0,

�
0), (l1, x1,

�
1)) | (l1, x1,

�
1)

φ
Ã (l0, x0,

�
0)}

We can now restrict even further the dependences induced by the semantic slice of
Example 8.1.1:

Definition 8.4.2. Example 8.2.7 revisited.

Let us inspect again the dependences of the program displayed in Figure 8.1(a). All de-
pendences from (l5, y) were listed in Example 8.2.7, and we expect to cut down these
dependences a little bit, by restricting to abstract dependences, corresponding to the ab-
stract � which we introduced in Example 8.4.1.

In fact, the only abstract observable dependence from (l5, y, � ) is (l5, y, � ) Ã (l2, y, � ).
Indeed, there is no dependence in the false branch (since it is unreachable in the semantic
slice); moreover, the x may not take any large value.

8.4.2 Hierarchies of dependences

In the same way as we could compare sets of observable dependences corresponding to
comparable observations, we can also state a similar “monotonicity” result in the case of
abstract dependences. Intuitively, the existence of an abstract dependence implies the
existence of a dependence for any pair of more concrete abstractions. In other words,
abstract dependences express a stronger property than mere dependences.

We prove this result in the settings of Definition 8.4.1, i.e., we do not consider observ-
able abstract dependences here. We would deal with the observable abstract dependences
in a similar way.
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Theorem 8.4.2. Abstract dependences hierarchy.

Let �
0 = (D0, α0, γ0),

� ′
0 = (D′0, α

′
0, γ
′
0),

�
1 = (D1, α1, γ1),

� ′
1 = (D′1, α

′
1, γ
′
1) be four

abstractions, such that there exist two Galois connections:

D′0 −−−→←−−−
α′′0

γ′′0
D0 D′1 −−−→←−−−

α′′1

γ′′1
D1

and such that
α0 = α′′0 ◦ α′0 α1 = α′′1 ◦ α′1
γ0 = γ′0 ◦ γ′′0 γ1 = γ′1 ◦ γ′′1

We assume that (x1,
�

1)
φ
Ã (x0,

�
0). Then, the following dependences hold:

1. (x1,
� ′

1)
φ
Ã (x0,

�
0);

2. (x1,
�

1)
φ
Ã (x0,

� ′
0);

3. (x1,
� ′

1)
φ
Ã (x0,

� ′
0).

Proof.

By assumption, (x1,
�

1)
φ
Ã (x0,

�
0), hence, there exist ρ ∈ � , da, db ∈ D0, such that

α1(φ(ρa)(x1)) 6= α1(φ(ρb)(x1)) where ρi = ρ[x0 ← γ0(di)] and γ0(di) 6= ∅. We prove the
first two points under that assumption:
1. if α′1(φ(ρa)(x1)) = α′1(φ(ρb)(x1)), then α1(φ(ρa)(x1)) = α′′1 ◦ α′1(φ(ρa)(x1)) = α′′1 ◦

α′1(φ(ρb)(x1)) = α1(φ(ρb)(x1)), which does not hold; so α′1(φ(ρa)(x1)) 6= α′1(φ(ρb)(x1)),
which proves the first point.

2. we let d′i = γ′′0 (di); then ρi = ρ[x0 ← γ′0(d
′
i)], since γ0 = γ′0 ◦ γ′′0 ; hence, there

exist d′a, d
′
b ∈ D′0 that satisfy the definition of abstract dependence; since γ ′0(d

′
i) 6= ∅

(otherwise, we would have γ0(di) = γ′0(d
′
i) = ∅), this proves the second point.

The third point follows from the above two points; it can be proved in two steps (applying
abstraction on the left side, then on the right side of the dependence arrow). Â

At this point, we have a full hierarchy of dependences:
• mere dependences correspond to the negation of non-interference;
• observable dependences are dependences which can be observed, even if only a sub-

set of the traces is available; furthermore, the smaller the semantic slice, the fewer
dependences we can observe on it (if the slice contains all the traces, then all de-
pendences are observable);
• abstract dependences are dependences which can be observed, even if we can dis-

tinguish an abstraction of values (and not just values); moreover, the more abstract
the abstractions, the fewer dependences we can observe through it.

Definition 8.4.3. Hierarchy of dependences.

We sum up the various kinds of dependences induced by the program displayed in Figure
8.1(a) (Example 8.1.1). In particular, only one abstract observable dependence remains,
which points directly to the line where y is assigned a large value, and also where a large

Xavier Rival Traces Abstraction in Static Analysis and Program Transformation



8.4. ABSTRACT DEPENDENCES 185

(l5, y)

(l4, y)

(l2, y)

(l3, y)

(l3, z)

(l1, x)

(l0, y)

(l0, z)

(l0, x)

dependence

observable dependence

abstract dependence

Figure 8.3: Local dependences involved in the approximation of the backward depen-
dence induced by {(l5, y)}

value appears for the first time in the execution of the program. Consequently, this notion
of dependence turns out to be adequate in order to find out the origin of the large value
for y at point l5.

8.4.3 Approximation of abstract dependences

We showed the notion of abstract dependence to be useful for the investigation of alarms;
however, we need to set up algorithms for this notion to be really of any practical interest.
Therefore, we propose to extend the fixpoint algorithms.

Approximation of composition: We let Dep
]
f denote P(( � × � �

� )2). We define the
dependence composition operator as usual:

Definition 8.4.4. Composition of abstract dependences.

Let D0,D1 ∈ Dep
]
f . Then, we let D0 £D1 be defined by

D0 £D1 = {((x0,
�

0), (x2,
�

2)) ∈ ( � × � �
� )2 | ∃(x1,

�
1) ∈ � × � �

�

((x0,
�

0), (x1,
�

1)) ∈ D0 ∧ ((x1,
�

1), (x2,
�

2)) ∈ D1}

We note that this composition operator can be defined more simply, when applied to
dependences of functions:

Theorem 8.4.3. Alternate definition of £.

Let φ0, φ1 ∈ Dep
]
f . Then:

D
]
f [φ0]£D

]
f [φ1] = {((x0,

�
0), (x2,

�
2)) ∈ ( � × � �

� )2 | ∃x1 ∈ �
((x0,

�
0), (x1, id)) ∈ Da

f [φ0] ∧ ((x1, id), (x2,
�

2)) ∈ Da
f [φ1]}
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Proof.

It is easy to prove a double inclusion:
• the definition in Theorem 8.4.3 is clearly included in the one introduced in Definition

8.4.4;

• the converse inclusion follows from the result of Theorem 8.4.2: if (x1,
�

1)
φ0
Ã (x0,

�
0),

then (x1, id)
φ0
Ã (x0,

�
0) (a similar result holds for φ1).

The theorem follows. Â
The soundness of £ with respect to ◦ follows:

Theorem 8.4.4. Composition of abstract dependences –approximation.

Let φ0, φ1 ∈ Den. Then:

D
]
f [φ1 ◦ φ0] ⊆ D

]
f [φ0]£D

]
f [φ1]

Proof.

Using the alternate definition for £ when applied to dependence sets, the proof of the
theorem follows the same steps as the proof of Theorem 8.2.2. Â

In fact, the conclusion of Theorem 8.4.3 (and the fact that it plays a great role in the
proof of Theorem 8.4.4) hides a major weakness in this approximation of the function
composition. Indeed, it means that the approximate abstract dependences computed
when considering a path p will also include mere, concrete dependences.

Fixpoint-based approximation: Even though we pointed out a significant issue with
the approximation of ◦, we state the fixpoint-based approximation for abstract depen-
dences (a deeper study will reveal other drawbacks, and allow for an alternate method to
be stated).

We assume that D
]
loc over-approximate the abstract local dependences and that ¼

extends £ to Dep
]
t = P(( � × � × � �

� )2). Furthermore, we let ∆]
D = {((l , x, � ), (l , x, � )) |

(l , x, � ) ∈ � × � × � �
� } ∈ Dep

]
t , and:

F ]
←−
D

: Dep
]
t → Dep

]
t

D 7→ D ∪D
]
loc ¼D

Theorem 8.4.5. Fixpoint approximation of abstract dependences.

D
]
t[E ] ⊆ lfp∆]

D
F ]
←−
D
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Proof.

Similar as the proof of Theorem 8.2.5. Â
However, this theorem does not give an effective way of computing a precise approxi-

mation of the set of abstract dependences since bounding precisely the local dependences
presents several great difficulties:
• � �

� is not countable and not computer representable, or has a prohibitive size even
if the number of possible values is finite and small. As a consequence, some kind of
approximation is necessary (it could be justified by the result on the hierarchy of
abstract dependences).
• the hierarchy result does not apply straightforwardly: proving that there is no de-

pendence (x0,
�

0)
φ
Ã (x1,

�
1) tells nothing about a dependence (x0,

� ′
0)

φ
Ã (x1,

� ′
1),

where for instance � ′
0 is more concrete than �

0, but � ′
1 is more abstract than (or not

comparable to) �
1.

• the dramatic precision issue encountered in the approximation for ◦ also prevents
from computing relevant abstract dependences (i.e., from refining the classical de-
pendences).

Overall, these issues stem from the nature of the problem, which the least-fixpoint result
of Theorem 8.4.5 tackles. Indeed, D

]
t[E ]∩( � × � × � �

� )×{(l0, x0,
�

0)} collects all the tuples
which may affect the observation of the abstraction �

0 of x0 at point l0; in particular it
includes all kinds of properties, which may affect this observation. This is far beyond what
we wish to achieve in priority: our purpose is to find out the immediate causes for some
event (such as an error) to occur. As a consequence, we propose to narrow our setup.

8.4.4 Chains of abstract dependences

Restriction to dependence chains: We adopt the following restrictions, so as to
compute relevant abstract dependences:
• restrict to some set of abstractions � : not all abstractions are intuitive or informative

(for instance, we may focus on abstraction discriminating “large values”);
• limit the closure to a chain of immediate causes, which may affect the criterion (so

that, more intricate causes should not be considered, at least in a first approach).
These restriction lead us to the notion of dependence chains:

Definition 8.4.5. Abstract dependence chain.

A dependence chain is a sequence (l0, x0,
�

0), . . . , (ln, xn, �
n) of elements of � × � × � �

� ,
such that:

∀i, ((li, xi,
�

i), (li+1, xi+1,
�

i+1)) ∈ D
]
loc

Let � ⊆ � �
� . Then, we say that the chain (l0, x0,

�
0), . . . , (ln, xn, �

n) is � -abstract if
∀i, �

i ∈ � .

Obviously, in case (l0, x0,
�

0), . . . , (ln, xn, �
n) is an � -abstract dependence chain for E ,

there exists a dependence (ln, xn, �
n)

E
Ã (l0, x0,

�
0). However, the converse does not hold

Traces Abstraction in Static Analysis and Program Transformation Xavier Rival



188 CHAPTER 8. COMPUTATION OF ABSTRACT DEPENDENCES

true. It may be the case that no � -abstract chain exists between (l0, x0,
�

0) and (ln, xn, �
n),

but there exists a non � -abstract chain on the same path. Therefore, the computation
of abstract dependence chains is not a solution for over-approximating dependences; it
is at most useful for providing an under-approximation (defined by the two restrictions
mentioned in the beginning of this subsection).

Computation of dependence chains: The computation of all the � -abstract depen-
dence chains from a criterion (l0, x0,

�
0) ∈ � × � × � �

� can be achieved via a least-fixpoint
algorithm similar to the one proposed in Theorem 8.2.5. However, we should use an
approximation of the local � -abstract dependences. Dependences provide such an approx-
imation. We propose to improve this rough approximation with refinements, as we did in
Section 8.3.5.

Refinements: We assume that we consider the � -abstract dependences of a semantic
slice E ′ of E (Definition 8.4.2).

Then, all the refinements introduced in Section 8.3.5 apply, since abstract dependences
are a subset of dependences (hence, if we can prove that there is no dependence between
(l0, x0) and (l1, x1), then there is no abstract dependence either).

Moreover, we can also propose an abstract version of the “removal of constant vari-
ables” in the case of abstract dependences. We assume that we have computed an ap-
proximation E ′] ∈ � → ( � → P( � )) of the semantic slice E ′ (Chapter 7). Let us consider
(l0, x0,

�
0), (l1, x1,

�
1) ∈ � × � × � �

� . If there exists a minimal element d0 of D0\{⊥} (where
⊥ is the least element of D0) such that E ′](l0)(x0) ⊆ γ0(d0), then the abstract domain D0 is
not able to distinguish the values observed for x0 at l0 in the semantic slice. An obvious ap-
plication of Definition 8.4.1 shows that there is no dependence (l1, x1,

�
1)Ã[E ′] (l0, x0,

�
0).

For instance, this refinement applies if �
0 abstracts together all “normal” (i.e., not too

large) values and if all values for x0 at point l0 are “normal”.

Definition 8.4.4. Abstract dependence chains.

In the case of the program presented in Figure 8.1(a) (Example 8.1.1), the above refine-
ment allows to restrict the set of abstract dependences from (l5, y) to the only dependence
(l2, y), i.e., to recover the result displayed in Figure 8.3.

As a consequence, there is only one � -abstract dependence chain from (l5, y), and it leads
to (l2, y), which turns out to be the point where an “abnormal” value appears for the first
time in the sequence of computations leading to y, due to x being multiplied by a large
number. In this example, we remark that abstract dependence chains are effective as a
means to track a special kind of error.
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8.5 Abstract Slices

Slicing: Slicing [Wei81] aims at selecting a subset of the statements of a program that
may play a role in the computation of some variable x at some point l . The principle is
to include in the slice any statement at point l ′ that may modify a variable x′ such that
(l , x) depends on (l ′, x′).

The semantics of program slicing is rather subtle for several reasons:
• The notion of dependence involved in slicing is quite different to the one we consid-

ered in Section 8.2. For instance the slice of l0 : x = 3; l1 : y = x; l2 for the criterion
(l2, y) should include the statement l0 : x = 3; l1 as well, even though (l2, y) does not
depend on (l1, x) according to Definition 8.3.3, since x is constant at l1.
• The usual expression of slicing correctness resorts to some kind of projection of

the program semantics (Section 3.4, which is preserved by slicing. However, the
removal of non-terminating loops (or of possible sources for errors) may cause the
slice to present more behaviors than the projection of the semantics of the source
program. This issue can be solved by considering a non-standard lazy semantics
[CF89], which is preserved by the transformation, yet this approach is not natural
for static analysis.

As a consequence, we propose a transformation that should be more adapted to static
analysis, and to the discovery of the origin of alarms.

Smaller, non-executable slices: The semantic slices introduced in Chapter 7 approx-
imate program executions with abstract invariants. Such an invariant together with a
(subset of a) syntactic slice allow to describe even more precisely a set of program execu-
tions:

Definition 8.5.1. Abstract slice.

An abstract slice S] of a program s is defined by a sound invariant � ]S : � → P( � ) for S]

and a subset s′ of the program statements, which is defined by the set of corresponding
control states � S.

The semantics of a semantic slice is defined both by the program transitions (for the
statements which are included in the slice) and by the abstract invariants:

Definition 8.5.2. Abstract slice semantics.

The semantics Js′K]S of the abstract slice collects all the traces 〈(l0, ρ0), . . . , (ln, ρn)〉 such
that:
• ∀i, ρi ∈ � ]S(li);
• ∀i, (li ∈ � S ∧ li+1 ∈ � S ∧ (li, ρi)→ (li+1, ρi+1)) =⇒ (li, ρi)→ (li+1, ρi+1).

Obviously, the definition of abstract slices leaves the choice of the syntactic slice unde-
termined. However, the purpose of the abstract slices is to restrict to the most interesting
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parts the program; hence, we propose to compute abstract dependence chains and include
any assignment which affect a variable in a dependence chain: this way, the slice preserves
only the � -abstract dependence chains and abstract any other statement of the program
into the invariants in S]. Let us note that this notion allows to solve the two points
mentioned above:
• parts of the program that are not immediately relevant to the criterion under in-

vestigation (in the sense that they do not appear in the dependences introduced in
Definition 8.2.1, Definition 8.3.2 and Definition 8.4.1) do not need to be included
into the slice anymore; instead, they can be replaced with program invariants (in
the semantic slice). For instance, the assignment l0 : x = 3; l1 can be replaced with
the invariant x = 3 at point l1. Obviously, applying this principle to larger programs
may result in huge gain in slice sizes. Furthermore, the loss in precision might be
limited if we use precise, relational invariants.
• the intersection with program invariants limits the loss of precision induced by, e.g.

the removal of a loop.

Definition 8.5.1. Abstract slice.

Let us consider the program of Figure 8.1(a), together with its input/output conditions.
Figure 8.3 displays the local, observable and abstract dependences that can be recursively
composed when starting from (l5, y). In case we compute an abstract slice for this program,
starting from (l5, y), we find only one � -abstract dependence chain (Example 8.4.4).
As a consequence, we get the abstract slice defined by the set of control states � S =
{l1, l2, l5}. In particular, the abstract slice contains the assignment l1 : y = 1000 ? x; l2,
with the invariant (x ∈ [5, 10]), which gives a likely cause for the error.

8.6 Implementation and conclusion

8.6.1 Case study

We implemented a dependence analysis and procedures to refine them into observable
abstract dependences in Astrée (for tracking large values and overflows), together with
an abstract slice extraction algorithm.

We chose to modify some 70 kLOC real world application, so as to make some retro-
actions unstable (Astrée proves the absence of overflow in the original version). The
purpose of this early experiment was to check the ability of the abstract dependence
analysis to track where overflows were coming from.

The static analysis by Astrée takes roughly 20 minutes and uses 500 Mb on a Bi-
opteron 2.2 Ghz with 8 Gb of RAM. The computation of the dependence graph (by
collecting all local dependences and applying local refinements) takes 72 seconds and re-
quires 300 Mb, on the same machine; this phase provides all data required to extract a
slice from any criterion. The slice extraction computes a least fixpoint from the crite-
rion (Theorem 8.2.10) and applies recursively local dependences; in the case of abstract
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dependences, this amounts to collecting � -abstract dependence chains. The typical slice
extraction time is about 5 seconds, with low memory requirements (around 110 Mb).

The table below displays the gain in size obtained by computing abstract slices for a
series of alarms (size of slices are in LOCs):

Slicing point a1 a2 a3

Classical slice 543 368 1572
Abstract slice 39 160 96

The resulting slices proved helpful for finding the direct consequences of errors like over-
flows; moreover, it seemed promising for deriving automatically semantic slicing criteria,
which was one of the motivations for our present work.

We remarked that the refinements presented in Section 8.3.5 played a great role in
keeping the size of dependences down.

Cyclic abstract dependence chains suggest some kind of partitioning could be done
in order to isolate certain execution patterns; they also allow to restrict the part of the
program to look at in order to define an adequate input for defining an error scenario,
so that we envisage synthesizing input constraints in the future. Another possible use
for abstract slices is to cut down the size of programs to analyze during alarm inspection
sessions, by abstracting into invariants parts of the code to analyze.

8.6.2 Comparison with related work

We proposed a framework for defining and computing valuable dependence information,
for the understanding and refinement of static analysis results. Early experiments [Riv05a]
back-up favorably the usefulness of this settings, so that we can safely expect it to provide
good hints for the choice of semantic slicing criteria [Riv05b].

Our definition for dependences are rather related to the definition of non-interference
[GM82] commonly used in language-based security [SM03]. This approach is rather dif-
ferent to the more traditional ways of defining dependences in program slicing, which
rely on program dependence graphs [HRB90, HRB88], yet these two problems are related
[ABHR99, Aba99]. We found that the main benefit of the “dependences as interference”
definition is to allow for wide varieties of refinements for dependence analyses and exten-
sion for the definition of dependences to be stated, proved correct and implemented.

Moreover, our definition of abstract dependences is closely related to the notion of
abstract non interference introduced in [GM04] in the security area, which aims at clas-
sifying program attackers as abstract-interpretations. The authors of [GM04] propose to
compute the strongest safe attacker of a program by resolving an equation on domains
by fixpoint. In our settings, the abstraction on the output is fixed by the kind of alarm
being investigated; moreover, the dependence analysis should discover the variables the
criterion depends on and not only for what observation. As a result, we noticed that the
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algorithms proposed in [GM04] do not apply to our goal, even though the notion is closely
related. Development in both areas should be related in the future.

Program slicing [Wei81] is another area related to our work. Many alternative notions
of slices [HDSS96] have been proposed since the very first, syntactic versions of slicing. In
particular, conditioned slicing [CCL98] aim at extracting slices preserving some executions
of programs, specified by, e.g., a relation on inputs. Our approach goes beyond these
methods: indeed, a set of program executions defined by a semantic property (e.g., leading
to an error) is characterized precisely by semantic slicing [Riv05b]; these invariants allow to
refine precisely the dependences. Dynamic slicing [KL88, FDHH04] records states during
concrete executions and inserts a dependence among the corresponding nodes according
to a standard, rough dependence analysis, in order to produce “dynamic”, non-executable
slices. This approach is adapted to debugging; yet it does not allow to characterize
precisely a set of executions defined by semantic constraints either.

There exist a wide variety of methods applied to error cause localization. For instance,
[BNR03] proposes to characterize transitions that always lead to an error in abstract mod-
els; however, this kind of approach requires enumerating the predicates and/or transitions;
hence, it does not apply to Astrée, due to the number of predicates in the abstract in-
variants (domains nearly infinite).

Debugging methods start with a concrete trace, which we precisely do not have, since
alarms arise from abstract analyzes.

8.6.3 Perspectives

Currently, the implementation still requires a considerable amount of work in order to
become really practical, even though we are able to propose early experimental results
obtained with a prototype; the purpose of this short experiments was merely to assess
whether this technique would provide some insightful results.

Moreover, we wish to investigate the automatic generation of semantic slicing criteria,
and to use dependences results in order to assist it.

Last, another possible direction for future work would be to express abstract depen-
dences involving more complicated, e.g. relational abstractions. Indeed, tracking the
origin of an alarm raised in the analysis of z =

√
x + y requires looking at dependences

involving the property x + y < 0. This would require a much more general definition of
dependences, so as to let dependences among predicates, and not just dependences among
variables.
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Chapter 9

Formalizing Compilation

The two previous parts of this thesis aim at improving the precision of the analysis of
source code (e.g., C programs). However, the certification of executable programs may
require properties to be proved at the object code level, if the analysis of the source code
cannot be considered a sufficient guarantee. Object code is usually produced by compiling
source programs. Therefore, we envisage now the certification of compiled programs.

This chapter aims at describing our main motivations in certified compilation and
at defining an adequate model for compilation, so that certification algorithms can be
designed independently from the compiler we design them to for. The next two chap-
ters describe two methods for certified compilation: invariant traduction and checking in
Chapter 10, and translation validation (aka equivalence checking) in Chapter 11.

We detail the goal of these approaches to certified compilation in Section 9.1. We
present the salient features of a simple, yet representative assembly language in Section
9.2. Section 9.3 formalizes the notion of non-optimizing compilation. We consider the
case of optimizing compilation in Section 9.4.

9.1 Motivation

9.1.1 Certification of compiled code

Compilers are complex pieces of software; hence, we should expect them to potentially
contain bugs. For instance, the Gnu C Compiler (gcc) amounts to more than 500 000
LOCs (Lines Of Code). Reports of bugs are rather frequent (and can be consulted on
http://gcc.gnu.org/ml/gcc-bugs/). A compiler bug may have several consequences:
crash of the compilation (which can be considered harmless, since it would not cause
any severe damage), failure to comply with the semantics of the source language (e.g.,
wrong implementation of typing conversions, which may cause a fatal interruption to be
raised at execution time), production of incorrect code (with many possible consequences,
ranging from unexpected runtime errors to mis-implementation of critical functions of
the source program). Obviously, the consequences of the production of incorrect code
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should be considered a very serious risk in the case of critical applications. The non-
compliance with the semantics of the source language is also a serious issue: indeed, the
analysis of source programs by analyzers like Astrée is based on the semantics of the
source language; hence, in case the compiler does not comply with the semantics, then one
cannot consider the result of the analysis a proof for the safety of the executable program.
Last, the very definition of some errors can be stated in a more easy way at the assembly
level, as is the case of integer arithmetic operations.

In the following of this part, we will consider two approaches to certified compilation:
• Invariant traduction [Nec97, Riv03]: The goal of this method is to attempt to

check that some abstract property of the source program also holds true for the
compiled program. In particular, this approach allows to check that the executable
code enjoys some safety property (e.g., the absence of runtime errors or the safety
of memory operations). Therefore, it is a good way to get a good level of confidence
in the safety of the program actually executed i.e., the assembly program instead of
the source code.
• Translation validation [PSS98, Riv04b]: This approach proves the semantic equiv-

alence of the source and the compiled program, using theorem proving methods. It
allows to prove the functional correctness of the compiled program, i.e. that it imple-
ments correctly the functions implemented in the source program. It is also adapted
to the documentation of the compilation, which is required by some development
protocols [TCoA99].

Other approaches to certified compilation exist. In particular, we can cite theorem proving
methods, which are based on a formal proof of the compiler: in case the compiler can be
proved correct and the proof is trusted, then the functional equivalence of the source and
compiled programs holds for any source program. Similarly, in case the source program
is proved safe, the assembly program is safe. The downside of this solution is that it is
often considered expensive (proving a compiler requires an important human effort) or
not practical (in case the code of the compiler is not freely available or may be modified
frequently). At the time we are writing this thesis, we can cite the proof of a mini-compiler
in the Coq proof assistant [Ber98]. A more ambitious, ongoing project aims at proving
a fully functional optimizing C compiler; no publication is currently available about this
project, but information can be found at http://www-sop.inria.fr/lemme/concert/.

9.1.2 Formalizing compilation

We start this part with a formalization of compilation. The purpose of this approach is to
define what should be meant by “compilation correctness” in a first step, before we state
the compilation certification algorithms. The advantage of this approach is to make the
certification algorithms as parametric as possible.

Indeed, a compiler may carry out the translation of programs in many different ways,
and we would like to avoid algorithms or implementations of certification methods to be
specific to a particular compiler or to a given architecture. In particular, we may point
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out the following issues:

• The translation of some structures (e.g., conditions, function calls) depends on the
architecture and the Application Binary Interface (ABI) the code is compiled for.
• Most compilers attempt to produce optimized code, i.e. by reducing the size of the

object code (number of instructions) or by making it faster. For instance, modern
architectures allow several instructions to be executed in the same time thanks to
instruction level parallelism, so as to speed up computations involving instructions
that require several cycles to complete.

Therefore we start by giving a model of compilation (with or without optimizations)
in this chapter, which should capture precisely the properties preserved by compilation
transformations. The algorithms described in the following chapters will be based on the
model given in this chapter.

The goal of this approach is to allow the reuse of these algorithms for a different
compiler than the one chosen to assess them during their design, with a reduced amount
of adaptations.

9.2 A Simple Assembly Language

First, we define a simple assembly language, derived from the Power-PC 32-bits assem-
bly language, which was used for all the implementations carried out during this thesis.
This processor features a rather symmetric RISC (Reduced Instruction Set Computing)
architecture, so that the instruction set is rather simple to study.

9.2.1 Syntax

Memory cells: The architecture we consider features several kinds of memory locations:
registers and memory cells. More precisely, we consider:

• General-Purpose Registers (for short, gpr): the ngpr (in practice, ngpr = 32)
general-purpose registers are used for integer arithmetic and computations involving
pointers; they are denoted with gpri (where 0 ≤ i < ngpr);
• Floating-Point Registers (for short, fpr): the nfpr (in practice, nfpr = 32) floating-

point registers are used for (32 and 64 bits) floating-point computations; they are
denoted with fpri (where 0 ≤ i < nfpr);
• Condition Registers (cr): the ncr (in practice, ncr = 8) condition registers store

the result of conditions and determine the result of conditional branchings as well;
they are denoted with cri (where 0 ≤ i < ncr);
• Memory cells: they store the value of global or local variables. A memory cell is

characterized with an integer address: we write M[d] for the memory cell of address
d, where d is an integer.

Real architectures feature more registers. More precisely, one usually finds special registers
for controlling the behavior of the processor regarding to exception handling, the behavior
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of floating-point operations (rounding mode, activation or deactivation of interruptions
for overflows or underflows...), machine state, memory management (e.g., definition of
active segments)... We restrict to the main registers in order to make the presentation
more readable. Anyway, these special registers would be abstracted away when defining
the correctness of compilation, in Section 9.3.

Values: General-purpose (resp. floating point) registers store integer (resp. floating
point) values. Memory cells store fixed length bit-fields, which may be interpreted either
as integers or as floating-point values.

Condition registers store values corresponding to the result of the evaluation of con-
ditions: LT stands for “less than”; EQ stands for “equal” and GT stands for “greater
than”.

Control states are represented with program counter values (i.e., integers).

Instructions: We consider a very reduced kernel of the Power-PC assembly language:
• arithmetic operations: the classical 3-registers arithmetic instructions input two

scalar values read in registers and store the result into a third register in case the
computation succeeds; they cause the execution to crash otherwise (e.g., division by
0); such instructions are denoted with op gpri, gprj, gprk where op corresponds to
the operation (op ∈ {add, mul, fadd, . . .});
• load of constant value into a register: the instruction li gpri, v assigns the

value v to register gpri (it also allows to load a constant value into a floating point
register);
• load from the memory: if d is an integer and x is either an integer register or an

integer value, then the instruction load gpri, d (x) loads the content of the memory
location of address d + x into the register gpri, if it is a valid address; otherwise, it
causes the execution of the program to crash due to a memory error; this instruction
allows the access to scalar and compound type variables (this instruction works also
for floating point registers);
• store into the memory: the instruction store gpri, d (x) carries out the converse

operation;
• comparison: the instruction cmp cri, gprj, gprk compares the values contained in

registers gprj and gprk and stores the result into register cri (the same instruction
is also defined for floating point registers): for instance, if the value in gprj is smaller
than the value in gprk, then, this instruction assigns the value LT to the condition
register cri;
• branching: if l is a control state, the instruction b l directs the execution to the

instruction corresponding to line l (by assigning the program counter);
• conditional branching: if c is a condition (i.e., condition register value) and l

a control state, then the instruction bc(c) cri, l branches to the instruction corre-
sponding to line l if the condition register cri contains a value equal to c; otherwise
the execution continues at the next instruction.
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memory location notation value

general-purpose register gpri, where 0 ≤ i < ngpr integer
floating-point register fpri, where 0 ≤ i < nfpr floating-point
condition register cri, where 0 ≤ i < ncr

�
= {LT, EQ, GT}

(a) Memory locations and values

instruction notation

arithmetic operations op gpri, gprj, gprk where op ∈ {add, mul, fadd, . . .}
load constant li gpri, v, where v ∈ �

load from memory load gpri, d (x),
where d ∈ �

and x is an integer register or value
store into memory store gpri, d (x),

where d ∈ �
and x is an integer register or value

comparison cmp cri, gprj, gprk

branching b l , where l ∈ �
conditional branching bc(c) cri, l , where c ∈ �

, l ∈ �

(b) Instruction set

Figure 9.1: A micro Power-PC assembly language

Other instructions may be introduced, when dealing with particular features of the pro-
cessor.

Figure 9.1 summarizes the definition of the fragment of the Power-PC assembly lan-
guage considered in this thesis.

9.2.2 Semantics

The semantics of the assembly language can be defined in a similar way as for the source
language in Section 2.2.3:

• the assembly stores are completely defined by the sets of memory locations and
corresponding values introduced in Section 9.2.1;
• the control states were also defined in Section 9.2.1 (a control state correspond to a

value for the program counter);
• the definition of a set of states follows from the definitions of control and memory

states;
• a transition relation defines what computation steps are feasible, for each instruction

in the language.
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We define the transition relation by the means of a family of symbolic transfer functions, as
proposed in Section 3.2.6. Figure 9.2 defines the symbolic transfer functions corresponding
to each instruction in the language.

More precisely, if l is the control state right before an instruction, then nxt(l ) denotes
the control state right after the instruction (i.e., right before the next instruction). For
each instruction, we give on Figure 9.2 the transfer function δl ,nxt(l ) and any other transfer
function corresponding to an edge which may be taken; if no symbolic transfer function is
expressly defined for the one step transition between l and l ′, then this transfer function
is δl ,l ′ = ¤. Moreover, we use the following definitions:

• we write is ok(e0 ⊕ e1) for the boolean expression which evaluates to true if the
evaluation of the expression e0 ⊕ e1 succeeds; it evaluates to false if the evaluation
of e0 ⊕ e1 results in an error;
• we write is addr(d) for a boolean expression which evaluates to true if the integer

d denotes a valid address.

Our choice to resort to symbolic transfer functions for this definition is motivated by
the fact that we will need to express the semantics of assembly programs along some
finite paths, as defined in Section 3.2.3, so as to compare source and compiled programs.
Symbolic transfer functions are precisely well adapted for this application.

9.3 Compilation

9.3.1 A simple example

In this section, we focus on non-optimizing compilation: we assume that the transforma-
tions performed by the compiler are simple and preserve the structure of programs (no
interleaving of the compiled code for successive expressions, no global rewriting of the
control structures). Our purpose is to define what properties of the source program is
preserved by the compilation. More involved transformation will be considered in Section
9.4.

Let us look at the example given on Figure 9.3: on Figure 9.3(a), we show a source
program, which computes the sum of the elements of an integer array t of length n; on
Figure 9.3(b), we show a compiled version, with no optimization.

Clearly, this transformation is straightforward: the series of instructions corresponding
to each instruction in the source code appear clearly as blocks of consecutive instructions,
as summarized in the table below:
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instruction symbolic transfer function(s)

arithmetic operation
op gpri, gprj, gprk δl ,nxt(l ) =

{
bis ok(gprj ⊕ gprk) ? bgpri ← gprj ⊕ gprkc
| ¤c

where ⊕ is the operation corresponding to op

load constant
li gpri, v δl ,nxt(l ) = bgpri ← vc

load from memory
load gpri, d (x) δl ,nxt(l ) = bis addr(d + x) ? bgpri ←M[d + x]c | ¤ c

store into memory
store gpri, d (x) δl ,nxt(l ) = bis addr(d + x) ? bM[d + x]← gpric | ¤ c

comparison
cmp cri, gprj, gprk

δl ,nxt(l ) =





bgprj < gprk ? bcri ← LTc
| bgprj = gprk ? bcri ← EQc
| bcri ← GTccc

branching
b lb δl ,nxt(l ) = ¤

δl ,lb = ι

conditional branching
bc(<) cri, lb δl ,nxt(l ) = bcri = LT ? ¤ | ι c

δl ,lb = bcri = LT ? ι | ¤ c

Figure 9.2: Symbolic transfer functions
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i, x : integer variables
t : integer array of length n ∈ �

, where n is a parameter

l s
0 i := −1;

l s
1 x := 0;

l s
2 while(i < n){

l s
3 i := i + 1;

l s
4 x := x + t[i]

l s
5 }

l s
6 . . .

(a) Source program Ps

l c
0 li gpr0, −1

l c
1 store gpr0, i (0)

l c
2 li gpr1, 0

l c
3 store gpr1, x (0)

l c
4 load gpr0, i (0)

l c
5 li gpr1, n

l c
6 cmp cr0, gpr0, gpr1

l c
7 bc(≥) cr0, l c

18

l c
8 load gpr0, i (0)

l c
9 li gpr1, 1

l c
10 add gpr0, gpr0, gpr1

l c
11 store gpr0, i (0)

l c
12 load gpr0, i (0)

l c
13 load gpr1, x (0)

l c
14 load gpr2, t (gpr0)

l c
15 add gpr1, gpr1, gpr2

l c
16 store gpr1, x (0)

l c
17 b l c

4

l c
18 . . .

(b) Assembly program Pc

Figure 9.3: Example compilation

instruction series of assembly instructions
(denoted with the corresponding program counter)

l s
0 : i := −1; l c

0 , l c
1

l s
1 : x := 0; l c

2 , l c
3

condition of the loop at ls2 l c
4 , l c

5 , l c
6

and conditional branching l c
7

l s
3 : i := i + 1; l c

8 , l c
9 , l c

10, l c
11

l s
4 : x := x + t[i] l c

12, . . . , l c
16

loop back edge l c
17

end of the program (l s
6 ) l c

18

In particular, any computation corresponding to the assignments at l s
0 and l s

1 is finished
before the code corresponding to the loop is executed. Therefore, we can relate precisely
the state of the assembly program at l c

4 to the state of the source program at point l s
2 .
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In fact, we can establish a similar relation for any control state in the source program,
as displayed on Figure 9.4(a). This mapping is defined formally as a function Π � , which
maps control states in the source program into control states in the compiled program,
according to the relation mentioned above.

In fact, a similar remark applies to memory locations. The content of the memory
cell of address x corresponds to the value of variable x, whenever we reach a control
state in correspondence, according to Figure 9.4(a). Therefore, we provide a mapping
of memory locations on Figure 9.4(b). Again, this mapping Π

�

is defined as a function,
which maps source memory locations into assembly memory locations, according to the
relation exhibited between the source and compiled programs.

Π � : l s
0 7→ l c

0

l s
1 7→ l c

2

l s
2 7→ l c

4

l s
3 7→ l c

8

l s
4 7→ l c

12

l s
5 7→ l c

17

l s
6 7→ l c

18

(a) Control states mapping

Π
�

: x 7→ M[x]
i 7→ M[i]
t[j] 7→ M[t + j]

(note: memory alignments
are not taken into account
in this example)

(b) Memory locations mapping

Figure 9.4: Mapping between source and compiled programs

Note that registers and “intermediate” control states (i.e., assembly control states in
the middle of the blocks encoding source instructions) do not appear in the mappings
displayed in Figure 9.4, since they do not have a counterpart in the source program.

9.3.2 Abstraction

The previous subsection showed a simple example of compilation and showed what control
states and memory locations of both programs could be related. Therefore, we now provide
a formalization of compilation, using the scheme given in Section 2.3.4, so as to describe
what is meant by “correct compilation”.

In particular, Section 9.3.1 shows that some control states or memory states of the
assembly program cannot be related with anything in the source program. This suggests
using the projection abstraction introduced in Section 3.4, so as to remove them: the
semantics of the source program can be related to an abstraction of the assembly program,
defined by a subset of control states and memory locations. Moreover, a compiler may
remove some control states and variables of the source program, for instance, if it carries
out some kind of constant propagation and/or dead-code elimination (such as the example
given in Section 3.4).
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Therefore, we define restricted sets of control states and memory locations, as in
Section 3.4.1 and Section 3.4.2. We write � s (resp. � c) for the memory locations of the
source (resp. compiled) program, and � s (resp. � c) for the set of control states of the
source (resp. compiled) program. Moreover, we introduce the following restricted sets:
• for the source program: � s ⊆ � s and � s ⊆ � s;
• for the assembly program: � c ⊆ � c and � c ⊆ � c.

Moreover, we extend the notations for states and for traces to the source and compiled
programs accordingly: .s denotes an object of the source program; .c denotes an object of
the compiled program; · denotes a restricted set, as in Section 3.4. For instance, we write
Σs denotes the set of restricted traces for the source program.

Let Π
�

: � s → � c and Π � : � s → � c be two bijections, defined in the same way as
in Section 9.3.1. We let the store mapping Π

�
: � s → � c be defined by Π

�
(ρ) = λ(x ∈

� c) · ρ((Π
�

)−1(x)). Moreover, we define ΠΣ by:

ΠΣ : Σs → Σc

〈(l0, ρ0), . . . , (ln, ρn)〉 7→ 〈(Π � (l0), Π
�

(ρ0)), . . . (Π � (ln), Π
�

(ρn))〉

Definition 9.3.1. Correctness of compilation.

We say that the compilation of Ps into Pc is ΠΣ-correct if and only if ΠΣ is a bijection
between the projected traces of the source and of the compiled program:

αΠ〈
�

s, � s〉
(JPsK)

ΠΣ' αΠ〈
�

c, � c〉
(JPcK)

This situation can be described in the diagram below, similar to the one in Section
2.3.4.

Ps

compilation
- Pc

JPsK

semantics
?

JPcK

semantics
?

αΠ〈
�

s, � s〉
(JPsK)

αΠ〈
�

s, � s〉
?

ΠΣ

- αΠ〈
�

c, � c〉
(JPcK)

αΠ〈
�

c, � c〉
?

Intuitively, the correctness of the compilation of Ps into Pc states that an execution of Pc

corresponds to an execution of Ps up-to some bijection and reciprocally.

Definition 9.3.1. Projections.

In particular, in the example of Section 9.3.1,
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• � s = � s and � s = � s;
• � c = {M[x],M[i]} ∪ {M[t + j] | j ∈ L0, n− 1M};
• � c = {l c

0 , l c
2 , l c

4 , l c
8 , l c

12, l c
17, l c

18}
As a consequence, the compilation of Ps into Pc (Figure 9.3) is correct in the sense of
Definition 9.3.1.

This statement can be compared to what could be expressed using bisimulation meth-
ods [Mil90]. However, we stress the importance of the projection abstractions involved
in the definition of the correctness of compilation. Indeed, the generalization to some
basic optimizations in Section 9.4 will mainly be based on a tuning of these abstractions.
Moreover, these abstractions allow to define what the compilation preserves, i.e. a kind
of invariant for the transformation.

Remark 9.3.1. Dealing with scopes.

Most of the time, variables have a restricted scope: for instance, local variables are only
relevant in a block of code or in a function. Therefore, the set of memory locations
depends on the control state. As a result, the mapping of memory locations Π

�

should
depend on the control state: it should be defined as a function Π

�

: � s × � s → � c, such
that Π

�

(l , x) is the assembly memory location corresponding to x at point l .

9.3.3 Reduced program

We now propose to provide a least-fixpoint definition for the projected semantics, defined
in Section 9.3.2. Basically, we propose to give a constructive version of the result given
in Section 3.4.4, Lemma 3.4.1, by defining a “program reduction” technique, allowing
to replace an assembly program with another program, which is equivalent modulo the
abstraction defined in Section 9.3.2.

First, we make a few assumptions:
• we consider here the case of the assembly program only, i.e. we assume � s = � s

and � s = � (the compiler does not remove any part of the program): the technique
explained below would also apply to the source program;
• we assume that Π � (l i

s ) = l i
c , i.e., the entry point of the source program corresponds

to the entry point of the assembly program;
• we assume that the compiler does not insert a loop in the assembly program, which

does not correspond to a loop in the source program, so that any loop in the compiled
code corresponds to a loop in the source code.

The first assumption is made so as to keep the presentation short; the latter two hypotheses
are very reasonable (we expect any compiler to satisfy them).

As a consequence of the second assumption, any loop in the compiled program Pc

contains at least one point in � c.
The principle of program reduction is to define transitions corresponding to several

steps in Pc, between control states in � c:
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Definition 9.3.2. Reduced program.

The reduced program P r
c is defined as follows:

• the set of control states is � c;
• the initial control state is l i

c ;
• the transition relation is defined by a family of symbolic transfer functions derived

from the symbolic transfer functions of Pc by composition along sets of paths: if
l`, la ∈ � c, then δl`,la is the symbolic representation the denotational semantics
corresponding to the set set of paths of the form p = l `·l0·. . .·ln·la, ∀i ∈ L0, nM, li 6∈ � c

(the symbolic representation for a set of paths was defined in Lemma 3.2.6).

In practice, the computation of the reduced program relies on the composition op-
eration ⊕ (Section 3.2.6), and possibly on some simplification operation simplify . The
advantages inherent in the use of a simplification function at this point will be stated in
the following chapters (i.e., they appear at verification time).

Compiler ofter split paths for conditions: for instance, the branching corresponding to
a condition like e0 ∨ e1 ∨ e2 may be split in several branchings, so as to not to evaluate
e1, e2 if e0 is true. Should that case arise, Lemma 3.2.6 provides an algorithm to associate
a single symbolic transfer function to the resulting set of paths.

Moreover, the computation of the reduced program requires the restricted sets of
control states and memory locations, to be known. In practice the compilers provide
debugging information (such as Stabs or Dwarf formats), including mappings Π � , Π

�

,
which allow to define the restricted sets. Some algorithms were proposed so as to recover
these mappings, when the compiler does not provide these information, e.g. in [TG00b,
TG00a].

Definition 9.3.2. Projection of control states.

For instance, let us we consider the assembly program in Figure 9.3(b), with the restricted
sets defined in Example 9.3.1. Then, the table of symbolic transfer functions for the
reduced program P r

c is defined as follows:

δl c
0 ,l c

2
= bgpr0 ← −1, M[i]← −1c

δl c
2 ,l c

4
= bgpr1 ← 0, M[x]← 0c

δl c
4 ,l c

8
=





bM[i] < n ? bcr0 ← LT, gpr0 ←M[i], gpr1 ← nc
| bM[i] = n ? ¤

| ¤cc

δl c
4 ,l c

18
=





bM[i] < n ? ¤
| bM[i] = n ? bcr0 ← EQ, gpr0 ←M[i], gpr1 ← nc

| bcr0 ← GT, gpr0 ←M[i], gpr1 ← nccc
δl c

8 ,l c
12

= bgpr0 ←M[i] + 1, gpr1 ← 1, M[i]←M[i] + 1c
δl c

12,l c
17

=

{
bgpr0 ←M[i], gpr1 ←M[x],
gpr2 ←M[t + M[i]], M[x]←M[x] + M[t + M[i]]c

δl c
17,l c

4
= ι
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The soundness and completeness of this transformation with respect to the projection
of the operational semantics writes down as follows:

Theorem 9.3.1. Adequation.

JP r
c K = αΠ〈 � c〉

(JPcK)

Proof.

By induction on the length of traces. Â
This definition of reduced programs focuses on the elimination of control states only;

the elimination of the memory locations we would like to abstract away (such as the
registers) can be carried out as a second step, by erasing these from the transfer functions
of the reduced program:

Definition 9.3.3. Projection of memory locations.

For instance, let us we consider the assembly program of Figure 9.3(b), with the restricted
sets defined in Example 9.3.1. Then, the table of symbolic transfer functions for the
reduced program P r

c is defined as follows:

δl c
0 ,l c

2
= bM[i]← −1c

δl c
2 ,l c

4
= bM[x]← 0c

δl c
4 ,l c

8
= bM[i] < n ? ι | bM[i] = n ? ¤ | ¤ c c

δl c
4 ,l c

16
= bM[i] < n ? ¤ | bM[i] = n ? ι | ι c c

δl c
8 ,l c

11
= bM[i]←M[i] + 1c

δl c
11,l c

15
= bM[x]←M[x] + M[t + M[i]]c

δl c
15,l c

4
= ι

We can remark that in the above example, the symbolic transfer functions for the
compiled program correspond exactly to the symbolic transfer functions for the source
program up to the mapping for memory locations Π

�

, which we give below:

Definition 9.3.4. Source program.

The non-void symbolic transfer functions for the source program Ps given in Figure 9.3(a)
are the following:

δl s
0 ,l s

1
= bi← −1c

δl s
1 ,l s

2
= bx← 0c

δl s
2 ,l s

3
= bi < n ? ι | ¤ c

δl s
2 ,l s

6
= bi < n ? ¤ | ι c

δl s
3 ,l s

4
= bi← i + 1c

δl s
4 ,l s

5
= bx← x + t[i]c

δl s
5 ,l s

2
= ι
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In case some parts of the source program are removed and cannot be related to the
compiled program, the same program reduction technique can be applied to the source
program. At this point, we can state the definition of the correctness of compilation in
terms of the reduction of the source and compiled programs:

Definition 9.3.3. Correctness of compilation, in terms of reduced programs.

Let Ps be a source program, compiled into Pc. We write P r
s and P r

c for the reduced
programs and ΠΣ for the trace mapping defined by the mappings Π � and Π

�

. Then, the
compilation is ΠΣ-correct if and only if ΠΣ is a bijection between the semantics of the
restricted source program and the semantics of the restricted compiled program:

JP r
s K

ΠΣ' JP r
c K

We have to prove that this definition is equivalent to our previous definition for com-
pilation correctness (Definition 9.3.1):
Proof.

This statement of the correctness of compilation is equivalent to Definition 9.3.1, since the
adequation of program reduction (Theorem 9.3.1) implies the equality JP r

c K = αΠ〈
�

c, � c〉
(JPcK),

and similarly for the compiled program. Â

9.3.4 Compilation of function calls

We described a procedural extension of our simple source language in Section 2.2.4.
A procedural extension of the assembly language of Section 9.2 would be rather similar,

except that it would represent a stack inside the memory, so as to record where the function
return should branch to. By contrast, in Section 2.2.4, the stack is a mere extension of
the control states. As a consequence, the main issue with the formulation of compilation
correctness in presence of procedure is to map the state of the physical representation of
the stack with the “syntactic” stack κ used in Section 2.2.4.

Last, it is a common practice to have the local variables stored in the stack, which
makes the definition of the Π

�

function slightly more involved.

9.4 Common Optimizations

9.4.1 How to cope optimizations ?

In the previous section, we assumed the compiler produces rather simple code, i.e. does
not try to improve the code generated and just translates instructions in a separate (the
object code for consecutive statements does not overlap), context insensitive way (a same
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source statement is translated in the same way, whatever the place it occurs in the pro-
gram). This assumption usually is not valid. Even simple compilers attempt to increase
the efficiency of the code they produce, e.g. by avoiding to store useless variables. Real
compilers carry out much more ambitious transformations, by changing the order of in-
structions (e.g., instruction level parallelism) or deeply modifying execution paths (e.g.,
loop optimizations, such as loop unrolling). For a comprehensive introduction to compiler
optimizations, we refer the reader to classical compilation books, such as [App99, WM94]
or to the survey [BGS94].

The main issue with optimizations is that they tend to break the correspondences
we set up in Section 9.3.2; as a consequence, the definition of compilation correctness
given in Section 9.3.2 is broken, and so is the notion of reduced program introduced in
Section 9.3.3. Not only the definition we stated previously would fail, but deciding what
variables or control states of the source and compiled program should be related may not
be obvious.

Optimizations usually either simplify the structure of compiled programs or re-organize
the structure of the code, so as to improve performances. Therefore, we propose to
adapt the definition of compilation correctness so as to consider such simplifications or
re-organizations correct compilation. The new, extended definitions are based mainly on
a careful extension of the program abstraction technique introduced in Section 9.3.2 and
of more general algorithms for program reduction.

In the following, we consider the case of a series of representative optimizations and
apply this methodology.

9.4.2 Code simplification

One of the most simple optimizations a compiler may carry out is the removal of dead
code and of dead variables.

Constant propagation and dead-code elimination: Most compilers do a constant
propagation analysis [Kil73], so as to remove constant variables, constant assignments, and
evaluate constant conditions. We showed how this transformation is formalized inside the
abstract interpretation framework in Section 3.4, by defining a projection of the semantics
of the source program. Therefore, this transformation fits in our initial framework, since
we based the definition for the correctness of compilation on an abstraction of the source
program, defined by restriction of the source control states ( � s) and memory locations
( � s): we simply need to abstract away the control states corresponding to the instructions
removed by the transformation.

Removal of dead-variables: In case a variable is not used anymore after some point,
the compiler may remove it from the memory, so as to reduce memory usage. Then, such
a variable cannot be related to any memory location after some point in the assembly
program. This transformation is handled by a relational mapping Π

�

: � s× � s → � c, akin
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to the solution proposed in Remark 9.3.1. Indeed, this definition for memory location
mappings allows to discard a variable at any point in the program.

Copy propagation and register coalescing: Compilers attempt to keep a variable
that is used several times in a piece of code in a register and not to store it back into the
memory before using it again. Again, we need to twick the mapping for memory locations.
More precisely, we request Π

�

to map a pair (l , x) into a set of assembly memory locations,
which store the same value as x at point l.

The following example illustrates this solution:

Definition 9.4.1. Register coalescing.

In the body of the loop of the source program Ps displayed in Figure 9.3(a), variable i is
used several times, therefore it may be stored into a register. This would amount to replace
the body of the loop with the following piece of code, where the instruction corresponding
to l c

12 is removed (smaller optimized code, hence faster execution):

l c
8 load gpr0, i (0)

l c
9 li gpr1, 1

l c
10 add gpr0, gpr0, gpr1

l c
11 store gpr0, i (0)

l c
13 load gpr1, x (0)

l c
14 load gpr2, t (gpr0)

l c
15 add gpr1, gpr1, gpr2

l c
16 store gpr1, x (0)

Then, after point l c
11, i corresponds to both gpr0 and M[i]. Hence, we would let:

Π
�

(l s
4 , i) = Π

�

(l s
5 , i) = {gpr0,M[i]}

9.4.3 Instruction level parallelism (scheduling)

We envisage now the case of a transformations which compromise the correspondence of
program points; our study focuses on instruction scheduling. Instruction Level Parallelism
(ILP or scheduling) aims at using the ability of executing several instructions simultane-
ously featured by modern architectures, so as to cut down the cost of several cycles long
instructions. The number of cycles lost in the execution of an instruction is called the
latency: a latency of one means that the execution of an instruction lasts two cycles in-
stead of one. Several kinds of scheduling should be distinguished: hardware scheduling
is implemented in the processor, which performs an ordering of instruction at run-time;
the correctness of hardware scheduling is part of the specification of the processor, so its
verification is beyond the scope of this thesis. Hence, it is somewhat part of the processor
specification. By contrast, software scheduling is performed at compile time. Of course,
we focus here on software scheduling.

A detailed introduction to software scheduling can be found in [App99], Chapter 20.
The principle of software scheduling is to re-order the instructions of the compiled code,
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so as to allow independent tasks to be performed in the same time. For instance, if we
consider a piece of code s0; s1; s2 made of three instructions, such that s1 and s2 do not
depend on s0 but s2 depends on the result of s1: then, performing s1 before s0 does not
change the behavior of the program, and may allow the execution of s2 to be started
faster. Therefore, the re-ordered code s1; s0; s2 would produce a similar result and may
yield better performances. The diagram below illustrate this fact; obviously, s2 can start
earlier in the case of the “re-scheduled” code.

��������������������

��������������������

PSfrag replacements
s0

s1

s2

cycles

progression
lost cycle

PSfrag replacements
s0

s1

s2

cycles

progression

Obviously, software scheduling does not fit in the correctness definition presented in
Section 9.3.2, since the pieces of code corresponding to distinct source statements might be
inter-wound, due to assembly instructions being permuted, which prevents from defining
a mapping Π � , as shown in the example below.

Definition 9.4.2. Software scheduling.

We assume that all instructions have a latency of 1, which is not completely realistic:
usually memory instructions have a longer latency due to slower chips being accessed,
whereas arithmetic instructions have no latency, since they are performed by a specialized
unit inside the processor. In fact, the latency of a memory instruction depends on many
parameters, including the layout of the cache. Our assumption is made for the sake of
the simplicity of the example only.
We consider the two pieces of code in Figure 9.5. The non-optimized code displayed in
Figure 9.5(a) corresponds to the result of the register coalescing optimization presented in
Example 9.4.1. The execution of this piece of 8 instructions lasts 12 cycles: for instance,
the execution of the load instruction at l n

1 should complete before the addition at l n
2 can

be performed. Figure 9.5(b) presents an optimized version of this program, so as to cut
down the number of stall cycles to 1: The mapping Π � relates the source control state
l s
4 with l n

3 . However, this mapping can no longer be defined in the case of the optimized
program. Indeed, the value of x at l s

4 corresponds to the value of M[x] at l o
3 (where it

is copied into a register by a load instruction), whereas the value of i corresponds to the
value of M[i] at l o

7 (i.e., after the new value is written into the memory).

As illustrated in the example above, the difficulty in the definition of Π � stems from
the fact that the value of two source memory locations x0, x1 may correspond to the values
of assembly memory locations at distinct control states in the optimized code.

As a consequence, we need to give a relaxed definition for the mappings Π � and Π � ,
allowing to map a single control state l s ∈ � s of the source program into a series of control
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l n
0 li gpr1, 1

l n
1 load gpr0, i (0)

l n
2 add gpr0, gpr0, gpr1

l n
3 store gpr0, i (0)

l n
4 load gpr1, x (0)

l n
5 load gpr2, t (gpr0)

l n
6 add gpr1, gpr1, gpr2

l n
7 store gpr1, x (0)

l n
8 . . .

(a) Non-optimized code

l o
0 load gpr0, i (0)

l o
1 li gpr1, 1

l o
2 add gpr0, gpr0, gpr1

l o
3 load gpr1, x (0)

l o
4 load gpr2, t (gpr0)

l o
5 store gpr0, i (0)

l o
6 add gpr1, gpr1, gpr2

l o
7 store gpr1, x (0)

l o
8 . . .

(b) Optimized code

Figure 9.5: Software scheduling

states l c
0 , . . . , l c

n in the compiled code and to map a source memory location xs into a tuple
made of a memory location xc of the compiled program and a control state l c

i chosen in
the series l c

0 , . . . , l c
n .

Such a series of assembly control states is called a fictitious control state; we introduce
this notion together with the corresponding definitions for Π � and Π

�

:

Definition 9.4.1. Fictitious control state, fictitious state.

In case l s ∈ � s corresponds to the sequence of assembly control states l c
0 , . . . , l c

n , we
introduce a fictitious label l f representing this sequence and a set of fictitious memory
locations Xl f ⊆ ({l c

0 , . . . , l c
n }× � c): the couple (x, l c

i ) represents the memory location x,
and states that it should be observed at point l c

i . Furthermore, we assert that Π � (ls) = lf .
Let 〈(l c

0 , ρc
0), . . . , (l c

n , ρc
n)〉 be a sequence of states corresponding to the above sequence of

control states. We project them into a fictitious state (lf , ρf ), where ρf is defined by:

∀(l c
i , xc) ∈ Xl f , ρf (xc) = ρc

i(xc)

Then, Π
�

(xs) = xc means that the value of xs corresponds to the value of xc at a point
l c
i , such that (l c

i , xc) ∈ Xl f .

We illustrate this notion in the case of the optimized code presented in Example 9.4.2:

Definition 9.4.3. Example 9.4.2 continued.

We let l f be the fictitious control state corresponding to l s
3 in the optimized program

displayed in Figure 9.5(b), and define the fictitious state as follows:
• l f stands for the sequence l o

2 , l o
3 , l o

4 , l o
5 , l o

6 , l o
7 ;

• the set of fictitious memory locations Xl f and the mapping Π
�

are defined by:
– Π

�

(i) = {M[i]} and M[i] is observed at l o
7 : (l o

7 ,M[i]) ∈ Xl f ;
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– Π
�

(x) = {M[x]} and M[x] is observed at l o
2 : (l o

2 ,M[x]) ∈ Xl f ;
– the values for t are not modified and may be observed at any point in l o

2 , . . . , l o
7 .

The situation is illustrated in the Figure 9.6; it shows what point variables x and i should
be observed at.

PSfrag replacements

x

i

l o
0 l o

2 l o
7 l o

8

Figure 9.6: Scheduling and fictitious locations

The last issue is the computation of the reduced compiled program. Obviously, the
algorithms presented in Section 9.3.3 need to be generalized. The new algorithms proceeds
by composing partial symbolic transfer functions, representing the modification of the
fictitious memory locations instead of the standard memory locations. We illustrate the
results of the computation of the symbolic transfer functions in the following example:

Definition 9.4.4. Computation of symbolic transfer functions.

We consider the computation of the symbolic transfer functions in the case of Example
9.4.3. After abstraction of the registers, we get the expected results:

δl o
0 ,l f = bM[i]←M[i] + 1c

δl f ,l o
7

= bM[x]←M[x] + M[t + M[i]]c

Obviously, these symbolic transfer functions between fictitious control states are very well
fitted to the various certification algorithms stated in the next chapters.

9.4.4 Optimizations transforming paths

Many compilers carry out structure modifying optimizations such as loop unrolling and
branch optimizations. These transformations reduce the time spent in branchings and
interact well with the scheduling optimizations considered in Section 9.4.3). These trans-
formations break the program point mapping Π � in a different way: one source point may
correspond to several assembly points (not to a sequence of points).

In this section, we focus on loop unrolling. This optimization consists in grouping two
successive iterations of a loop, as is the case in the example below.

Definition 9.4.5. Loop unrolling.

We use the same syntax as for source programs for the sake of convenience and concision
(the transformation envisaged here is similar to loop unrolling in assembly programs, up-
to some details, which can be abstracted away in the same way as in the previous sections).
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l n
0 : i := 0;

l n
1 : while(i < 2n) {

l n
2 : B;

l n
3 : i := i + 1; }

l n
4 : . . .

(a) Initial program Pn

l o
0 : i := 0;

l o
1,e : while(i < 2n){

l o
2,e : B;

l o
3,e : i := i + 1;

l o
1,o :

l o
2,o : B;

l o
3,o : i := i + 1; }

l o
4 : . . .

(b) Optimized program Po

Figure 9.7: Loop unrolling

We present two programs in Figure 9.7: the initial, non optimized program Pn (Figure
9.7(a)) consists in a loop with a counter i; the optimized code Po (Figure 9.7(b)), with
the loop unrolled. Indeed, one iteration in the loop of Po corresponds to two iterations in
the loop of Pn. We use the index e (resp. o) is used for control states corresponding to
the even (resp. odd) iteration numbers.

The source control state l n
2 corresponds to two control states in P ′, namely l o

2,e and l o
2,o);

and the same for l n
3 . We also duplicated l n

1 into l o
1,e and l o

1,o for the sake of the example.

Example 9.4.5 presents the main difficulty with loop unrolling: the points inside the
loop are not in direct correspondence with the program points of the initial program. In
fact, a point in the loop of Pn corresponds to two points in Po, so that there is no way to
define a bijective Π � function.

The solution consists in using the trace partitioning framework of Chapter 4 so as to
define a non-standard semantics for Pn with the following properties:

• the non-standard semantics should mimics the behavior of the transformed program;
• it should also be an abstraction of the standard semantics.

This amounts to stating the correctness of the compilation of some complete partition
(or complete covering) of Ps (Definition 4.2.2) into Pc, following Definition 9.3.1. As a
consequence, stating the correctness of a transformation like loop unrolling requires only
a straightforward extension of our definition for compilation correctness.

Let us apply this extended definition to Example 9.4.5:

Definition 9.4.6. Compilation up-to partitioning.

We state the correctness of the transformation considered in Example 9.4.5.

In fact Po is a complete partition of Pn, with the following notations:

• the set of tokens T is {t , te, to} (t is the “default” token, te corresponds to “even”,
and to to “odd”);
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• the control states of Po are defined as follows:

l o
0 = (l n

0 , t)
l o
1,e = (l n

1 , te)
l o
2,e = (l n

2 , te)
l o
3,e = (l n

3 , te)

l o
1,o = (l n

1 , to)
l o
2,o = (l n

2 , to)
l o
3,o = (l n

3 , to)
l o
4 = (l n

4 , t)

• the forget function τ maps any token to the “trivial” token tε (Section 4.2.1).
As a consequence, the extended definition applies immediately.

The correctness of many other loop and path transformations could be proved correct
in the same way.

9.4.5 Structure modifying optimizations

The list of optimizations which could be studied here could grow infinite.
For instance, we gave more general definitions of variable mappings in [Riv04b], so

as to formalize structure modifying optimizations, which may change the flows of values,
such as loop reversal. We do not claim that all optimizations could be formalized with
the abstractions and mappings introduced in this chapter; however we believe that our
methodology is general enough, so that a large number of optimizations can be dealt with.

In the next two chapters, we focus on compilation certification. Basically, the goal
of the αΠ〈

�

s, � s〉
and αΠ〈

�

c, � c〉
abstractions is to establish what the compilation certifica-

tion should care about, while the mappings Π � , Π
�

establish the relation between both
programs.
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Chapter 10

Invariant Translation and Checking

We propose to compile invariants computed during an analysis of the source program.
This approach should allow be more efficient and produce more precise invariants than
the analysis of the compiled program. This technique can be considered a generalization
of the Proof Carrying Code technique [Nec97]. We formalize it inside the framework for
defining compilation introduced in Chapter 9 in Section 10.2.

Moreover, we discuss the issue of the independent checking of the translated invariant
in Section 10.3, which should provide a higher level of confidence in the result.

Last, we provide implementation feed-back.

10.1 Principle and Related Work

The purpose of this chapter is to compute abstract invariants for compiled programs, so as
to prove their safety. Moreover, the safety properties of interest may express more simply
at the assembly level: in particular memory errors depend on the assembly memory
model and the nature of the code generated, since the C norm leaves many behaviors
“undefined”. For instance, we wish to compute invariants akin to those produced by
Astrée [BCC+02, BCC+03a, CCF+05], and rely on them in order to check that critical
operations such as memory accesses or arithmetic operations never cause any run-time
error.

In theory, the static analysis presented in Section 3.1 extends to the assembly language
presented in Section 9.2. However, this approach requires solving several practical issues:

• Compilation induces a loss of control structure. In particular, conditions, loops
and conditional statements are compiled into graphs with gotos. Therefore, the
computation of the least fixpoint inherent in the static analysis requires computing
an adequate set of widening points [Bou93]. Moreover, a strategy for limiting the
storage of local invariants would be required in order to allow the analysis to scale
up (see [HDT87] for details). This would amount to recovering the control structure,
which was lost at compile time.
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• Compilation causes the expansion of data-structures: arrays, enumerations,
structures, union types are all translated into series of bytes. Therefore, an assembly
level analyzer would deal with low level data-structures only.
• Assembly level invariants are tedious to read. In case the analyzer does not con-

clude the code is safe, a diagnosis should be made for the alarms produced by the
analysis. However, an assembly level analyzer would produce assembly level invari-
ants, which would not be very helpful for the user. More generally, the invariants
should be human readable and allow for a straightforward interpretation. As a con-
sequence, we would need to relate the results of the analysis to the source program,
so as to let the user understand whether the code indeed contains a bug. Again,
this would amount to recovering the structure lost at compile time.

These arguments plead in favor of using the results of a source analysis for the certification
of the compiled code. Of course, this would not be possible for any static analysis. For
instance, analyses for determining low level properties of assembly programs cannot be
done at the source level. For instance, cache prediction [AFMW96, FMW97], pipeline
behavior [TF98] and worst case execution time [TFW00] analyses were implemented; they
do not suffer the problems mentioned above and yield very good results (namely, precise
bounds for worst case execution time). We can also cite the analysis of memory accesses
in executables in [BR04], aimed at checking the security of assembly programs. The Java
Virtual Machine [LY05] (aka JVM, developed by SUN) provides another common example
of assembly level analysis. Indeed, the JVM performs a series of data-flow analyses in order
to check the compliance of bytecode files with the Java bytecode standard, before running
them. Among the properties verified, we can cite the type safety, the right definition of
the stack (size and type of the arguments)...

However, at the time we write this thesis, we are aware of no analysis for determining
high level properties at the assembly level, such as precise bounds on the range of variables.

We propose to translate the results produced by a source analyzer such as Astrée

into invariants for the compiled program. Such a translation is based on the relation
between the source and the compiled program defined by Π � , Π

�

. Moreover, we perform
an independent checking of safety of the translated invariants, justified by the soundness
of fixpoint checking (Theorem 2.3.3). The goal of this independent checking is not to rely
on the soundness of the compiler.

This solution has several advantages. First, it allows to carry out the fixpoint com-
putation at the source level, using the most structured code: a fine iteration strategy is
needed in order to infer precise invariants, which is easier to do at the source level (as in
Section 3.2.5). Second, it allows to cope with alarms and to interpret the analysis results
at the source level. Last, the final checking should give a sufficient level of confidence in
the analysis results.

This approach presents some strong similarities with Proof Carrying Code systems
(PCC), which were introduced in [Nec97], as a means to compile types with programs.
The initial goal of PCC was to let a source producer provide some evidence of the safety of
the code (i.e., the compliance with a pre-defined safety policy); the code consumer would
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run a program only after checking the safety using the annotations provided by the code
producer. The implementation of a certifying compiler, producing types together with
the compiled code is described in [NL98]. However, a significant difference is that PCC
systems usually assume that the traduction of the type information is performed by the
compiler, which we cannot do, since we use a generic compiler: by contrast, we assume
the compilation correct in the sense of Definition 9.3.1 and base the translation procedure
upon the mappings Π � , Π

�

. Finally, other authors extended the PCC framework. For
instance, [App01] focused on the reduction of the trusted base, i.e. of the amount of code
the soundness of the PCC system depends on. It is based on the reduction of the set of
axioms to use for the type checking to a minimal number of rules.

Similarly, the Java bytecode compiler embeds enough information in the bytecode
programs, so as to reduce the inference task that the java bytecode verifier should perform.

Other authors focused on the definition of Typed Intermediate Language, (TIL) such
as [MTC+96, TMC+96], as a means to keep information about source ML programs in or-
der to make further optimizations possible and trustable. Basically, well-typed programs
should not produce some kinds of errors (the memory allocation should be safe). The
principle of Typed Intermediate Languages is to require transformations (compilation,
optimization) to preserve types, which entails that they preserve the safety. This method-
ology was extended to a Typed Assembly Language (TAL) in [MCG+99]: The purpose
of this work was also to design a safe compiler for a type-safe subset of C. This compiler
is also supposed to translate types together with programs. Among the applications of
these typed languages, we can cite the definition and trustable compilation of type-safe
C-like languages, such as Cyclone [GMJ+02] and CCured [NMW02]. The TAL technique
was extended by [XH01] so as to rely on more expressive types, i.e. dependent types, in
order to verify more complex properties.

The implementation of invariant translation and invariant checking in the abstract
interpretation framework was presented in [Riv03, Riv04a], as a means to design an as-
sembly code analyzer similar to Astrée [BCC+03a], which would work for compiled code.
This chapter follows the presentation of these papers.

Section 10.2 describes and proves correct the invariant translation procedure; Section
10.3 discusses the main issues of the invariant checking.

10.2 The Invariant Translation

10.2.1 Invariant translation for the reduced compiled program

Assumptions: In this section, we consider a source program Ps and a compiled program
Pc. Moreover, we assume that the compilation of Ps into Pc is sound in the sense of
Definition 9.3.3. In particular, the correctness of the compilation guarantees the existence
of two mappings:
• Π � : � s → � c where � s ⊆ � s and � c ⊆ � c;
• Π

�

: � s → � c where � s ⊆ � s and � c ⊆ � c.
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As usual, we let P r
s (resp. P r

c ) denote the reduced program associated to Ps (resp. Pc).
Moreover, the soundness of compilation guarantees that ΠΣ(JP r

s K) = JP r
c K, where ΠΣ is

the trace mapping derived from Π � and Π
�

, thanks to the statement based on reduced
programs (Definition 9.3.3).

We also perform a static analysis of the source program. More precisely, we write
D]�

,s for the abstract domain for representing source stores, and γ]�
,s : D]�

,s → P( � s)

the corresponding concretization function. As usual, we let D]
s denote the domain for

abstracting sets of traces, defined as in Section 3.1.1 by D]
s = � s → D]�

,s and γs denote

the concretization function γs : D]
s → P(Σs). We write Is ∈ D]

s for the invariant produced
by the static analysis and remember the soundness condition:

∀〈. . . , (l , ρ)〉 ∈ JPsK, ρ ∈ γ]�
,s(Is(l ))

We consider in this section a simplified version of the example of Figure 9.3 (note that
the initial value of i is 0 instead of −1):

Definition 10.2.1. Compiled program.

We let Ps and Pc be the programs displayed respectively in Figure 10.1(a) and in Figure
10.1(b). This compilation is correct in the sense of Section 9.3.3, with:
• for the source program, � s = � s = {i}, and � s = � s = {l s

0 , l s
1 , l s

2 , l s
3 , l s

4 };
• for the assembly program, � c = {M[i]}, and � c = {l c

0 , l c
2 , l c

6 , l c
10, l c

11};
• the control state mapping:

Π
�

: l s
0 7→ l c

0

l s
1 7→ l c

2

l s
2 7→ l c

6

l s
3 7→ l c

10

l s
4 7→ l c

11

• the memory location mapping: Π
�

: i 7→M[i]
In the following, we consider a simple interval analysis: D]�

,s = � → Intervals〈 � 〉, where
Intervals〈 � 〉 collects all the intervals of values ranging in the set of machine integers � and:

γIntervals〈 � 〉 : Intervals〈 � 〉 → P( � )
Φ → {ρ ∈ � | ∀x ∈ � , ρ(x) ∈ Φ(x)}

We choose intervals for the sake of simplicity; however, the results in this section would
obviously generalize to other domains.
The most basic interval analyzer would compute the following invariants:

Control state Interval for i
l s
0 �

l s
1 [0, 100]

l s
2 [0, 99]

l s
3 [1, 100]

l s
4 [100, 100]
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l s
0 : int i := 0;

l s
1 : while(i < 100) {

l s
2 : i := i + 1;

l s
3 : }

l s
4 : . . .

(a) Source program Ps

l c
0 : li gpr0, 0

l c
1 : store gpr0, i (0)

l c
2 : load gpr0, i (0)

l c
3 : li gpr1, 100

l c
4 : cmp cr0, gpr0, gpr1

l c
5 : bc(≥) cr0, l c

11

l c
6 : load gpr0, x (0)

l c
7 : li gpr1, 1

l c
8 : add gpr2, gpr0, gpr1

l c
9 : store gpr2, x (0)

l c
10 : b lc2

l c
11 : . . .

(b) Assembly program Pc

In the following, we attempt to derive local invariants for Pc from Is; we consider the
case of control states in the reduced program first.

Properties of the reduced compiled program: Let lc ∈ � c, ρc ∈ � c, and a trace
σc = 〈. . . , (lc, ρc)〉 ∈ JP r

c K. The correctness of the compilation guarantees the existence of
a trace σs ∈ JP r

s K, such that ΠΣ(σs) = σc. As a consequence, there exist ls ∈ � s, ρs ∈ � s,
such that σs = 〈. . . , (ls, ρs)〉. Hence, Π � (ls) = lc, and ρs = ρc ◦ Π

�

.

Moreover, the soundness of the analysis entails that ρs ∈ γ]�
,s(Is(ls)), i.e. ρc ◦ Π

� ∈
γ]�

,s(Is(ls)).
The function Π

�

is a bijection, therefore we can compute its inverse (Π
�

)−1. As a
consequence ρc ∈ (Π

�

)−1 ◦ γ]�
,s(Is(ls)).

Therefore, we can derive an invariant for the restricted compiled program:

Theorem 10.2.1. Invariant for P r
c .

Let Ir
c be the invariant defined by:

Ir
c : � c → D]�

,s

lc 7→ Is((Π � )−1(lc))

Then, Ir
c is a sound invariant for P r

c :

∀〈. . . , (lc, ρc)〉 ∈ JP r
c K, ρc ∈ (Π

�

)−1 ◦ γ]�
,s(I

r
c((Π � )−1(lc)))
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Proof.

Follows from the above remark, about ρc. Â
Theorem 10.2.1 provides the skeleton of an invariant for the assembly program; how-

ever, it fails to deliver any precise information about the values of any variable at any
point in � c \ � c. Refining the result of Theorem 10.2.1 is the purpose of the following
subsection.

Definition 10.2.2. Example 10.2.1 continued.

As a consequence of theorem 10.2.1, we deduce the following invariant for P r
c :

Control state Interval for M[i]
l c
0 �

l c
1 [0, 100]

l c
2 [0, 99]

l c
3 [1, 100]

l c
4 [100, 100]

10.2.2 Invariant translation for the whole compiled program

Let D]�
,c be a domain for representing sets of stores for the target language, and γ]�

,c :

D]�
,c → P( � c) be the associated concretization function. In practice, the domain D]�

,c

is similar to D]�
,s: for instance, in case the source analysis generates interval invariants,

the translated invariants also consists in interval constraints. Moreover, we assume that
we are able to compute abstract transfer functions for the target language: we assume
that, for all l , l ′ ∈ � c, d ∈ D]�

,c, ρ ∈ γ]�
,c(d), ρ′ ∈ � c such that (l , ρ) → (l ′, ρ′), then

ρ′ ∈ δ]
l ,l ′(d).

We propose to derive from Ir
c an invariant for Pc in two steps: first, we envisage the

case of a control state in � c; second, we consider a control state in � c \ � c.

Case of a point lc in � c: Then, Ir
c(lc) provides us with invariants for variables in � c, but

no information about the other memory locations in the compiled program: for instance,
it does not tell us anything about the registers. Therefore, we map Ir

c(lc) into an invariant
Ic(lc), which is defined in a domain expressing constraints for variables in � c, using a kind
of “injection function” inject . In all cases we are aware of, this step is straightforward, since
abstract values denote collections of constraints, and Ic(lc) simply stands for the same set
of constraints as Ir

c(lc), but in a richer domain (since more variables are allowed).

Definition 10.2.3. Example 10.2.2 continued.

The abstract domain D]�
,c maps condition registers into subsets of

�
(non relational ap-

proximation) and general purpose registers and memory locations into integer intervals.
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The case of the condition registers is not so obvious: we may naively consider that a set
of possible condition values would be adequate.
In this case, at any point in � c, the invariant Ic should store:
• intervals similar to those in Example 10.2.2 for M[i];
• no information for general purpose registers, i.e., the interval � ;
• no information for the condition registers, i.e., the abstract value

�
.

As a consequence, we get at this stage the following invariant:

control state M[i] gpr0 gpr1 cr0

l c
0 � � �

�

l c
2 [0, 100] � �

�

l c
6 [0, 99] � �

�

l c
10 [1, 100] � �

�

l c
11 [100, 100] � �

�

Case of a point in � c \ � c: Let us consider the case of a point lc 6∈ � c now.
There exists at most a finite number of feasible paths p = l c

0 · . . . · l c
n such that l c

0 ∈ � c,
∀i > 0, l c

i 6∈ � c and lc = l c
n (a path is feasible if and only if there exists a real program

execution following it). Let P be the set containing all such paths.
Let us consider a trace σc in JPcK ending in lc: there exists ρc ∈ � c, such that σc =

〈. . . , (lc, ρc)〉. This trace starts at the entry point in the program so it encounters at least
one control state in � c. Therefore, we consider the last such control state in σc and let l c

0

denote it. Furthermore, σc follows a path in P after that point. Let us write l c
0 · . . . · l c

n for
that path (where l c

0 ∈ � c, l c
n = lc); then, σc = 〈. . . (l c

0 , ρc
0), . . . , (l c

n , ρc
n)〉. The soundness of

the translated invariant for l c
0 ∈ � c entails that ρc

0 ∈ γ]�
,c(Ic(l c

0 )). The soundness of the

transfer functions δ]
.,. implies that:

ρc ∈ δ]
l c
n−1,l c

n
◦ . . . δ]

l c
0 ,l c

1
(Ic(l c

0 ))

Therefore ρc ∈ Ic(l c
n ), where:

Ic(l c
n ) =

⊔{
δ]

l c
n−1,l c

n
◦ . . . ◦ δ]

l c
0 ,l c

1
(Ic(l c

0 )) | l c
0 · . . . · l c

n ∈ P
}

(where Ic(l c
0 ) is defined as above since l c

0 ∈ � c)
To summarize:

Definition 10.2.1. Translated invariant.

We let the translated invariant be defined by:
• if l c ∈ � c, then:

Ic(l c) = inject(Ir
c(l c))

Traces Abstraction in Static Analysis and Program Transformation Xavier Rival



224 CHAPTER 10. INVARIANT TRANSLATION AND CHECKING

• if l c 6∈ � c, we define P as above and:

Ic(l c) =
⊔{

δ]
l c
n−1,l c

n
◦ . . . ◦ δ]

l c
0 ,l c

1
(inject(Ir

c(l c
0 ))) | l c

0 · . . . · l c
n ∈ P ∧ l c

n = l c
}

Theorem 10.2.2. Soundness of the translated invariant.

First, we sum up the assumptions made in this section:
• the invariant Is soundly approximates JPsK;
• the compilation of Ps into Pc is sound.

Then, the translated invariant Ic (Definition 10.2.1) is sound:

∀〈. . . , (l , ρ)〉 ∈ JPcK, ρ ∈ γ]�
,c(Ic(l ))

Proof.

The soundness follows from the two previous paragraphs. Â
Theorem 10.2.2 provides a sound way of deriving an invariant Ic for the compiled

program from an invariant for the source program. We illustrate the result in our example:

Definition 10.2.4. Example 10.2.3 continued.

The table below displays the translated invariant Ic:

control state M[i] gpr0 gpr1 cr0

l c
0 � � �

�

l c
1 � [0, 0] �

�

l c
2 [0, 100] � �

�

l c
3 [0, 100] [0, 100] �

�

l c
4 [0, 100] [0, 100] [100, 100]

�

l c
5 [0, 100] [0, 100] [100, 100] {LT, EQ}

l c
6 [0, 99] � �

�

l c
7 [0, 99] [0, 99] �

�

l c
8 [0, 99] [0, 99] [1, 1]

�

l c
9 [0, 99] [1, 100] [1, 1]

�

l c
10 [1, 100] � �

�

l c
11 [100, 100] � �

�

In many regards, this invariant is not optimal. For instance, no information about the
value of cr0 is inferred for l c

6 , . . . , l c
11, even though we might expect to find some. This is

due to the fact we do not perform a global analysis of the target program.
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A major drawback of Theorem 10.2.2 is that the proof assumes the soundness of the
compilation, despite one of the main reasons for analyzing the assembly code instead of
the source code was to certify the compiled code even if it is produced by a non-trusted
compiler. As a consequence, we will consider the problem of checking the translated
invariant in an independent way: this will be the purpose of Section 10.3.

10.2.3 Translated invariant and program reduction

As we pointed out in Section 9.4, other forms of program reduction may be required:

• the source program may be reduced as well (e.g., in order to cope with the removal
of dead variables): in this case, we need to forget all constraints about the variables
in � \ � s, by applying a forget operator forget , which we introduced in Section 3.1.1;
• more complicated abstractions might be involved in the definition of correctness of

compilation, in the case of more complex optimizations: then, the corresponding
abstractions should be applied in the abstract level.

We followed this methodology in order to extend the invariant translation algorithm to
various optimizations in [Riv04b]. In particular, the nature of the mapping between source
and compiled programs conditions the nature of the invariants, which can be translated:
for instance, optimizations such as scheduling may impede the translation of relational
invariants if two variables cannot be made available at a same point.

Moreover, some optimizations allow for the traduction of finer invariants. This is the
case of loop unrolling (Section 9.4.4): a partitioning analysis distinguishing even and odd
iterations (Chapter 4) would produce more precise invariants, which can be translated
exactly.

10.3 Invariant Checking

We proved the soundness of the translated invariant in Theorem 10.2.2, under the assump-
tion that the compiler is sound. Obviously, we do not wish to rely on this assumption,
since the compiler may be wrong. Therefore, we consider the independent checking of the
translated invariant now: in this section, we no longer assume the compiler be correct, or
even the source invariant be sound.

10.3.1 Principle of invariant checking

We propose to follow the fixpoint checking method presented in Theorem 2.3.3: if F is a
monotone concrete semantic function, F ] is a sound abstract semantic function, approx-
imating F with respect to a monotone concretization function γ, and d is an abstract
element such that F ](d) v d, then lfpF ⊆ γ(d). The invariant checking theorem below
corresponds to a slight improvement upon Theorem 2.3.3.
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We could either perform the checking of Ir
c or of Ic. In the following, we perform the

verification of Ir
c: this approach makes sense, since Ic is computed from Ir

c.

Theorem 10.3.1. Invariant checking.

Let Ir
c ∈ ( � c → D]�

,s) be a candidate invariant for the compiled, reduced program. In
case the property below holds, then the invariant Ir

c is a sound approximation of JP r
c K:

for all feasible path l0 · . . . · ln,
l0 ∈ � c

ln ∈ � c

∀i ∈ L1, n− 1M, li 6∈ � c



 =⇒ δ]

ln−1,ln
◦ . . . ◦ δ]

l0,l1
(Ir

c(l0)) v Ir
c(ln)

(10.1)

Proof.

Applying the result of Theorem 2.3.3 would require a slightly different (and more
approximate) definition for F ]:

F ] : I 7→ λ(ln ∈ � c) ·
⊔{δ]

ln−1,ln
◦ . . . ◦ δ]

l0,l1
(I(l0)) | l0 ∈ � c ∧ ∀i ∈ L1, n− 1M, li 6∈ � c}

Instead, we avoid to compute the abstract join (which is a major source of imprecision);
therefore, we cannot deduce Theorem 10.3.1 directly from Theorem 2.3.3, even though
the principle of the proof is similar.

In the following, we assume that the checking mentioned in Theorem 10.3.1 succeeds.

Let l ∈ � c, and ρ ∈ � c. We assume that l ∈ γ]�
,c(I

r
c(l )). We propose to show that any

transition in the restricted compiled program from (l , ρ) leads to another state, which
is safely approximated by Ir

c.

Let (l ′, ρ′) ∈ �
c, such that there is a transition (l , ρ)→ (l ′, ρ′) in the restricted, compiled

program. Theorem 9.3.1 implies that there exists a trace σc = 〈(l , ρc), . . . , (l ′, ρ′c)〉 of
the compiled program, such that Πtrace�

c, � c
(σc) = 〈(l , ρ), (l ′, ρ′)〉. We let p = l · l0 · . . . · ln · l ′

be the path underlying σc. The soundness of the local transfer functions ensures that
ρ′ ∈ γ]�

,c(δ
]
ln,l ′ ◦ . . . ◦ δ]

l ,l0
(Ir

c(l ))). Moreover, the success of the invariant checking insures

that δ]
ln,l ′◦. . .◦δ]

l ,l0
(Ir

c(l )) v Ir
c(l ′); the monotonicity of γ]�

,c implies that ρ′ ∈ γ]�
,c(I

r
c(l ′)).

Similarly, we can prove that the initial states for the restricted program are in the
concretization of Ir

c.

As a conclusion, it follows that Ir
c over-approximates the semantics of the restricted,

compiled program. Â

A major drawback of the checking is that it requires implementing almost a full ab-
stract interpreter for the target language: the main part which does not need to be
implemented is the abstract post-fixpoint engine (i.e., we do not have to implement the
iterator, to choose a widening strategy...). However, the most important issues with the
invariant checking procedure are described in Section 10.3.2.
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10.3.2 Issues with the precision of transfer functions

Incompleteness of the abstract transfer functions: Theorem 10.3.1 provides a
sound invariant checking procedure; however, we do not prove the completeness of the
procedure. In fact, the invariant checking procedure described by Theorem 10.3.1 is not
complete. Similarly, if γ is monotone, and F ◦ γ ⊆ γ ◦ F ] but the verification condition
F ](x) v x fails (for instance, if F ](x) and x are not comparable, or due to a lack of local
monotonicity of F ]), then it does not entail that γ(x) is not a valid over-approximation
for the concrete least fixpoint.

Definition 10.3.1. Incompleteness of the invariant checking.

Let us assume that concrete and abstract values are natural integers, F :
� → �

, x 7→ 4,
F ] :

� → �
, x 7→ x + 4 and γ : n 7→ n. Then, F ](4) 6≤ 4 (so that the checking fails) even

though F (4) = 4 (i.e., the “invariant” 4 is sound).

Among the reasons, which may lead to the invariant checking to fail despite Ir
c is

sound, we can cite:
• the possible non-monotonicity of the transfer functions involved in the invariant

checking;
• the imprecision of the transfer functions and of the abstract domain used for the

analysis of the restricted, compiled program.
In the following of this subsection, we describe examples for precision issues, which may
require the invariant checking to fail. These problems occur in practice, and led to the
development of refined domains for the invariant checking to succeed in [Riv03, Riv04a].

Definition 10.3.2. Failure of invariant checking.

In particular, the checking of the translated invariant given in Example 10.2.2 fails at
the entrance in the loop body. Indeed, the certification condition states that δ]

l c
5 ,l c

6
◦ . . . ◦

δ]
l c
2 ,l c

3
(Ir

c(l c
2 )) v Ir

c(l c
6 ).

However, this condition amounts to δ]
l c
5 ,l c

6
(Ic(l c

5 )) v Ir
c(l c

6 ), where Ic is given in Example

10.2.4 (up-to the abstraction of registers), and the latter condition fails, since the range
for M[i] is [0, 100] at point l c

5 ; it is [0, 99] at point l c
6 (we note that the failure is observed

for M[i] which belongs to � c, so that we cannot blame the fact that we considered Ic for
this failure).
Indeed, the value of M[i] is not modified in this sequence of instruction, yet on the values
in the range [0, 99] go through the branch to l c

6 due to the test. The reason why the
checking analysis does not remark this is the result of the lack of relation between the
value of cr0. In fact, the condition is tested on a copy of M[i], which is also impedes the
invariant checking.

Conditions: As we remarked in Example 10.3.2, the checking of conditions requires
relations between the values of the condition registers and the other abstract values to
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be maintained. This issue was solved in [Riv04a] by a partitioning domain, where each
possible value of the condition register is mapped into a value of D]�

,c.

Use of copies: Most assembly operations affect registers. As a consequence, the eval-
uation of an assignment or of a condition requires the content of memory locations to be
copied into registers. This copy might impede the invariant checking, as in the case of
conditions (Example 10.3.2).

In particular, if the source analysis relies on the fact that some equality relations x = y
holds, then the assembly analysis should establish a relation of the form gpri = gprj

(where x and y are respectively copied into gpri and gprj).

Definition 10.3.3. Symbolic simplification and invariant checking.

We pointed out that the simplification of symbolic transfer functions along paths could be
used as a means to improve the precision of static analysis. In particular, we found that
they solve the issue reported in Example 10.3.2.
Indeed, δ]

l c
5 ,l c

6
◦ . . . ◦ δ]

l c
2 ,l c

3
can be simplified straightforwardly into (we abstract the registers

away here):

bM[i] < 100 ? ι | ¤ c
This symbolic transfer function allows for a successful local invariant checking.
The reason why symbolic composition and simplification helps here is that it reconstructs
the structure of the computations as in the source program and reduces the invariant
checking to similar conditions as those used in the source analysis.

Low level operations: Other low level operations may require special care, including:
• the verification of memory operations requires the alignment of the addresses to

be checked carefully. For instance, 32-bits architectures often use addresses corre-
sponding to bytes: a cell of an integer array is 4 bytes long; therefore, the indexes
should be congruent to 0 modulo 4. As a consequence, the reading of an integer
array cell determined by an index in a range [a, b] can be checked precisely only if
the checker is able to prove that the index is congruent to 0 modulo 4; otherwise,
the checker should also take into account the possibility of reading parts of two con-
secutive cells, which may return a very different result. We exemplify this situation
in Figure 10.1.
• the low-level implementation of data conversions may involve complex properties.

For instance, the implementation of the conversion of an integer value into a floating
point value in the Power-PC architecture, is commonly compiled into a sequence of
bitwise operations, subtractions and rounding (as show in Example 11.3.1). Pre-
cisely analyzing the whole conversion would require the sequence of operations to be
recognized by the verifier as a conversion, since the abstract primitives for bitwise
operations and subtractions would be very different from a conversion.
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PSfrag replacements

0 1 2 3

0x00 0x10 0x00 0x11

1 cell = 1 byte

alignment = half byte (4 bits)

(c) Memory layout

Source: access to cell i, where i ∈ [0, 1]
Assembly: access to cell i, where i ∈ [0, 2] ∧ i ≡ 0 mod (2)
analysis: values read
no congruence analysis {0x0010, 0x1000, 0x0011, . . .}
alignments not handled precisely value 0x1000mistakenly read
congruence analysis {0x0010, 0x0011}
alignments handled precisely no imprecision

(d) Read from the memory

Figure 10.1: Memory alignments and invariant checking

10.3.3 Practical experience

Implementation of a prototype: We implemented the invariant translation and in-
variant checking technique in a prototype in 2002 [Riv03, Riv04a].
• The source programs are written in C. The prototype was designed so as to handle

families of synchronous applications (Section 5.1.1), in the same way as Astrée.
• The compiled programs are Power-PC assembly programs, including Stabs debug-

ging information. During our experiment, we used the gcc compiler, even though
any other compiler for the same architecture, with the same kind of debugging
information could have been used instead.
We restricted to non-optimized code.
• The purpose of the invariant translation was to prove the safety of the compiled

programs, i.e., the absence of runtime errors (e.g., division by 0, wrong access to the
memory) and of “user-defined wrong behaviors” (such as integer or floating-point
overflows).

The structure of the C analyzer is rather similar to the early version of the Astrée

analyzer [BCC+02]. It uses a domain collecting interval constraints, clock constraints
[BCC+02], and trace partitioning (with part of the features of the partitioning domain
introduced in Chapter 5). The invariant translator generates similar invariants.

The invariant checking required a few refinements to be implemented: partitioning
with the value of the condition register, product with a domain for representing equality
relations, product with a congruence domain [Gra89].
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Benchmark and conclusion: The whole prototype was successfully ran on a few sim-
ple applications, including the 400 lines program mentioned in Section 5.3.3. In particular,
invariant checking was successful, i.e., the translated invariant is proved correct indepen-
dently from any assumption on the compiler and on the source code analysis (using the
technique introduced in Theorem 10.3.1). Moreover, the translated invariant resulted in
only one false alarm, which was present in the source analysis. This alarm was fixed later
by a refinement of the source analyzer, so that we would expect an improved checker to
produce no false alarm as well (the checker was not maintained by then, as explained
below).

However, the amount of resources required by the tool were rather disappointing. We
sum up the time and memory required for each step of the process in the table below.
These measurements were done on an Intel Pentium III laptop (1 GHz), with 384 Mbytes
of RAM.

Step Time (s) Memory (MB)

Source code analysis 2.5 15
Assembly code parsing 1.5 -
and mapping construction
Invariant translation 4.5 20
Invariant checking 5.5 27

The main issue with the invariant checking is due to the memory requirement of the
procedure. Indeed, large part of the data sharing ensured during the source analysis is
lost in the translation, which causes the structures representing assembly invariants to use
more memory and, to a lesser extent, the computation of the abstract transfer functions
for the invariant checking to be slower.

By contrast, the very heavy use of data-sharing plays a considerable role in the source
analysis; in particular, it allows for a lower memory usage, and for very fast operations,
such as the computation of abstract joins.

A much more efficient translation and checking procedure could have been designed
at the cost of the ease of maintenance of the invariant checker. However, the abstract
domains developed in Astrée were updated and modified very frequently. Moreover, the
translation validation approach sounded more promising at this point. As a consequence,
we did not maintain the invariant checker for a long period, and did not attack the
certification of large programs.
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Chapter 11

Proof of Semantic Equivalence

We focus on the automated proof of equivalence between source and compiled programs.
The principle to prove the functional correctness of the compiled program with respect to
the source code, by checking the equivalence of local computation steps at a given level of
abstraction.

We discuss the issues inherent in the certification of the equivalence between source
and compiled programs in Section 11.1. We formalize the translation validation technique
[PSS98] in the framework, which we set up in Chapter 9 in Section 11.2.

Then, we prove this technique adapted for the proof of safety of compiled programs in
Section 11.3. Indeed, when the proof of equivalence succeeds for some abstraction, then
any more abstract invariant can be translated safely.

We provide implementation results showing the scalability of the method in Section
11.4. In the difference to other tools, our prototype does not input intermediate rep-
resentations but rough source and compiled programs (so that the whole compilation is
certified).

11.1 Principle and Related Work

We pointed out in Section 9.1 that a the verification of the functional correctness of the
compile code was a very challenging and important goal in certified compilation. Indeed,
it is particularly important to be sure that the compiled program indeed does what the
source code says it should. More precisely, we wish to check that a trace of the compiled
program corresponds to a trace of the source program and vice-versa, as in Definition
9.3.1.

Otherwise, we may encounter various kind of (possibly dramatic) errors: either mis-
functioning due to the wrong implementation of the functions defined in the source code,
or runtime errors due to a flawed translation.

Moreover, the proof of equivalence between source and compiled programs can be
considered a strong documentation for the assembly code: indeed, it should describe
what memory location corresponds to what source variable and prove this correspondence
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correct. As such, it can be used for the certification of critical compiled programs, e.g. in
embedded systems and in aeronautics [TCoA99].

Several solutions to this issue can be found in the literature.

Theorem proving: A first approach consists in proving the compiler formally, with the
help of a proof assistant.

It has been applied successfully to simple “toy” compilers, e.g. in [Ber98]. More
recently, [Str02] presented a formal proof of correctness of a compiler for a subset of Java
Card: this proof was the result of an extensive formalization of Java and on the verification
of the compiler inside the Isabelle/HOL theorem proving environment [Pau94]. Currently,
the Concert project led in the Inria aims at proving a fully functional, (moderately)
optimizing C compiler; no publication is currently available about this ongoing project,
but information can be found at http://www-sop.inria.fr/lemme/concert/.

Of course, such techniques are relevant only when the code of the compiler is publicly
available. Moreover, this approach tend to be costly: not only the formal proofs tend to
be long and not completely automated but also, a change in the code of the compiler may
require part of the proof to be rewritten.

Translation validation: A second solution proceeds by performing the equivalence
proof on a per-program basis: any time a program is compiled, it should be checked.

This approach, known as translation validation, was introduced by [PSS98]: this work
focused on a synchronous compiler for the Signal language [ABG95]. Another similar tool
was described in [Nec00]; the approach followed in this work is based on the checking of
phases of an optimizing compilation, based on the RTL intermediate representation. This
technique was also employed in [ZPFG02, ZPF+02] so as to certify an Intel compiler for
the Intel Itanium.

We also implemented a prototype based on the principles of translation validation
in [Riv04b]: the certification of compilation should be done for every critical program.
However, our tool is not based on any intermediate representation (it inputs source and
assembly programs). Moreover, no knowledge about the way the compiler works is as-
sumed, except that it should produce standard debugging information.

Invariant translation: A last solution is to resort the Invariant translation methods,
which we described in Chapter 10.

Indeed, in case the invariant checking defined in Section 10.3 succeeds, then the prop-
erty corresponding to the invariant is proved sound, independently from any assumption
about the compiler. As a consequence, it proves that the compilation preserves some
property of the source program in the compiled program. Obviously, the property pre-
served is not strong enough for our goal: it does not show that the assembly program
implements correctly functions in the source code.
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11.2 Design of a Translation Validation Procedure

In this section, we focus on the formalization and on the proof of the approach. In the
end, we also relate our implementation results.

11.2.1 Formalization and soundness of the approach

The intuition behind translation validation is rather simple: if the source and the com-
piled program are “locally” equivalent, then, we can prove them globally equivalent. The
purpose of this section is to state the local equivalence and to show the soundness.

Notations, and assumptions: In this section, we consider a source program Ps, and a
compiled programs Pc. We use the same notations in the previous chapter. In particular,
we define as usual:
• restricted sets of memory locations � s ⊆ � s, and � c ⊆ � c;
• restricted sets of control states � s ⊆ � s, and � c ⊆ � c;
• a mapping of memory locations Π

�

: � s → � c;
• a mapping of control states Π � : � s → � c;
• reduced programs P r

s and P r
c , defined by the above restricted sets.

However, we do not assume that the compilation of Ps into Pc is sound. Indeed: our
purpose is to state some conditions and to prove that the compilation of Ps into Pc is
sound under this assumption.

We also require the restricted programs to be defined by table of symbolic transfer
functions: if ls, l ′s ∈ � s, then δls,l ′s denotes the transfer function describing the one-step
transitions from ls to l ′s .

Last, we require l i
s (resp. l i

c ) to be the entry point of P r
s (resp. P r

c ), and that Π � (l i
s ) = l i

c

(as in Section 9.3.3).

Local equivalence: We now set up the “local equivalence” property; intuitively, it
states that one step in the source restricted program should correspond to one step in the
compiled, restricted program.

Definition 11.2.1. Local equivalence.

We say that the programs Ps and Pc are locally equivalent with respect to Π � and Π
�

if
and only if the following property holds:

∀ls, l ′s ∈ � s, ∀ρc, ρ
′
c ∈ � c, if lc = Π � (ls) and l ′c = Π � (ls), then:

(ls, ρc ◦ Π
�

)→r
s(l ′s , ρ′c ◦ Π

�

)⇐⇒ (lc, ρc)→r
c(l ′c , ρ′c)

This property can also be stated in terms of symbolic transfer functions:

∀ls, l ′s ∈ � s, ∀ρc ∈ � c, if lc = Π � (ls) and l ′c = Π � (ls), then:
Jδls,l ′s K(ρc ◦ Π

�

) = Jδlc,l ′c K(ρc) ◦ Π
�
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A global way of stating local equivalence: At this point, we can provide another
way of stating the local equivalence, which is based on a global statement.

We write F r
s (resp. F r

c ) for the semantic function of the restricted source program
(resp. of the restricted compiled program); we recall that F r

s is defined by:

F r
s : P(Σs) −→ P(Σs)
E 7→ E ∪ {〈s0, . . . , sn, sn+1〉 | 〈s0, . . . , sn〉 ∈ E ∧ sn→r

ssn+1}

Moreover, if we let
� i

s = {〈(l i
s , ρ)〉 | ρ ∈ � s}, the semantics of P r

s is defined by JP r
s K =

lfp � i
s
F r

s . Of course, the same properties and notations hold for the compiled program.

Lemma 11.2.1. Local equivalence, global formula.

The programs Ps and Pc are locally equivalent if and only if:

∀E ∈ P(Σs), ΠΣ(F r
s (E)) = F r

c (ΠΣ(E))

Proof.

Implication ⇒: Let us assume that Ps and Pc are locally equivalent with respect to
Π � and Π

�

.
Let E ∈ P(Σ). We assume that E is a singleton E = {σ} for some trace σ. Let us write
σ = 〈s s

0, . . . , s s
n〉, and ΠΣ(σ) = 〈sc

0 , . . . , sc
n〉, where ∀i, sc

i = Π
�
(s s

i ). Then:
• ΠΣ(F r

s (E)) = {〈s s
0, . . . , s s

n, s s
n+1〉 | s s

n→r
ss s

n+1};
• ΠΣ(F r

s (E)) = {〈sc
0 , . . . , sc

n, sc
n+1〉 | sc

n→r
ssc

n+1}
Moreover, the local equivalence entails that:

∀s s
n+1 ∈

�
s, ∀sc

n+1 ∈
�

c, s s
n→r

ss s
n+1 ⇐⇒ sc

n→r
ssc

n+1

Therefore,
ΠΣ(F r

s (E)) = F r
c (ΠΣ(E))

The results for any set E ∈ P(Σ) follows from the case of singletons, since ΠΣ, F r
s , and

F r
c are continuous. Indeed, if E ⊆ Σs, then

ΠΣ(F r
s (E)) = ΠΣ(F r

s (
⋃{{σ} | σ ∈ E}))

= ΠΣ(
⋃{F r

s ({σ}) | σ ∈ E}) since F r
s is continuous

=
⋃{ΠΣ(F r

s ({σ})) | σ ∈ E} since ΠΣ is continuous
=

⋃{F r
c (ΠΣ({σ})) | σ ∈ E} as shown above

= . . . since ΠΣ, F r
c are continuous

= F r
c (ΠΣ(

⋃{{σ} | σ ∈ E}))
= F r

c (ΠΣ(E))

The “global statement” for local equivalence follows.

Xavier Rival Traces Abstraction in Static Analysis and Program Transformation



11.2. DESIGN OF A TRANSLATION VALIDATION PROCEDURE 235

Implication ⇐: We assume that the “global statement” for local equivalence holds and
establish the local one.
Let ls, l ′s ∈ � s, lc = Π � (ls), l ′c = Π � (l ′s ), ρc, ρ

′
c ∈ � c. We write ρs = ρc ◦ Π

�

and
ρ′s = ρ′c ◦ Π

�

. We assume that (ls, ρs)→r
s(l ′s , ρ′s).

We let E = {〈(ls, ρs)〉}. We know that:
• ΠΣ(F r

s (E)) = F r
c (ΠΣ(E));

• ΠΣ(E) = {〈(lc, ρc)〉};
• 〈(ls, ρs), (l ′s , ρ′s)〉 ∈ F r

s (E), so that 〈(lc, ρc), (l ′c , ρ′c)〉 ∈ ΠΣ(F r
s (E)) = F r

c (ΠΣ(E)).
At this point, expanding the definition of F r

c allows us to derive the result:

(lc, ρc)→r
c(l ′c , ρ′c)

As a conclusion, the “local” statement for local equivalence, which we gave in Definition
11.2.1 holds. Â

Soundness: We now state and prove the soundness of translation validation:

Theorem 11.2.2. Soundness of translation validation.

If Ps and Pc are locally equivalent with respect to Π � and Π
�

, then the compilation of Ps

into Pc is correct, with respect to the same mappings, i.e. :

JP r
s K

ΠΣ' JP r
c K

Proof.

We assume that Ps and Pc are locally equivalent.
Then, The result follows directly from Lemma 11.2.1 and from a fixpoint transfer theo-
rem like Theorem 2.3.2. Indeed:
• ΠΣ(

� i

s) =
� i

c;
• ΠΣ(F r

s (E)) = F r
c (ΠΣ(E)).

As a consequence, a straightforward induction proves that

ΠΣ(lfp � i
s
F r

s ) = lfp � i
c
F r

c

i.e.,
ΠΣ(JP r

s K) = JP r
c K

Moreover, ΠΣ is clearly a bijection.
This proves the correctness of compilation of Ps into Pc, with respect to the mappings Π �
and Π

�

as stated in Theorem 9.3.3. Â
The technique stated in the theorem above can be applied straightforwardly to the

program considered in Section 9.3.1.
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Definition 11.2.1. Translation validation.

Let Ps (resp. Pc) denote the source (resp. compiled) program introduced in Figure 9.3(a)
(resp. Figure 9.3(b)). The mappings Π � and Π

�

for this pair of programs was given in
Figure 9.4.
The symbolic transfer functions for the the restricted program P r

s (resp. P r
c ) were given

in Example 9.3.3 (resp. in Example 9.3.4).
These tables of transfer functions obviously satisfy the local equivalence property stated
in Definition 11.2.1.
For instance, let us check the transitions between point l s

4 and l s
5 : these points of the

reduced source program correspond to the control states l c
11 and l c

15 in the reduced compiled
program. Moreover:

δl s
4 ,l s

5
= bx← x + t[i]c

δl c
11,l c

15
= bM[x]←M[x] + M[t + M[i]]c

Since Π
�

(x) = M[x] and Π
�

(t[i]) = M[t + M[i]], the two symbolic transfer functions
above describe the same transitions up to Π

�

.
The case of the other transitions is similar.
As a conclusion, Ps and Pc enjoy the local equivalence property.

Remark 11.2.1. Formal compiler proof.

We mentioned in Section 11.1 that theorem proving was a solution for establishing the
correctness of the compiler once for all. Then, the proof of correctness should establish a
result similar to the equivalence stated in Theorem 11.2.2 for all programs Ps and Pc.
However, we should distinguish several kinds of proofs:
• proofs based on big-steps semantics, akin to denotational or relational semantics

(Section 3.2) only focus on initial and final states; they do not tell much on the local
behavior of programs;
• proofs based on small-steps semantics proceed by establishing some kind of local

equivalence property, similar to the one introduced in Definition 11.2.1.
Of course, the latter kind of proofs is more informative; indeed, such proofs provide a
rather strong link between the source and the compiled programs.

11.2.2 Adapted decision procedure

The purpose of this section is to propose an algorithm for checking the local equivalence
property defined in the previous section. The decision procedure should input a pair of
symbolic transfer functions (δs, δc) (where δs describes a transition in P r

s , and δc describes
a transition in P r

c ), and attempts to prove that P r
s and P r

c are equivalent:

Definition 11.2.2. Symbolic transfer functions equivalence.
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The functions δs and δc are equivalent if and only if

∀ρs ∈ � s, ρc ∈ � c, ρc = Π
�
(ρs) =⇒ Π

�
(δs(ρs)) = δc(ρc)

Obviously, checking the local equivalence property stated in Definition 11.2.1 reduces
to proving the equivalence of symbolic transfer functions, in the sense of Definition 11.2.2.

Of course, we do not expect the decision procedure to be complete, since the equiva-
lence of symbolic transfer functions is undecidable; therefore, it may fail to establish the
equivalence of two equivalent symbolic transfer functions.

As usual, we expect the decision procedure to be sound: if it succeeds, then the two
arguments should be equivalent in the sense of Definition 11.2.2.

The algorithm exposed here is much more simple than the algorithm which we effec-
tively implement; indeed, this algorithm presents a very high asymptotic complexity, so
that a rather tricky implementation is somewhat required in order to achieve fast decision
procedures.

Our procedures may handle assumptions under the form of finite lists of boolean
expressions (aka conditions); we write an assumption C (condition shall be denoted c0, . . .).

Equivalence of expressions: Before we describe the algorithm, we mention two im-
portant subroutines. The first one attempts to prove two expressions equivalent.

Definition 11.2.3. Expression equivalence.

Let e0, e1 be two expressions, with variables in � c and C be an assumption. We say that
e0 and e1 are equivalent under the assumption C if and only if, for all store ρ ∈ � c,

(∀ci ∈ C, JciK(ρ) = true) =⇒ Je0K(ρ) = Je1K(ρ)

If the procedure proves e0 and e1 equivalent, we write C ` e0 ∼ e1.
In our implementation, a very large number of rules needed to be included in the

decision procedures; we give a few examples here:
• Equality of constants: some constant (e.g., floating point constants) have several

representations, including hexadecimal representations, standard representations.
• If C ` e0 ∼ e1, then, for any expression e and any operator ⊕, C ` e0 ⊕ e ∼ e1 ⊕ e.
• Faster implementations for comparisons: for instance, if e0 is an integer expression,

then testing whether e0 < 0 amounts to checking whether the sign bit of the result of
the evaluation of e0 is 1 (this can be implemented with a shift right); this allows to
test some simple conditions without using the condition register (less instructions),
which we described in Section 9.2.1.
Many other examples of faster operators can be found in practice.

Traces Abstraction in Static Analysis and Program Transformation Xavier Rival



238 CHAPTER 11. PROOF OF SEMANTIC EQUIVALENCE

incompatible branches
C ` false

False
C |= δs ∼ δc

empty functions Empty
C |= ¤ ∼ ¤

assignments
C ` es ∼ ec Π

�

(xs) = xc
Assign

C |= bxs ← esc ∼ bxc ← ecc

n-ary assignments generalizes the case of unary assignments

conditional (1)
C; e |= δs

t ∼ δc C;¬e |= δs
f ∼ δc

If l
C |= be ? δs

t | δs
f c ∼ δc

conditional (2)
C; e |= δs ∼ δc

t C;¬e |= δs ∼ δc
f

Ifr
C |= δs ∼ be ? δc

t | δc
f c

Figure 11.1: Decision procedure

In practice, we are interested with the case where e0 is an expression based on source
variables and e1 is an expression based on assembly memory locations. This case reduce
to the previous case. Indeed, we can substitute source variables with assembly memory
locations in e0, thanks to Π

�

; we write Π
�

(e0) for the resulting expression. Then, we can
apply the regular decision procedure to (Π

�

(e0), e1).

Search for contradiction in set of hypotheses: The second important function
attempts to find a contradiction among a set of hypotheses. If this procedure succeeds
on an assumption C, we write C ` false. The soundness of this procedure states, that if
C ` false, then:

{ρ ∈ � c | ∀ci ∈ C, JciK(ρ) = true} = ∅
Among the examples of rules for this decision procedure, we can cite the standard rules
below:

C; e0 < e1; e0 ≥ e1 ` false C; b;¬b ` false

Equivalence of symbolic transfer functions: We write C |= δs ∼ δc if the procedure
succeeds in proving the equivalence of δs and δc. The algorithm of the decision procedure
is described as a set of rules in Figure 11.1.

This decision procedure can be proved sound:

Theorem 11.2.3. Equivalence of symbolic transfer functions.
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Let C be an assumption, and (δs, δc) be a pair of symbolic transfer functions. We assume
that C |= δs ∼ δc. Then:

∀ρs ∈ � s, ρc ∈ � c, ρc = Π
�
(ρs) ∧ (∀ci ∈ C, JciK(ρ) = true) =⇒ Π

�
(δs(ρs)) = δc(ρc)

In particular, if C is empty, then δs and δc are equivalent in the sense of Definition
11.2.3.

Proof.

By induction on the proof trees for deriving C |= δs ∼ δc. Â

Definition 11.2.2. Equivalence of symbolic transfer functions.

The rules presented in Figure 11.1 allow to prove the equivalence of all transfer functions
involved in Example 11.2.1, in a very straightforward manner.

Implementation: The decision procedure inputs two symbolic transfer functions and
attempts to prove their equivalence, by applying the rules from the conclusion to the
premises and close each branch in the proof with either of rules False, Empty and Assign.
All rules in Figure 11.1 but the False rule are guided by the nature of the transfer functions
on both sides. In practice, the decision procedure should attempt to derive contradictions
among the hypotheses, so as to apply the rule False as soon as possible.

11.2.3 Issues with the computation of the reduced programs

We discussed the issue of optimizations in Section 9.4, and showed that alternate forms
of program reductions should be used when the compiler performs optimizations.

When the assembly code is optimized, the algorithm for translation validation should
be applied to the reduced programs defined in Section 9.4. When it succeeds, it proves
the correctness of the compilation with respect to the mappings used for the computation
of the reduced programs.

As a consequence, the main difference in the translation validator lies in the assem-
bly and source front-ends, since they should also compute the transfer functions for the
reduced source and assembly programs. We described this technique and provided some
implementation results in [Riv04b].

11.3 Application to Invariant Translation

In this section, we study the link between the translation validation and the invariant
checking procedure, which we introduced in Section 10.3.
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11.3.1 Soundness of the approach

First of all, we show that, if the translation validation succeeds, then any invariant for
the source, restricted program can be translated safely.

Therefore, we assume that the same conditions as in Section 10.2 are fulfilled. We
use the same notations as well; in particular, we assume that a sound abstract invariant
Is ∈ � s → D]� for P r

s is given.

Theorem 11.3.1. Invariant translation justification.

Let us assume that the test of local equivalence of Ps and Pc succeeds and that Is is a
sound invariant for Ps.
Then, the invariant Ir

c defined as in Section 10.2.1 provides a sound approximation for
the semantics of the reduced, compiled program:

∀〈. . . , (lc, ρc)〉 ∈ JP r
c K, ρc ∈ (Π

�

)−1 ◦ γ]�
,s(I

r
c((Π � )−1(lc)))

Proof.

Follows from Theorem 10.2.1 and Theorem 11.2.2. Â
As a consequence, Is can be used as the basis for computing an invariant Ic for the

whole compiled program Pc, as done in Section 10.2.2.

11.3.2 Comparison with invariant checking

The result, which we provided in the last subsection shows that the approach consisting
in performing a proof of equivalence and then an invariant translation somewhat turns
out to be a substitute for the invariant translation and invariant checking. Indeed, the
translation validation proves the equivalence of the restricted semantics of the source and
compiled program, so that the correctness of the translated invariant does not depend on
the correctness of compilation anymore.

Invariant checking and translation validation are two ways to check an identity among
least-fixpoint formulas:
• invariant checking performs a global fixpoint checking, by verifying local soundness

conditions; it is specific to some abstract domain;
• translation validation relies on the local checking of the hypotheses of a fixpoint

transfer theorem; it is not specific to any abstraction.
Translation validation presents several advantages here:
• it proves a stronger property: as shown above, the soundness of the translated

invariant can be deduced from translation validation, but the converse does not
hold (the success of invariant checking does not prove the compilation correct);
• it is not specific to any abstract domain, but the program reduction;
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• by contrast, the invariant checking procedure consists in an abstract interpreter,
which should be precise enough to:

– validate invariants produced by a source analyzer (which means that it should
be at least as precise as the source analyzer used to synthesize Is);

– deal with the specific features of the assembly languages, such as the issues
mentioned in Section 10.3.2.

• the practical cost of translation validation turns out rather reasonable, as the bench-
marks, which provide in Section 11.4 prove; on the contrary, the implementation of
invariant checking turned out involved and the resulting performances disappointing,
as we pointed out in Section 10.3.3.

The better efficiency of the translation validation stems from the fact that it allows
for equivalent, more simple expressions to be recognized among the symbolic transfer
functions for the source program. Indeed, the decision procedure described in Section
11.2.2 can be enhanced so as to prove simplified assembly transfer functions when it
succeeds in proving the equivalence. For instance, this possibility turns out particularly
useful in the following case:

Definition 11.3.1. Conversion of a short integer into a floating point.

Let us consider the compilation of the source statement f = castshort→floati. As we can
remark, the computations involved in the conversions are quite involved. Figure 11.2
shows the corresponding sequence of assembly code produced by gcc. In this example, we
explain how this algorithm works. First, note that the floating point registers store 64-bit
floating points (i.e., values of type double).
We recall that the most common floating point data-types are respectively 32 bits (“float”
C type) and 64 bits (“double” C type) long. Moreover, a floating point value is made of
• a sign bit s;
• an exponent e (8 bits for float, 11 bits for double) decremented with a bias b (re-

spectively 127 and 1023);
• and a mantissa m of n bits (n = 23 for float, n = 52 for double).

The value corresponding to such a floating point number is 2e−b ·(1+2−n ·m) (the mantissa
represents a fraction in the range [0, 1]). For more details about the representation of
floating point numbers, we refer to [CS85].
We can summarize the conversion algorithm displayed in Figure 11.2 as follows:
• i is represented as a 32-bit integer (it was originally a 16-bit integers), thanks to the

instruction extsh ;
• the xoris instruction flips the highest bit in i;
• then, a bit-bield made of an hexadecimal constant and of i is formed and loaded into

a 64-bit floating point register; the value of this result is 252 + 231 + i, as a double;
• the constant C0 = 252 + 231 is loaded into another floating point register;
• the difference is computed ( fsub ), so that we get i expressed as a double;
• last the frsp instruction rounds the double of value x into a 32-bit floating point

value (this rounding does not change the value, it merely modifies the internal rep-
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lis 11,f@ha load address of f
lis 9,i@ha load i
lhz 0,i@l(9) gpr0 ← i
extsh 0,0 sign extension
lis 9,0x4330 gpr9 ← 0x4330 0000 0000 0000

lis 10,.LC0@ha

la 10,.LC0@l(10) gpr10 ← C0

lfd 13,0(10) fpr13 ← 0x4330 0000 0000 0000 1111 1 . . . 1
xoris 0,0,0x8000 gpr0 ← gpr0 ⊕ gpr0

stw 0,12(31)

stw 9,8(31)

lfd 0,8(31) fpr0 ← 〈gpr9 | gpr0〉
fsub 0,0,13 fpr0 ← fpr0 − fpr13

frsp 0,0 rounding into a floating point value
stfs 0,f@l(11) store result in f

Figure 11.2: Conversion of a short integer into a floating point

resentation in order to comply with the floating point representation).

The translation validation decision procedure recognizes some sub-expressions as conver-
sions, when a conversion appears in the source expression. Moreover, it can produce a
simplified transfer function, containing a mere type conversion. This higher level opera-
tion would be more amenable to static analysis, e.g., in the invariant propagation (Section
10.2.2).

By contrast, a satisfactory handling of such sequences of assembly instructions in the in-
variant checking would require an abstract domain to be designed so as to collect expres-
sions and allow other domains to use them; this would make the design of the invariant
checker tedious.

The issue described in Example 11.3.1 did not arise in the program P 1
1 considered in

Section 10.3.3, so that we came across this problem after applying translation validation to
larger programs. This increased our confidence in the adequation of translation validation
to our goal.

11.3.3 On the need for invariant translation and safety checking

Let us assume that the correctness of the compilation of Ps into Pc can be proved by
translation validation, and that we wish to prove that Pc is safe. Moreover, we assume
that the analysis of Ps proves it safe.

The translation of source invariants may seem useless, since the source and the assem-
bly program are proved equivalent and the source program is also proved safe.
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However, we may still be interested in performing it, so as to get a better guarantee of
safety of the compiled program. Indeed, the definition of the runtime errors may be more
natural at the assembly level, so that the verification of the safety conditions using the
translated invariants can still be useful. We chose to perform it in the implementation,
which we describe in Section 11.4 (it was also a great opportunity to compare the approach
based on translation validation and the approach based on invariant checking in practice).

11.4 Application to real software

We implemented this approach in OCaml [OCa] in 2003, and checked its ability to scale
up. We reported about this prototype in [Riv04b]. Our tool performed an Invariant
translation preceded by a Translation validation step which allows to deal with simplified
assembly symbolic transfer functions when translating invariants and to avoid coping with
abstract invariant checking, since the latter technique generated disappointing results in
Section 10.3.3.

Implementation: Our goal was to certify automatically both the compilation and the
absence of runtime errors (RTE) in the compiled assembly programs. The target ar-
chitecture is a 32 bits version of the Power-PC processor; the compiler is gcc 3.0.2 for
Embedded ABI (cross-compiler). The source invariants are computed by the Astrée

analyzer [BCC+03a] (we give more details about Astrée in Section 5.1) and achieve a
very low false alarms number when used for checking RTE.

This prototype was aimed at validating the compilation of programs of the first family
of embedded applications presented in Section 5.3.3. We describe the main characteristics
of these programs in Section 5.1.1.

The translation validator handles most C features (excluding dynamic memory allo-
cation through pointers which is not used in the family of highly critical programs under
consideration): procedures and functions, structs, enums, arrays and basic data-types and
all the operations on these data-types. The fragments of Power-PC assembly language
handled by our implementation is ways larger than the fragment described in Section 9.2
as well. In particular, a restricted form of alias is needed so as to validate the passing
by reference of some function arguments like arrays. Non-determinism is also accommo-
dated (volatile variables). The mappings Π

�

(for variables) and Π � (for program points)
are extracted from standard debugging information. The verifier uses the Stabs format
(hence, it inputs assembly programs including these data), in the same way as the invari-
ant translator and invariant checking described in Section 10.3.3.

The decision procedure involved in the translation validation is based on the same
principle as the decision procedure described in Section 11.2.2, even though the imple-
mentation is particularly tricky so as to keep the cost down. Moreover, it required two
very simple analyses to be performed, so as to collect additional assumptions:
• an analysis collecting equality relations;
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• a congruence analysis [Gra89], so as to check the correctness of memory accesses.
Moreover, the verification of the soundness of the assembly code requires only interval

constraints to be translated: other constraints do not need to be translated, which makes
the invariant translation much more efficient and simple.

The whole development amounts to about 33 000 lines of OCaml code: The various
parsers and interfaces (e.g. with the source analyzer) are about 17 000 lines; the kernel
of the certifier (the implementation of the symbolic transfer functions and the prover)
is about 6 000 lines; the symbolic encoding functions (i.e., the formal definition of the
semantics of the source and assembly languages) are about 3 000 lines; the invariant
translator and the certifier are about 5 000 lines. The most critical and complicated part
of the system corresponds to the symbolic composition (2 000 lines) and to the prover
(1 500 lines).

Benchmarks: The whole process was ran on a 2.4 GHz Intel Xeon with 4 Gbytes of
RAM. Translation validation succeeds on the three programs: no alarm is raised; hence
the compiled programs are proved equivalent to the source code. The results of the
benchmarks are given in the table below (sizes are in lines, times in seconds).

Code Size Time Alarms
Source Assembly Parsing Parsing Mapping Translation Invariant Trans. RTE

(LOCs) (LOCs) C Power-
PC

building validation translation valid.

P 1
1 370 1 930 0.04 0.08 0.03 0.14 0.23 0 0

P 1
2 9 500 56 600 0.53 0.96 0.39 0.62 8.22 0 0

P 1
3 70 000 344 000 2.97 13 0.81 9.45 84.5 0 0

Conclusions: First, we note that the translation validation succeeds (no alarm); as
a consequence, the compilation is proved correct, and the invariant translation is also
justified. Second, the translated invariant allows the certification of the compiled code.
Note that [Riv04b] reported a few alarms in the case of P 1

3 : these were due to the use
of a former version of Astrée. The Astrée analyzer was improved since this date and
now allows to compute a more precise invariant for this program, achieving the result of
0 false alarm.

Last, we are pleased to note that this technique does scale up, in the difference to the
implementation of invariant checking, which we described in Section 10.3.3.

Perspectives: At the time of the writing, we are working on a new, improved imple-
mentation, so as to replace the initial prototype. It focuses on the certification of binaries,
instead of assembly code. In particular, we hope to improve the handling of debugging
information and the decision procedure, (we envisage to make it safer, e.g., by letting it
generate proof terms).
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Conclusion

In this thesis, we examined various abstractions for sets of traces and applied these to
different applications, all related to the certification of safety critical embedded systems.

Let us review the main contribution and the opportunities of future work for the three
main parts of the thesis.

12.1 Trace partitioning

We proposed a powerful, generic framework for trace partitioning and applied it to several
practical problems. First, we derived and implemented a trace partitioning domain in
Astrée, which turned out to play a major role in the performance of the analyzer, both
in time and in precision. Second, we designed a domain, which allows to state powerful
properties of executions, and which is particularly helpful in the alarm investigation.

The most important area for future work in this part seems to be the improvement of
the technique proposed in Chapter 6.
• First, we envisage to attempt to use this domain in order to prove significant func-

tional properties of programs, with the help of the Astrée static analyzer.
• Second, we could extend the automata-based abstraction (Section 6.3) with a widen-

ing operator.
• Last, we could also explore the idea of using an abstract system derived from the

property of interest in order to guide the widening strategy.

12.2 Alarm investigation

We provided the basis for setting up semi-automatic alarm investigation techniques. In
particular, we proposed various families of relevant slicing criteria and algorithms for
extracting semantic slices of programs, which is a very important step, when considering
very large programs, as is the case in the Astrée project. Second, we formalized families
of dependences adapted to the alarm investigation: first, we restrict to the dependences,
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which are observable in a semantic slice; second, we consider in priority the dependences
which have significant chances to play a role in abnormal behaviors (such as the occurrence
of large values in programs, and in abstract invariants). These methods were implemented
in prototypes based on Astrée, and showed positive early results.

Obviously, much work remains to be done, before we can implement an automatic
alarm investigation module inside Astrée :
• Automatize the synthesis of semantic slicing criteria, from the invariants generated

by Astrée, and from the results of the abstract dependence analyses.
• The synthesis of error scenarios should be automatized; for instance, we plan to

investigate the generation of collections of constraints, so as to characterize inputs,
which would always cause an error.
• Other kinds of abstract dependences should be studied, e.g., in order to consider

more involved families of predicates.

12.3 Certified compilation

We set up a general formalization for compilation. We defined and formalized several
certified compilation algorithms in this framework, including the invariant translation,
the invariant checking and the translation validation techniques. We implemented and
compared these methods; in the end, we conclude that the equivalence checking method
(translation validation) presents many advantages over the invariant checking technique.
Not only it verifies the correctness of compilation, but also it turns out more efficient
(in time) than the invariant checking. Overall, the translation validation prototype was
plainly successful in proving the correctness of the compilation of large applications in a
reasonable amount of time.

At this point, we are working on the improvement of the translation validation pro-
totype, which should be used in industrial certification processes. Another direction for
future work consists in considering other programming paradigms, such as synchronous
languages.
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