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Abstract

This paper discusses four store-based concrete memory models. We characterize memory models
by the class of pointers they support and whether they use numerical or symbolic offsets to address
values in a block. We give the semantics of a C-like language within each of these memory models
to illustrate their differences. The language we consider is a fragment of Leroy’s Clight, including
arrays, pointer arithmetics but excluding casts. All along the paper, we link these concrete memory
models with existing shape analyses.

Keywords: Memory Models, Language Semantics, C-like Programming Languages, Shape
Analysis.

1 Introduction

The purpose of shape analysis is to infer properties on the runtime structure
of the memory heap. Shape analysis goes beyond alias and null-pointer anal-
yses, in term of expressivity and precision. The applications of shape analyses
include optimizing compilation, absence of runtime errors (dereference of dan-
gling or null pointers), proof of programs, automatic parallelisation, . . .
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Fig. 1. Native, concrete and abstract memory models

Memory models. Like most static analyses, shape analyses perform
approximation. One has thus to distinguish the concrete memory model that
a shape analysis tackles, and the abstract memory model/representation used
by the analysis to express properties. For instance, in [9], the concrete memory
model is an unbounded 2-valued logical structure, and the abstract memory
representation is a bounded 3-valued logical structure. This paper focuses on
the concrete memory models and the operations they allow.

However, these concrete models do actually abstract some properties, as
they do not completely model the physical memory of a computer. For in-
stance, the physical numerical addresses may be ignored, as is the case for [9]
which cannot define the semantics of C pointer arithmetics.

Thus, concrete memory models can be classified by the operations they
support and that can be analysed by a shape analysis based on it. Ultimately,
the set of operations to be supported is defined by the programming language
under consideration. Fig. 1 depicts the articulation between programming lan-
guages, concrete and abstract memory models, and instantiates these concepts
with two very expressive shape analyses, TVLA and Xisa [9,4].

Classifying memory models. If one looks at the native memory models
of the most common programming languages, one can distinguish two main
models:

• Java, OCaml, and similar languages with garbage collection share a me-
mory model in which pointers always point to the base address of objects.

• C, C++, and to a lesser extent ADA, in which pointers can also point
inside an object, and where more operations are allowed, such as taking
the address of a record field, either explicitly (C, C++) or implicitly
(reference parameter passing in C++, ADA), pointer arithmetics, . . .

This is naturally reflected in concrete memory models, which we classify as
either object, or standard, the latter one supporting more operations on point-
ers.
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Offset type
Pointer use

standard object

numerical StdNum ObjNum

symbolic StdSym ObjSym

Table 1
Classification of concrete memory models

An orthogonal consideration, rather independent from the language, is the
way fields inside a memory location are addressed. This is usually done by
combining a location identifier and an offset within it. Concrete memory mod-
els may use either symbolic offsets (e.g., p.f [3].g in Java syntax) or numerical
offsets (e.g., 〈p, 8〉). This provides a second classification criterion for memory
models, as illustrated on Tab. 1.

Motivations. Analyses, like TVLA, were developed for Java-like lan-
guages. Others, such as the separation-logic-based Xisa, target a subset of
C. The memory models for shape analyses are often only described at the
abstract level. A clear view of the concrete memory model is needed to un-
derstand the scope of these analyses and be able to reuse them in different
context.

Contributions. We present the formal semantics of a C-like programming
language within the four memory models mentioned in Tab. 1. We discuss the
operations supported by each of them, emphasizing on differences and on
shape analyses using them.

2 Semantic Domains and Clight Expressions

In this section, we present formally the four memory models, and introduce
the considered language.

2.1 Memory Models

We consider the four memory models depicted in Tab. 1 leading to the store-
based semantics domains of Tab. 2 (i.e., with explicit store). An environment
(ǫ ∈ Env) is a mapping from the program variables (Var) to the memory lo-
cations (Loc) where their content is stored. A store (σ ∈ Store) is a mapping
from addresses (Addr = Loc × Offset) to values Values = Scalar ∪ Ptr. The
scalar values (Scalar) are for example integer values. Memory models differ on
the nature of pointers (Ptr) and the nature of offsets (Offset). Note that loca-
tions are not given a numerical address and are unordered. As a consequence,
it is impossible, with an address 〈l, o〉, to refer to an element of another loca-
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s ∈ State = Env × Store : program state

ǫ ∈ Env = Var → Loc : environment

σ ∈ Store = Addr → Scalar ∪ Ptr : store mapping addresses to values

Addr = Loc × Offset : addresses

l ∈ Loc : location (atomic memory block)

Ptr =

〈

Loc × Offset : Standard

Loc : Object

o ∈ Offset =

〈

Z : Numerical

Path = (Field ∪ Z)⋆ : Symbolic

Table 2
Semantic domains

tion l′ 6= l, whatever the value of o. This is the case of some formal semantics
of C [1] and most shape analyses [9,3,4].

The standard memory model is close to C-like low-level languages as every-
thing that can be addressed can also be stored in a pointer. The object memory
model is close to languages like ML or Java, where pointers are restricted to
references, which can designate an object, but not a field or a cell.

Beyond the nature of pointers, another characteristic of a memory model
is the nature of offsets. The symbolic memory model is higher-level and deals
with sequences of labels, called paths. A label is either a field name or an
index in an array. We write ε for the empty path and π.f for the path π

continued with label f . The numerical memory model is lower-level and deals
with true offsets (in bytes) within locations. This memory model can be
used only when the target architecture is known (size of types, layouts). An
Application Binary Interface (ABI) should provide such information, allowing
an architecture-based manipulation of the numerical memory model.

One goal of this paper is to discuss how to express the semantics of a
fragment of Clight within the four memory models of Tab. 2.

2.2 Clight

We take a fragment of Clight [1] that excludes cast, union types and multi-
dimensional arrays. Numerical expressions are included in this fragment, but
we do not detail them as they do not involve memory issues. We thus consider
the expressions defined by the grammar of Fig. 2(a).

A Clight program is statically typed. This allows us to know the type
τ ∈ Type of any expression. When we need this information, we write exprτ to
bind the type of expr with τ . We consider the types defined by the grammar of
Fig. 2(b). We assume that it is possible to name types (e.g. with a typedef),
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statement ::= lexpr=expr assignment

expr ::= lexpr left value

| &lexpr address taking

| expr + aexp pointer arithmetics

lexpr ::= id variable

| lexpr.id field selection

| ∗expr dereferencing

aexp ::= . . . arithmetical expr.

(a) Expressions.

τ ::= int

| array(τ, n)

| pointer(τ)

| struct{(id, τ)⋆}

| name

(b) Types.

Fig. 2. Considered Clight fragment.

e.g., in order to handle recursive data structures.

In Clight, only numbers and pointers may be assigned. The assignment of
a structure is not allowed and arrays (e.g. int t[2]) are used like pointers
(e.g. int *p). We use the syntactic sugar t[n] for *(t+n).

3 Semantics for Clight in Standard Memory Model

In this section, we give a semantics for our fragment of Clight within the
standard memory model, considering either numerical or symbolic offsets. We
recall that the store is of the form: Store = Loc × Offset → Scalar ∪ (Loc ×
Offset). This store allows pointers to be taken within a block. In [6], Laviron
et al. present an analysis, inspired by separation logic, that implements this
form of pointers in the abstract domain. The analysis of Calcagno et al. [2]
also uses an instance of a similar model.

Parameters. We parametrize the standard semantics by three operators
(., + and ↓) and a constant (ø), so as to be generic for the symbolic and
numerical variants of the model.

ø : Offset

〈l, o〉.τf : (Loc × Offset) × Type × Field → Loc × Offset

〈l, o〉 +τ k : (Loc × Offset) × Type × Z → Loc × Offset

↓ 〈l, o〉 : (Loc × Offset) → Loc × Offset

ø stands for the empty offset. 〈l, o〉.τf computes the address of a member
f within a structure of type τ pointed to by 〈l, o〉. 〈l, o〉 +τ k computes the
address resulting of pointer arithmetics on a pointer 〈l, o〉 to an object of type
τ . ↓ 〈l, o〉 returns a pointer on the first cell of an array pointed to by 〈l, o〉
(with symbolic offsets, there is the need to distinguish these two notions, in
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order to allow pointer arithmetics). These operators are defined by:

Numerical Symbolic

ø = 0

〈l, n〉.τf = 〈l, n + offsetof(f, τ)〉

〈l, n〉 +τ k = 〈l, n + k × sizeof(τ)〉

↓ 〈l, n〉 = 〈l, n〉

ø = ε

〈l, π〉.f = 〈l, π.f〉

〈l, π.n〉 + k = 〈l, π.(n + k)〉

↓ 〈l, π〉 = 〈l, π.0〉

Numerical operators use types through the functions offsetof and sizeof,
which are defined by the ABI.

Semantics. We define three semantic functions:

[[]]A : Env × Store → Loc × Offset Address of a expression

[[]]V : Env × Store → Scalar ∪ (Loc × Offset) Value of an expression

[[]]S : Env × Store → Env × Store Effect of a statement

The semantic of statements is rather standard:

[[lexpr=expr]]S(ǫ, σ) = let 〈l, o〉 = [[lexpr]]A(ǫ, σ) in

let v = [[expr]]V(ǫ, σ) in

(ǫ, σ[〈l, o〉 7→ v])

For the two other functions, we elide the store (σ) and environment (ǫ) pa-
rameters as they are constant.

[[id]]A = 〈ǫ(id), ø〉 [[lexprτ .id]]A = [[lexpr]]A.τ id [[∗expr]]A = [[expr]]V

[[lexprτ ]]V = if is array(τ) then ↓ [[lexpr]]A else σ([[lexpr]]A)

[[&lexpr]]V = [[lexpr]]A

[[expr ptr(τ) + aexp]]V = [[expr]]V +τ [[aexp]]V

Both semantics evaluate left-values of array type using references. In addition,
the symbolic variant transforms array left-value p.π into the pointer to the first
cell of the array ↓ p.π = p.π.0. We refer to the numerical and symbolic variants
of this semantics respectively by StdNum and StdSym.

Example. We consider a simple program and the memory states it gen-
erates. Program states are depicted with the following conventions:

• A location is depicted by a circle (distinct circles are distinct locations).
• When a location l is pointed to by a variable x (i.e., ǫ(x) = l), the name

x is written near the location.
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typedef struct

{int a; int b;} ab t;

ab t x = {2,3};
ab t* px = &x;

int* pa = &x.a;

int* pb = &x.b;

(a) C code.

pa

px

x

pb

〈x, 0〉

〈x, 0〉

2

3

〈x, 4〉

0

4

0

0

0

(b) StdNum.

pa

px

x

pb

〈x, a〉

〈x, ε〉

2

3

〈x, b〉

a

b

ε

ε

ε

(c) StdSym.

Fig. 3. Standard store with simple structure.

struct { int a; int b; } x;

int* p = &x.a;

p++; // (1)

*p = 5;

(a) C code.

p

x

〈x, 4〉

5

0

4

0

(b) StdNum.

p

x

?

a

b

ε

(c) StdSym.

Fig. 4. Unrestricted pointer arithmetics.

• A binding 〈l, o〉 7→ v in the store is depicted by an arrow, starting at
location l, labelled by o and pointing to v.

Figure 3 illustrates the two memories for a simple structure. Note that in
the numerical model, the address of x points to the beginning of the structure,
and is not distinct from the address of x.a.

Numerical more expressive than symbolic. As mentioned in
Sect. 2.1, addresses belonging to different locations are incomparable. Inside

a location, both models are able to deal with pointer arithmetics within an
array. However, for the StdNum model in which offsets are numbers, pointer
arithmetics in a structure may indeed lead to correct executions, as illustrated
by Figure 4. On line (1) of Figure 4(a), with the numerical model, the value
of pointer p coincides with the address of x.b and causes the final memory
to be as depicted in Figure 4(b). The same phenomenon happens when an
array is accessed outside of its bounds. The numerical domain can match the
out-of-bound address with another value of the structure, while the symbolic
domain cannot.

4 Semantics in Native Object Memory Model

Many shape analyses (e.g. [9,3]) are based on the object memory model, and
thus are suitable mainly for Java-like languages and cannot handle full C. In
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this model, the store only allows pointers to be taken on the base address of
a block: Store = Loc × Offset → Scalar ∪ Loc (see Tab. 2). For example, if x
is a structure and t an array, expressions like &x and &t[0] can be stored in
a pointer, while expressions like &x.a or &t[2] cannot.

This model can be used to give a semantics to the subset of Clight, where
the “address of” operator can be applied only to variables, so that all pointer
values have a null offset. In the following section however, we show how to
model our full Clight fragment on an instrumented object memory model.

5 Semantics in Instrumented Object Memory Model

In this section, we instrument the object memory model in order to allow
pointers within a block.

5.1 Instrumenting the store

We do not formalize the instrumentation; instead, we sketch the principle in
Figure 5. First, locations now correspond to single memory cells and not to
blocks; they are obtained by splitting the former locations of the standard
memory. Original edges from Fig. 5(b) can still be found in Figures 5(d)
and 5(c) with ø offset. Then, we add enough information to navigate within
structures and arrays. Edges with offsets different from ø are instrumentation
edges (we tried to keep it minimal). In Fig. 5(d), the dashed locations are
virtual, since they have no ø edge, hence no associated value.

In [5], Kreiker et al. adapt TVLA so as to handle pointers within struc-
tures. The concrete memory model of Fig. 5(d) corresponds to their fine-grain
semantics.

5.2 Object Semantics in the instrumented store

We now present the numerical and symbolic instrumented object semantics.
Both semantics will navigate through the store using instrumentation edges.
They differ by the way they enter a structure and the way they perform
pointer arithmetics. We parametrize our semantics with ø, ., + and ↓, like the
standard semantics of Section 3.

ø : Offset

l.τf : Loc × Type × Field → Loc

l +τ k : Loc × Type × Z → Loc

↓ l : Loc → Loc
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struct {ab t x; int[3] t;} z;

ab t* p = &z.x;

(a) C code.

z

5

6

7

8

9

x.b

t.0

x.a

t.1
t.2

(b) Symbolic standard.

p z
5

6

7

8

9

4
8

4 −4

4 −4

0 0

0

0

0

0

(c) Numerical instr.

p

z

5

6

7

8

9

x

t

a

b

0
1
2

ε
ε

ε

ε

ε

ε

(d) Symbolic instr.

Fig. 5. Instrumented object store.

Semantics.

[[]]A : Env × Store → Loc Address of an expression

[[]]V : Env × Store → Scalar ∪ Loc Value of an expression

[[]]S : Env × Store → Env × Store Effect of a statement

[[lexpr=expr]]S(ǫ, σ) = let l = [[lexpr]]A(ǫ, σ) in

let v = [[expr]]V(ǫ, σ) in

(ǫ, σ[〈l, ø〉 7→ v])

[[id]]A = ǫ(id) [[lexprτ .id]]A = [[lexpr]]A.τ id [[∗expr]]A = [[expr]]V

[[lexprτ ]]V = if is array(τ) then ↓ [[lexpr]]A else σ([[lexpr]]A, ø)

[[&lexpr]]V = [[lexpr]]A

[[expr ptr(τ) + aexp]]V = [[expr]]V +τ [[aexp]]V

We refer to the numerical and symbolic variants of this semantics respec-
tively by ObjNum and ObjSym.

Numerical operators. We have Offset = Z and ø = 0. The address of
the first cell of an array is confounded with the address of the array itself,
so ↓ l = l. Pointer arithmetics (in an array) follows positive or negative
instrumentation edges. Similarly, the address of the first field of a structure
is also the address of the structure. For the other fields, the semantics follows
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an instrumentation link.

l.τf = let n = offsetof(τ, f) in

if n = 0 then l else σ(l, n)

l +τ k =











σ(l, sizeof(τ)) +τ (k − 1) when k > 0

l when k = 0

σ(l,−sizeof(τ)) +τ (k + 1) when k < 0

Symbolic operators. We have Offset = Field ∪ Z ∪ {ε} and ø = ε. The
address of the first cell of an array is found following the 0 instrumentation
edge, so ↓ l = σ(l, 0). Pointer arithmetics (in an array) requires the ability
to navigate backward on the instrumentation edges, using the function σ−1

N
.

Fields of a structure are all accessed through instrumentation edges.

l.f = σ(l, f)

lcell + k = let 〈larray, n〉 = σ−1
N

(lcell) in

σ(larray, n + k)

where σ−1
N

(lc) = 〈la, nc〉 such that







〈la, nc〉 7→ lc ∈ σ

nc ∈ N

Standard more expressive than object. Figure 6 contains a code 5

that is defined in standard semantics, but not in our instrumented object se-
mantics. The problem comes from the computation or storage of the out of
bound expression &t[N], which has no associated location. Note that this
slight restriction could be removed at the cost of a more complex instrumen-
tation.

int t[N]; int *p;

for(p=&t[0]; p<&t[N]; p++){. . .}

Fig. 6. Out-of-instrumentation.

6 Discussion

More pointer arithmetics. We can add pointer arithmetics operations to
our language – pointer difference, pointer equality and pointer comparison –

5 The code shown relies on pointer comparison, but the problem we point to also appears
in the absence of this feature (discussed in Section 6).
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union { int r;

struct {int a; int b; } s;} x;

x.r = 5;

x.s.b = 6; // (1)

(a) C code.

x
5

6

0

4

(b) StdNum.

x
?

6

s.a

s.b

(c) StdSym.

Fig. 7. Union semantics in numerical and symbolic.

without calling into question what has been said before, as long as it does not
involve different locations. (Remember that locations are not given numerical
addresses.)

The standard numerical semantics will easily handle these new operations.
So will the standard symbolic semantics, with the restriction to operands in
the same array. In the instrumented object semantics, these features will
require a traversal of the array instrumentation edges.

On the other hand, full pointer arithmetics requires associating physical
addresses to locations.

Unions. When we add union types to the set of types, we can consider
two distinct semantics for them.

• Layout-based. Writing through a branch of a union invalidates the values
which share bytes with the data written. These overlappings are architec-
ture dependent and their precise resolution requires the offset information
of the numerical memory model, as found in the ABI.

• Path-based. Writing through a branch of a union invalidates the values
written through other branches. Branch information is natively kept by
the symbolic memory model.

Fig. 7 illustrates these two semantics by showing that a numerical memory
does not record the branch used for writing, and that a symbolic memory does
not express the absence of conflict between 〈x, r〉 and 〈x, s.a〉.

Casts. Union types can be used to perform casts, by writing through
a branch and reading through another one. However the proposals sketched
above do not allow this.

More generally, all the semantics we presented assume a static typing of
expressions. Casts introduce a dynamic typing and are not handled by any of
them. To handle casts, additional assumptions on the internal representation
of types are needed (this could be provided by the ABI), and the memory
model needs to keep the value of each byte, like in [7].
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7 Conclusion

We classified the concrete store-based memory models using two criteria: the
way they store pointers and the way they represent offsets. For each of the
four memory models, we gave a compact semantics of a fragment of Clight,
which includes arrays and pointer arithmetics. For this language, the usual
semantics can be expressed with our standard memory model (Sect. 3). The
object memory model, commonly considered in shape analyses, leads to strong
semantic restrictions, that we overcome by instrumentation (Sects. 4 and 5).

Even if the semantics we presented covers most of our Clight fragment,
we pinpoint minor differences which reflect strengths and weaknesses of the
memory models (Figs. 4 and 6). Figure 8 depicts the ordering we obtain.
Full and formal equivalences between semantics, by means of restriction and
instrumentation are left for further work. We also discussed how the features
we left aside (e.g. unions) would interact with the memory models (Sect. 6).

ObjSym (instrumented)

ObjNum (instrumented)

StdSymStdNum
Fig. 4

Fig. 6

Fig. 6

Fig. 8. Clight semantics expressiveness. Arrows go from less to more expressive models.
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