
Construction of Abstract Domains
for Heterogeneous Properties

(Position Paper) ?

Xavier Rival1, Antoine Toubhans1, and Bor-Yuh Evan Chang2

1 INRIA, ENS, CNRS, Paris, France
2 University of Colorado, Boulder, Colorado, USA

rival@di.ens.fr, toubhans@di.ens.fr, bec@cs.colorado.edu

Abstract. The aim of static analysis is to infer invariants about programs that are
tight enough to establish semantic properties, like the absence of run-time errors.
In the last decades, several branches of the static analysis of imperative programs
have made significant progress, such as in the inference of numeric invariants
or the computation of data structures properties (using pointer abstractions or
shape analyzers). Although simultaneous inference of shape-numeric invariants is
often needed, this case is especially challenging and less well explored. Notably,
simultaneous shape-numeric inference raises complex issues in the design of the
static analyzer itself. We study the modular construction of static analyzers, based
on combinations of atomic abstract domains to describe several kinds of memory
properties and value properties.

Static analysis to infer heterogeneous properties. Static analysis by abstract interpreta-
tion [4] utilizes an abstraction to over-approximate (non-computable) sets of program
states, using computer-representable elements, that stand for logical properties of con-
crete program states. As an example, for numerical properties, the interval abstract
domain [4] uses constraints of the form n ≤ x and x ≤ p to describe possible values of
variable x, where n, p are scalars.

To construct a static analyzer capable of inferring sound approximations of program
behaviors, one designs an abstract domain, which consists of an abstraction, and abstract
operations for sound post-condition operators, join and widening:
1. An abstraction is defined by a set of abstract elements A and a concretization

function γ : A → P(C), which maps each abstract property a into the set of
concrete elements γ(a) that satisfy it. The set A of abstract elements will be assumed
to be defined by a grammar of admissible logical predicates (e.g., for intervals,
a(∈ A) ::= a ∧ a | n ≤ x | x ≤ p).

2. A post-condition operator is a function f : A → A which over-approximates a
concrete operation f : C → P(C) encountered in programs (as, e.g., a test).

? The research leading to these results has received funding from the European Research Council
under the FP7 grant agreement 278673, Project MemCAD, from the ARTEMIS Joint Un-
dertaking under agreement no 269335 (ARTEMIS Project MBAT) (See Article II.9 of the
Joint Undertaking Agreement), and the United States National Science Foundation under grant
CCF-1055066.

2 Xavier Rival, Antoine Toubhans, and Bor-Yuh Evan Chang

state 1:
&x

−8

n :

d : 18

n :

d : 5

n :

d : 81

n :

d : 23

0x0n :

d :

state 2:
&x

−5

n :

d : 29

n :

d : 36

0x0n :

d :

Fig. 1. Heterogeneous property abstraction

3. Abstract join computes an over approximation of union and widening [4] enforces
the termination of abstract iterates for the analysis of loops.

The combination of post-condition operators and widening operators allows us to define
a sound static analyzer [4].

In the following, we discuss the design of an abstraction able to handle heterogeneous
properties, about both data-structures and values. For instance, Figure 1 shows a couple
of concrete states containing lists of numbers that are all positive except for the first
one, which belongs to interval [−10, 0]: our goal is to engineer abstract domains able to
express such properties, yet can be applied to many static analysis problems.

Abstraction of dynamic memory properties. For instance, a memory abstract domain
consists of a set of predicates describing memory regions, together with operators for
the analysis of memory operations (look-ups, assignments) and widening. XISA [3, 2]
relies on points-to predicates, inductive predicates and segment predicates. A simplified
version of this abstraction, where the only inductive predicates and segments that are
considered are lists boils down to the following:

symbolic variables α, α′, . . . denote values and addresses
m(∈M) ::= m ∗m separating conjunction of predicates

| α · f 7→ α′ cell field f at address α containing value α′

| list(α) a list at address α
| list(α′) =∗ list(α) a list segment starting at α and ending at α′

The XISA [3] implementation actually represents a larger set of predicates, with arbitrary
inductive definitions (including trees, doubly-linked lists and others). Other analysis
frameworks utilize other sets of logical properties, such as, e.g., TVLA [9], which is
based on reachability predicates.

Adding tracking for value properties, and departing from monolithic abstract domains.
Once an abstraction has been defined for memory states, it is natural to extend it with
value properties, so as to let the analysis infer constraints over both the structure of data
and their values. A straightforward way to achieve this, and to add interval constraints
over values is to extend the definition of abstract elements by m ::= . . . |m ∧ α ≤ n |
m∧n ≤ α | However, this implies the abstract operations (post-condition operators,
join and widening) have to be extended so as to deal with both structures and value
properties, at the same time: therefore abstract operations are bound to become overly

Construction of Abstract Domains for Heterogeneous Properties (Position Paper) 3

complex. Moreover, this approach is awkward, as it does not build upon existing abstract
operations of value abstractions such as intervals [4] or octagons [8], which means it
will not easily benefit from the efficient algorithms designed to infer such properties
(the same also applies to the memory abstraction). Besides, it makes it harder to switch
from one value abstraction to another at a later point, hence reducing the flexibility of
the analysis.

In the following, we advocate a modular abstract domain design, which:
– separates concerns in the abstract domain designs;
– reuses existing abstract domains algorithms;
– allows one to tune distinct parts of the abstractions independently.

Such design has been extensively used in the ASTRÉE static analyzer [1], which makes
intensive use of reduced product [5] among other abstract domain combination tech-
niques [6]. This design contributed not only to the precision and efficiency of the analysis,
but also to making it easier to extend [6].

Abstraction of value properties, and combined abstract domain. To achieve a modular
abstract domain design, we set up a different abstract domain V that will only track
value properties (and not memory layout as the previously defined M does), and define
a new abstract domain S for states that combines both:

m(∈M) ::= . . . defined as before
v(∈ V) ::= true | v ∧ v | α ≤ n | n ≤ α value predicates
s(∈ S) ::= m ∧ v conjunction of sub-properties

In essence, S defines a reduced product [5] of the memory abstraction M and value
abstraction V. As such, it completely separates memory and value abstraction concerns,
which makes the abstract domain fully modular [11]. Indeed, both sub-components can
be implemented in distinct ML modules, and S is defined as a ML functor. In practice,
this functor should ensure that the symbolic variables used in the value abstraction are
consistent with the memory cell contents and addresses symbols defined in the memory
abstraction (thus it implements a co-fibered abstract domain [12], which essentially
generalizes the notion of reduced product).

Both concrete states of Figure 1 can be abstracted by α 7→ α0 ∗ α0 · n 7→ α1 ∗
α0 · d 7→ α′

0 ∗ lpos(α1) ∧ α = &x ∧ −10 ≤ α′
0 ∧ α′

0 ≤ 0, where inductive definition
lpos describes all lists of positive numbers.

Separate combination of memory abstractions. So far, we combined abstract domains
capturing distinct sets of properties. Yet, this abstract domain decomposition approach
can be pushed further. As an example, ASTRÉE [1] relies on a decomposition of the
numerical abstract domain into simpler abstractions that handle specific sets of proper-
ties. Likewise, a similar approach can be applied to the memory abstraction part. One
approach to do this is to split concrete heaps and apply distinct memory abstractions to
disjoint regions [11]:

m(∈M) ::= m0 ∗m1 where m0 ∈M0 ∧m1 ∈M1

m0(∈M0) ::= . . . defines a 1st memory abstract domain, e.g., for lists
m1(∈M1) ::= . . . defines a 2nd memory abstract domain, e.g., for arrays

4 Xavier Rival, Antoine Toubhans, and Bor-Yuh Evan Chang

This construction allows one to apply parsimoniously expensive memory abstractions
to the memory regions that require them, while lighter weight abstractions can be used
for simpler structures. This results in better control of the analysis complexity. A cost
is that the analyzer now has to resolve memory fragments across sub-domains, and to
also select which memory fragment is the most adequate to account for each memory
allocation.

Reduced product of memory abstractions. Likewise, one can design a reduced product [5]
of memory abstract domains [10]:

m(∈M) ::= m0 ∧m1 where m0 ∈M0 ∧m1 ∈M1

Such a composed abstraction is adequate when considering overlaid data structures [7]
(such as lists or trees of objects with a common field pointing to class methods) and
separates the concerns of analyzing each aspects of the structures. In turn, it imposes on
the analysis the burden to let logical predicates represented in one sub-domain be usable
to refine the computations done in the other sub-domain.

Modular abstract domain design. A modular abstract domain significantly simplifies the
design of static analyzers while offering additional flexibility and control. The cost for
this benefit is the innovation needed to design these more complex and general abstract
domain combinators, but this cost is quickly amortized with the ability to reuse these
combinators to realize arbitrary static analyzer configurations.

References

1. B. Blanchet, P. Cousot, R. Cousot, J. Feret, L. Mauborgne, A. Miné, D. Monniaux, and
X. Rival. A static analyzer for large safety-critical software. In PLDI, 2003.

2. B.-Y. E. Chang and X. Rival. Relational inductive shape analysis. In POPL, 2008.
3. B.-Y. E. Chang, X. Rival, and G. Necula. Shape analysis with structural invariant checkers.

In SAS, 2007.
4. P. Cousot and R. Cousot. Abstract interpretation: A unified lattice model for static analysis of

programs by construction or approximation of fixpoints. In POPL, 1977.
5. P. Cousot and R. Cousot. Systematic design of program analysis frameworks. In POPL, 1979.
6. P. Cousot, R. Cousot, J. Feret, L. Mauborgne, A. Miné, D. Monniaux, and X. Rival. Combina-

tion of abstractions in the astrée static analyzer. In ASIAN, 2006.
7. O. Lee, H. Yang, and R. Petersen. Program analysis for overlaid data structures. In CAV,

2011.
8. A. Miné. The octagon abstract domain. HOSC, 19(1):31–100, 2006.
9. M. Sagiv, T. W. Reps, and R. Wilhelm. Solving shape-analysis problems in languages with

destructive updating. In POPL, 1996.
10. A. Toubhans, B.-Y. E. Chang, and X. Rival. Reduced product combination of abstract domains

for shapes. In VMCAI, 2013.
11. A. Toubhans, B.-Y. E. Chang, and X. Rival. An abstract domain combinator for separately

conjoining memory abstractions. In SAS, 2014.
12. A. Venet. Abstract cofibered domains: Application to the alias analysis of untyped programs.

In SAS, 1996.

