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Résumé

Dans ce mémoire, je présente les travaux de recherche que j’ai menés au cours des cinq
dernières années sur l’analyse statique des programmes manipulant des structures de données
dynamiques. Mes travaux reposent sur le cadre de travail de l’interprétation abstraite, qui
permet de calculer de manière automatique, et en temps fini des invariants de programmes,
exprimés dans un domaine abstrait, c’est-à-dire une algèbre de prédicats munie d’opérateurs
d’analyse. Mon objectif à long terme est de concevoir un domaine abstrait généraliste qui
soit adapté à la représentation de propriétés des états mémoire de programmes manipulant
des structures de données complexes. Les travaux présentés dans ce mémoire posent les
fondations d’un tel domaine abstrait et visent à permettre son implantation sous la forme
d’une librairie indépendante, pouvant être integrée à un analyseur statique, sans modification
importante.
Ce domaine abstrait peut être praramétré de plusieurs manières. Tout d’abord, il dépend
du choix d’un domaine abstrait numériques qui permet de représenter les contraintes entre
valeurs de types de base (entiers, flottants, booléens...). Par ailleurs, il est également para-
métré par le choix d’un ensemble de définitions décrivant les structures de données devant
être considérées au cours de l’analyse. Pour cela, nous utilisons un langage de définitions
inductives, qui permet d’exprimer une vaste famille de structures de données, incluant par
exemple de nombreux types de listes ou d’arbres. Le chapître 2 décrit ce domaine abstrait
et son instantiation avec divers paramètres classiques.
Ensuite, le chapître 3 présente les fonctions abstraites de ce domaine abstrait, permettant
ainsi de l’utiliser pour l’analyse de programmes impératifs dans un langage tel qu’un sous-
ensemble minimal de C ou Java. En particulier, le “dépliage” permet de rendre plus concrête
la description d’une partie de la mémoire, et ainsi d’utiliser des fonctions de transfert abs-
traites standard pour les affectations ou les tests. Par ailleurs, les opérations de comparaison
et d’union abstraite reposent sur la possibilité de “replier” une description concrête d’une
partie de la mémoire.
De plus, il est important de prendre en compte les aspects spécifiques de certains langages
de programmation. Ainsi, le langage C, qui est très utilisé pour le développement de logiciels
embarqués ou de systèmes d’exploitations, permet au programmeur d’effectuer des manipu-
lations de bas niveau. Nous proposons dans le chapître 4 une adaptation de notre domaine
pour traiter de tels langages.
Par ailleurs, le domaine abstrait présenté dans ce mémoire est adapté à la représentation
de structures de données complexes, et permet en particulier une abstraction précise et
élégante de la pile d’appels de programmes contenant des fonctions récursives. Une telle
abstraction est très importante pour l’analyse de programmes fonctionnels. Cette application
est présentée dans le chapître 5.
Enfin, nous présentons dans le chapître 6 quelques unes des nombreuses extensions et ap-
plications possibles du domaine abstrait introduit dans ce mémoire, qui correspondent pour
certaines à des travaux d’ores-et-déjà engagés.
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Abstract

In this manuscript, I present the research work I have been carrying out over the last five
years on the topic of static analysis of programs which manipulate complex dynamic data
structures. This work is based on the the abstract interpretation framework, which allows to
compute program invariants automatically and using a finite amount of resources (memory,
time). A static analysis is based on an abstract domain, that is a predicate algebra which
provides analysis operators. My long term goal is to design a general abstract domain for
expressing and inferring properties of programs that manipulate complex data structures.
The results which are described in this manuscript lay out the basis for such an abstract
domain, and take part to a larger effort to implement it as a standalone library that could
be integrated in various static analysis tools, without requiring radical changes.
This abstract domain can be parameterized in several ways. First, it depends on the choice
of a numerical abstract domain, in order to represent constraints among values of base types
(integers, floating point, booleans...). Furthermore, it is parameterized by the choice of a set
of definitions that describe the data structures that should be considered by the analysis.
In order to do that, we use a language of inductive definitions, which allows to describe a
large family of common data structures including many kinds of lists and trees. Chapter 2
describes this abstract domain and some classical instantiations.
Then, chapter 3 presents the abstract transfer functions of this abstract domain, which
allow to use it for the static analysis of imperative programs written in a language such as
a minimal subset of C or Java. In particular, the “unfolding” operation allows to make the
representation of a memory region more concrete, so that standard transfer functions can be
used for assignments or conditions. Moreover, the abstract comparison and union operations
require to fold back a concrete description of a fragment of the memory.
In practice, static analysis tools should support specific features of programming languages.
For instance the C language supports low level operations and is very commonly used in
embedded systems or operating systems. In chapter 4, we adapt our abstract domain so as
to handle such programming languages features.
Besides, our abstract domain for expressing properties of memory states can represent very
complex data structures, and can capture a precise and elegant abstraction of the call stack
of programs with recursive procedures. Such an abstraction is important for the analysis of
functional programs. This application is described in chapter 5.
Last, we present a few extensions and applications of our abstract domain in chapter 6, some
of which have already been the topic of investigations.
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Chapter 1

Introduction

In this chapter, we overview the state of the art
and the current challenges in program verification
with a particular emphasis on safety critical embed-
ded systems. Moreover, we introduce the issue of
the verification of programs manipulating complex
data structures, and the need for abstract domains
adapted to their analysis.

1.1 The program verification

challenge

Today, many complex and critical systems rely on
large softwares. For instance, a modern aircraft re-
lies on many computer controlled systems, includ-
ing fly-by-wire command (controlling ailerons, el-
evators, flaps and other flight surfaces), autopi-
lot, FADEC (Full Authority Digital Engine Con-
trol, taking full control of all engine parameters),
flight warning systems, communication and air traf-
fic control control softwares, etc. Each of these com-
puters runs a very large and complex software com-
prising typically more than one million lines of C
code. A bug in such a program may have severe
consequences, ranging from more or less serious in-
convenience (e.g., when a monitoring program re-
ports a false issue with the aircraft systems, causing
a flight diversion) to an immediate loss of control,
and a major accident.

The literature provides many examples of high
profile embedded system failures the root cause of
which can be tracked down to a software bug. The
loss of the Ariane 501 flight in 1996, with the de-
struction of payload satellites is one of the most
cited such occurrences: the first flight of the Ariane
5 satellite launcher failed due to an arithmetic er-

ror (an integer overflow arose when attempting to
convert a 64-bits floating point number into a 16-
bits integer), which caused the launcher trajectory
control computers to crash. The inquiry board did
conclude the disaster was the consequence of mul-
tiple design issues [74, 1]; in particular, both the
main and backup systems were running the same
software; the assumptions that were used to vali-
date it were not compatible with Ariane 5 but with
Ariane 4 (from which code was reused) and the com-
putation that led to the launcher loss was useless af-
ter takeoff. The estimated cost of this failure adds
up to more than $ 300.000.000, due to the loss of
satellites and the one year down time of Ariane 5,
following flight 501 failure.

The Ariane 501 flight failure is not the only
example of disaster caused by software errors. In
1991, the Patriot missile failure at Dahran [114]
was caused by accumulated imprecisions in fixed
point computations, leading to the failure to con-
firm the trajectory of a foe missile (28 fatalities).
In 1992, control systems of US navy ship Yorktown
went down during over three hours due to a division
by zero [115] bug.

Such failures are obviously unacceptable in mod-
ern critical systems. Domain specific regulations set
standards for software development, so as to prevent
catastrophic errors. For instance, avionic software
systems regulation DO 178 [45] requires designers
to carefully express what consequences a fault may
have, for each component. The most critical com-
ponents such as flight-by-wire systems are assigned
level A (which means a failure would put the air-
craft into a very imminent and severe risk) are re-
quired to be certified with respect to stringent re-
quirements whereas non critical components (e.g.,
level E, like in-flight entertainment systems) do not
need anywhere near the same amount of certifica-
tion work. Components such as navigation or flight
warning management systems have a high criticality
level (typically B or C), as a failure of these systems
would likely cause a serious flight disruption (yet it
would not prevent the safe control of the airplane
as opposed to a flight-by-wire system failure).

As a consequence, the development cost of em-
bedded softwares is very high and typically rep-
resents over 90 % of the overall cost of the sys-
tems. Standard solutions used in industry range
from manual code review to testing, which are both
expensive and not satisfactory in the sense that they
do not prove the correctness of the software, even
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2 CHAPTER 1. INTRODUCTION

though important efforts are made to ensure errors
are very likely to be found in the process (for in-
stance, it is common to separate development and
certification teams, so as to prevent both groups
to make the same mistake). Indeed, human inspec-
tion is not reliable, and testing is incomplete when
it is impossible to test all executions, which is the
case of all large scale systems. Moreover, such ap-
proaches make software maintenance very costly:
for instance, when a bug is found late in the devel-
opment process and needs to be fixed at that point,
testing campaigns should usually be completely re-
done, which is long and costly.

Therefore, automatic tools are a necessity, in or-
der to both improve the level of trust in the results
and to reduce the cost of certification. Ideally, veri-
fication tools should be correct (i.e., able to catch all
issues of a certain kind), complete (i.e., never reject
correct programs) and automatic (i.e., able to run
without any manual intervention). Since most rel-
evant program properties (like the absence of run-
time errors) are not computable a common approach
consists in dropping completeness: this means anal-
ysis tools may reject some correct programs and
raise alarms (i.e., indication that the property of
interest could not be proved). The important point
is that no incorrect code will pass unnoticed, which
means the level of trust in the final code is very
high. Ideally static analysis tools should be precise,
that is reject few correct programs (at least among
some families of relevant applications) and efficient
so as to cope with large, industrial size applications.

1.2 Program analysis in safety

critical embedded systems

In the last decade we have observed a dramatic
progress in software static analysis tools.

Several approaches have been pursued. A first
approach consists in designing static analyses tar-
geted at all programs written in a given language.
As it is very difficult to treat in a very precise man-
ner such large sets of programs, analyzers following
this approach usually sacrifice precision.

On the other hand, specializing analysis tools
to some carefully selected families of programs and
of properties makes it easier to achieve fully auto-
matic proofs of correctness even though the analysis
is actually incomplete. The idea is that static ana-
lyzers which follow this approach should treat well

interesting classes of programs, even though there
exists many programs that they would not be able
to analyze precisely.

In particular, many static analyses were pro-
posed for softwares such as fly-by-wire control sys-
tems: these programs are highly critical (level A in
civil aeronautics) and mostly perform complex nu-
merical computations. These characteristics can be
exploited for the specialization of analysis tools [11].
A wide range of properties have been successfully
verified on such applications, including:
• Bounds on worst case execution time:

fly-by-wire softwares follow a synchronous
design [19] thus it is important to verify
each task will not take more than the time
allocated to it; worst-case execution time
analyses [3, 118] compute precise and safe
over-approximations for worst case execution
times, taking into account complex cache and
pipeline behaviors.
• Absence of runtime errors and unde-

termined behaviors: runtime errors such as
the arithmetic error that caused the failure of
Ariane 501 [1] should be avoided at all cost;
the Astrée analyzer [10, 11, 34, 8] is able to
prove the absence of runtime errors by fully
automatic static analysis, based on abstract
interpretation [29]; it was applied not only to
avionic softwares [41] but also to spaceship
control programs [7].
• Precision of floating point computa-

tions: precision and stability issues have been
the source of major problems (including the
Patriot missile failure); hence, static analyz-
ers such as Fluctuat [52, 40] have been de-
signed so as to bound the imprecision errors
in floating point computations.

These static analyses are all based on the abstract
interpretation frameworks [29, 30, 31]. The princi-
ple of abstraction is to rely on an abstract domain,
that is a family of predicates, which can express not
only the property of interest but also all intermedi-
ate invariants required in the proof. Then, abstract
interpretation performs a conservative analysis of
programs using the abstract domain, where each
concrete computation step is over-approximated so
as to account for all concrete behaviors: this sound-
ness property follows from the use of conservative
analysis operators, and from a step-by-step over-
approximation of the programs concrete semantics.
Furthermore, widening operators ensure the termi-
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CHAPTER 1. INTRODUCTION 3

nation of static analyses even when in presence of
infinite concrete executions and using infinite ab-
stract domains.

I took part to the design and implementation
of the Astrée analyzer since the beginning of the
project in 2001, together with (in alphabetical or-
der) Bruno Blanchet, Patrick Cousot, Radhia
Cousot, Jérôme Feret, Laurent Mauborgne,
Antoine Miné and David Monniaux. As we started
this project before the end of my PhD, I do not dis-
cuss it in detail in this manuscript. As part of this
project, I designed a trace partitioning abstract do-
main [83, 108] together with Laurent Mauborgne;
this abstract domain relies on history properties of
execution traces as a criterion for creating and col-
lapsing disjunctions of invariants, improving both
precision and efficiency.

In parallel, I studied techniques to verify either
target code using source invariants [103, 102] or to
verify compilation using translation validation ap-
proach [104], so as to ensure that target code could
be verified correct, as requested by the DO 178 [45]
regulations. I also investigated techniques for the
investigation of the origin of alarms raised by static
analyzers such as Astrée, using backward analy-
sis [106] and abstract dependencies [105].

Since 2009, the Astrée analyzer has been li-
censed to AbsInt Angewandte Informatik for in-
dustrialization [65], and is now offered for sale, to
companies dealing with embedded softwares writ-
ten in C. The Astrée project also contributed to
improve the theory of programs static analysis, e.g.
allowing to compare various sorts static analysis ap-
proaches [37], understanding the issue of scalabil-
ity [36] and the ways of combining several abstract
domains into powerful analysis tools [35].

Astrée has been successful not only for the
analysis of fly-by-wire applications, but also when
applied to other families of programs. This strong
result could be achieved thanks to a modular design
of the abstract domain, which combines [30, 35] a
wide collection of simpler abstract domains, that
take care of basic programs features. Some lay-
ers abstract executions traces [108] and memory
states [88] whereas many numerical abstract do-
mains [87, 89, 48, 47] can deal with various com-
putations performed in programs to analyze float-
ing point computations (with rounding errors that
need be abstracted), digital filters, boolean con-
trol... This architecture also allows to incrementally
extend the analyzer so as to cope with new kinds of

programs, by adding new abstract domains to the
modular domain.

1.3 Need for analyses targeted

at memory properties

Despite these very important progresses, many
embedded programs verification problems remain
open. Mainly, the current state of the art does
not allow to verify some other interesting classes
of properties and of programs.

Outstanding challenges: While many families
of safety properties can now be treated reasonably
well, we cannot say the same for functional prop-
erties, specifying that a program will produce the
expected results when in presence of some given in-
puts.

Another outstanding challenge consists in veri-
fying the whole system including software, sensors
and the environment in a closed loop, which requires
modeling the environment.

On the other hand, other families of programs
than those mentioned in Section 1.2 should be an-
alyzed properly. Indeed, the Astrée analyzer [11]
focuses on synchronous applications which perform
mostly numerical computations. As of today, the
two main challenges in terms of classes of applica-
tions are related to the presence of asynchronous
behaviors (which means static analyzers should ab-
stract parallel executions) and to the use of complex
memory structures (which means static analyzers
should abstract intricate sets of memory states). My
interest for symbolic abstractions led me to consider
the reasoning on programs manipulating complex
data structures during the last five years.

Programs manipulating complex memory

states: Many critical embedded codes deal with
non trivial data structures, including navigation
softwares, flight warning systems or air traffic con-
trol programs. These systems are typically level B
or C following to the DO 178 regulation terminol-
ogy, thus, they need to comply with rather stringent
qualification requirements. Some level A codes like
device drivers for fly-by-wire system interfaces [90]
also manipulate such complex structures.

Dynamic memory allocation is usually not al-
lowed in these programs, yet this does not necessar-
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4 CHAPTER 1. INTRODUCTION

ily make the problem any simpler, as they may work
on large data structures, which are allocated stati-
cally, but where pointers are dynamic, and where
complex memory invariants should be preserved.
When these structures are large, static analyzers
have to carry out some kind of abstraction, in order
to be efficient enough: for instance, while a modified
version of Astrée can be applied to the verifica-
tion of an embedded USB driver [90], this analysis
turns out less efficient by an order of magnitude
than for purely numeric codes, due to the lack of
a more effective memory abstraction among other
reasons. Therefore, analyzing such programs is just
as hard as if they were relying on dynamic memory
allocation.

Similar needs for precise and efficient abstrac-
tion for complex memory states also arise when
considering other common families of programs in-
cluding operating systems components or device
drivers [6]. Analyzing multi-threaded programs also
requires precise heap abstraction [94]. In the same
way as very diverse numerical algorithms required
many well chosen numerical abstract domains to be
developed, we should not expect a simple universal
memory abstract domain to cope with all interest-
ing cases.

Properties of interest: As programs manipulat-
ing complex data structures may cause other kinds
of errors, the task of analyses for such classes of
programs is actually more ambitious than that of
analyses for fly-by-wire codes.

Indeed, these analyses should not only capture a
precise enough view of the memory states to allow
properties be proved about the numerical compu-
tations, but also allow to prove specific properties
including:
• the safety of the program, that is the absence

of runtime errors (null or dangling pointer
dereference);
• the preservation of structural invariants,

which means that the data structures manip-
ulated by the program cannot be corrupted;
in many cases, proving preservation of struc-
tural invariant is a prerequisite for proving
safety, since pointer dereferences are correct
only under the assumption that the structures
are well formed;
• the functional correctness of programs

which are supposed to produce outputs that
verify some known structural invariants.

As an example, we consider a program operat-
ing on binary trees. Safety states that the pro-
gram should not perform any illegal pointer opera-
tion while traversing the tree or while dereferencing
pointers. When the program performs destructive
updates to the tree structure (e.g., in order to add
an element), then the analysis should prove that
the structure is still a well formed tree in the end.
Safety may indeed rely on that preservation prop-
erty: if the tree structure is read again after being
modified, the read operation will cause no runtime
error only under the assumption that the tree is still
well formed (otherwise, reading a branch pointer
may cause an invalid or dangling pointer derefer-
ence). Functional correctness may be particularly
relevant when a program builds a structure which
is supposed to be manipulated by other functions
afterwards, as is the case of, e.g., an initialization
routine, which should create a balanced tree from a
set of unlinked static nodes.

Existing analyses for programs manipulat-

ing complex data structures: Early works on
pointer analyses were targeted at the inference of
points-to or aliasing relations among pointers and
memory locations [22, 70, 24]. Later, analyses based
on store-less models encoded more complex alias-
ing properties using, e.g. numerical constraints to
capture unbounded numbers of aliasing relations
as in [42] or more recently in [116]. On the other
hand, many very fast pointer analyses were devel-
oped, that can handle very large codes [58].

However, such analyses cannot express precise
data structure invariants or prove the preservation
of structural invariants. Very evolved pointer anal-
yses did attempt to capture shape properties us-
ing subtle encodings as [43]. By contrast, shape
analyses for analyzing programs that perform de-
structive update on complex data structures were
developed using large families of logical formulas,
such as graphs [110], three valued logic formu-
las [111, 73] or separation logic formulas [60, 97]
like SpaceInvader [44], or on predicate abstrac-
tion [79]. These analyses are much more complex
than regular points-to analyses, but also more ex-
pressive. For instance, TVLA [111] is an extensi-
ble analysis framework were users may define pred-
icates to capture the data structures they are inter-
ested in.

Initially, these analyses were viewed as expen-
sive analyses, yet dramatic progresses have been
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CHAPTER 1. INTRODUCTION 5

accomplished in terms of efficiency, using improved
algorithms [78, 13] and finely tuned abstract do-
mains [6, 123].

Meanwhile, a wide body of works were done for
the verification of programs manipulating complex
structures. This solution requires programmers to
annotate programs with invariants for at least some
control points (typically, loops or function bound-
aries). Among others, [121, 59, 124] followed this
approach. HAVOC [23] allows to express proper-
ties of arrays and singly-linked list, for verification.
Formalisms such as separation logic were also used
to (manually) formalize proofs of complex problems
such as the Deutsch-Shorr-Waite algorithms [122].

Last, we remark that many analyses were
developed for specific data structures, such as
strings [113, 2], buffers [46] and arrays [50, 57, 38].
Such analyses usually make abstractions which are
very specific and cannot be generalized, but which
handle complex properties of buffers, strings, ar-
rays; in particular the invariants of these struc-
tures typically involve non trivial numeric proper-
ties that other shape analyses cannot track. Simi-
larly, few analyses were designed for inferring both
shape properties and properties on values [76, 84].

Context: This work was started as part of a
collaboration with Bor-Yuh Evan Chang during
my post doctorate internship at UC Berkeley in
the group of George Necula, and while Bor-Yuh
Evan Chang was preparing his PhD Thesis in
George Necula’s group. We did actively pursue
this collaboration since then, after I moved to IN-
RIA Paris-Rocquencourt as a Junior Researcher in
the Abstraction Project-team (at École Normale
Supérieure) and Evan moved to the University of
Colorado at Boulder as an Assistant Professor. As
part of this collaboration, Evan had the opportunity
to visit ENS and I had the chance to visit University
of Colorado.

Moreover, several students took part to the
project. In particular, two of them contributed
to some parts of the works presented in this
manuscript:
• Vincent Laviron did do his MPRI Master In-

ternship on the analysis of low level programs
(chapter 4);
• Suzanne Renard (from École des Mines de

Paris) did do a Master Internship on the anal-
ysis of shared structures (Section 6.2.4).

Furthermore, at the time of the writing of this
manuscript, Antoine Toubhans just started work-
ing on this topic as part of his MPRI Master In-
ternship.

Research directions: My main long term goals
is to improve the design of abstract domains for pro-
grams manipulating complex data structures, so as
to integrate such an abstraction into a static ana-
lyzer like Astrée [11], for verifying safety, struc-
tural invariant preservation and functional correct-
ness properties on wide families of programs, using
hybrid invariants, that is, properties about non only
the data structures but also about their content.

As a consequence, the abstraction for data struc-
tures should be combined with other numerical
and symbolic abstract domains. Thus, the analysis
operations for the shape domain should integrate
well into the structure of an abstract interpretation
based static analyzer. A first direction I have been
pursuing consists in setting up modular algorithms
where memory abstractions can be combined and
exchange information with numerical abstractions.

Moreover, it should be general enough to apply
to several kinds of data structures, and not only
one kind of structure. Indeed, many shape analyses
are specialized to one kind of data structure, and
would need be reworked deeply in order to han-
dle other kinds of structures. In particular, I think
that it would be ideal to integrate specific analyses
for buffers, strings and arrays, when such structures
are used. As the memory abstraction is supposed to
manage the splitting of memory states into regions
and the abstractions of those regions, it sounds rea-
sonable to expect the memory abstract domain be
open on specific domains for sub-regions. Therefore,
I have been searching for parameterized abstrac-
tions for memory states, and paid special attention
to their use in other contexts (programming lan-
guages, data structures, properties) than the one I
intend them for.

Last, I think that the implementation of such a
domain is one of the most important goals of such
a work. Therefore, I devoted a significant part of
my time implementing memory abstract domains.
So far, this implementation work mainly consisted
in the design of Xisa (eXtensible Inductive Shape
Analyzer), a prototype tool for the analysis of C
programs, which is parameterized by user supplied
inductive definitions, and by the choice of a numer-
ical domain. As part of this implementation work, I

Abstract Domains for Shape Analysis Xavier Rival
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improved my understanding of the data structures
and algorithms required for the analysis, and I am
currently starting the implementation of a new ver-
sion of the abstract domain, which should be more
independent from the language, and its parameter
domains.

1.4 Outline

This manuscript introduces our parametric abstract
domain at a high level. While we provide formal def-
initions, we refer the reader to the published articles
for details.

Chapter 2 and chapter 3 set up the foundations
of our abstract domain, and respectively describe
the abstraction and the main transfer functions for
the analysis of programs.

Then, the following chapters present extensions
and applications of our domain. Chapter 4 shows
how it can be adapted to analyze C programs and
take into account low level pointer manipulations,
that are commonly used in embedded codes or de-
vice drivers. Chapter 5 describes an interprocedural
analysis which relies on our abstract domain, and
allows to treat procedures in a very context sensi-
tive manner.

Last, chapter 6 summarizes and assesses the
most salient choices made in the design of this ab-
stract domain and presents perspectives for the ex-
tension and the implementation of this abstract do-
main as a standalone abstract domain.

Xavier Rival Abstract Domains for Shape Analysis



Chapter 2

Abstraction of

memory states

In this chapter, we describe a parametric abstract
domain for the static analysis of programs manipu-
lating complex data structures. First, we discuss in
Section 2.1 the general principles for the abstrac-
tion of properties about complex data structures
and overview the features of our abstract domain.
Then, we formalize the basis of this domain in Sec-
tion 2.2, that is, the definition of its abstract el-
ement and of its concretization. Last, we demon-
strate how this domain can be parameterized, and
we show how it can be used in order to express non
trivial hybrid properties in Section 2.3.

2.1 Principles for the abstrac-

tion of complex data struc-

tures

2.1.1 Complex data structures

Before we discuss the foundation of our abstraction,
we review a few common data structures, and the
difficulties that should be solved in order to perform
static analysis on programs using them.

Structures and arrays: Aggregates (including
structures and arrays) allow to store data in a con-
tiguous region, the size of which is defined either
when its data type is defined or when declaring a
variable. The fact that the size of these structures
may not change after the declaration is a limitation
for programmers, but it simplifies the static analy-
sis, as it is possible to use “flat abstractions” includ-

ing field sensitive approaches which distinguish all
fields and smashing [11] approaches which abstract
the values of all fields with one piece of abstract in-
formation [11]. Composite data types such as struc-
tures have a well-defined set of fields and resolving
an update to a field is usually not hard, even when
a smashing abstraction is used and weak updates
should be performed. On the other hand, arrays
offer a lot of opportunities for index arithmetics,
which can make program analysis challenging.

Linked dynamic structures: In many situa-
tions, using a fixed size structure is not an op-
tion, as the amount of data a program may ma-
nipulate is not known at compile time or even at
the point where structures are declared. Dynamic
memory allocation allows to acquire or release mem-
ory cells when needed, which can be appended to
linked structures (lists, trees...). In the static anal-
ysis point of view, this situation brings up several
challenges:
• the memory space used by a program is

unbounded, so that unbounded size regions
should be abstracted in a compact manner;
• non trivial topological properties of the pro-

gram memory space also have to be tracked;
for instance, a failure to maintain reachabil-
ity of all allocated cells may translate into
a memory leak, damaging the whole system
safety, whereas a failure to track pointer links
will prevent the verification of pointer deref-
erences and memory accesses.

Such structures are much harder to analyze pre-
cisely. Pointer analyses [22, 43] cannot capture pre-
cise invariants on such structures. Shape analyses
typically use shape graphs [110] or powerful fami-
lies of formulas [111, 44].

Relational linked dynamic structures: In
practice, the implementation of efficient algorithms
requires a very careful use of dynamic structures.
For instance, maintaining additional pointers typ-
ically enables faster traversal algorithms as in
doubly-linked lists or skip lists. Balanced trees (like
red black trees or AVL trees) ensure better amor-
tized complexity at the expense of additional fields
at each node, the values of which are tightly related
to the topology of the trees. Relations among point-
ers or between pointers and numeric fields bring an
additional challenge to static analysis, as these rela-
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8 CHAPTER 2. ABSTRACTION OF MEMORY STATES

tions also need be tracked despite abstraction [20].
Structures with a lot of sharing (such as graphs
or directed acyclic graphs) involve even global re-
lations.

2.1.2 Static analysis related issues

To perform static analysis of programs manipulat-
ing a wide spectrum of data structures, several im-
portant issues need to be overcome:
• Expressive abstractions have to be found

so as to describe memory states containing
arrays and linked structures, with relations
among pointers and numeric values.
• Destructive updates should be analyzed

precisely [111, 44]; for instance, in the situ-
ation below, both x and y point to the same
cell and if an assignment of the form ⋆x = . . .
is performed, then the modification can be ob-
served from y:

x

y

0x...

0x...

c

• Termination of static analyses should be en-
sured, although we have seen programs may
generate unbounded structures; for instance,
a function allocating a list of length passed
as argument may generate lists of unbounded
length, thus enforcing the termination of the
abstract computation is not trivial; the first
iterations would produce the results below
and termination should be enforced using
some sort of widening operator [29]:

0x0

0x...

0x...

0x0

0x... 0x0

2.1.3 Foundations of an abstraction

for data structures

In this manuscript, we intend to propose a generic
abstraction for a wide range of memory structures.
Of course, this abstraction may not be able to cap-
ture all possible data structures, since many very
different kinds of structures can be found in real
programs. Instead, we aim at expressing a large

set of common data structures, and attempt to do
so in a rather generic way, that is without over-
specializing our abstract domain.

At this stage, we can introduce the main princi-
ples that we plan to exploit, and overview the main
constructions of our shape abstract domain.

This domain relies on a graph representation
where:
• nodes denote values stored in the memory or

used in the analysis;
• edges capture information about memory re-

gions.
In the following we illustrate this concept with
a very simple example shown in figure 2.1: fig-
ure 2.1(a) shows an excerpt of a concrete mem-
ory state, with only one variable (t) and a heap
allocated singly-linked list with three elements,
each of them storing an integer value, whereas fig-
ure 2.1(b) and figure 2.1(c) depict two abstract ver-
sions (respectively, without and with summariza-
tion of memory regions).

Disjointness of regions: First of all, we make
the convention that the regions denoted by any
pair of edges are always disjoint, which makes lo-
cal reasoning [60] possible, following the principles
of separation logic [97]. Several formalisms allow to
reason on regions disjointness. Separation logic is
based on the very clear convention that memory re-
gions paired with separating conjunction connector
∗ are always separate. Other logics, such as region
logics [5] accept more flexible statements, where re-
gion sharing, partial sharing and disjointness can
be expressed. Typically, regions logic requires ad-
ditional work to express whenever two regions are
separate whereas separation logic requires a special
treatment for shared regions (using non separating
conjunction). We opted in favor of separation logic,
as we found that most of the time, static analyz-
ers reason about disjoint regions while cases where
non separating conjunctions is necessary are rare
and local (Section 4.3). As a consequence, when-
ever a program statement may modify the value of
a memory cell, the analysis should determine which
fragment of the graph may be modified. When that
fragment can be narrowed down to one edge, it fol-
lows that the rest of the graph will not be altered;
in other words, the modification is local. More gen-
erally, when a graph G comprises the edges of two
sub-graphs G0 and G1, G actually denotes the sep-
arating conjunction of the denotations (in the sense
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t 0x...

0x...

24

0x...

22

0x0

64

(a) Concrete memory state

= &t
24 42

0x0

32

next

data

next

data

next

data

(b) Towards abstraction: graph representation without summariza-
tion

= &t
24

next

data

list

(c) Towards abstraction: graph representation, with sum-
marization

Figure 2.1: Memory abstraction

of the ∗ operator of separation logic) of G0 and G1.
In general reasoning on destructive updates is eas-
ier when relying on separation [44, 21, 77]. In turn,
this poses severe constraints on the analysis, as it
should always maintain the invariant that distinct
edges denote disjoint memory regions at all times,
and avoid losing precision.

For instance, the concrete memory state of
figure 2.1(a) is divided into several memory re-
gions, corresponding to colors (green, blue, red and
purple). The graph representations shown in fig-
ure 2.1(b) and figure 2.1(c) over-approximate that
concrete memory state in a per-region manner: each
edge stands for an abstraction of a region of the con-
crete state. For instance, the green edges in both
graphs stand for an abstraction of the green area of
the concrete state, and the same for the other col-
ors. Local reasoning means that any operation that
would impact the red region in the concrete would
only need be analyzed with respect to the red edges
in the graphs.

Abstraction of contiguous regions: Contigu-
ous regions, such as structures or arrays can be ab-
stracted precisely, and form the atomic elements of
our abstract domain; these can be described by sets
of basic points-to edges. Roughly speaking, a graph
which consists in a single points-to edge α

s
7→ β de-

scribes stores which are made of just one memory
cell:

• of size s,
• the address of which is denoted by α,
• and which contains the value denoted by β.

This representation can be used to describe any con-
tiguous memory region, since β may abstract any
sequence of bits and s may take any value. How-
ever, when a structure data type has several fields,
it is usually better to represent each field sepa-
rately by a points-to edge. Indeed, blurring them
together would capture the same information, yet
would make it harder to analyze an assignment to
one of the fields.

All edges of the graph of figure 2.1(b) are points-
to edges, which means each of them corresponds to
a contiguous region in the concrete. It would be pos-
sible not to split an element of the list into a pair
of fields and to use only one points-to edge for that
element (i.e., that edge would describe both fields),
yet that would not be very effective, since it would
mean a sequence of bits containing a pointer and
an integer value would be abstracted by one node,
which would not be very convenient (e.g., a pointer
dereference could not be analyzed at this level of
abstraction).

Summarization: Another kind of edges repre-
sents unbounded memory regions, that consist in
regular patterns, and that can be described by
inductive definitions. We could have chosen more
general sets of definitions (as discussed in Sec-
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10 CHAPTER 2. ABSTRACTION OF MEMORY STATES

tion 6.2.5), but inductive definitions turn out to
capture a large and interesting set of data struc-
tures including simple linked structures such as lists
and trees, but also linked structures with relations
among pointers, and between pointers and values,
such as skip lists or balanced trees. Besides, induc-
tive definitions offer good opportunities for efficient
algorithms, as will be shown in chapter 3: indeed,
abstract interpretation based static analysis is pre-
cisely about inferring inductive invariants, thus it
can be expected to work pretty well on properties
defined by induction. A rather hard issue is to chose
proper inductive definitions. Depending on the con-
text, we shall assume they are either supplied by
the user (Section 2.3.2), or derived by the static an-
alyzer itself (Section 5.3.2 and Section 6.2.1).

In figure 2.1, we consider a concrete singly-
linked list data structure; the data type of singly-
linked lists can be defined by induction, thus it
makes sense to rely on an inductive definition for
those (we do not formalize it here, as this will be
done in the next section). Figure 2.1(c) shows the
result of summarizing the purple region using a
more abstract information, that it contains a com-
plete list structure. During that step, the informa-
tion that the list in the purple region has two ele-
ments is lost, and the same for the concrete values
stored in those list elements, yet the graph of fig-
ure 2.1(c) does convey the property that the list
pointed to by t has at least one element, since the
first element is not summarized. If the red region
and the blue region were joined together with the
purple region, abstracting that region into one list
predicate would lose even more information as it
would not rule out the possibility that t be the null
pointer (empty list, stored in an empty region).

Combination of abstract domains: Since one
of our goals is to express composite invariants, both
about the shape of memory structures and about
their contents, we also need to get numerical infor-
mation to fit into our abstractions. Instead of em-
bedding such information in the graphs, we propose
to rely on existing value abstract domains and to
build a composite abstraction. In practice, a numer-
ical abstract domain element will be used in order
to express numerical constraints about the values
represented by graph nodes. This way, we can take
advantage of existing, efficient static analysis algo-
rithms for values while relying on our graph repre-
sentation for manipulating shape properties.

For instance, the numerical values stored in the
data fields of the concrete store of figure 2.1(a) are
still shown in the nodes of the graphs in the two
abstract versions, yet these equalities would actu-
ally be stored in a numerical abstract domain. Fur-
thermore, since the concrete list is also sorted, we
may wish not to abstract that information away
while summarizing the purple region. To do that, we
would need to replace the list inductive predicate
with a more expressive one, also capturing sorted-
ness.

2.2 A shape abstract domain

We now formalize the abstraction of the abstract
domain which was sketched in Section 2.1.3.

2.2.1 Concrete states and notations

In the following, we let X denote a fixed set of vari-
ables and V denote a set of values. Values include
machine integers (Vint) and addresses (Vaddr); thus,
Vint ∪ Vaddr ⊆ V (Vint and Vaddr may be disjoint or
not, depending on the target language). Intuitively,
a store (or memory state) σ is a partial function
which maps addresses into values (read(σ, x) = v
or, for short σ(x) = v, means that value v is stored
at address x). However, this intuition does not ac-
count for the fact a memory read should also take
a size s (or, more generally a type t) as a parame-
ter, and read exactly s bytes (or sizeof(t) bytes).
In this view, read(σ, x, 4) should be consistent with
read(σ, x, 2) and with endianness assumptions (and
the same for the semantics of the write operation
which writes a value into a memory cell). We will
not make these constraints explicit, and simply let
concrete memory states be defined following this
model. We let M denote the set of memory states,
and assume the following primitives are defined over
M:
• read : M× Vaddr × N −→ V;
• write : M× Vaddr × N× V −→ M;
• dom : M −→ P(Vaddr) returns the set of ad-

dresses at which at least one byte can be read.
Furthermore, we assume those functions sat-
isfy the usual properties ([97]), such as
read(write(σ, x, s, v), x, s) = v.

An environment ǫ̂ ∈ E is a partial function from
variable names into addresses. A state is a tuple
made of an environment ǫ̂ ∈ E and a memory state
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CHAPTER 2. ABSTRACTION OF MEMORY STATES 11

σ ∈ M. We let S = E×M denote the set of states. For
instance, in figure 2.1(a), ǫ̂ contains only variable t.

2.2.2 Decomposition of the abstrac-

tion

Our abstract domain aims at over-approximating
sets of states: an abstract value should describe a
set of states. Before we formalize this abstraction,
we discuss the structure of abstract elements and of
the concretization relation.

Structure of the abstract domain: As a con-
crete state comprises two components (an environ-
ment and a memory state), the abstraction of a
set of states follows a similar structure. The shape
information will be expressed in graphs. Abstract
values should also include an abstraction for the
environments; this abstraction should bind vari-
able names to abstractions of their addresses. As
mentioned in Section 2.1.3, nodes abstract values
(whereas edges abstract memory regions). We let
V♯ denote a set of node symbolic names, which will
usually be denoted by Greek letters α, β, γ, δ . . .. An
abstract environment ǫ̂♯ : X −→ V♯ maps each vari-
able name into a node that denotes its address.

The relation between a concrete state and an
abstract value cannot be described directly, as we
need to specify how the nodes and edges of the ab-
stract values describe components of the concrete
value. This relation between nodes in the abstract
element and concrete values will be described by a
valuation, that is a function ν ∈ Val = V♯ −→ V

from nodes into values. A concrete memory state
will only be related to an abstract element of the
shape domain D

♯
S together with some such valuation

ν. On the other hand, the correspondence between
memory regions and edges in the graphs will appear
in the concretization.

Moreover, numerical relations that cannot be ex-
pressed inside the shape abstract domain may be
expressed in some other abstract domain. For in-
stance, the numerical relation α = β+2 that binds
symbolic names α and β (for example, it may de-
note a constraint on pointer values, arising from
pointer arithmetics) may be described using linear
equalities [66]. On the other hand, it cannot be ex-
pressed as memory structure information, as this
relation is purely independent from the fact α and
β correspond to actual values in the memory state.
A very wide range of numerical abstract domains

can be used to capture such constraints, as will be
shown in Section 2.3.1. Thus, an element of a nu-
merical abstract domain D

♯
N will be used in order to

express purely numerical constraints among graph
nodes. It will constrain the valuations, that can be
considered when expressing the concretization.

Last, precise static analysis often requires dis-
junctions of abstract values to give more precise re-
sults, thus it will use a disjunction domain such as
trace partitioning [83].

Formalization of the domain structure: We
now summarize the structure of abstract domains.
The table below summarizes their definitions:

D
♯
S abstract graphs

D
♯
N numerical constraints

M♯ = D
♯
S × D

♯
N store abstraction

E♯ = X −→ V♯ abstract environments
S♯ = E♯ × M♯ abstract states

The concretization functions of these domains are
defined as follows:
• abstract graphs concretize into sets of pairs

made of a memory state and a valuation:

γS : D
♯
S −→ P(M× Val)

• abstract numerical values concretize into
sets of valuations:

γN : D
♯
N −→ P(Val)

• elements of the product abstraction con-
cretize into the meet of the concretizations:

γM : M♯ −→ P(M× (Val))
∀(S,N) ∈ M

♯,
γM(S,N) = {(σ, ν) | ν ∈ γN(N)

∧ (σ, ν) ∈ γS(S)}

• abstract states concretize into sets of con-
crete states, such that there exists a valuation,
which is coherent with the abstract environ-
ment and the abstract graph:

γS : S♯ −→ P(S)
∀(ǫ̂♯, (S,N)) ∈ S♯,
γS(ǫ̂

♯, (S,N)) = {(ǫ̂, σ) | ∃ν ∈ γN(N),
(σ, ν) ∈ γM(S)
∧ ∀x ∈ X, ǫ̂(x) = ν(ǫ̂♯(x))}

In the following subsections, we will define the
shape domain itself and its concretization.
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12 CHAPTER 2. ABSTRACTION OF MEMORY STATES

2.2.3 Abstraction without summa-

rization

We first consider abstract values that do not include
information about summarized regions. These will
be discussed in the next section.

Points-to edges concretization: An abstract
value of D

♯
S consists in a graph that is a set of

nodes (which denote concrete values) and a set of
edges (which denote constraints over memory re-
gions). In particular, we have seen in Section 2.1.3
that a points-to edge denotes a memory cell or a set
of contiguous memory cells.

When considering a structure type, it is often
useful to decompose its contents into the contents
of its fields; thus, it should rather be represented
by a collection of points-to edges corresponding to
each field. The addresses of these cells are corre-
lated, since they all correspond to the sum of the
base address of the structure and of an offset. Thus,
it makes more sense to avoid using several distinct
nodes in order to represent the base address of each
of these cells. Instead, we add the offset as a label
on the edge itself.

Thus, the general format of a points-to edge is:

α · f
s
7→ β

We use the graphical representation below to denote
such an edge in a graph:

α β
f

s

When the size does not need be tracked explicitly,
we will always use the simplified version α·f 7→ β (f
will also be dropped when depicting a cell at base
address α, with no offset, i.e. that is not part of an
aggregate):

α β
f

The denotation γS(α · f
s
7→ β) of this edge is the set

of pairs (σ, ν) such that:
• memory state σ is a memory state with only

one cell of address x = ν(α)+offset(f) (where
offset(f) denotes the numerical offset of field
f), and of size s, which boils down to:

dom(σ) = {x, x+ 1, x+ 2, . . . , x+ s− 1}

• the content of this cell is v = ν(β):

read(σ, x, s) = v = ν(β)

For instance, a next field of a list element could be

described by α · next
4
7→ β, assuming a 32-bits ar-

chitecture (i.e., that pointers are four bytes long).

Separation concretization: As mentioned in
Section 2.1.3, we rely on separating conjunction in
order to make local reasoning possible.

In the concrete level, we let the separating con-
junction binary operator � be defined as follows:
if dom(σ0) ∩ dom(σ1) = ∅, then σ0 � σ1 is the
concrete store defined by

dom(σ0 � σ1) = dom(σ0) ∪ dom(σ1)
if read(σi, x, s) = v then read(σ0 � σ1, x, s) = v

Then, the concretization of a graph S ∈ D
♯
S such

that S is made of the set of edges {e0, . . . , en}, then

γS(S) = {(σ0 � σ1 � . . . � σn, ν)
| ∀i, (σi, ν) ∈ γS(ei)}

The empty graph (i.e., abstract element with no
edge) emp is the neutral element for �.

For the sake of concision, we do not introduce
explicitly a “⊤” abstract value, standing for an un-
determined region (equivalent to the true) sepa-
ration logic value. Instead, we will simply assume
nothing is known about heap regions not described
in the graphs.

2.2.4 Summarization with inductive

definitions

In Section 2.1.3, we observed that inductive struc-
tures offer a good basis for summarizing complex
and unbounded memory regions using compact for-
mulas. We now define a language of inductive defi-
nitions and show how they can be relied on in order
to describe memory states.

A language of inductive definitions: Many
data structures used by programmers follow a re-
cursive pattern. For instance, a list pointer is ei-
ther a null pointer or a non null pointer, which
points to a structure with several fields including
a “next” field, which contains another list pointer.
We observe there are two cases (the null pointer and
the non null pointer), thus an inductive definition
should consist in a conjunction of cases (or rules).
Each rule describes a memory region (using con-
tiguous regions or other instances of the inductive
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structure, or both) and numerical predicates (e.g.,
that a pointer is not equal to null). Furthermore, in
the case of a singly-linked list, elements should be
pairwise distinct, which can be expressed with the
separating conjunction operator.

We observe that in this description the argument
of the list inductive predicate is the address of its
first element. This is very convenient as nodes stand
for values, i.e., including addresses; that way, we
do not have to explicitly relate the “inductive list”
predicate to the region it describes. In the follow-
ing, we will always assume the existence of such a
main argument or parameter. Yet, in some cases, we
may need to add additional (or, auxiliary) param-
eters. For instance, in the case of a doubly-linked
list, we also need to propagate information about
the address the “prev” field should point to (Sec-
tion 2.3.2).

At this point, we can formalize our language of
inductive definitions. The definition of inductive ι
has the form α · ι(β0, . . . , βn−1) ::= r0 ∨ r1 ∨ . . . ∨
rk, where α is the main parameter, β0, . . . , βn−1

are the auxiliary parameters and r0, r1, . . . , rk are
the rules. Each rule consists in the conjunction of a
shape formula and a pure formula (or numerical for-
mula), where the shape part is the separating con-
junction of a set of terms, which are either points-to
edges or “recursive calls”, that is application of an
inductive definition to a set of parameters. These
definitions are summarized in the grammar below:

r ::= inductive rule
| (FShape, FNum)

FShape ::= shape formula
| FShape ∗ FShape

| emp (empty region)
| α · f

s
7→ β

| α · ι(β0, . . . , βn−1)
FNum ::= pure formula

| α = c (where c ∈ V)
| α 6= c (where c ∈ V)
| . . .

α, β, γ, δ ∈ V♯

ι : inductive name
f, f′ : structure fields

For instance, the list inductive definition can be
written as follows:

α · list ::=
(emp, α = 0)

∨ (α · next 7→ β ∗ α · data 7→ γ

∗ β · list, α 6= 0)

The first rule corresponds to the empty list case
(it describes an empty memory region and a null
pointer). The second rule corresponds to the case
of a non empty list, where α is a non-null pointer,
which points to a structure with two fields called
next and data; β and γ denote the respective values
of these two fields, and β points to another, disjoint
singly-linked list. Observe that the two fields of the
structure also refer to disjoint memory regions, as
shows the use of separating conjunction.

There are other ways to look at such induc-
tive definitions: we can consider them constructors,
that assemble non trivial structures in a recursive
manner, from basic elements, but we can also view
them as data structures checkers [21]. Indeed, these
definitions are rather close to checking functions,
which can be used in order to check that a mem-
ory structure satisfies some global invariants. Such
functions are often used by programmers in order
to check that the data structures they implement
satisfy structural invariants; in debug mode, it is
common practice to call such checking functions
before and after performing destructive updates to
the structures, so as to spot where the invariant is
first violated, when testing a program does not seem
to behave as intended. Though, there exists an no-
ticeable difference with such function, as our induc-
tive definitions rely on separating logic, which is not
usually done when implementing checking functions
(this would be extremely expensive to check, as it
would require to store sets of elements that were
visited).

Inductive edges: We now need to exploit induc-
tive definitions in order to abstract sets of mem-
ory regions in graphs. Let us consider the case of a
singly-linked list inductive definition first. If α is the
address of a singly-linked list, then we simply write
that α · list holds, and we will use the graphical
notation:

α
list

In general, if we consider inductive definition ι
with n additional parameters, then we will write
α · ι(β0, . . . , βn−1) to state that ι holds when ap-
plied to the main parameter α and to the auxiliary
parameters β0, . . . , βn; then, we will use the graph-
ical notation:

α
ι(β0, . . . , βn)
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Unfolding inductive definitions: Let us con-
sider property α · ι, where ι is the disjunction of
rules r0, . . . , rn. Intuitively, it means that the cur-
rent state satisfies the property expressed by one of
these rules. Let us assume the property expressed
by rule ri holds. Therefore, we can rewrite prop-
erty α · ι using the definition of rule ri. However,
the shape part and the pure part of rule ri rely on
the formal parameters of ι, that is those used in its
definition. This is no major difficulty, as standard
substitution of actual parameters to formal param-
eters allows to rewrite ri into a pair of formulas that
contain only the variables of the original edge (i.e.,
α), and possibly, some fresh nodes created to rep-
resent new values, of fields that get exposed during
this step. This operation is called syntactic unfold-
ing a rule. Moreover, when it results in the pair of
formulas (Fshape, Fnum), we write:

α · ι
U
−→ι,ri (Fshape, Fnum)

Furthermore, when there exists a rule ri in ι such
that the above statement holds, we also write:

α · ι
U
−→ι (Fshape, Fnum)

This defines the syntactic unfolding of an inductive
definition.

This unfolding operation is not exactly an inter-
nal domain operator: the shape part of the result
is a valid graph (i.e., shape domain abstract ele-
ment), however the pure part is an arbitrary logical
formula, which D

♯
N may not be able to represent

exactly. We will address this issue when designing
the unfolding domain operation in Section 3.3 (this
operation will actually be largely based upon the
syntactic unfolding).

Syntactic unfolding can also be applied to
graphical representations, in a straightforward man-
ner. For instance, the two pictures below describe
both possible syntactic unfoldings of a list induc-
tive edge:
• empty list case:

α
list

U
−→ι α

= 0x0

• non-empty list case:

α
list

U
−→ι α

β

γ

next

data

list

Concretization of inductive edges: The syn-
tactic unfolding operation defined previously gives
the intuitive meaning of inductive predicates; there-
fore, it is actually the foundation of the concretiza-
tion of such predicates. This concretization is de-
fined naturally by induction over the inductive

predicates. Intuitively, if α · ι
U
−→ (S,N), (σ, ν) ∈

γ(S), and ν satisfies pure formula N (which we
write ν ⊢ N), then (σ, ν) ∈ γS(α ·ι). Unsurprisingly,
this definition of the concretization corresponds to
the least fixpoint of a continuous operator over sets
of pairs (σ, ν). For instance, in the case of list, we
obtain the following cases:
• at depth 0:

α

= 0x0

• at depth 1:

α α′

β

next

data

= 0x0

• at depth 2:

α α′

β

α′′

β′

next

data

next

data

= 0x0

Reasoning on the length of data structures:

It is sometimes useful to reason over the length of
a list, or the depth of a tree. This length informa-
tion can be made explicit on our definitions. In this
paragraph, we label inductive edges with an integer
standing for the induction depth and we will write
α · ιk for inductive edge α · ι, with induction depth
k (where k ≥ 0). The syntactic unfolding of such an
edge should generate a set of inductive predicates
such that the maximal element of their depths is
k − 1. Similarly, we may label edges with an upper
bound on the length of derivation.

For instance, if we consider the list definition,
we get the following syntactic unfolding configura-
tions (length labels are placed on top of edges), us-
ing exact length indices (i.e., not upper bounds):
• empty list case:

α
list

0 U
−→ι α

= 0

• non-empty list case:
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α
list

k + 1 U
−→ι α

β

γ

next

data

list

k

We can prove the following property:

γS(α · ι) =
⋃

k∈N

γS(α · ι
k)

This provides an alternate definition of the con-
cretization of any inductive predicate, since it is
possible to define γS(α · ιk+1) from γS(α · ιk), us-
ing the unfolding rule.

2.2.5 Segment edges

Let us consider the list definition in more details. In
practice, it is common to describe a list structure
l, such that several pointers point to some elements
in l. For instance, this situation arises when imple-
menting a (very classical) list traversal algorithm:
indeed, in this case, there is a pointer to the first
element of the list, and a “cursor”, which points to
the current element. In this case, it is usually more
convenient not to summarize the whole list with one
predicate of the form α · list, and to use two pred-
icates, describing respectively the part of the list
that has already been visited and the part of the
list that is left to be visited. Thus, we should also
describe list segments.

We can observe that a list segment can also be
described using an inductive definition, using an ad-
ditional parameter to denote the “end-point”:

α · list_endp(π) ::=
(emp, α = π)

∨ (α · next 7→ β ∗ α · data 7→ γ

∗ β · list_endp(π), α 6= 0)

We observe that this definition is actually quite sim-
ilar to that of a regular singly-linked list, except for
the following two small differences:
• the inductive predicate now expects one addi-

tional parameter π, which should denote the
end-point of the list segment;
• in the base case, the value constraint on

pointer α requires it be equal to end-point π.
In fact, this definition is not only close to that of
a regular list segment, but it can also be derived
from list in a systematic way, and it could general-
ize to other structures as well. Indeed, list_endp

describes a list with a “hole”, that is a list where a

sub-list is missing. The same could be done just as
easily with a tree structure.

Therefore, we opt to include the notion of seg-
ment once and for all in our abstract values. In this
purpose, we add another kind of edges, which we
call segment edges; a segment edge is of the form
α · ι(β̄) ∗= α′ · ι(β̄′), and we use the graphical rep-
resentation below:

α α′

ι(β̄) ι(β̄′)

In particular, we observe the following two graphs
convey the same information, i.e., there exists a list
segment between node α and node β:

α β
list list

α
list_endp(β)

Concretization: The essence of segments is that
they unfold slightly differently compared to regular
inductive edges. Let us consider segment α · ι(β̄) ∗=
α′ · ι(β̄′), and discuss how it can be unfolded:
• an empty segment (or segment of length 0)

stands for an empty region and is such that
both ends are equal, i.e., α = α′ and β̄ = β̄′;
• a non empty segment unfolds as an inductive

edge, except that exactly one recursive pred-
icate of the unfolding result is a segment; for
instance, in the case of lists, unfolding a non
empty list segment results in:

α

α′

α′′

βnext

data

list list

Using this definition of unfolding, the concretiza-
tion of a segment edge is defined in a very similar
way as that of an inductive edge (Section 2.2.4): if

α · ι(β̄) ∗= α′ · ι(β̄′)
U
−→ (S,N), (σ, ν) ∈ γS(S) and

ν ⊢ N , then (σ, ν) ∈ γS(α · ι(β̄) ∗= α′ · ι(β̄′)).
We can observe that this notion of segment

is “stronger” than the separating implication (also
called “magic wand”):

γS(α · ι ∗= α′ · ι) ⊆ γS(α · ι ∗− α′ · ι)

This property can be proved by induction, using the
concretization relation. It means that magic wand
also models segments, and we successfully used it
for static analysis [21], yet it also describe stores
that are not segments, which makes it impossible to
prove certain strong properties and we found that
using inductively defined segments turns out more
powerful [20].
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Generalizations: We can add explicit length in-
formation on segments, in the same way as we did
for regular inductive predicates in Section 2.2.4.
Such segment indices represent the number of un-
folding steps from the origin to the destination of

the segment. Such a predicate is denoted α · ι
k
∗=

α′ · ι.
It is also feasible to set up a notion of segments

of arity equal greater than 2, or multi-segments of
arbitrary arity [56]. Such edges would come as a
straightforward generalization of segments, where
there are k “holes” instead of 1. A list structure
may have only one such hole, so multi segments are
not relevant in that case, however, in the case of
trees, a 2-segment would correspond to a tree frag-
ment that would be a complete tree if two sub-trees
were added [49]. However, we found that standard
segments (i.e., segments of arity 1) have a reason-
ably high level of expressivity, and that segments of
higher arity are more cumbersome to manipulate in
automatic static analysis, thus we did not integrate
them formally into our abstraction.

2.2.6 Shape domain

At this stage, we can summarize the definition of
our shape domain. Our domain is parametric in
the sense that it is parameterized by the data of
a set of inductive definitions. Inductive definitions
may either be supplied by the user (Section 2.3.2),
or derived by some automatic analysis itself (Sec-
tion 5.3.2 and Section 6.2.1).

Abstract values are described by the grammar
of figure 2.2(a), graphical representation of edges in
figure 2.2(b) and the concretization rules are shown
in figure 2.2(c).

2.3 Expressiveness and param-

eterization of the abstract

domain

Our abstract domain can be parameterized in sev-
eral ways:
• it relies on a numerical domain in order to ex-

press constraints on basic values (i.e., integer,
floating point and boolean values);
• it can also be parameterized by the data of a

finite set of inductive definitions, to be used
for summarization.

In this section, we discuss difficulties inherent in this
parameterization and show examples of structures
that fall in the scope of the parametric abstract do-
main.

2.3.1 Combination with a numerical

domain

The abstraction of concrete states described in
rule (S) appears like a flavor of a product abstrac-
tion [30], yet is slightly more complex.

An asymmetric product abstraction: Indeed,
the product of the shape domain with the numeri-
cal domain is not symmetric, since the set of sym-
bolic nodes used as variables in a numerical abstract
value corresponds to the set of nodes that appear in
the shape abstract value. This means that a valid
abstract element (S,N) should be such that N be-
longs to the numerical abstract domain lattice de-
fined by the data of the nodes in S. When com-
puting transfer functions or joins, that set of nodes
may change and the numerical invariants should
be updated accordingly. Furthermore, this also im-
poses some consequences on widening algorithms,
as will be shown in Section 3.4. This construction
is actually an instance of the cofibered abstract do-
main [119].

Unlike [76], we opted for a product analysis in-
stead than a splitting into two separate analyses, as
this usually proves a better choice in the precision
point of view.

Choice of a numerical domain: In practice,
any numerical abstract domain can be used, in-
cluding intervals [29], octagons [89], linear equali-
ties [66], convex polyhedra [39] and others. Combi-
nations of domains (e.g., by reduced product [30])
can also be used. Our framework only requires the
existence of a concretization function γN : D

♯
N −→

P(Val). However, we should note that the “vari-
ables” which are accounted for in that numerical do-
main are not program variables nor concrete mem-
ory cells but graph nodes, representing sets of con-
crete values.

The property that a symbolic node represents
the null pointer can be expressed by the domains
of constants, intervals... Addresses inequalities can
be described with linear equalities or octagons, or
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S ::= graph
| e ∗ . . . ∗ e

e ::= edge
| α · f

s
7→ β

| α · ι(β̄)
| α · ι(β̄) ∗= α′ · ι(β̄′)

(a) Domain definition

points-to edge: inductive edge: segment edge:

α β
f

s
α

ι(β0, . . . , βn)
α α′

ι(β̄) ι(β̄′)

(b) Edges representation

x = ν(α) + offset(f) v = ν(β) dom(σ) = {x, . . . , x+ s− 1} read(σ, x, s) = v

(σ, ν) ∈ γS(α · f
s
7→ β)

7→

∀i, j, i 6= j =⇒ dom(σi) ∩ dom(σj) = ∅ ∀i, (σi, ν) ∈ γS(ei)

(σ0 � . . . � σn, ν) ∈ γS(e0 ∗ . . . ∗ en)
∗

e is an inductive or a segment e
U
−→ (S,N) (σ, ν) ∈ γS(S) ν ⊢ N

(σ, ν) ∈ γS(e)
U

∃ν ∈ γN(N), (σ, ν) ∈ γM(S) ∧ ∀x ∈ X, ǫ̂(x) = ν(ǫ̂♯(x))

(ǫ̂, σ) ∈ γS(ǫ̂
♯, (S,N))

S

(c) Concretization rules

Figure 2.2: Shape abstract values

using a union find based abstraction of equivalence
relations.

For implementation, using a library such as
Apron [62] is the best solution, as it makes it pos-
sible to switch from one numerical abstract domain
to another a trivial change in the analyzer code.

2.3.2 Recursive data structures

In Section 2.2, we mentioned a singly-linked lists in-
ductive definition, yet many other useful data struc-
tures have inductive definitions that can be used as
parameters for our domain.

List structures: Circular lists are singly-linked
lists such that the next field of the last element
points to the first element; in other words, they can
be defined using the list segment predicate, that is,
either with an list segment edge or with the list
with end-point inductive definition of Section 2.2.5.

Doubly-linked lists are more complex, as each
elements has two pointer fields, which are closely re-
lated to each other. Indeed, the prev field of the el-
ement pointed to by a next field should correspond

to the current element. As observed in Section 2.2.4,
such a structure can be defined by induction, using
an auxiliary parameter, so as to store where the
prev field should point to. Then, we obtain the def-
inition below:

α · dll(γ) ::=
(emp, α = 0)

∨ (α · next 7→ β ∗ α · prev 7→ γ
∗ β · dll(α), α 6= 0)

The second rule of this definition corresponds to the
following graphical syntactic unfolding:

α
dll(γ)

U
−→ι α

β

γ

next

prev

dll(α)

Other much more involved forms of lists can be de-
scribed in our framework. In particular, we provided
a two levels skip-list inductive definition in [21],
where each element has a next field, pointing to
the next element and a “skip” field pointing to the
next “level 2” element in the list. In that case, an
auxiliary parameter stands for the next level 2 ele-
ment.
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Tree structures: Inductive definition of binary
trees is a straightforward extension to that of lists;
the only difference is that there are now two recur-
sive calls:

α · tree ::=
(emp, α = 0)

∨ (α · left 7→ β ∗ α · right 7→ γ

∗ β · tree ∗ γ · tree, α 6= 0)

The second rule of this definition corresponds to the
following graphical syntactic unfolding:

α
tree

U
−→ι α

β

γ

left

right

tree

tree

Trees with parent pointers combine features of
trees (two sub-structures) and of doubly-linked lists
(pointer to the previous element), thus can be de-
scribed just as easily.

2.3.3 Relations between shape and

numerics

Our language of inductive definitions also captures
relations between shape properties and numerical
properties.

Length: Inductive definition below expresses that
its main argument points to a list the length of
which is represented by its auxiliary parameter:

α · list_len(δ) ::=
(emp, α = 0 ∧ δ = 0)

∨ (α · next 7→ β ∗ α · prev 7→ γ
∗ β · list_len(δ), α 6= 0 ∧ α = δ + 1)

We note that the same notion can also be expressed
using a primitive notion of length (Section 2.2.4 and
Section 2.2.5).

Sortedness: A sorted list inductive definition can
be obtained by adding an additional parameter
which denotes a lower bound for the first value in
the list; in turn, this first value will be passed as an
additional parameter to the recursive call, to serve
as a lower bound for the next element. To express
that a list is sorted (with no assumption on the

range of the first element), we simply need to start
with −∞ as a lower bound for the very first element:

α · list_sort ::= α · aux(−∞)
α · aux(δ) ::=

(emp, α = 0)
∨ (α · next 7→ β ∗ α · prev 7→ γ

∗ β · aux(β), α 6= 0 ∧ δ ≤ β)

Balanced trees: Adding branch relation between
length of branches and tree shape yields balanced
tree data structures. Such structural invariants can
be expressed using our language of inductive defini-
tions; for instance, in the case of red-black trees:
• correct alternance of black nodes and red

nodes can be expressed in a similar manner
as for the length in list_len;
• binary search tree structure can be expressed

in a similar manner as the sortedness in
list_sort;
• optionally, parent pointers can be expressed

in a similar way as in dll.
A full definition of inductive predicate red_black

was presented in [20]. Other balanced tree struc-
tures such as AA trees, or AVL trees can also be
expressed.
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Chapter 3

Shape analysis

algorithms

In this chapter, we set up an abstract interpreta-
tion based static analysis [29] which uses the ab-
stract domain introduced in chapter 2. This static
analysis has also been described in [21] and in [20],
and was implemented in Xisa (eXtensible Induc-
tive Shape Analyzer). Section 3.1 reviews the prin-
ciple of the analysis including some specific opera-
tions which consist in unfolding and folding induc-
tive predicates. Then, Section 3.2 reviews common
transfer functions such as assignment and tests in a
more thorough manner. Section 3.3 provides an in-
depth discussion of unfolding. Section 3.4 describes
the folding algorithms. Finally, Section 3.5 and Sec-
tion 3.6 summarize the signature of domains and
Section 3.6 and the Xisa implementation.

3.1 Analysis principles

Before describing the analysis operations formally,
we illustrate it on a simple example.

A list reversal example: In this section, we con-
sider the program below, which is a classical exam-
ple of a list reversal algorithm:

list ⋆ l assumed to point to a list
list ⋆ r = NULL;
list ⋆ t;
while(l != NULL){

t = l -> next;
l -> next = r;
r = l;
l = t;

}

This program performs an “in-place” reversal of a
singly-linked list, which means that it does not al-
locate or deallocate any element; instead, it simply
switches pointers, so that in the end the whole list
(that was initially pointed to by variable l) is re-
versed (the final result is pointed to by variable r).
For instance, when applied to a list of length 3, we
obtain the following run (we do not display inter-
mediate values of variable t, which serves only as a
temporary):
• initial configuration:

&x

&y

0 1 2

0x0

0x0

• after one iteration:

&x

&y

0 1 2

0x00x0

• after two iterations:

&x

&y

0 1 2

0x00x0

• final configuration, after three iterations:

&x

&y

0 1 2

0x0

0x0

A static analysis of this program should rely on the
assumption that l points to a well-formed singly-
linked list, and use that assumption in order to:

1. prove memory safety (absence of dereferences
of a null or dangling pointer, absence of mem-
ory leaks...);

2. prove that the structure obtained in the end is
coherent with the intuition of this algorithm,
that is, that in the end, r points to a well-
formed singly-linked list.
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We may expect the static analysis to prove more
than this, e.g., that in the result, the elements of
the list appear in the reverse order compared to the
initial structure, yet we do not consider such a goal
in this section.

Analysis sketch: As this program manipulates
singly-linked lists, we are going to assume the do-
main is parameterized with only one inductive def-
inition, that is the list inductive definition shown
in Section 2.2.4. The assumption that l points to
a well formed singly-linked list translates to the in-
variant shown in the graphical representation be-
low:

&l

&r

α

β

list

We note that no information is known about the
value of r, so there is no constraint on β (in partic-
ular, this node has no outgoing edge). Also, we drop
the temporary variable t for the sake of clarity.

The analysis is based on a standard abstract in-
terpretation of the program [29, 28]. The assign-
ment of the null pointer to r results in a constraint
that the value stored into r be null. Such a fact
should be represented inside the numerical domain
D
♯
N, yet, we let node labels depict such constraints

in the following, for the sake of clarity:

&l

&r

α

β

list

= 0x0

The analysis of a loop should rely on a fixpoint
computation, where the analysis of the loop body
is iterated until a fixpoint is reached, that over-
approximates the set of all states at the loop head.
At the loop entry, the analysis should take into ac-
count the fact that the test succeeds, thus the value
stored in variable l is not equal to the null pointer,
which should also be taken care of inside D

♯
N.

&l

&r

α

β

list

6= 0x0

= 0x0

At this, stage, a series of four assignments need be
analyzed inside the body of the loop. However, we
note that these require to read l->next even though
that memory cell does not appear explicitly in the
graph; it is actually summarized as part of the in-
ductive predicate α·list. In order to make the analy-
sis of these statements possible, we need to “unfold”
the inductive predicate, so as to make the first ele-
ment of the list explicit. That unfolding into a list
element and a tail is sound, since the value of l is
known to be non null, which means the list is not
empty. This unfolding operation is the topic of Sec-
tion 3.3. Thus, we can rewrite the above abstract
value into the following:

&l

&r

α

β

α′

γ′

next

data

list

= 0x0

Once this unfolding is performed, assignments can
be safely analyzed by flipping points-to edges so as
to reflect each operation, so that, at the end of the
analysis of the first iteration of the loop, we get:

&l

&r

α′

βα

γ′

next

data

list

= 0x0

If we run the analysis of the loop one more time, we
get the graph below as a result:

&l

&r

α′′

βα′ α

γ′′ γ′

next

data

next

data

list

= 0x0

Repeating this same series of analysis steps a fixed
number of times would be feasible, and yield sound
over-approximations of the concrete states that can
be encountered after some given number of itera-
tions. However, iterating this process until stabi-
lization would not terminate, as it would generate
more and more points-to edges by unfolding, and
never abstract any region.
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On the other hand, we notice that the structure
pointed to by r in these two graphs indeed corre-
sponds to a well formed singly-linked list, that could
be summarized using the list predicate. We would
then obtain the graph below:

&l

&r

α′

α

list

list

We remark that this abstract value conveys the in-
formation that both list summaries correspond to
disjoint memory regions, which is exactly what we
observed when looking at a concrete run of the anal-
ysis. It can be shown that this graph is indeed an
invariant for the loop. It over-approximates both
graphs that were produced after zero, one and two
iterations of the analysis of the loop. As usual, the
difficult step is to have the analysis infer that loop
invariant, with some sort of a widening operator. In
this case, we can see that widening should perform
the converse operation of unfolding, i.e., it should
fold inductive predicates. Folding is the topic of Sec-
tion 3.4

Furthermore, analyzing the loop exit condition
from that graph gives the following, which is the ex-
pected analysis result (i.e., l stores the null pointer
whereas r points to a well formed singly-linked list):

&l

&r

α′

α
list

= 0x0

Analysis main operations: This overview
shows that conventional analysis operations such
as assignment, condition test, and widening are
needed. However, we note that transfer functions
may require a preliminary unfolding of inductive
predicates. This unfolding operation can actually
be found in all shape analyses that perform sum-
marization [109, 44]. On the other hand, the widen-
ing operator is also based on a new operation, that
is not common to, e.g., static analyses targeted at
the inference of numerical invariants. Indeed, widen-
ing operators can often be viewed as operators dis-
carding unstable constraints. However, in our case,
widening relies on the folding of inductive predi-
cates, which amounts to abstracting local properties
with more global ones.

3.2 Transfer functions

We first consider standard transfer functions, such
as assignments and condition tests. Such transfer
functions need to evaluate expressions in the ab-
stract level, and update abstract values both in D

♯
S

and in D
♯
N accordingly. We assume here the mem-

ory regions they operate on are fully described by
points-to edges; the case where inductive predicates
need be unfolded will be dealt with in Section 3.3.

Evaluation of expressions and l-values: A
points-to edge describes precisely a contiguous
memory region, and binds a node representing its
address into a node representing its contents, as we
observed in Section 2.1.3. Therefore:
• an expression of scalar type should evaluate

into a node (a node abstracts a set of values);
• an l-value should evaluate into a points-to

edge α ·f 7→ β representing the memory cell it
evaluates to; then the address of that l-value
is the origin of the edge, that is α · f.

For instance, let us consider the abstract value de-
scribed in the graphical representation below:

α

β

&x

&y

γ δ

Then, l-value x evaluates into the edge α 7→ γ, i.e.
α abstracts the result of expression &x, and γ ab-
stracts the result of expression x. Similarly, l-value y
evaluates into the edge β 7→ δ. Last, since the value
of expression x is γ, l-value ⋆x is abstracted by the
edge γ 7→ δ, which means the value of expression ⋆x
is abstracted by node δ [71].

Assignments: The transfer function for analyz-
ing assignments should over-approximate the effect
of an assignment instruction. Following the above
discussion on evaluation of expressions, we remark
that the analysis of an assignment l := e (where
l ∈ LvalsX is an l-value with variables in X and
e ∈ ExprsX an expression with variables in X) can
be split into three steps:

1. evaluating l into an edge α · f 7→ β, which
represents the cell that is modified by the as-
signment;
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2. evaluating e into a node γ, over-
approximating the result of the evaluation
of the expression in the concrete;

3. replacing edge α · f 7→ β with edge α · f 7→ γ;
then, node β can be discarded unless it ap-
pears somewhere else in the graph.

There are actually two main cases, depending on
how e evaluates.
• When e is the dereference of an l-value, there

already exists a node in the graph, which over-
approximates the result of e. For instance, let
us consider the abstract element below:

α

β

&x

&y

γ

δ

Then, assignment y := x boils down to the
flipping of the edge departing from the node
representing &y to the node representing the
value stored in variable x:

α

β

&x

&y

γ

δ

Then, node δ can be dropped, since there is no
constraint left about the value it represents.
• When e is more complex (e.g., involves nu-

meric computation), there exists no such
node, thus a new node should be created, and
the assignment should be performed in the
underlying domain D

♯
N. For instance, let us

assume that both x and y have integer type,
and analyze assignment x := x + 1, from the
abstract pre-condition below, which expresses
the fact that x and y store the same value,
which is known to be positive:

α

β

&x

&y

γ
≥ 0

Then, no node in the graph represents the new
value, hence a fresh node δ should be added
to the graph, and the assignment δ = γ + 1
should be analyzed in the numerical domain
(we note that this assignment is entirely ex-
pressed in terms of the symbolic nodes of the
graph); we then obtain the abstract value be-
low, which encloses additional numeric invari-
ants expressing the relation between the old

value (which is still stored in variable y) and
the new value:

α

β

&x

&y

γ

δ

≥ 0

δ = γ + 1

To summarize, the assignS♯ : S♯ × LvalsX ×
ExprsX −→ S

♯ transfer function for analyzing an
assignment relies on the creation of fresh nodes, and
on a sound assignN : D

♯
N×LvalsV♯×ExprsV♯ −→ D

♯
N

transfer function in the underlying numerical do-
main, which over-approximates the effect of assign-
ments over functions in Val. The soundness con-
dition of the underlying operator assignN, for as-
signments involving only symbolic variables writes
down:

∀l ∈ LvalsV♯ , ∀e ∈ ExprsV♯ , ∀ν ∈ γ(N),
ν[JlK(ν)← JeK(ν)] ∈ γN(assignN(N, l, e))

where JeK : Val −→ V (resp., JlK : Val −→ V♯) de-
scribe the concrete semantics of expressions (resp.,
l-values). Then, assignS♯ is also sound, which writes
down in a very similar way, except that it operates
on expression using regular variables (i.e., as found
in the program).

Condition tests: The analysis of condition tests
follows a very similar process as that of assignments.
Evaluation of conditions works essentially the same
way as for any other expression, as conditions are
simply expressions with boolean type. Then, the
analysis of the condition can be done either using
the information that is present in the graph or in
the numerical domain.
• In some cases, a condition can be asserted in

the graph. This is the case for many pointer
tests. For instance, a node that is at the ori-
gin of a points-to edge is known to be non
null, since the presence of an outgoing edge
means the node denotes the address of a reg-
ular memory cell, hence it cannot be the
null pointer. Similarly, testing the equality of
pointers can often be done in the graph, in
an exact manner. For example, the abstract
value represented in the graph below contains
the information that pointers x and y are not
equal, as separation entails the cell of address
γ is disjoint from that of address δ (on the
other hand, it says nothing about the values
of δ′ and γ′):
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α

β

&x

&y

γ

δ

γ′

δ′

• When the condition being tested involves non
trivial numerical conditions, the expression
involving program variables should be trans-
lated into an equivalent expression involving
symbolic nodes, and a guardN : D

♯
N×ExprsV♯×

B −→ D
♯
N operator should be applied to that

condition, where guardN is assumed to be
sound in the sense that:

∀c ∈ ExprsV♯ , ∀b ∈ {true, false},
∀ν ∈ γ(N),

JcK(ν) = b =⇒ ν ∈ γN(guardN(N, c, b))

This defines an operator guardS♯ : S♯ × ExprsX ×
B −→ S♯, which satisfies a soundness condition very
similar to that of guardN.

As mentioned in the beginning of this section,
these operators cannot be applied when part of the
l-values or expressions that are considered involve
memory cells which are not exposed as points-to
edges. In such cases, it is necessary to unfold some
inductive predicates first, and then to apply the op-
erators discussed above when the condition that all
memory cells involved be exposed is satisfied.

3.3 Unfolding inductive edges

The unfolding operation actually comprises two
steps:

1. determining which inductive predicate needs
to be unfolded;

2. performing the unfolding of that predicate.
We first assume the inductive predicate to unfold
is known and show how it can be unfolded in Sec-
tion 3.3.1 and 3.3.2; then, we discuss the determi-
nation of the predicate to unfold in Section 3.3.3.

3.3.1 Unfolding of an inductive edge

Syntactic unfolding of an inductive predicate was
introduced first in Section 2.2.4. The principle of
syntactic unfolding is to rewrite an inductive pred-
icate α · ι into the definition of one of the rules of
ι, which generates a pair made of a shape abstract
value and of a pure formula, constraining nodes of
that shape abstract value.

To turn this principle into an abstract domain
operation, we have to address two issues:
• for the sake of soundness, we need unfolding

to account for all rules of ι;
• D

♯
N cannot deal with arbitrary pure formulae,

thus we need to over-approximate this part.

Unfolding algorithm: To solve the first issue,
we let the analysis manipulate disjunctions of ele-
ments of S♯, as observed in Section 2.2.2: the anal-
ysis computes a finite set of elements of S♯ at each
control state, instead of just one abstract element.
This way, whenever an inductive predicate is un-
folded, we can simply collect the set of all elements
that arise from syntactical unfolding of all the rules
of the inductive definition.

The second issue will actually be taken care of
by applying the guardN operator to the pure part
of the rule, which may cause some loss of precision,
but will always yield a sound result.

Thus, the unfold : S♯ −→
∨

S♯ unfolding domain
operator can be defined as follows:

Definition 1. Unfolding.

Let us assume inductive definition ι is composed
of n rules r0, . . . , rn−1.
Then,

unfold(ǫ̂♯, S ∗ α · ι, N) =
∨

0≤i<n(ǫ̂
♯, S ∗ Si, Ni)

where

{

α · ι
U
−→ι,ri (Si, Fi)

Ni = guardN(Fi, true, N)

This algorithm produces sound results:

Theorem 1. Soundness of unfolding.

We use the same notations as in definition 1.
Then:

γS(ǫ̂
♯, S,N) ⊆

⋃

0≤i<n

γS(ǫ̂
♯, Si, Ni)

This result follows from the definition of the
concretization of inductive predicates, and from the
soundness of guardN. This operation may lead to a
loss of precision, when guardN itself loses precision.

This unfolding operator can be related to the fo-
cus operation of TVLA [109], and should be applied
in order to expose fields which are summarized: this
use matches well with the “partial concretization”
role of the focus operator, for the computation of
precise transfer functions [96, 125].
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Examples: Let us first consider the case of the
list inductive predicate, that arose in Section 3.1.
When attempting to analyze the series of assign-
ments in the loop body, we came across the fol-
lowing abstract element, where it was necessary to
materialize l -> next, by unfolding the list predi-
cate:

&l

&r

α

β

list

6= 0x0

= 0x0

Unfolding this predicate naturally yields two dis-
juncts, one corresponding to the empty list, and
the other to the non empty list. In the empty list
case, the α · list edge disappears (it is replaced by
an empty region) and the fact that α is the null
pointer. However, as the predicate α 6= 0x0 is car-
ried out in D

♯
N, asserting that α = 0x0 results in

the ⊥ abstract value in D
♯
N (meaning that no state

satisfies both properties). On the other hand, the
non empty list case corresponds to the abstract el-
ement below, where the first element of the list is
completely exposed:

&l

&r

α

β

α′

γ′

next

data

list

= 0x0

Thus, in this case, the unfolding actually does not
generate an additional disjunct.

3.3.2 Unfolding segments

The concretization of segments is also based on syn-
tactic unfolding, as shown in Section 2.2.5, thus seg-
ments can also be unfolded. However, we also ob-
served the base case was different, which we expect
the unfolding to reflect.

Moreover, segments may need be unfolded from
either end. Indeed, it may make sense to refine the
abstract information about the tail of a segment,
e.g., in the case of a backward traversal of a doubly-
linked list.

Thus, we start with a preliminary result, which
will be useful in order to set up the unfolding op-
erator for segments. This result states that a seg-

ment of length k = i+ j (segment length was intro-
duced in Section 2.2.5) can be split into a segment
of length i and a segment of length j, which are
both labeled with the same inductive in the middle
(however, that inductive may not be of the same
kind as those at both ends of the initial segment):

Theorem 2. Segment splitting.

Let (σ, ν) ∈ γS(α · ι
i+j
∗= α′ · ι′). Then, there exist

an inductive ι′′, a fresh node α′′ 6∈ dom(ν), and
a concrete value v such that:

(σ, ν[α′′ ← v]) ∈ γS(α · ι
i
∗= α′′ · ι′′

∗ α′′ · ι′′
j
∗= α′ · ι′)

This result can be proved by induction on i. The
new inductive definition ι′′ can actually be known
more precisely, by determining what other induc-
tive definitions may arise, when unfolding ι (e.g., if
ι is list, then ι′′ may only be list).

Using graphical representations, this theorem
states that whenever a concrete state can be de-
scribed by

α α′

ι ι′

i+ j

then, it can also be described by some element of
the form below, for a certain ι′′:

α α′′ α′

ι ι′′

i
ι′′ ι′

j

In the following, we consider the two practically in-
teresting cases:
• if i = 1, this corresponds to an unfolding at

the head of the structure;
• if j = 1, this corresponds to an unfolding at

the tail of the structure.
Furthermore, when ι = ι′, the empty segment will
also need to be considered: it unfolds into an empty
region, and generates the constraints that its des-
tination and origin be equal, and the same for the
arguments at the destination and at the origin, fol-
lowing segment concretization (Section 2.2.5).

Forward segment unfolding: Let us consider
an abstract element containing the segment α · ι ∗=
α′ · ι′. The forward unfolding algorithm carries out
the following steps:
• generate a disjunct for the empty segment;
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• apply the splitting result with i = 1 and gen-
erate one disjunct per choice of an inductive
predicate in a rule of ι, and per intermedi-
ate inductive ι′′ (e.g., when unfolding an tree

segment, two cases would appear, where the
segment follows the left and right subtrees);
in each case, a new set of edges should gener-
ated as in the case of inductive unfolding, and
pure constraints should be over-approximated
in the numerical domain using guardN.

This algorithm is sound in the same sense as in the-
orem 1.

Forward segment unfolding is very useful when
analyzing multi-cursor traversal algorithms. For in-
stance, let us consider the case of a tree structure
(described by tree), and the analysis of a procedure
that inputs a tree, uses a first cursor to look down
into the tree, and then attempts to visit the struc-
ture with another cursor; then we get the situation
below, with a tree structure, which is summarized
into two parts (a segment and a sub-tree):

α β
tree tree tree

The empty segment case corresponds to the case
where α = β; in practice, the unfolding should then
rename β into α everywhere in the graph, and pro-
duce:

α

= β

tree

The empty tree rule generate no disjunct here, as
it does not generate any new inductive predicate.
However, the other tree rule does generate two dis-
juncts since it generates two inductive predicates
corresponding to the left and right sub-trees.

α

γl

γr

βleft

right

tree

tree

α

γl

γr β

left

right

tree

tree

Intuitively, these two disjuncts correspond to the
cases where the target of the initial segment is in
the left or in the right sub-tree.

Backward segment unfolding: The principle
of backward segment unfolding is the same as for
the forward unfolding, except that it operates on
the target node. The soundness result is also simi-
lar.

Backward segment unfolding is useful when an-
alyzing algorithms that attempt to traverse data
structures backwards, which can be done, e.g., with
a doubly-linked list. Let us consider the segment
below:

α α′

dll(β) dll(β′)

The backward unfolding of this segment produces
two disjuncts, including the empty segment, which
comes with the constraints that α = α′ and that
β = β′ and the element below:

α β′

α′

β′′

next

prev

dll(β) dll(β′′)

3.3.3 Unfolding control

In the last two subsections, we have shown how to
unfold a specific edge. However, in practice it is not
always clear what edge should be unfolded, and de-
termining which unfolding to perform is non trivial
in general. Before we formalize rules triggering un-
folding, we consider a few basic cases.

Unfolding triggered from a main argument:

When the analysis needs to look up for an edge of
the form α · f 7→ β (where α and f are given) while
no such edge exists, and if α is the origin of an in-
ductive predicate α · ι, it is natural to unfold that
edge. Indeed, unfolding an inductive predicate as-
sociated to α tends to expose fields from α. This is
how we treated the list definition in the list rever-
sal example, in Section 3.1. It actually appears that
this unfolding did succeed, since the non empty list
rule exposes fields next and data, starting from α
and since α is known to be non null so that the
empty list rule does not apply.

Repeated unfolding: The case where α is the
origin of a segment edge can be treated in a similar
way, yet it may generate some complications, when
the segment may unfold into the empty segment.
Let us consider the concrete example below where
we try to expose a left field starting from the root
of a tree, which is known to be non empty and which
is decomposed into a segment and a sub-tree, as in
Section 3.3.2:

α β

6= 0x0

tree tree tree
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Then, the disjunct corresponding to the empty seg-
ment is:

α

6= 0x0

tree

We can see that the first unfolding failed to ex-
pose the left field, yet a second unfolding step will
achieve this:

α

γl

γr

left

right

tree

tree

Indirect unfolding: Some cases are even trick-
ier. Let us consider the doubly-linked list case be-
low, assuming that we are interested in exposing
two successive prev fields from α′ (we also assume
all necessary non required null-ness conditions are
guaranteed):

α α′

dll(β) dll(β′) dll(β′)

The first one is summarized by the inductive edge
which starts from α′, since α′ · dll(β′) expresses α′

is the address of a doubly-linked list element. Un-
folding that predicate results in the following:

α α′ α′′

β′

dll(β) dll(β′)

next

prev

dll(α′)

The prev field from α′ is exposed and corresponds
to node β′; however, unfolding another prev field
from β′ is not trivial, since β′ is not the origin of
any inductive edge. Yet, we remark that it is also
the parameter of the inductive predicate at the end-
point of the segment. This means that β′ is actually
the address of a doubly-linked list element that is
summarized as part of the segment, which suggests
we should unfold the segment from its end. Apply-
ing the backward segment unfolding algorithm of
Section 3.3.2, we obtain the following:

α β′

α′ α′′

β′′

dll(β) dll(β′′)

nextnext

prev
prev

dll(α′)

Thus, we note that in this case, exposing all fields
needed to evaluate an expression of the form x ->

next -> next (where α denotes the content of x)
requires unfolding two distinct summarized regions
(first, the inductive edge, and the segment, back-
wards).

The unfolding problem: As we could see in ex-
amples, deciding which inductive edge to unfold is
not trivial; it is actually a non computable issue
due to the expressiveness of inductive definitions.
In practice, a static analyzer should rely on strate-
gies which may fail to determine the right unfolding.
When the strategies fail, the analysis will typically
suffer a serious loss of precision.

The strategy implemented in Xisa [20] relies on
the following principles:
• it relies on a notion of types of inductive pa-

rameters, which relates fields to ranks, cor-
responding to the elements they point to,
in sequences of unfoldings; for instance, in
a doubly-linked list, field next points to the
next element whereas field prev points to the
previous one; for instance, in the figure below,
the first graph is “more abstract” than the sec-
ond one; intuitively, dereferencing the prev

field from α1 in the first graph requires un-
folding the segment, which is consistent with
the fact α1 appears as a parameter of the seg-
ment:

α0

α1

α2 0x0

dll(0x0) dll(α1)

next

prev

0x0 α0 α1 α2 0x0

next

prev

next

prev

next

prev

• it iterates a bounded number of repeated un-
foldings (so as to ensure termination), and
fails if the points-to edge required by the anal-
ysis does not unfold after k iterations.

3.4 Folding

We now study operations that aim at folding sets
of atomic predicates into more abstract properties,
involving inductive predicates.
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3.4.1 Folding principles

In Section 3.1, we noticed that some sort of widen-
ing operator was required in order to infer shape
invariants, and we remarked that this widening op-
erator should basically do the opposite of unfolding.

There are actually many flavors of folding in the
literature. We now set up the foundations for this
class of domain operations, before we provide an
in-depth discussion of the two which are actually
needed in our analysis.

Folding applications: Widening is a first appli-
cation for folding, since repeated unfolding of induc-
tive predicates is a potential source of non termina-
tion. However, folding is required in other operators
as well:
• Inclusion checking takes two abstract ele-

ments X,Y ∈ M
♯ and attempts to establish

that the concretization of X is included in
that of Y (this check is required to establish
that a series of iterations to compute an ab-
stract post-fixpoint converged). One way to
achieve this is to refine Y (by unfolding some
inductive predicates) and to try to special-
ize it by successive unfolding into X , how-
ever this process is not obvious, as each step
should under-approximate Y (otherwise, the
process would not be sound) and the unfold-
ing operator of Section 3.3 produces over-
approximations (theorem 1), and not under-
approximations. Therefore, it seems much
easier to coarsen X by repeated folding un-
til we reach Y ; then, it means we obtain a
proof that γ(X) ⊆ γ(Y ).
• Unary abstraction takes an abstract ele-

ment X and discards information that does
not sound immediately useful, so as to pro-
duce a simpler element Y . This may be desir-
able even when termination is not a concern,
as it may reduce the cost of subsequent anal-
ysis steps, so that the cost of computing a
more abstract element is worthwhile. A typi-
cal way to achieve this is to replace some pre-
cise points-to predicates with some more ab-
stract inductive predicates. In practice, this
amounts to forgetting the number of elements
of a list (resp., the overall structure of a tree),
keeping only the fact that the whole structure
is a list (resp., a tree).

These problems are all closely related, as they all

require to collapse parts of the graphs into coarser
properties. The algorithms to solve these problems
are actually also related, and face similar difficul-
ties, which we discuss in the following.

Per region folding: Section 3.3 shows that un-
folding a given inductive or segment edge is rather
straightforward, yet determining which edge to un-
fold is hard. Finding out how to fold a set of edges
that has yet to be determined is even harder, as
there exist a very high number of possible choices
(exponential in the number of edges in the graph).
However, when a set of edges corresponding to an
instance of a more abstract inductive predicate is
known, checking that this folding is sound is easier.

Let (ǫ̂♯, S,N) be an abstract value, such that
graph S can be split into two sets of edges S0 and
S1 such that S = S0 ⊎ S1. We also assume that
γS(S0) ⊆ γS(α · ι). In other words, it is sound to
fold S0 into α · ι. Then, the concretization rules of
figure 2.2(c) allow to prove that:

γS(S) = γS(S0 ⊎ S1) ⊆ γS({α · ι} ⊎ S1)

This property is actually a direct consequence of
separation. This means that graphs can be weak-
ened region by region: at each step, we simply need
to select a set of edges to weaken, and iterate this
process.

Therefore, folding algorithms should carry out
two important steps:
• determination of disjoint regions, that

are candidate to folding;
• search for folded inductive predicates

over-approximating each region.
The second step can be done in a completely inde-
pendent way for each separate regions.

The naming issue: When attempting to check
inclusion of two abstract elements or to compute
an over-approximation of their join, the per-region
weakening discussed in the previous paragraph ac-
tually needs be performed in both graphs in the
same time. For instance, inclusion checking should
compute compatible partitions of both inputs, to
that inclusion checking can succeed. Otherwise, in-
clusion checking will not succeed.

This imposes a constraint upon the inclusion
checking algorithm, but it also brings the oppor-
tunity for one graph to help partition the other one
and vice versa. Therefore the two steps mentioned
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above will actually be performed on both graphs in
the same time.

However, symbolic node names may not be con-
sistent in both graphs. This is actually impossible
to avoid since graphs may not have the same num-
bers of nodes, e.g., when one has a very “concrete”
representation for a memory region and the other
simply contains an inductive predicate for that re-
gion. Similarly, join and widening operators need
to produce a new abstract element, with a set of
symbolic nodes that may not be in a one-to-one
correspondence with those of the arguments.

Therefore, folding algorithms should maintain
consistent naming relations between the abstract
elements they are applied to or that they gener-
ate. These node mappings will also indirectly relate
memory regions: for instance, in the case of a join,
if node α (resp., β) of the first argument is bound
to node α′ (resp., β′) of the second argument, then
a list segment between α and β should naturally
be related to a structure between α′ and β′; if that
structure can also be folded into a list segments,
then both regions can be abstracted by a list seg-
ment.

Dealing with numerical invariants: Folding
should also take care of numerical abstract values;
there are actually two separate issues related to the
numerical part:
• since syntactic unfolding also generates “pure

formulas” that constrain the values denoted
by graph symbolic nodes, doing the reverse
folding operation requires to check that these
constraints are actually satisfied;
• after applying folding, a consistent and weak-

ened numeric abstract element needs be com-
puted.

However, since numerical abstract values express
constraints on symbolic variables, the naming is-
sue that we mentioned above also needs be taken
care of when considering these two points. To do
that, we will also rely on the node mappings that
relate nodes of the arguments and results of folding
algorithms.

3.4.2 Inclusion checking

We are now going to discuss the two main forms of
folding that we use in our analysis, that is inclusion
checking and widening. Since inclusion checking is
used in the definition of join, we consider it first.

A simple example: Let us consider an example
inspired by some of the abstract elements found in
Section 3.1, and try to check the inclusion of Xl into
Xr, where:
• Xl is the abstract element

α0

&l

α1 α2

γ3

next

data

list

• Xr is the abstract element
β0

&l

β1

list

Note that we assume the symbolic nodes of both
graphs belong to disjoint name spaces to clear any
confusion. As a first step, we note that both α0 and
β0 denote the value &l, thus it makes sense to bind
them together. Then, we note that both graphs con-
tain an edge from these nodes, that correspond to
the null offset; these edges respectively point to α1

and β1, which suggests that we should:
• bind α1 and β1;
• conclude that the “abstract region” α0 7→ α1

is included into β0 7→ β1 (they are actually
equal).

At this stage, to finish checking that Xl is included
in Xr, we simply need to check the inclusion of

α1 α2

γ3

next

data

list

into

β1

list

To do that, we can note that unfolding the inductive
predicate in the right hand side will produce a graph
that is equal to the left hand side up to node renam-
ing, and with the constraint that β1 (mapped to α1)
be non null clearly α1 cannot be the null pointer,
as it is the origin of several points-to edges.

Inclusion checking algorithm: Following the
principles outlined in Section 3.4.1, the inclusion
checking algorithm should maintain node mappings
of the form Φ : V♯ −→ V♯, mapping nodes of the
right argument into nodes of the left argument.
Each step should refine that mapping and/or prove
the inclusion of sub-graphs (which then get dis-
carded). In the example shown above, we would use
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node mapping Φ defined by:

Φ : β0 7→ α0

β1 7→ α1

In the example, we noticed that the mapping may
get extended when matching regions, thus the inclu-
sion checking algorithm should infer both mappings
in the same time as it also weakens sets of edges into
inductive predicates in the left argument.

This process can be seen as a rewriting process
over configurations of the form (Sl, Sr,Φ), where:
• Sl (resp., Sr) is the current leftover of the

shape part of the left (resp., right) argument;
• Φ is the current mapping.

Furthermore, the left and right numerical invariants

Nl and Nr are supposed fixed. We let
⊑
 denote the

rewriting relation used to go from one configura-
tion to another (we give its definition in the next
paragraph). The foundation of the proof of correct-
ness of the algorithm is the following property that
should be preserved by all rewriting rules:
[

(Sl, Sr,Φ)
⊑
 (S′

l , S
′
r,Φ

′)
∧ (∀(σ, ν) ∈ γM(S

′
l , Nl), (σ, ν ◦ Φ′) ∈ γS(S

′
r))

]

=⇒ ∀(σ, ν) ∈ γM(Sl, Nl), (σ, ν ◦ Φ
′) ∈ γS(Sr)

(3.1)
When applied to (ǫ̂♯l , Sl, Nl), (ǫ̂

♯
r, Sr, Nr) ∈ S♯, the

inclusion checking algorithm proceeds as follows:
1. first, it derives an initial mapping Φ such that

Φ(αsider) = αl if and only if ∃x ∈ X, ǫ̂♯l (x) =
αl ∧ ǫ̂♯r(x) = αr;

2. then, it applies progression rules repeatedly,
rewriting one configuration into another by

applying
⊑
 from initial state (Sl, Sr,Φ), until

both shape arguments get empty or until no
rule applies.

The algorithm concludes inclusion holds (which we
write (Sl, Nl) ⊑

Φ′

S (Sr, Nr)) if a configuration of the
form (emp, emp,Φ′) is eventually reached, and if
sound inclusion checking operator ⊑N of D

♯
N estab-

lishes that Nl ⊑N Nr ◦ Φ′ holds; otherwise, it does
not conclude (it is incomplete).

Shape inclusion checking rules: Each rewrit-
ing step builds a fragment of a proof tree, show-
ing that the inclusion holds. The most signif-
icant rewriting rules are shown in figure 3.1.
Rule (i− sep) makes inclusion checking steps lo-
cal; rule (i − pt) and rule (i− ind) allow to match

regions described by the same edges up-to renaming
(a similar rule (i− seg) exists for segments and is
not shown); rule (i− segind) and rule (i − segseg)
split segments or inductive predicates in the right
hand side to over-approximate segments in the left
hand side; last, rule (i−U) unfolds an inductive
predicate in the right hand side so as to try to prove
the left hand side can be folded into that predi-
cate. Some rules, like rule (i− pt) enrich mapping
Φ. We note that rule (i−U) requires a sound nu-
merical domain operator proveN, to discharge proof
obligations that arise in unfolding definitions in the
right hand side; it should meet the following sound-
ness condition:

∀ν ∈ N, proveN(N,F ) = true =⇒ ν ⊢ F

A more exhaustive version of these rules is shown
in [20]; rewriting relation

⊑
 follows these.

Soundness: Each rule can be proved sound us-
ing the concretization rules of figure 2.2(c). Fur-
thermore, equation 3.1 can be proved by induction

on the length of sequences of rewritings using
⊑
 .

The soundness of the inclusion checking follows:

Theorem 3. Soundness of inclusion checking.

If (ǫ̂♯l , Sl, Nl) ⊑Φ′

S (ǫ̂♯r, Sr, Nr), then:

γS(ǫ̂
♯
l , Sl, Nl) ⊆ γS(ǫ̂

♯
r, Sr, Nr)

3.4.3 Join and widening

Join and widening operators should return an over-
approximation of their arguments (we only consider
binary operators here). In addition to that, widen-
ing operators enforce termination, that is, any se-
quence of iterations of this operator will eventually
reach a limit. In this section, we introduce both join
and widening operators. The principle of the join al-
gorithm is to select carefully pairs of regions in both
arguments, and to guess an over-approximation for
each pair of regions:
• when those regions are equal up-to renaming,

computing an over-approximation for both of
them is trivial;
• otherwise, the algorithm will guess an induc-

tive predicate and try to prove that both re-
gions can be proved included in this predicate
using ⊑S.
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(Sl, Sr,Φ)
⊑
 (S′

l , S
′
r,Φ

′)

(Sl ∗ s̊l, Sr ∗ s̊r,Φ)
⊑
 (S′

l ∗ s̊l, S
′
r ∗ s̊r,Φ

′)

i− sep

Φ(αr) = αl Φ′ = Φ ⊎ {βr 7→ βl}

(αl · f
s
7→ βl, αr · f

s
7→ βr,Φ)

⊑
 (emp, emp,Φ′)

i− pt

Φ(αr) = αl Φ(β̄r) = β̄l

(αl · ι(β̄l), αr · ι(β̄r),Φ)
⊑
 (emp, emp,Φ)

i− ind

βr is fresh Φ(αr) = αl Φ′ = Φ ⊎ {βr 7→ βl}

(αl · ι ∗= βl · ι ∗ Sl, αr · ι,Φ)
⊑
 (Sl, βr · ι,Φ)

i− segind

βr is fresh Φ(αr) = αl Φ′ = Φ ⊎ {βr 7→ βl}

(αl · ι ∗= βl · ι ∗ Sl, αr · ι ∗= γr · ι,Φ)
⊑
 (Sl, βr · ι ∗= γr · ι,Φ′)

i− segseg

e is an inductive or a segment e
U
−→ (Sr, F ) proveN(Nl, F ◦Φ) = true

(Sl, e,Φ)
⊑
 (Sl, Sr,Φ)

i−U

Figure 3.1: Rules for checking inclusion

A simple example: We consider a simple exam-
ple of a program that adds a random number of
elements to a list structure.
• we assume that the program starts with the

abstract pre-condition:
α0

&x

β0

list

• then, after one iteration, we get the same
structure with one element added at the be-
ginning:

α1

&x

β1 γ1

δ1

next

data

list

As for the inclusion checking, we need to maintain
a pairing between nodes, but we actually have to
relate each such mapping to a node in the result ab-
stract value that is being built; for the sake of clarity
we will simply let pairs denote names of nodes in
the result instead. Since α0 (resp., α1) represents
&x, it makes sense to pair these two nodes together.
We remark that both graphs contain a points-to
edge starting from these nodes, so it is a reasonable
choice to pair these two edges, and their destina-
tions as well. At this stage, we get the (fragment

of) join result below:

α0, α1

&x

β0, β1

At this stage, the input graphs differ. Yet, the
first argument contains an inductive edge from
(β0, β1); moreover the inclusion checking algorithm
can prove that β1 · list over-approximates the re-
maining part of the second argument:

β1 γ1

δ1

next

data

list

This means that we can over-approximate both re-
gions with inductive predicate (β0, β1) · list, and we
get the join result:

α0, α1

&x

β0, β1

list

That result is equal to the first argument (up-to
renaming), which means that this is actually a fix-
point.
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Shape join algorithm and rules: The steps of
the join algorithm are very similar to those of the
inclusion checking (Section 3.4.2), thus we only give
the main definitions and refer the reader to [20] for
details.

After initializing an initial node mapping using
the abstract environments, the join algorithm will
perform a series of rewriting steps using configura-
tions of the form (Sl, Sr, Sout,Ψ), where:
• Sl (resp., Sr) is the leftover of the left

(resp., right) argument that needs to be over-
approximated;
• Sout over-approximates the parts of both in-

puts that were treated already;
• Ψ : V

♯ −→ V
♯ × V

♯ maps nodes of Sout into
pairs of nodes of both inputs that the over-
approximate (in the following, we let Ψl,Ψr :
V♯ −→ V♯ be defined by Ψl(α) = αl and
Ψr(α) = αr if Ψ(α) = (αl, αr)).

Numerical parts Nl, Nr do not get modified in this
process (thus they are omitted in the configura-
tions). The algorithm proceeds by a sequence of
rewriting steps on such configurations, using rewrite
relation

⊔
 , which is defined by a symmetric set

of rules. The most salient rewriting rules of
⊔
 are

shown in figure 3.2 (each rule is presented only in
one side).

Rule (⊔− ∗) (based on the separation princi-
ple) expresses that local rewriting is sound, and al-
lows to define the other rules locally. Rule (⊔−pt)
over-approximates a pair of matching points-to
edges and extends the node mapping accord-
ingly. Rule (⊔−ind) (resp., rule (⊔−ext)) over-
approximates an inductive predicate (resp., seg-
ment) and a set of edges which can be proved in-
cluded in a predicate of the same form by inclusion
checking (Section 3.4.2), with another predicate of
the same form. Rule (⊔−ext) allows to introduce
a segment, corresponding to an empty segment on
one side after checking the inclusion of a region in a
segment predicate in the other side (Section 3.4.2).
The soundness of each step of the join algorithm is
based on the property below:

(Sl, Sr, Sout,Ψ)
⊔
 (S′

l , S
′
r, S

′
out,Ψ

′)

=⇒







∀i ∈ {l, r},
γM(Si ∗ Ψi(Sout), Ni)
⊆ γM(S

′
i ∗ Ψ

′
i(S

′
out), Ni)

(3.2)

This means that each rewriting step will only
weaken both arguments. The join algorithm starts

from a configuration of the form (Sl, Sr, emp,Ψ),
where Ψ is computed from the abstract environ-
ments. It succeeds when it reaches a configuration
of the form (emp, emp, Sout,Ψ

′), that is, when all
edges of both arguments were removed and over-
approximated in the the result Sout using a rewrit-
ing rule. In case of success, the shape join is defined
by Sl ⊔S Sr = Sout.

After reaching such a configuration, numerical
abstract values Nl, Nr can be over-approximated by
applying a sound abstract join operator ⊔N, after
renaming the symbolic nodes using the final map-
ping Ψ′. Then, (Sl, Nl) ⊔M (Sr, Nr) = (Sout, Nout),
and ⊔S♯ : S♯ × S♯ −→ S♯ is defined similarly (by
adding the abstract environment).

Soundness: The proof of soundness of each rule
follows from the definition of the concretization of
figure 2.2(c). By combining the property of equa-
tion 3.2, we can prove that the join algorithm is
sound, in the sense that it produces a result which
over-approximates both inputs:

Theorem 4. Soundness of the shape join.

Let us assume that the shape join algorithm suc-
ceeds. Then:

{

γM(Sl, Nl) ⊆ γM(Sout, Nout)
γM(Sr, Nr) ⊆ γM(Sout, Nout)

Widening: So far, we focused on the soundness
of the join operator and did not discuss how to en-
force termination of sequences of iterates.

A first important result is that sequences of joins
over shape abstract values terminate:

Theorem 5. Termination.

Operator ⊔S is a widening on D
♯
S.

The proof is based on the following arguments:
• the number of points-to edges is decreasing,

and after finitely many iterations points-to
edges are stable; moreover, after that point
the set of nodes in the graph is also stable;
• once the points-to edges are stable, only

rule (⊔−intro) may introduce new edges,
however this rule may not be applied more
than a fixed number of times (equal to the
number of node pairs in the graph);
• when rule (⊔−intro) does not apply anymore,

the number of edges may only decrease.
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(Sl, Sr, Sout,Ψ)
⊔
 (S′

l , S
′
r, S

′
out,Ψ)

(Sl ∗ s̊l, Sr ∗ s̊r, Sout,Ψ)
⊔
 (S′

l ∗ s̊l, S
′
r ∗ s̊r, S

′
out,Ψ)

⊔− ∗

Ψ(αout) = (αl, αr) Ψ′ = Ψ ⊎ {βout 7→ (βl, βr)}

(αl · f
s
7→ βl, αr · f

s
7→ βr, emp,Ψ)

⊔
 (emp, emp, αout · f

s
7→ βout,Ψ

′)
⊔−pt

Ψ(αout) = (αl, αr) (Sr, Nr) ⊑Φ αr · ι where Φ = {αr 7→ αr}

(αl · ι, Sr, emp,Ψ)
⊔
 (emp, emp, αout · ι,Ψ)

⊔−ind

Ψ(αout) = (αl, αr) Ψ(βout) = (αl, βr) (Sr, N1) ⊑Φ αr · ι ∗= βr · ι with Φ = {αr 7→ αr, βr 7→ βr}

(emp, Sr, emp,Ψ)
⊔
 (emp, emp, αout · ι ∗= βout · ι,Ψ)

⊔−intro

Ψ(αout) = (αl, αr) Ψ(βout) = (βl, βr) (Sr, Nr) ⊑Φ αr · ι ∗= βr · ι with Φ = {αr 7→ αr, βr 7→ βr}

(αl · ι ∗= βl · ι, Sr, emp,Ψ)
⊔
 (emp, emp, αout · ι ∗= βout · ι,Ψ)

⊔−ext

Figure 3.2: Rules for the computation of a shape join

A consequence of this result is that, if we apply a
widening operator ▽N inside D

♯
N instead of ⊔N, we

obtain a widening ▽ operator over S♯:

Theorem 6. Widening.

Operator ▽S♯ obtained by combining ⊔S and ▽N

is a widening operator on S♯.

Intuitively, we can prove the convergence of any
sequence of iterates (ǫ̂♯n, Sn, Nn)n∈N computed us-
ing ▽S♯ as follows:
• since ▽S is a widening operator (theorem 5),

the iteration sequence on graphs (Sn)n∈N

eventually stabilizes; let us call n0 the rank
at which it becomes stable;
• then, for all n greater than n0, ǫ̂♯n = ǫ̂♯n0

and
Sn = Sn0

(up to renaming), which means only
the numerical abstract value may continue to
evolve; however, since ▽N is a widening oper-
ator over D

♯
N, (Nn)n∈N, n≥n0

eventually stabi-
lizes at some rank n1.

Thus, sequence (ǫ̂♯n, Sn, Nn)n∈N is stable from rank
n1. This proof corresponds to an instance of the
widening of the cofibered domain [119]: the itera-
tion sequence over elements of S♯ first stabilizes in
the lattice of graphs, and then all further iterates
will use the same numerical lattice, so it will con-
verge there too.

Examples: In the example of Section 3.1, the se-
quence of widening iterates converges after two it-

erations, and compute the invariant shown at the
end of that section

Let us consider a numeric example, where one
integer variable i starts at 0 and gets incremented
indefinitely. The shape part is stable, and corre-
sponds to the graph below:

α β

i

Thus, for all iterates, numerical abstract values con-
sist in constraints over symbolic nodes α, β. As-
suming D

♯
N is the domain of intervals, at itera-

tion 0, N0(β) = [0, 0], and at iteration 1, N1 =
N0▽N[1, 1] = [0,+∞[. Thus, we observe that the
analysis of a program which performs only numer-
ical computations is similar to what would be ob-
tained with a standard static analysis such as As-

trée [11].
Several complex examples mixing shape and nu-

merical information (list of length n, binary search
tree, red-black trees) are shown in [20].

3.4.4 Other global abstraction mech-

anisms

Other flavors of global abstraction operators for
widening can be found in the literature.

First, we note that our folding rules are derived
from separation logic and make fast inclusion check-
ing and join algorithms possible (despite the cost of
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graph traversal algorithms) compared to abstract
domains made of unstructured, quantified logical
formulas [54].

Canonicalization: In particular, a canonicaliza-
tion [109, 44] is an upper closure operator can :

D
♯
S −→ D

♯
S, such that can(D♯

S) is a lattice of finite
height. TVLA relies on a canonicalization opera-
tor [109] which “blurs” logical structures, according
to some pre-defined sets of predicates. Other canon-
icalization (as in SpaceInvader [44]) operators use
sets of rewriting rules, the proof of which is based
on the separation principle, in the same way as for
the inclusion checking rules of figure 3.1 of the join
rules of figure 3.2. Applying such an operator to
the power-set completion of D

♯
S also allows to en-

force termination of shape analyses. However, it is
harder to extend to product domains, e.g., with a
numerical domain with infinite height (in that case,
a combination with a widening is required, yet is
harder to design and implement).

Comparing widening and canonicalization

approaches: In theory, widening operators [32]
are more powerful than analyses based on finite
height abstraction, mainly due to the fact the
widening iterates are not fixed in advance, and
the analysis may generate very different widening
chains depending on the program, as they are his-
tory guided. Furthermore, widening operators fit
particularly well with standard static analyzers de-
sign, and lots of results have been found on how to
apply them efficiently [31, 11].

Yet, in practice, canonicalization operators are
also relevant. Indeed, when too many unfolding op-
erations are performed, abstract values that consist
in very large disjunctions may arise, which may pre-
vent the analysis from scaling to very large blocks of
code with no widening point. In the precision point
of view, both rewriting rule canonicalization opera-
tors and our widening operators are determined by
the set of folding rules.

As of now, Xisa [20] relies solely on widening
and this turned out well for the analysis of medium
sized examples, yet we consider the addition of a
canonicalization operator is necessary in the long
term (Section 6.3).

Comparing combined analyses and separate

analyses: Our analysis infers both shape and nu-

merical properties in a single analysis phase. On the
other hand, other authors proposed [76] to split the
process in two analyses. However, it is well known
that combining both shape and numerical analy-
ses into one single abstract interpretation using re-
duced product [29] or cofibered domains [119] usu-
ally yields more precise results as one domain may
benefit from information in the other and vice versa.
We indeed observed this when considering data
structure which induce relations between shape and
numerical predicates, in both directions [20]. This
effect can be seen in folding rules that rely on the
checking of numerical conditions as in rule (i−U) or
indirectly in rule (⊔−ext).

3.5 A domain signature

Based on the abstraction of chapter 2, we have built
an abstract domain for the abstraction of sets of
memory states, with transfer functions, inclusion
test, join and widening, that is now suitable for the
static analysis of imperative programs.

It appears that this domain takes a numerical
domain D

♯
N as a parameter and its transfer functions

and folding operators all refer to those of D
♯
N. There-

fore, our abstract domain appears as a functor, tak-
ing a numerical domain as a parameter, and return-
ing a domain for the abstraction of sets of memory
states. Indeed, figure 3.3 collects the definitions of
the elements and functions that D

♯
N was required to

provide (each of them should meet usual assump-
tions of soundness and termination for widening).
Given such a numerical abstract domain, we have
provided transfer functions for abstract domain S

♯,
the signature of which is shown in figure 3.4 which
also enjoy usual soundness and termination prop-
erties (for the sake of concision, we do not recall
these properties here, as they are either classic or
were given in previous sections).

We can remark that the signatures of D
♯
N and

S♯ are not similar. In particular, D
♯
N was required

to provide a function proveN, to attempt to prove
that a numerical abstract value entails some nu-
meric predicate is true. Furthermore, D

♯
N handles

expressions of symbolic nodes whereas S
♯ handles

program expressions (for assignment and condition
test transfer functions). Besides, S♯ also provides an
unfold operation which takes an abstract value and
an l-value to materialize (Section 3.3). On the other
hand, they both provide inclusion check, join and
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widening operators with very similar signatures,
even though these are based on radically different
algorithms.

least element
⊥ ∈ D

♯
N

assignment operator
assignN : D

♯
N × LvalsV♯ × ExprsV♯ −→ D

♯
N

condition test transfer function
guardN : D

♯
N × ExprsV♯ × B −→ D

♯
N

conservative condition verification
proveN : D

♯
N × ExprsV♯ −→ B

inclusion test
⊑N: D

♯
N × D

♯
N −→ B

conservative abstract join
⊔N : D

♯
N × D

♯
N −→ D

♯
N

widening operator
▽N : D

♯
N × D

♯
N −→ D

♯
N

Figure 3.3: Numerical domain

assignment operator
assignS♯ : S♯ × LvalsX × ExprsX −→ S♯

condition test transfer function
guardS♯ : S♯ × ExprsX × B −→ S♯

unfolding operator
unfold : S♯ × LvalsX −→

∨

S♯

inclusion test
⊑S♯ : S♯ × S♯ −→ B

conservative abstract join
⊔S♯ : S♯ × S♯ −→ S♯

widening operator
▽S♯ : S♯ × S♯ −→ S♯

Figure 3.4: Shape domain

3.6 Implementation

We implemented the Xisa shape analyzer, an aca-
demic prototype, based on the abstract domain of
chapter 2 and the abstract interpretation based
analysis described in this chapter. The table below
displays an excerpt of the results [21, 20] obtained
when applying this analyzer to micro-benchmarks
and medium size codes, including examples of clas-
sical structures (singly-linked lists, binary search
trees), more complex structures (doubly-linked list,
binary search trees with parent pointers) and a sim-
ple device driver example. Columns respectively list
numbers of lines (in LOCs), analysis runtime (in
milliseconds), peak number of disjuncts and total
numbers of iterations (including iterations in nested
loops, if applicable).

These experiments shows the analysis generates
rather low number of disjuncts and converge in rel-
atively low numbers of iterates. The higher number
of iterates observed for the device driver example
takes into account several nested loops, so in fact,
abstract iterations for each loop converge fast.

Example size time peak iters

list reverse 19 7 1 3
list remove element 27 16 4 6
list insertion sort 56 21 4 7

dll copy 50 53 2 3
dll insert 40 38 2 4
binary search tree

find 23 10 2 4
binary search tree

insert 150 83 5 5

scull driver 894 9 710 4 16
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Chapter 4

Analysis of

low-level C

programs

So far, we did not consider a full featured pro-
gramming language and all the examples consid-
ered in chapter 2 and chapter 3 were either writ-
ten in an unspecified imperative language, which
could be seen as a subset of Java or C. However,
in practice, we intend to analyze a real program-
ming language and handle most of its features, in-
cluding low level memory manipulations. Many au-
thors proposed very precise encodings of such low
level features so as to run symbolic model check-
ing [25, 120] or verification [23, 26] tools. Yet, few
abstractions were proposed for such programs. An-
toine Miné [88] designed a very powerful analysis
yet which does not handle unbounded structures.
Moreover, [17] proposed an analysis for lists with
elements of non fixed length.

In this chapter, we show that the abstract
domain that was presented in chapter 2 can be
adapted to the analysis of ANSI C 99 [4] programs,
and that the static analysis algorithms of chap-
ter 3 need only minimal adaptations. The special-
ization of our shape analysis framework which are
presented in this chapter were designed during the
Master Internship of Vincent Laviron (March 2009
till September 2009) and were published in [71];
in particular, this work focuses on the analysis of
a program that evaluates and simplifies arithmetic
expressions represented by structures with nested
unions and structures. Furthermore, we proposed a
classification for pointer models in [117].

Section 4.1 overviews the main issues that arise
when analyzing C programs, including dependen-

cies on the implementation. Section 4.2 extends the
handling of contiguous regions. Section 4.3 shows
how multiple views on regions can be treated in
our framework. Last, Section 4.4 focuses on issues
related to memory management and Section 4.5 as-
sesses implementation results.

4.1 Overview of specific issues

related to C programs

In the previous chapters, points-to edges always rep-
resented memory cells corresponding to structure
fields, and storing either base type values, or point-
ers to the base address of other structures. For in-
stance, the graph below describes a structure with
an integer field and a pointer field, which points
to another structure, with two integer fields (in this
graph, only nodes corresponding to a value of a base
type are labeled):

α β

γ

a

b

x

y

Such a structure corresponds to an instance of the
type definition:

typedef struct {
int a;
tt_1 ⋆ b;

} tt_0
typedef struct {

int x;
int y;

} tt_1;

Nested structures: However, when tt_1 is
never used out independently, it is also common to
define a nested structure, where fields x and y are
inside object tt_0:

typedef struct {
int a;
struct {

int x;
int y;

} b;
} tt

The picture below shows an excerpt of a concrete
state containing an instance of such a structure:
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64

112

24

a

b · x

b · y

The graph corresponding to the instance of tt_0
does not describe tt; instead, all points-to edges
should start from the same base address, and should
correspond respectively to the offsets of fields a, b·x
and b ·y (i.e., β denotes 64, γ denotes 112 and δ de-
notes 24):

α

β

γ

δ

a

b · x

b · y

In this example, we considered a case where all
fields have type int, i.e. have the same size, and
will be aligned on a 4 bytes boundary when us-
ing a 32-bits machine. However, when the types
are not equal, alignment rules apply and may re-
quire padding bytes be added between fields, which
are not captured in the graph abstract elements we
have been using up to now.

Pointers to fields: It is also common practice to
use pointers not only to heap allocated objects, but
also to fields of objects. For instance, if x points to a
tt heap allocated object, &(x->b) is a pointer to the
inner structure. Hence, the value of such a pointer
cannot be denoted by node α; instead, it should be
described by α plus some offset corresponding to
field b. This means we should also augment points-
to edges with offsets at the destination site:

α

β

γ

δ

b

a

b · x

b · y

Multiple views: The C language allows to main-
tain several views on a memory region and to switch
from one to another. One way of doing so is pointer
casts; another way is unions. The C standard [4]
does not provide a strong guarantee about the ac-
cesses using another view than the one used to cre-
ate and fill the fields of a structure, but many im-
plementations do, so that it is possible to assume

that a write using an alternate view will not erase
all the properties known about the contents of the
structure. Let us consider the type definition below,
which corresponds to a typical abstract syntax tree,
with several cases:

typedef struct arith {
char op;
union {

struct{double v; }cst
struct{

struct arith ⋆ l;
struct arith ⋆ r;

} bin;
} n;

} arith;

The two views induced by this definition can be re-
spectively abstracted by the abstract elements be-
low, assuming a 32-bits architecture is used (note
that most implementations would require some
padding bytes be added due to alignment con-
straints; we ignore those here):

α

β0

γ0

op

n · cst · v
α

β1

γ1

δ1

op

n · bin · l

n · bin · r

However, a limitation of our current domain is that
it cannot maintain both views in the same time. In
particular, these two graphs do not make sense in
the same time, due to separation. Indeed, separa-
tion requires all points-to edges to denote disjoint
memory regions, yet, in this case, α ·n ·bin ·l 7→ γ0
and α · n · cst · v 7→ γ1 correspond to the same
physical memory cells.

Field level arithmetics: Pointer casts allow to
view a structure like an array, and address its fields
using integer indexes. Again, the behavior of pro-
grams using such techniques is usually implemen-
tation dependent (with exact field sizes and align-
ment rules defined in Application Binary Interfaces,
or ABI). Analyzing such programs requires going
beyond the symbolic names used to denote fields,
and precisely representing the integer values they
correspond to, according to a precisely known ABI.
Therefore, points-to edges should be labeled using
either symbolic offsets or integer offsets, depending
on the intended application:
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• portable code can usually be analyzed using
symbolic field names;
• non portable code may require the use of nu-

meric offsets in order to annotate points-to
edges.

Memory management: A last important fea-
ture of C is manual memory management. This
means the programmers are responsible for the al-
location (using malloc) and the deallocation (using
free) of all the cells programs manipulate. Memory
management is actually the source of many bugs
and errors:
• the failure to deallocate a region before all

pointers to it are discarded would result in a
memory leak;
• the attempt to free a pointer that does not

correspond to the base address of a valid allo-
cated region would cause an immediate crash;
• the use (for memory read or write operations)

pointers into a region that was freed would
result in a dangling pointer dereference (and
thus an abrupt crash).

In the static analysis point of view, it means that
the allocation and deallocation of memory regions
should be tracked precisely. In particular, when a
region is deallocated, the analysis should precisely
remove all points-to edges corresponding to that re-
gion.

4.2 Abstraction of contiguous

regions

As we remarked in Section 4.1, refining the handling
of contiguous memory regions (i.e., points-to edges)
brings a solution for several C specific issues.

4.2.1 Fields, offsets and pointers

Points-to edges were introduced in Section 2.2.3,
and were annotated with a starting node, a field
name (corresponding to an offset) and an optional
type or size annotation.

Pointers to fields: Points-to edges with a tar-
get node representing the sum of a base address
and of an offset may represent pointers to fields,
yet this representation would not be very efficient
as it would require numerical relations among nodes

to express, e.g., that several edges point to fields of
the same structure. Instead, it makes more sense
to refer to the node which represents the base ad-
dress. Thus we simply extend the syntax of points-
to edges with another label at the edge destination,
which denotes the destination field; for instance if
a pointer value contained in a memory cell can be
decomposed into the sum of a base address repre-
sented by β and an offset corresponding to field g,
we would get:

α β
f g

s

Such an edge would be noted:

α · f 7→ β · g

Moreover, the concretization of this edge is defined
in a very similar way as that of regular points-to
edges. With the same notations as in Section 2.2.3,
γS(α · f

s
7→ β · g) is the set of pairs (σ, ν) such

that σ is a memory state with just one cell, of ad-
dress x = ν(α)+offset(f), of size s, and of content
v = ν(β) + offset(g).

Revised offsets: In Section 4.1, we also remarked
that field names are not enough to express all off-
sets the analysis may need to handle, especially in
the case of nested fields. Therefore, we replace fields
with a grammar of symbolic offsets:

o ::= ǫ null offset
| o · f field dereference

Function offset can be extended to this set of sym-
bolic offsets in a straightforward way, by induction
over the syntax:

offset(ǫ) = 0
offset(o · f) = offset(o) + offset(f)

Thus, extending the syntax of points-to edges with
this more general notion of offsets preserves the no-
tion of concretization as above. Hence, the static
analysis algorithms (chapter 3) also remain un-
changed.

In this model, the abstract element below takes
the intuitive meaning described in Section 4.1 and
describes set of fields of a nested structure:

α

β

γ

δ

a

b · x

b · y
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4.2.2 Pointer arithmetics

Some programmers rely on machine dependent
pointer arithmetics, where the integer values of off-
sets need be taken into account. To handle such
programs in our framework, we simply need to turn
symbolic offsets into numerical values, and to rely
on function offset in order to perform all operation
on points-to edges using integer values. Then, the
analysis should treat statements of the form:

α · 4
4
7→ β · 12

The translation of all symbolic offsets into numeric
values is based on alignments and size assumptions
typically defined in the ABI.

Analysis Algorithms: When using either ex-
tended symbolic offsets or numerical offsets, static
analysis algorithms remain similar to those defined
in chapter 3. In practice, it is best to use numeric
offsets to check a folding rule apply, while preserv-
ing symbolic field names, that may help finding out
which inductive definition to fold (i.e., to decide
which folding rule to try to apply).

Pointer models: In [117], we formalized and
compared pointer models used in shape analysis.
In our classification, we found four models which
are derived by making two independent choices:
• whether pointers to structure fields are al-

lowed or not;
• whether offsets are considered numeric values,

or symbolic names.
Our abstract domain may handle any of these four
models. Abstract domain of chapter 2 relies on sym-
bolic offsets and forbids pointers to fields. The ex-
tension proposed in Section 4.2.1 allows pointers to
fields, whereas that proposed above allows to treat
numeric offsets. In all cases, the algorithms remain
similar.

Shape analyses can be classified along these cat-
egories. For instance, Kreiker [69] proposed several
encodings to extend TVLA with pointer to fields,
whereas initial TVLA do not handle them [111, 73].

4.2.3 Contiguous regions and arrays

A common programming languages formalization
trick consists in viewing arrays as particular in-
stances of structures where fields are indexes. Our

abstract domain is compatible with this view. In-
deed, we can describe an array of fixed known length
(3 in the example below) with a base address and
one edge per cell:

α

β0

β1

β2

0

4
8

Note that the indexes used in this graph do not cor-
respond to indexes of array cells, but to offsets in
the array regions, which are obtained by multiply-
ing the array indexes by the size of an element of
the array. This representation is equivalent to the
fully expanded array abstraction (featured, e.g., in
Astrée [11]).

As we saw in Section 2.2.3, points-to edges may
represent any contiguous sequence of bits in mem-
ory. In particular, a points-to edge can be used in
order to describe an array, using a single block. Let
us consider an array of integers, of size 10. Assum-
ing a 32 bits architecture, the representation of an
element takes 4 bytes, thus the whole array is a
contiguous block of 40 bytes:

α β
0

40

In this view, node β represents a sequence of 40
bytes, but it does not say anything precise about the
values contained in the array. However, D

♯
N views it

as one cell of 40 bytes, and may be used in order to
express various properties about it:
• it may abstract the values contained in each

cell of the array with one set of integer val-
ues and over-approximate that set, using the
smashing approach used for large arrays in
Astrée [11];
• it may rely on a fixed partitioning of the ar-

ray region, which may coincide with the cells
of the array or not; for instance, it may use 5
abstract cells, such that abstract cell k over-
approximates cells k and 5 + k in the initial
array of size 10;
• D

♯
N may include a more general abstraction of

arrays, based e.g., on array partitioning so as
to abstract array regions with various predi-
cates, using either static partitions [57] or dy-
namic partitions [38].

In the smashing approach, the shape domain can
still refine the 40 bytes thick points-to edge. For in-
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stance, if the value γ of variable i is known to be in
range [0, 9], we may access the cell of index i, and
it is even possible to materialize it, by splitting the
40 bytes thick points-to edge into:

α

β0

β1

β2

0

4.γ

4.γ
4

4.γ + 4
36− 4.γ

This edge splitting is sound, and allows to turn an
update of the cell of index i into a strong update
even though the array cells are all abstracted into
one. This principle is actually at the core of the
static analyses based on array partitions [57, 53, 38].
Analyses such as [38] can dynamically modify or re-
fine the splitting or array regions.

4.3 Abstraction of multiple

views

Section 4.1 brought up the need to maintain several
views of the same region, in the same time, which
is equivalent to using non separating conjunctions.

4.3.1 A local conjunction operator

The obvious solution would consist in extending ab-
stract values with non separating conjunctions of
sets of edges. However, such an extension would
break most of the static analysis algorithms of chap-
ter 3, as it would break separation, which is the
basis of folding and of transfer functions for assign-
ments, among others. Therefore, we intend to keep
the effect of the conjunction operator as local as
possible, i.e., to contiguous regions; this will require
us to fix the static analysis algorithms presented in
chapter 3, but their overall structure should remain
the same. Similarly, [88] also keeps non separating
conjunctions local to blocks.

A local conjunction operator: In practice, we
should expect several views be needed only for con-
tiguous regions, since unions and pointer casts mod-
ify the interpretation of a single region. Therefore,
we introduce conjunction edges as an extension of
points-to edges. More precisely, a conjunction multi-

edge is of the form

α·[sbeg,send[
∧

0≤i<n

(

α · oi
si7→ βi

)

where points-to edges α · o0
s07→ β0, . . . , α · on−1

sn−1

7→
βn−1

• may overlap;
• all describe memory cells included in the re-

gion of base address α plus sbeg and of size
send − sbeg.

In other words, the concretization of this conjunc-
tion multi-edge is the set of pairs (σ, ν) such that:

dom(σ) = {ν(α) + sbeg, ν(α) + sbeg + 1, . . . ,
ν(α) + sbeg − send − 1}

∀i ∈ {0, 1, . . . , n− 1}






read(σ, xi, si) = vi
where xi = ν(αi) + offset(oi)
and vi = ν(βi)

A conjunction multi-edge abstracts a fixed contigu-
ous memory region, using a set of usual points-to
constraints over sub-regions. An important note is
that a multi-edge is still viewed as a single edge in
the graph, which means that the graph meaning is
still the separating conjunction of the concretiza-
tion of the edges it is made of (in other words non
separating conjunction is purely local).

When n = 0, the conjunction corresponds to a
fixed memory region of size send−sbeg, which is con-
strained by no points-to edge; in other words it fixes
no constraint about the region. It can be used e.g.,
to describe un-initialized cells, or freshly allocated
memory cells (Section 4.4).

When n = 1, o0 = sbeg and s0 = send− sbeg, we
get a standard points-to edge.

Unions: We consider the union type below, and
rely on a 32-bits implementation which satisfies the
assumption that writing through one view will not
invalidate the other view:

typedef union u {
struct {

char c;
short s;

} a;
struct {

int i;
} b;

} u;
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Typical concrete memory states of type u would
correspond to the two cases below (padding areas
are grayed out):

0x..

0x....

a · c

a · s
0x........b · i

It would make sense to maintain both views if ana-
lyzing a code which relies on, e.g., the a selector in
order to write data in the field and on the b selec-
tor in order to read sub-sequences of bits included
in the whole structure (this is typical in low-level
system code and device drivers).

If α represents the base offset of such a struc-
ture, an abstract value that would keep both views
exposed would be of the form (using numeric off-
sets):

α·[0,4[
∧











α · 0
1
7→ βc

α · 2
2
7→ βs

α · 0
4
7→ βi

Of course, as these edges all refer to the same con-
crete states, the right hand sides are bound by im-
plicit relations which express that all views be con-
sistent with respect to the concrete sequences of
bits. In this case, assuming the architecture is lit-
tle endian (like Intel architectures), the properties
below hold:

{

βi/2
16 = βs

βi mod 28 = βc

The need to maintain several views on a memory
region may also arise in other cases, such as pointer
casts [88]. Other formalisms such as fractional per-
missions [16, 14] have been proposed so as to express
which edges may share a region.

4.3.2 Analysis with local conjunc-

tions

We now extend the analysis operations so as to han-
dle multi-edges.

Extension of inductive definitions: Conjunc-
tions multi-edges generalize points-to edges. As
points-to edges were used as part of the syntax of
inductive definitions, it appears reasonable to also
allow inductive definitions to include such multi-
edges. Though, in practice each view corresponds

to a specific rule, so that we found that, in practice
multi-edges are not of much use there.

Extension of static analysis algorithms: As
a graph is still a separating conjunction of edges,
the overall structure of the analysis algorithms of
chapter 3 remains unchanged. However, of course,
new cases need be defined for multi-edges.

The unfolding algorithm does not need to be
modified.

The folding algorithms have to be extended with
new rules. We consider the case of the inclusion
checking (Section 3.4.2) as the extension of e.g., the
join algorithm (Section 3.4.3) would be similar.

Let us consider the pair of multi-edges below:

el =
∧α·[sbeg,send[

0≤i<nl

(

α · oli
sli7→ βl

i

)

er =
∧α·[sbeg,send[

0≤i<nr

(

α · ori
sri7→ βr

i

)

Note that we partly factor out the naming prob-
lem that needed be solved as part of the folding
algorithms of Section 3.4, by assuming both multi-
edges have the same origin α. However, we also as-
sume that both edges have the same physical size
(parameters sbeg, send are the same in both edges),
which is critical for both edges to describe the same
region.

Then, we can prove that γS(e
l) ⊆ γS(e

r) when
the condition below is satisfied:

∀i ∈ {0, 1, . . . , nl − 1}, ∃j ∈ {0, 1, . . . , nr − 1},

γS(α · oli
sli7→ βl

i) ⊆ γS(α · orj
srj
7→ βr

j)

Thus, the inclusion checking algorithm should do
the following in presence of such a pair of edges:

1. check that the above property holds;
2. add to the node pairing relation Φ (Sec-

tion 3.4.2) all pairs of the form (βr
j , β

l
i), such

that the above property holds.

Local conjunctions: We can remark that this
multi-edge rule that we outlined is quadratic, since
the number of possible pairs is proportional to n.m.

In general dealing with multi-edges always in-
curs such a quadratic cost, however it is local to the
multi-edge, that is to the fields of the union struc-
ture, which makes this quadratic factor a non issue:
first, the size of union structures is usually negli-
gible compared to the size of the programs, and it
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is also usually possible to cut down that quadratic
cost by using tries in order to store offsets from a
node.

On the other hand, a quadratic complexity fac-
tor would be a major problem if it applied to the
whole memory abstraction. This is the reason why
we chose to keep the non separating conjunction ef-
fect local, as a means to keep the cost of analysis
operations down.

To summarize, the predicates represented by ab-
stract elements are restricted to a very small sub-
set of a separation logic formulas illustrated in the
figure below, where only points-to edges may ap-
pear under non-separating conjunction and where
separating conjunction always appears at the top
of formulas. This restriction turns out to offer an
interesting tradeoff in terms of analysis cost and
expressivity.

∗

pt pt ∧ ind pt ∧ ind

pt pt pt pt pt

4.4 Memory management

Section 4.1 also brought up the issue of the tracking
of memory allocated cells.

Stack cells and heap allocated cells: A node
representing the base address of a region allocated
by malloc should be annotated so that it would be
possible to check that a free of that node is valid.
Furthermore, we should also ensure that the anal-
ysis of free is conservative, i.e., that it removes all
edges corresponding to (part of) the deallocated re-
gion. In particular, nodes that correspond to vari-
able addresses (i.e., to cells which are inside the
stack) should never be deallocated (free should fail,
if applied to such an address). Last, inductive def-
initions should enclose information about the allo-
cated cells they summarize, so as to allow the check-
ing that a free of cells that were summarized will
not crash.

Therefore, we should add a label on each node,
so as to express:
• whether it corresponds to a valid address or

an uncategorized value;

• when it corresponds to a valid address,
whether that address is part of the stack or
heap allocated;
• when it is heap allocated, whether it is the

base address of an allocated region and of
what size that allocated region is.

Thus, we propose to use the type system below:

τ ::= any denotes ⊤
| stack stack cell
| heap〈n〉 heap region, of size n ∈ N

In this type discipline, we implicitly assume that
the sizes of all heap regions are known statically; to
deal with heap regions of arbitrary size, we would
simply need to replace parameter n in heap〈n〉 by
a symbolic node, that would represent that size.

We remarked that inductive definitions should
reflect the fact that some of the nodes they summa-
rize correspond to heap allocated cells. For instance,
the list inductive definition we gave in Section 2.2.4
should now write as follows (we assume a 32-bits ar-
chitecture is used):

α · list ::=
(emp, α = 0)

∨ (α · next 7→ β ∗ α · data 7→ γ ∗ β · list,
α 6= 0 ∧ heap〈8〉)

Partitioning of the heap into chunks and con-

cretization: The concretization γS of D
♯
S should

reflect the meaning of the node types. Intuitively,
that denotation can be expressed in terms of sepa-
ration logic. Indeed, it expresses a two stage parti-
tioning of the memory:
• first, the memory is partitioned into allocated

regions such as stack cells or heap regions of
a given size,
• secondly, each of these regions is partitioned

into edges.
For the sake of clarity, we assume that all node type
constraints are represented in an abstract domain
D
♯
A
; thus, we simply need to give the concretiza-

tion γA of D
♯
A
, and the constraints between abstract

values in D
♯
S and D

♯
A
. First an element of D

♯
A

is a
separating conjunction of node types:

D
♯
A
= {α0 : τ0 ∗ . . . ∗ αn : τn | α0, . . . , αn ∈ V

♯}

The domain for approximating sets of states now
becomes S♯ = E♯×D

♯
S×D

♯
A
×D

♯
N. As usual, the con-

cretization relies on the use of valuations to capture
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the relations between addresses, values, and mem-
ory states. The concretization γA is defined by:
• γA(α0 : τ0 ∗ . . . ∗ αn : τn) = {(σ0 � . . . �
σ1, ν) | ∀i, (σi, ν) ∈ γA(αi : τi)};
• γA(α : any) = {(∅, ν) | ν ∈ Val};
• γA(α : heap〈n〉) is the set of pairs (σ, ν) such

that σ consists in a heap block of base address
ν(α) and of size n;
• γA(α : stack) is the set of pairs (σ, ν) such

that σ consists in a stack block of base ad-
dress ν(α).

An abstract value (ǫ̂♯, S,A, N) ∈ S♯ is valid if each
points-to edge in S is included in one type region
of N (inductive and segment edges may summarize
regions both in D

♯
S and in D

♯
A
). The concretization

in the product domain follows similar rules.

Main transfer functions: Transfer functions
and analysis algorithms are mostly left unchanged
except that we need to set up transfer functions for
malloc and free. The only new change regarding
to the algorithms of chapter 3 is that the unfolding
should properly propagate the allocation predicates
into D

♯
A

(in the same way as it already does for D
♯
N).

We now consider the memory management opera-
tions.

Allocation: the transfer function for analyzing
malloc(sz) should add a fresh node α to the graph,
and add constraint heap〈n〉 in domain D

♯
A
; further-

more it should add some edge(s) from α, in order
to represent the memory cells that were allocated
(and their content is unknown):
• either by adding one points-to edge α · ǫ

n
7→ β,

where β is a fresh node;
• or by adding several points-to edges account-

ing for the (uninitialized) fields of a structure,
when those can be guessed, e.g., from a cast
of the malloc output (most C programmers
always cast the pointers returned by malloc

into the proper type);
• or simply by adding an empty conjunction

multi-edge
∧α·[0,n[

∅
of size n.

Deallocation: the transfer function for analyzing
free(p) should evaluate p into a symbolic node α,
check that this node satisfies a constraint of the
form α : heap〈n〉 inside D

♯
A

(otherwise, report that
the deallocation may fail, as it may be applied to a
pointer that is not the base address of an allocated

region), materialize points-to edges describing the
full range α · [0, n[ and remove them. If that range
cannot be fully materialized into a set of points-to
edges, the analysis should raise an alarm that the
deallocation cannot be proved safe (i.e., may crash
or may discard edges part of other summaries, hence
corrupting the abstract value).

4.5 Assessment

We extended Xisa so as to support all features men-
tioned in this chapter except arrays. Basically, off-
sets may denote either symbolic or numerical val-
ues. Moreover, the local conjunctions for unions
(Section 4.3) and the abstraction of memory man-
agement (Section 4.4) were also implemented.

The results obtained by applying this extended
version to the analysis of a set of functions on arith-
metic expressions described by structures contain-
ing unions of structures and constructor tags [71]
were in line with those found with the initial version
of Xisa (chapter 3). For instance, the analysis of an
evaluation procedure took 60 milliseconds whereas
the analysis of an iterative application of distribu-
tion arithmetic rule took 144 milliseconds. This was
to be expected as the fundamental static analysis al-
gorithms were not modified and only very local op-
erations (such as offsets comparison, or multi-edges
operations) were modified.
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Chapter 5

Application to the

interprocedural

analysis

Procedures play a key role in programming, and
need be analyzed properly. In this chapter, we ap-
ply our abstract domain to the abstraction of call
stacks, so as to design precise, very context sen-
sitive static analyses, while retaining the analysis
algorithms of analyzers such as Astrée [11]. This
analysis was presented in [107].

First, we discuss various approaches to interpro-
cedural analysis in Section 5.1. Then, in Section 5.2,
we formalize concrete call stacks and set up an ab-
straction based on inductive summaries. Section 5.3
describes the interprocedural analysis. An impor-
tant feature of that analysis is the inductive defini-
tion inference algorithm introduced in Section 5.3.2.
Last, Section 5.4 assesses our approach.

5.1 Approaches to interproce-

dural analysis

Many techniques for analyzing procedures [33] have
been proposed with different strengths and weak-
nesses. The first approach computes procedure sum-
maries (e.g., as in [61, 55, 126, 18]). These sum-
maries are then used to modularly interpret func-
tion calls (i.e., derivatives of the functional ap-
proach [112]). This approach is common, as modu-
larity is important, if not a prerequisite, for scalabil-
ity. Unfortunately, computing effective summaries is
not easy for all families of properties. Intuitively, it
is more complex to abstract relations between pairs

of states than to abstract sets of states. The former
is the essence of what needs to be done to com-
pute procedure summaries, while the latter is what
is more typical in program analysis. In shape analy-
sis, computing precise procedure summaries neces-
sitates some reasoning on the boundary between the
procedure frame and the footprint of procedures, so
as to express which part of the heap a procedure call
may modify. This problem is called frame inference
and many algorithms were developed [51, 80, 18] to
solve it, yet some issues such as cutpoints [98] make
frame inference a very hard problem.

The second approach is to perform whole pro-
gram analyses that, intuitively inlines function calls,
virtually ignoring procedure boundaries. Such anal-
yses compute abstract iterates on interprocedural
control flow graphs [95] or abstract syntax trees [11].
Moreover, they only need to abstract sets of states
(instead of relations on pairs of states), which is sim-
pler. On the other hand, this approach faces several
significant challenges, especially for attaching pre-
cise context information to the analysis of each call,
while still achieving decent scalability.

A challenge common to all interprocedural anal-
ysis is to compute precise enough context informa-
tion, to make sure that the analysis will take into
account specific situations arising from distinct call
sites. Call-string [112] and state partitioning [15] or
trace partitioning techniques [108] achieve a good
level of context sensitivity by avoiding to merge the
information about call sites that should not be ab-
stracted together in order to avoid a loss of pre-
cision. Control flow analyses [64, 67, 86] also infer
precise context information. However, the proper-
ties inferred by these analyses does not provide pre-
cise and compact information on the contents of the
call stack, which is usually abstracted [63].

However, call stacks can be viewed as regular
data structures living in the memory states, and
could thus be abstracted using shape analysis tech-
niques. This idea was investigated by Noam Rinet-

zky [99], using the TVLA framework. In this chap-
ter, we propose an interprocedural analysis which
also summarizes the call stack, but using the shape
abstract domaine which we introduced in chapter 2,
which features inductive predicates based summa-
rization, and can thus exploit the inductive struc-
ture of the call stack to provide more concise sum-
maries. This analysis not only achieves a high level
of context sensitivity, but also handles value ab-
stractions in a very standard manner based on ab-
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stractions of sets of states [11].
Interestingly, other recent works highlighted the

relation between shape analysis, call stack abstrac-
tion and context sensitivity. In particular, Matthew
Might did show control flow analyses can be
viewed as particular kinds of shape analyses [85].
Moreover, Pascal Sotin [116] proposed a pointer
analysis relying on a numerical domain to express
pointer relations in the call stack.

5.2 Call stack abstraction

Before the interprocedural analysis can be formal-
ized, we set up a concrete model for programs with
procedures and an abstraction for this concrete
model.

5.2.1 Concrete call stacks

Our model makes the call stack explicit: the ad-
vantage of this approach is that the context will
be viewed as part of the memory state. In this sec-
tion, we consider the example below, of a list reverse
function called in function main:

list ⋆ rev(list ⋆ l, list ⋆ acc){
if(l == NULL){

return acc;
} else {

list ⋆ m = l -> next;
l -> next = acc;
return rev(m, l);

}
}
list ⋆ t;
void main(){

. . .
//t assumed to point to a singly-linked list
list ⋆ u = rev(t, NULL);

}

Dynamic environments: When a program calls
a procedure, the environment gets modified, due to
the addition of local variables and procedure param-
eters. Therefore, the set of variables to be mapped
to an address should depend on the context (in a
structured programming language such as C, this
set of variables is fully determined by the execution
path, including the calling context). For instance, in
the example, after three recursive calls to function
rev, the environment should contain:

• global variable t;
• local variable u of function main;
• three instances of parameters l, acc and lo-

cal variable m, corresponding to each recursive
call to function rev.

This dynamic environment structure is not ideal, as
it means that when analyzing recursive functions,
the analysis will have to summarize not only the
content of the memory, but also the environment
itself, as it may grow unbounded.

A more concrete model of call stacks: How-
ever, we can avoid dealing with an infinite environ-
ment in the analysis, in the same way as compilers
do, by using a very concrete model of the execu-
tion environment of programs. The vast majority
of compilers implement procedure calls using a call
stack, which we can simply view as an inductively
defined data structure (Section 2.3.2). Then, at any
point of the execution (or, at any point during the
analysis), the environment should contain only the
global variables, and the currently active local vari-
ables, that is the local variables such that the cur-
rent control point belongs to their scope.

If we take an even more concrete point of view,
the local variables of function f are actually fields
of its activation records, that is of the region allo-
cated on the stack to store the local state of func-
tion f. In that view, the environment only needs to
contain global variables, and the address of the top-
most activation record (i.e., of the activation record
corresponding to the current function), which can
be considered a variable ār. In a real implementa-
tion, temporary space would also be reserved inside
each activation record in order to store, e.g. return
values. We do not represent it unless absolutely nec-
essary.

For instance, at the entry point of the third re-
cursive call to function rev, the structure of con-
crete states is shown in the diagram in figure 5.1
(local variables m, and global variable t are not rep-
resented for the sake of clarity). This diagram shows
the call stack (the left part), and the heap (right
part). We can actually remark the first elements of
the list are reversed, whereas those that remain to
visit are yet to reverse. In this concrete state, we no-
tice four activation records (one for main and one
for each recursive call to rev). Additionally frame
pointers link from one activation record to the pre-
vious one. In a real implementation, frame pointers
are just a field of activation records.

Xavier Rival Abstract Domains for Shape Analysis



CHAPTER 5. APPLICATION TO THE INTERPROCEDURAL ANALYSIS 45

main u ?

rev acc

l

∅

fp

rev acc

l

fp

rev acc

l

fp

stack heap

∅

∅

0

1

2

3

Figure 5.1: Concrete state at the beginning of a re-
cursive call

5.2.2 Abstract call stacks

We now propose to bring the model of call stacks of
Section 5.2.1 to the abstract level. The main high-
lights of our extended abstraction are:
• the abstraction of call stack regions together

with heap regions;
• the use of abstractions guided by inductive

definitions as in chapter 2.

Local variables and abstract environments:

Section 5.2.1 did set up a fixed notion of concrete
environment, even for programs with recursive pro-
cedures. As a consequence, abstract environments
can be defined in a straightforward manner, in the
same way as in Section 2.2.2. In other words, ab-
stract environment ǫ̂♯ should map to nodes repre-
senting the addresses of:
• the global variables;
• the current activation record, denoted by ār.

Then, local variables of the current call appear as
fields of the node representing the address of ār.

For instance, in the example of Section 5.2.1, the
environment contains ār and global variable t; it is
the same at all points during the analysis.

Activation records and frame pointers: The
other activation records, corresponding to caller
procedures should also appear in the abstract (as

they are still present on the stack during the execu-
tion of the callee). They are bound to the current
activation record by the frame pointer links.

Obviously, each activation record should be
characterized by a node representing its base ad-
dress; local variables of the function it represents are
its fields. Activation record address nodes should be
annotated with type stack (Section 4.4).

Abstract, non summarized stacks: The figure
below shows an abstract element, which summarizes
the concrete state presented in Section 5.2.1; in this
figure, with the following conventions:
• nodes representing a stack activation record

address have a dotted contour, and are an-
notated with the name of the function they
correspond to;
• frame pointer edges are dotted.

ᾱ0
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Furthermore, we leave the tail of the list (which re-
mains to be traversed) summarized by an inductive
edge. As in Section 5.2.1, we omit the m fields and
global variable t.

5.2.3 Summarizing the call stack

In Section 5.2.1 and Section 5.2.2, we pushed most
of the environment into the call stack so that the
environment is now fixed, and we also formalized
the stack space as we used to describe any other
memory area using the abstract domain of chap-
ter 2 and chapter 4. Thanks to these modifications,
we can now apply summarization based on induc-
tive definitions (Section 2.2.4) to the call stack.
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Before we do that, let us observe the shape of
a concrete state after one more recursive call. The
figure below shows an abstraction of those states,
that reach the fourth recursive call to rev, and it
highlights a repeating pattern, using colors:
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The presence of this repeating pattern means that
this structure can be summarized using an appro-
priate inductive definition stk such that:
• inductive predicate ᾱ·stk denotes a folded ac-

tivation record together with heap elements it
directly points to; thus, the right hand side of
the rule required to summarize one activation
record should look like the red colored frag-
ment of the above picture;
• when folding successive activation records, the

relations between the corresponding stack and
heap regions should be preserved by the ab-
straction:

– the chaining of stack regions shall be
taken care of by the frame pointer edges
(the backbone of inductive definition stk

should look like a list, even though it also
summarizes many more edges);

– the relation in the heap should also be
captured; this is achieved using auxiliary
parameters (Section 2.2.4).

Therefore, we obtain the rule depicted in the graph-
ical representation below:

ᾱrev
stk(β)

rev.ctx U
−→

ᾱ′

ᾱ

rev

rev

β′

β γ

acc

l d

next

stk(β′)

ctx

Note that we annotated the inductive predicates
with the contexts they correspond to:
• ctx stands for an arbitrary context;
• rev.ctx stands for context ctx plus an ongoing

call to rev.
Using that rule, we can summarize the abstract

states after three or four successive recursive calls,
or more, using a stack segment:
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ᾱ4

main

rev

rev

rev

?

0x0

β0

β2

β3

β4

γ0

γ3

u

acc

acc

l
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d

d
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list

stk(β2) stk(β0)

rev
⋆

We observe this abstract element summarizes any
state reached after any number of recursive calls
greater than 2, i.e., where the segment stands for
any number of calls to rev:
• the empty segment corresponds to the case

where ᾱ3 = ᾱ1 and β2 = β0, i.e., when induc-
tion depth is equal to 2;
• if we consider the non summarized state with

four recursive calls to rev, activation records
of addresses ᾱ3 and ᾱ1 are summarized here,
together with the list elements they point to.

Other examples are provided in [107], for recursive
functions such as list construction, list traversal or
in-place modification of a doubly-linked list.
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5.3 Interprocedural analysis

We now extend the analysis of chapter 3 into an in-
terprocedural analysis, using the abstraction of Sec-
tion 5.2.

5.3.1 Overview of the analysis

To perform the interprocedural analysis, we have to
consider the analysis of procedure calls and proce-
dure returns in addition to all the abstract opera-
tions introduced in chapter 3 and chapter 4.

Common transfer functions: Transfer func-
tions such as assignments, condition tests or mem-
ory management operations do not need be modi-
fied to work with the modified abstract domain of
Section 5.2. Folding operations (Section 3.4) such
as join or inclusion checking of abstract elements
corresponding to the same calling context also ex-
tend straightforwardly as well. For all these opera-
tions, the only noticeable difference is that the no-
tion of abstract environment was modified, and en-
closes only global variables, and the address of the
current activation record (Section 5.2).

Function calls: At a function call site, a new ac-
tivation record is pushed onto the call stack, and
corresponds to the new active function. The ab-
stract transfer function for function calls should re-
flect that and the effect of parameter passing as
well. Parameter passing boils down to a series of as-
signments to the parameters (i.e., some fields of the
new topmost activation record). Moreover, when a
function is recursive, the analysis should also fold
a part of the call stack, using inductive definitions
capturing the structure of the stack, like the one
shown in Section 5.2.3. Since such definitions are
not straightforward to write thus we should not ex-
pect users to supply them and we will propose an in-
ference algorithm. Besides, the analysis should also
carry out an abstract post-fixpoint computation on
recursive call sites, as the number of recursive calls
is unbounded. Function calls will be discussed in
more details in Section 5.3.2 and Section 5.3.3.

Function returns: Conversely, a function return
should remove the topmost activation record after
taking care of a possible return value (which boils
down to an assignment to a field of the caller acti-
vation record).

We remarked that folding should be performed
at recursive call sites. Similarly, stack summaries
need to be unfolded when analyzing returns from
recursive functions. Indeed, the topmost activa-
tion record should be exposed at all time, in or-
der to guarantee local variables can be accessed;
thus, when the analysis encounters a function re-
turn while the second activation record is summa-
rized into a segment (as in the figure shown in the
end of Section 5.2.3), the analysis needs to unfold
that segment before removing the current topmost
activation record. Besides, the analysis should also
carry out an abstract post-fixpoint computation on
recursive return sites, since these points are on cy-
cles in the interprocedural control flow graph.

Function return will be discussed in more details
in Section 5.3.4.

5.3.2 Subtraction algorithm

Even though the reverse function of Section 5.2.1 is
trivial, the inductive definition that was shown to
be able to summarize its call stack is not simple.
Therefore, such definitions should be inferred au-
tomatically, as part of the interprocedural analysis.
More precisely, we seek for an algorithm which:
• inputs two consecutive abstract iterates;
• outputs a candidate inductive rule for stk.

First iterates: We first consider the first recur-
sive calls to function rev, without trying to sum-
marize stack or heap regions. The abstract elements
obtained after 2, 3 and 4 recursive calls are shown
in figure 5.2, and we use colors to highlight the “con-
tribution” of each iterate to the abstract state, in-
cluding the activation record of the corresponding
function call and the heap fragment that it can be
associated to. These colored fragments form the re-
peating pattern, that was used in order to guess an
inductive definition rule in Section 5.2.3.

We can also observe that:
• the “difference” between an abstract iterate

and the next one corresponds exactly to the
colored fragments: for instance, the difference
between the second and the third iterates
corresponds to the purple fragment in fig-
ure 5.2(b); similarly, the difference between
the third and the fourth iterates corresponds
to the red fragment in figure 5.2(c);
• the auxiliary parameters which were used in

order to capture the relation between the val-
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(a) After two recursive calls

ᾱ0

ᾱ1
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(b) After three recursive calls

ᾱ0

ᾱ1
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(c) After four recursive calls

Figure 5.2: Abstract states at the first recursive calls to rev

ues of the fields of a stack activation record
and those of the previous ones correspond to
the nodes which are pointed to by edges of
two colors.

These observations set up the basis for the rule in-
ference algorithm which we describe in more details
in the next few paragraphs.

Graph subtraction: The graph subtraction al-
gorithm [107] extracts the difference between two
shape graphs, and outputs the core of the candidate
rule. It achieves this using a double graph traversal,
similar to that of folding algorithms (Section 3.4):
thus, it also relies on a pairing function (so as to
bind pairs of nodes that the analysis should abstract
together) and applies a set of local erasure rules (re-
moving one edge in both arguments) until one of
the arguments is empty; then, it returns the non-
empty argument. The initial pairing should bind
pairs of addresses of global variables, and pairs of
addresses of the topmost activation records, as well
as addresses of activation records which are present
in both graphs, starting from main. For instance,
when computing the subtraction of the graph of fig-
ure 5.2(b) and of the graph of figure 5.2(a), ᾱ2 in
figure 5.2(b) is not bound and the initial mapping

contains the following pairs:

in figure 5.2(a) in figure 5.2(b)
ᾱ0 ↔ ᾱ0

ᾱ1 ↔ ᾱ1

ᾱ2 ↔ ᾱ3

As in the other algorithms traversing two graphs,
the edge removal process based on edge pairing may
fail to return the expected result (i.e., remove all
edges in one arguments, leaving the remains of the
other argument as the subtraction result), and ter-
minate with a pair of non empty graphs, with some
edges left in both of them. This is a consequence of
the non confluence of the rewriting system induced
by edge removal rules. Therefore, an adequate strat-
egy should be used. Fortunately, in our experience,
a breadth-first style strategy was found sufficient in
all cases.

ᾱ1

ᾱ2

rev

rev

β0

β1 γ1

acc

l d

next

From this result, inferring additional parameters
and pure predicates boils down to the computation
of intersections of sets of nodes and to the slicing of
the numerical abstract values. In the example, only

Xavier Rival Abstract Domains for Shape Analysis



CHAPTER 5. APPLICATION TO THE INTERPROCEDURAL ANALYSIS 49

β0 is shared with the previous activation record,
hence only one auxiliary parameter is required, to
summarize the result of subtraction with a stack
segment of length 1:

ᾱ1ᾱ2

revrev
stk(β1) stk(β0)

rev

In the example, the graph subtraction algorithm in-
fers the inductive rule of Section 5.2.3. Frame infer-
ence [18] is a related issue, where an analysis at-
tempts to identify the footprint and the frame of a
function call. However, we are looking here for an
exact match as opposed to an entailment between
two configurations.

5.3.3 Analysis of calls and recursive

calls

The abstract post-fixpoint: When the ana-
lyzer detects that a function call is recursive (i.e.,
one instance of the callee is already present in the
context), it should infer an inductive rule, using the
algorithm shown in Section 5.3.2, and then use that
rule for folding fragments of the call stack:
• after applying the subtraction algorithm, the

graph fragment extracted by subtraction is re-
placed with a segment of length 1;
• at the next iteration, the analyzer attempts

to reuse the same inductive rule for widening,
in order to extend that segment.

The computation of abstract iterates terminates
and produces a sound over-approximation for the
set of concrete states that can be observed at the
entrance into the function being analyzed [107].

In our example, figure 5.3(a) shows the abstract
element obtained after the subtraction, and after
replacing the extracted fragment with a stack seg-
ment edge. Figure 5.3(b) shows the next iterate,
before widening is applied. The widening of these
two abstract elements is isomorphic to the graph of
figure 5.3(a), up-to renaming, thus it is the abstract
post-fixpoint.

The auto-parameterizing domain: The ex-
tended interprocedural static analysis infers addi-
tional inductive rules for the definition of stk. This
brings up another issue: how should this inductive
rules generation process be controlled so that the
analysis terminates, and produces precise results.

We have shown in [107] that this iteration
scheme can be viewed as a static analysis using a

cofibered domain [119], where the abstract domain
is built upon the shape abstract domain of chap-
ter 2, parameterized by the data of a set of rules for
stk. Therefore, we may let the analyzer generate ad-
ditional rules for stk, provided that the process of
adding new rules terminates, i.e., a widening on the
powerset of rules lattice should be used. The proof
of termination is twofold: first, the set of rules for
stk stabilizes; once it is stable, the analysis works
exactly as in chapter 3.

We also remarked in [107] that this process can
also weaken some stk rules, which is sound, as it
only makes all abstract values that are based on
stk weaker.

5.3.4 Analysis of function returns

During the execution of a series of recursive calls,
the length of the chain of returns is equal to that of
the chain of calls, thus it is also unbounded, and the
analysis needs to compute an abstract post-fixpoint
at return sites.

At a return site, the topmost activation record
should be removed, and the analyzer should go back
to the analysis of the caller. However, it should
maintain the new topmost activation record ex-
posed at all times, thus the activation record of the
caller should be materialized after the return. For
instance, the analysis of the rev example gives the
abstract value below (where we also represent the
ret temporary return variable of the returning ac-
tivation record), at the return in the true branch
of the if statement:
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ᾱ1ᾱ3

ᾱ4
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After unfolding the stack segment and right before
discarding the activation record of the callee, we get
the abstract value below:
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(a) First widened iterate; abstract post-fixpoint
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(b) Next abstract iterate, before widening

Figure 5.3: Abstract iterates with widening, at the call site
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We note that the false branch of the condition can-
not be executed in the deepest recursive call (as it
generates itself another recursive call). Therefore,
the analysis should then go back to the next return
site (which is actually in the false branch of the
caller), following [95]. From that point, each return
from a recursive call should branch to that point.

After one more iteration and a widening, the
analysis outputs the invariant below, which shows
a list segment starting pointed to by ret:
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ᾱ1ᾱ2
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Once this fixpoint is reached, we obtain an abstract
post-condition for the control point right after the
call to rev in main after unfolding the stack segment
into an empty segment. This results in the invariant
below:
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After return to main, we obtain the property that
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the procedure returns a well-formed list:

ᾱ0main

0x0

β0β2 γ0
u

d

next

list list

Experimental assessment: In [107], we mod-
ified the Xisa analyzer in order to abstract call
stacks as shown in Section 5.2 and infer call stack
summaries using the subtraction algorithm. Except
for the obvious parts (the new model of environ-
ments, the subtraction algorithm and the interpro-
cedural iteration engine), this new analysis did not
require very significant modifications of the ana-
lyzer.

The analysis was tested on a series of micro-
benchmarks, and it appears that the analysis of a
recursive version of simple programs (implement-
ing, e.g., usual list algorithms) is slower than the
iterative version by a factor of 3 to 5, which is co-
herent with the fact the analysis of the recursive
program actually computes two fixpoints instead of
one (one fixpoint at the call site and one fixpoint at
the return site), and that it also needs to perform
subtraction. More ambitious experimentation was
left as future work.

5.4 Discussion

We now discuss various features of our analysis, and
compare it with the modular approach.

5.4.1 The cutpoint problem

Modular shape analyses such as [61, 98, 51, 18] typi-
cally infer an abstraction of the effect of a procedure
on a fragment of the heap; computing that fragment
is called frame inference. However, such an analysis
must also abstract cutpoints [98] carefully to obtain
precise results. Cutpoints are the locations at the
border of the callee’s reachable heap, that is, any
node that is reachable from the callee’s parameters
(though not directly pointed-to by them) and reach-
able from a pending activation or a global (without
following links inside the callee’s reachable heap). It
is important to track cutpoints precisely in a mod-
ular analysis, as they are used to reflect the effect
of the callee in the caller’s state on function return.

Doing so can be challenging, as an unbounded num-
ber of cutpoints may arise either due to unbounded
recursion or due to the traversal of unbounded heap
structures. While there is no general solution for
cutpoints today, several partial solutions have been
proposed. For example, they focus on isolating their
effect by proving cutpoint-freeness [100] or by prov-
ing that cutpoints are not live [68], or they reason
up to a bounded number of them [98].

Our analysis based on call stack summarization
also needs to cope with cutpoints so that the widen-
ing iteration reaches a precise fixed point. However,
the principle of call-stack summarization is to infer
a (possibly complex) predicate, for abstracting the
call stack, including any cutpoint it may contain.
While this may seem a general solution in theory,
one should note that cutpoints will make inductive
stack definitions more complex, so this approach
obviously has a limit. Yet, we notice that our ap-
proach allows to summarize unbounded numbers of
cutpoints as we have shown in [107], where a pro-
cedure modifies a doubly-linked list and generates
an unbounded number of cutpoints; this unbounded
set of cutpoints is abstracted by an inductive defi-
nition with auxiliary parameters, thanks to the reg-
ular structure of the cutpoints. We also pointed out
that very complex cutpoint problems may be due
to orthogonal issues like sharing (which we discuss
in Section 6.2.4.

5.4.2 Combining modular and stack

summarization

We observed in Section 5.1 that modular and whole
program analyses have very different sets of advan-
tages and drawbacks. Intuitively, modular analyses
are especially adapted to programs where each pro-
cedure can be reasoned about in a very independent
manner, as for, e.g., a library. On the other hand,
sometimes procedures with very few call sites are
designed with very specific and complex assump-
tions in mind, which are related to those call sites,
and should better be analyzed in their context. Be-
sides, some softwares cannot be reasoned about pre-
cisely in a per procedure manner like the specific
families of programs analyzed by [11].

Thus, the design of a static analysis frame-
work which would apply either technique depend-
ing on the situation, or combine them efficiently
would be an obvious and very useful follow up to
this work. For instance, when analyzing a library,
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such a framework would compute relations over-
approximating the semantics of “public” functions
whereas complex private functions (possibly called
by a public function) should be analyzed in their
context, using call stack summarization in a more
local way. A general framework should also provide
a mor elegant solution to the issue of cutpoints.
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Chapter 6

Conclusion and

perspectives

In this chapter, we make a series of concluding re-
marks, regarding to the most important principles
of our domain (Section 6.1) and show directions
for further extensions (Section 6.2), including some
ongoing and unpublished works. Last, Section 6.3
discusses the construction of modular abstract do-
mains to express memory properties at a reasonable
cost and with a high level of expressiveness.

6.1 Foundation for memory ab-

stract domains

In Section 2.1, we did set up the foundations to our
abstract domain, in order to attack a wide variety
of static analysis problems, thus we now assess how
these principles contribute to the design of the ab-
straction and of the analysis algorithms.

From the concrete: A first important note is
that the structure of our abstraction remains very
close to the definition of concrete states, and that
it is based on a very concrete representation, using
explicit abstractions for addresses, values and mem-
ory cells. At first, this may not look the most intu-
itive approach, yet it turns out a rewarding decision,
since it actually makes the extension of the analysis
to deal with various programming languages fea-
tures more natural. Indeed, since the abstract val-
ues closely match the structure of concrete state,
slight modification in the concrete level are easier
to match in the abstract level.

In particular, we found this made the adapta-

tion of the analysis to low-level codes more intu-
itive, as our abstract shape graphs are already de-
signed so as to describe precisely memory cells and
their addresses, as we could see in chapter 4. On the
other hand, our abstract values are still compact,
and when concrete features are irrelevant, they can
often be dropped (for instance, numeric offsets may
be abstracted by symbolic names when programs
do not rely on pointer arithmetic, as shown in Sec-
tion 4.2.1).

Similarly, we found in chapter 5 that this ab-
straction also allows a nice encoding of the call
stack, which is actually fairly close to the call stack
of the compiled program. In turn, this represen-
tation makes the summarization of the call stack
rather natural.

Finally, separation [60, 97] serves as a basis for
all our static analysis algorithms, which all rely on
local reasoning (chapter 3). This notion of separa-
tion is also based on a very concrete idea, to ab-
stract memory states region by region.

Overall, we believe that this very concrete root
is a strong asset of the abstraction, and expect it
to make further extensions easier, e.g., in order to
analyze more radically different programming lan-
guages.

The expressive power of inductive defini-

tions: Secondly, inductive definitions which are
the basis of summarization turn out very powerful
in practice, and we observed that many data struc-
tures have an inductive structure, such as many
kinds of lists and trees (Section 2.2.4), and even
call stacks (chapter 5). Inductive formulas have long
been known to be a powerful means to express com-
plex mathematical properties [27], and are at the
root of, e.g., the Coq proof assistant [92].

The nature of induction is also independent from
the basic atoms of our abstractions, which may ac-
count for low level details (such as precise numerical
information about offsets, cells sizes...).

Inductive definitions are not adapted to all
cases, though:
• arrays also need summarization and have no

inductive structures; our abstraction views
them as contiguous regions, which allows to
apply array abstractions locally though (Sec-
tion 4.2.3).
• graphs and similar structures may have no

clear inductive definition, and would be more
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naturally represented as unstructured sets of
memory regions.

However, we will show in Section 6.2.5 that even
in such cases, the experience gained using inductive
definition should still offer some important benefit.

Induction in the heap abstraction, and in the

analysis: The notion of induction is at the core
of abstract interpretation, as one may view an ab-
stract post-fixpoint an inductive program proof. In
fact, our abstraction does also rely on induction for
the summarization of heap regions. Therefore, our
analysis relies on two notions of induction (on the
structure of programs, and on the structure of the
heap). This gives a very intuitive view of our algo-
rithms:
• unfolding (Section 3.3) performs case analysis

on inductive structures, like logical “destruc-
tor” (or “elimination”) rules, and allows to use
an inductively defined predicate for reasoning
locally on the heap [60];
• on the other hand, folding algorithms act like

“constructor” (or “introduction”) rules, and al-
low to build inductive predicates, which are
easier to propagate along during analyses;
• as usual, widening (Section 3.4.3) accelerates

convergence of abstract iterates towards a
post-fixpoint, which should stand for an in-
ductive proof; it relies on folding in order to
build inductive summaries in heap abstrac-
tions.

We remark that the interaction between operations
that affect fixpoints in the heap and the induction
in the analysis is very natural, since pieces of code
that require inductive reasoning often create, treat
or dispose of inductively defined heap structures,
like a list allocation (or deallocation) loop, or like a
recursive program (building an inductively defined
all stack at function call sites, and destroying it at
return sites).

6.2 Perspectives for further de-

velopments

In this Section, we present some directions for ex-
tensions to our framework. We have already started
investigating some of these, whereas others are
longer term goals.

6.2.1 Inference of inductive defini-

tions

Inductive definitions describing user-specific struc-
tures are not trivial to write, and may also be rather
large. Therefore, we should try to make this task as
automatic as possible. In the following, we propose
a few ways of synthesizing inductive definitions for
the parameterization of our abstract domain.

Syntactic interpretation of type definitions:

Low level programs such as device drivers typically
contain series of definitions for structures, with only
a small proportion of them having a complex layout:
typically, type definitions comprise a large number
of nested structures and only a few of them point
to lists or trees of structures. Therefore, in many
cases, appropriate definitions may be computed by
assuming all structures are chained in a simple man-
ner, with no sharing. This works well when there is
no sharing, as in the case of lists and trees. This
approach was followed in [6] in order to treat data
structures that consist in hierarchical data types,
with lists of lists. However, this syntactic approach
will not discover any relation among pointer fields
as in, e.g., doubly-linked lists.

Inference of inductive definitions: In Sec-
tion 5.3.2, we observed that inductive definition
for summarizing the call stack can be inferred au-
tomatically, using a subtraction algorithm, which
proved able to infer relations among pointer fields
e.g., when summarizing cutpoints. However, that al-
gorithm did rely on two important assumptions:

1. a sequence of calls builds a call stack, each call
adding one activation record;

2. the head of the structure is also known, and
corresponds to the address of the topmost ac-
tivation record.

To generalize this algorithm to the inference of other
inductive definitions than for call stack summa-
rization, we need to isolate cases where the same
assumptions would hold. In general, this happens
whenever a piece of code is dedicated to the con-
struction of a data structure. In particular, in ob-
ject oriented languages, constructors allocate ob-
jects and initialize them, so that they could be used
in order to derive some rules for a candidate defini-
tion for the summarization of objects of their class.
Definitions derived that way may not be completely
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adequate though, as the initialized objects may sat-
isfy much stronger invariants than the class invari-
ants [75]; thus, invariants derived from the construc-
tors may have to be significantly weakened at a later
stage.

Further research on generalizations of the sub-
traction algorithm (Section 5.3.2) will make the ab-
stract domain easier to adapt to the analysis of
larger applications.

6.2.2 Strengthening inductive predi-

cates

We have shown our language of inductive defini-
tions is quite expressive. It is actually possible to
make inductive predicates even more expressive us-
ing additional annotations that constrain derivation
trees proving that a concrete element be part of the
concretization of an abstract one (Section 2.2.6),
further refining the meaning of abstract elements.
In fact, we actually relied on such annotations in
order to summarize call stacks while preserving in-
formation about call strings, in Section 5.2.3. This
approach can be greatly generalized.

Using length of derivations: Length of struc-
tures may be expressed using auxiliary parameters,
as in the case of list_len (Section 2.3.3), yet it
is also possible to use a primitive notion of length
of inductive predicates (Section 2.2.4 and Sec-
tion 2.2.5). That primitive notion of length was ac-
tually used in order to define forward and backward
segment unfolding (Section 3.3.2). For instance, the
abstract element below over-approximates states
with two variables l and n, such that n contains
the length of the list pointed to by l:

&l

&n

α

β

list

β

String abstraction: In Section 5.2.3, we relied
on regular expressions constraints on the shape of
inductive derivations in order to express that a stack
segment corresponds to a set of call strings. Regular
expressions provide a natural abstraction for sets of
words over a given alphabet, and can thus be used
in order to constrain linear sequences of unfoldings
(as opposed to general derivations which are trees).

For instance, a tree segment may unfold either
to an empty segment, or to a tree node the left
(resp., right) sub-tree of which points to another
segment. Thus, a concrete store that can be ab-
stracted by a segment of the form α·tree =∗ β ·tree
can be characterized by a path from α to β, that
is a sequence of left or right branches, ending in β.
Therefore, it can be characterized by a word over
alphabet {rl, rr}, where rl (resp., rr) stands for a
left (resp., right) step. When a precise information
about the shape of the path from α to β is known,
we may annotate a segment with e.g., a regular ex-
pression corresponding to that information.

Annotations constrain unfolding. For example,
annotation rl · c stands that the segment has length
greater than 1 (hence, is not empty) and may start
only with a left edge, so only one possible unfolding:

α β
tree tree

rl · c U
−→ι

α

γl

γr

βleft

right

tree tree

c

tree

Moreover, annotation r⋆l means that β is located on
a left-most path, starting from α.

Abstraction of paths and derivations:

Length or path information may be of great inter-
est in static analysis, as it allows to greatly refine
the information expressed in inductive predicates,
without requiring more complex predicates. More
generally, concretization derivations can be viewed
like trees, and could be refined using abstractions
for trees [81] and sets of trees [82]. Similarly, graphs
derived by unfolding should be filtered according to
the derivation abstraction.

The advantage of this construction is twofold.
First, it increases the expressivity of inductive defi-
nitions without requiring more complex definitions
be used as parameters for the abstract domain. Sec-
ond, it makes use of existing abstractions for length
information (i.e., integers), words over an alphabet
corresponding to the rules of the inductive defini-
tion or derivation trees.

6.2.3 Internal reduction operator

We observed inductive definition are very expres-
sive. However, there is a cost to pay for this expres-
siveness: in particular, some heap properties may
be expressed in many different ways. For instance,
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doubly-linked lists may be described either forward
or backward:
• forward inductive definition:

α · dll(γ) ::=
(emp, α = 0)

∨ (α · next 7→ β ∗ α · prev 7→ γ

∗ β · dll(α), α 6= 0)

• backward inductive definition:

α · bdll(β) ::=
(emp, α = 0)

∨ (α · next 7→ β ∗ α · prev 7→ γ
∗ γ · bdll(α), α 6= 0)

Thus, a doubly-linked list the first (resp., last) el-
ement of which has address α (resp., β) may be
abstracted by either of the following graphs:
• using forward definition dll:

α β ǫ

βp

0x0
dll(ǫ) dll(βp)

next

prev

• using backward definition bdll:

α βǫ

αn

0x0
bdll(ǫ)bdll(αn)

prev

next

In the static analysis point of view, this may actu-
ally be the source of major imprecisions. Indeed,
folding rules (Section 3.4) cannot take such an
equivalence into account, and may get fail when
trying to fold a graph containing both flavors of
doubly-linked lists. For instance, the graph below
could be abstracted by a doubly-linked list segment,
even though none of the folding rules of Section 3.4
will allow this weakening:

α β γ

βp

βn

dll(. . .) dll(βp) bdll(. . .)bdll(βn)

next

prev

Before any of the folding rules of Section 3.4 can
be applied, the analysis should perform a rewriting
step based on the equivalence between forward and
backward definitions of doubly-linked lists. Such an
operator is actually a reduction in the sense of [30].

In practice, designing and implementing such an
operator is usually very hard, and in our case, no
optimal reduction can be designed. A conservative
reduction operator should solve the following three
issues:

1. infer what rewriting is useful to the analysis;
2. check the soundness of that rewriting;
3. decide when to apply the rewriting.

In the last few years, we proposed a solution to
the second point [101], which reduces the checking
that an entailment between sub-graphs containing
inductive definitions to a static analysis. Indeed, the
concretization of an inductive predicate boils down
to a least fixpoint, and that our static analysis algo-
rithms (chapter 3) aim at over-approximating fix-
points. Therefore this analysis can be used in order
to prove that all memory states in the concretiza-
tion of an inductive predicate ι are also in the con-
cretization of inductive predicate ι′ (the analysis
checking the entailment will “run” ι and use ι′ to
abstract the sets of stores it generates [101]). For
instance, the checking that the backward doubly-
linked list segment can also be approximated by a
forward one was reduced to an abstract interpreta-
tion of the backward segment predicate, using our
abstract domain parameterized with the forward
doubly-linked list predicate.

On the other hand, the other two points re-
main unsolved. Except for simple cases, choosing
the right rewriting relations seem to require a rather
deep understanding of the structure of abstract el-
ements. However, we observed that such rewriting
are mainly helpful when folding, thus a static an-
alyzer relying on a search strategy may be able to
make appropriate decisions on what reduction to
perform, e.g., when an attempt to compute a join
fails in a situation where no rule applies because
inductive edges do not match, as in the above ex-
ample.

6.2.4 Reasoning on sharing

Many complex data structures, such as directed
acyclic graphs, graphs, shared binary trees... in-
volve a high degree of sharing, where some cells are
pointed to by many links. As our abstract domain
is based on separation logic, an abstract element
cannot describe a single concrete cell several times,
and shared cells are no exception. This makes the
encoding of shared structures tricky.

In the following, we overview the solution that
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was investigated during the internship of Suzanne
Renard from École des Mines de Paris (September
2010–March 2011).

A graph example: In the following, we consider
a graph structure, described by a list of nodes,
where each node encloses a name and an adjacency
list of outgoing edges (graphs may not be defined
using an inductive problem —we discuss this in Sec-
tion 6.2.5—, but we focus on sharing which can be
observed on this inductive data type just as well as
on a non inductive data type). Each outgoing edge
may be represented by a pointer to its destination.
This data structure can be described by the type
definition below:

typedef struct adjList{
struct adjList ⋆ next;
struct nodeList ⋆ dest;

}adjList;

typedef struct nodeList{
struct nodeList ⋆ N;
int name;
adjList ⋆ edges;

}nodeList;

typedef nodeList graph;

For instance, a graph with three nodes labeled
{0, 1, 2}, and with transitions 0 _ 1, 0 _ 2 and
2 _ 1 may be described by the concrete store be-
low:

&g

x0 x1 x2

0 1 2

0x0

0x0

0x0

0x0

While this graph representation is mostly based on
lists, which can be dealt with in our framework,
there is a significant new difficulty: the destination
node of each edge may be any node in the graph.

A graph inductive definition: In order to ex-
press precisely all the structural invariants of this
structure, we need to augment our inductive defini-
tions with additional parameters representing sets
of nodes. This way, we can specify that each desti-
nation field should point to a node in the list. We
also need to specify that the set of nodes in the list
corresponds exactly to this set. Therefore, two set
parameters should be used. Hence, we obtain the
set of inductive definitions below:

α · graph(E ) ::=
(α · nodes(E , E ), true)

α · nodes(E ,F ) ::=
(emp, α = 0 ∧ F = ∅)

∨ (α · N 7→ β ∗ α · name 7→ γ

∗ α · edges 7→ δ ∗ β · nodes(E ,F \ {α})
∗ δ · edges(E ),
α 6= 0 ∧ α ∈ F )

α · edges(E ) ::=
(emp, α = 0)

∨ (α · dest 7→ β ∗ α · next 7→ γ ∗ γ · edges(E ),
α 6= 0 ∧ β ∈ E )

In all these definitions, E denotes the set of nodes
of the whole graph; edges checks all edges in an ad-
jacency list point to some node in the graph. More-
over, auxiliary parameter F of nodes tracks nodes
that appear in the list of nodes, so as to check each
node appears exactly once in the structure.

As an example, the diagram below displays a
partially unfolded α ·graph(E ) (basically, only the
first element is unfolded):

α

β

γ

δ

nodes(E ,F)

edges(E )

next

name

edges

E = F ∪ {α}

Product with a set constraints domain: As
the above example shows, unfolding a graph pred-
icate generates additional constraints among set
variables, that our abstract domain should also
faithfully represent.

Therefore, we use a domain of sets constraints
D
♯
set, to represent constraints on set variables

E ,F , . . . ∈ V
♯
set and node symbolic names ([93] pro-

poses such an abstract domain). The concretiza-
tion γset of this domain maps a set of constraints
into a set of pairs (η, ν) ∈ Valset × Val, where
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Valset = V
♯
set −→ P(V), since abstract values rep-

resent constraints not only on sets, but also on ele-
ments (e.g., stating that α ∈ E for some node sym-
bolic name α and some set name E ).

Product abstraction for memory states should
now include three arguments:

M
♯ = D

♯
S × D

♯
N × D

♯
set

Concretization of elements of that domain relies on
the existence of a compatible concrete set mapping,
and on a conjunction:

(σ, ν) ∈ γM(S,N,C)

⇔ ∃η ∈ Valset







(σ, ν) ∈ γS(S)
∧ ν ∈ γN(N)
∧ (η, ν) ∈ γset(C)

This defines a valid instance of the cofibered ab-
stract domain of [119], extending that of Section 2.2.

The concrete graph shown in the beginning of
the section is in the concretization of the abstract
element shown above, with the following concrete
mappings of set and symbolic variables (omitting
variable g):

α 7→ x0 E 7→ {x0, x1, x2}
β 7→ x1 F 7→ {x1, x2}
γ 7→ 0
δ 7→ x3

Static analysis: The unfolding and folding al-
gorithms remain mostly unchanged, except for the
fact that they should also track constraints on sets
in addition to numerical constraints. However, those
algorithms are not sufficient to handle the analysis
of many common graph algorithms, as the reduc-
tion issue raised in Section 6.2.3 needs to be solved,
as the following examples show:
• Non localized unfolding: We consider the

abstract element below, where α is known to
be the address of the first element of a graph
the set of node addresses of which corresponds
to E , and where β is known to be in E :

α
nodes(E ,E )

β ∈ E

Under this assumption, it would be perfectly
valid to materialize the node of address β.
Such a situation would actually arise when
considering, e.g., a traversal algorithm and
when β is the address of the next node to
be reached in the traversal. It would also oc-
cur in an algorithm attempting to recognize

a word in an automaton (an automaton data
structure would be rather similar to the graph
considered here).
The above abstract element can be proved
equivalent to the abstract element below,
where node of address β is materialized:

α0 α1

β

γ

δ

graph(E ) nodes(E ,F)

graph(E ,F ′)

edges(E )

next

name

edges

F ′ = F ∪ {α1}

Furthermore, the inclusion of the initial α ·
graph(E ) into that abstract element can be
proved by induction over graph, using a sim-
ilar algorithm as that of [101].
• Folding with different set parameters:

Let us consider the graph below, where one
node was added into a graph, and was put
in the first position (this operation may be
part of a graph construction loop, adding new
nodes to an initially empty graph):

α

β

γ

δ

nodes(E ,E )
next

name

edges

α 6∈ E

= 0x0

The whole structure would fold into a com-
pletely summarized graph structure, yet the
set parameters would have to be updated so
as to reflect the fact the set of nodes for the
whole graph is {α} ∪ E . However, the folding
rules of Section 3.4 will not fold the above
abstract element into α · graph({α} ∪ E ),
since the first auxiliary parameter of the re-
cursive inductive predicate β · nodes(E , E )
does not match with {α}∪ E : indeed, this in-
ductive predicate describes a graph fragment
such that all edges point into set E whereas
we would need a predicate describing a graph
fragment such that all edges point into set
E ∪ {α}. The implication of these two prop-
erties is very intuitive, yet proving it requires
reasoning by induction over the structure of
the predicate. We can actually notice that
edges is monotone over its predicate, and
that nodes is monotone over its second pa-
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rameter:

E ⊆ E ′ ∧ (σ, ν, η) ∈ γS(α · nodes(E ,F ))
=⇒ (σ, ν, η) ∈ γS(α · nodes(E ′,F ))

E ⊆ E ′ ∧ (σ, ν, η) ∈ γS(α · edges(E ))
=⇒ (σ, ν, η) ∈ γS(α · edges(E ′))

Such reasoning could be done using a mono-
tonicity analysis such as [91].

6.2.5 Abstract domains based on

packing and unpacking opera-

tions

Abstract domain operations are based on two main
operations for “packing” memory predicates into
more abstract summaries un “unpacking” sum-
maries into more concrete memory predicates. In
our domain, these pack and unpack operations are
tied to the notion of induction, like our notion of
summaries. Other shape analyses such as TVLA
rely on very different formalisms, yet also feature
a notion of local concretization (or focus) and global
abstraction (or canonicalization).

However, other forms of summarization can be
considered, even though they are not based on in-
duction.

Array analyses: Array analyses exploit parti-
tions of arrays into a finite number of sub-sets, and
apply abstractions to each element of the partition,
thus each element of such a partition defines a sum-
mary. Furthermore, some array analyses like [38]
use dynamic summaries, which means they may
change during the analysis (hence, fewer summaries
may be used, and provide a more accurate descrip-
tion of the concrete behaviors at a cheaper cost).

Operation on summaries such as pack and un-
pack can also be defined, which split and merge par-
titions.

Collecting sets of cells: Some structures cannot
be described in an elegant way using induction. For
instance, a graph comprises a set of nodes, which
may not be ordered in any way. The example of
Section 6.2.4 was using a list of nodes, in order
to avoid this problem. However, we may imagine a
graph structure where nodes are not list elements;
instead, another list may be used as an index (which
may not be one to one):

0x0

Furthermore, it would be possible to define a struc-
ture where not all nodes are pointed to by an in-
dex element; reference counting would ensure that
a node will be deleted when the last reference to it
is discarded.

Such examples are hard to describe with our in-
ductive definitions. While the index has list struc-
ture and can easily be described by induction, the
rest of the structure should be described as a set
of pairwise disjoint sub-regions, which satisfy some
local properties (i.e., that their outgoing edges re-
main in that set). Thus this set should be described
by a summary, and the abstraction would also fea-
ture pack/unpack operations, where operation pack
merges two sets of elements with the same property
together and unpack singles out one element of the
set. Such an abstraction shows some resemblance
with TVLA [111] yet relies on separated heap re-
gions.

Generalization: While very different abstraction
may need be developed for more complex kinds
of data structures, we remark that the basic op-
erations on them are not fundamentally different.
Therefore, it seems possible to extend our static
analysis frameworks so as to integrate other notions
of summaries, under the constraint that operations
to pack and unpack them can be defined.

6.3 Towards a standalone ab-

stract domain

The abstraction proposed in chapter 2 proved flexi-
ble and easy to extend, so as to deal with non triv-
ial features of programming languages, such as low-
level memory manipulations (chapter 4), call-stack
summarization (chapter 5), sharing (Section 6.2.4)
but it also turned out rather hard to implement. So
far, we worked only on prototype implementations,
as it was not possible to analyze very large pro-
grams without a solid handling for a wide range of
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program features (including, e.g., arrays and strings
which are not supported in Xisa as of today).

Therefore, an important task I am planning to
pursue is to revise the current implementation and
turn it into a standalone abstraction. In the longer
term, this implementation effort should also allow
to integrate a shape domain into general purpose or
domain specific static analyzers (like Astrée [11]).

The following paragraphs list a few main areas
for further research motivated by the goal of im-
proving implementation.

Combination of abstract domains: First, the
splitting of the memory (including the call stack) in
regions and the abstraction of values with an under-
lying domain (Section 2.3.1) which could be either
a numerical domain or a more complex one (e.g., for
abstracting arrays) make our abstraction compati-
ble with a wide range of structures. In particular,
we have seen in Section 4.2.3 that an array domain
could be used as a value domain, in order to capture
constraints over the contents of an array region.

To take full advantage of this possibility, we need
to extend the interfaces which were used in chap-
ter 3; indeed, a domain for abstracting strings has
a different signature than a domain for abstracting
base values.

Besides, this scheme also has some limitations.
For instance, let us consider an array of pointers to
structures in located somewhere else in the memory
(as in the example shown in Section 6.2.5); then,
abstract values should not only describe the struc-
tures, but also the relations between them. There-
fore, much work remains to be done carefully choos-
ing abstract domain interfaces, so as to capture a
wide set of structure while not impeding perfor-
mance.

Scalability and disjunction control: The
analysis implemented in Xisa is complex, and needs
a lot of tuning to compute optimal results. This
tuning is usually the result of strategies (e.g., for
deciding which edge to unfold) and/or hard-coded
choices (e.g., the definition of the iteration strate-
gies), which always needs more improvements.

As shown in Section 3.3, unfolding generate dis-
junctions of abstract elements. However, keeping
too many disjuncts incurs a non negligible cost, so
an ideal analysis would determine when some dis-
juncts can be folded together. The Xisa analyzer

follows a rather simplistic strategy and currently
does not merge disjuncts except at widening points.

Early experiments show that trace partition-
ing [108] techniques do not infer the optimal fold-
ing decisions, as the shape of disjuncts cannot be
related solely on executions paths. Therefore, find-
ing criteria based on the shape of abstract values
like [78], which would trigger accurate and compact
sets of disjuncts requires some additional investi-
gation. Ideally, folding should be decided based on
semantic criteria, and identifying easily computable
such criteria is an important future task.

Abstract domain verification: Our abstract
domain relies on a complex abstraction and on com-
plex algorithm, thus proving a mechanized formal-
ization of this domain would increase the trust in
the results produced by analyses relying on it. The
experience also shows that such formalization and
proving efforts often lead to the design of simpler,
more elegant algorithms.

Therefore, I formalized a limited version of the
abstract domain using the Coq proof assistant, in-
cluding the abstraction provided in chapter 2 (with
an axiomatized numerical domain), and part of the
unfolding and folding operators of chapter 3, yet
this represents only a very small part of the domain.
In the longer term it should be feasible to prove the
abstract domain transfer functions formally, with
respect to a formal semantics of C statements [12],
which is used in the CompCert compiler [72]. Such
a formalization would open the way to a fully ver-
ified static analyzer as verified numerical domains
already exist [9] for a large subset of C, including
complex data structures, which would be of a great
interest to the critical embedded systems commu-
nity.

We remark that the approach proposed in this
manuscript in order to decompose abstract domain
into simpler ones, to be combined according to care-
fully designed interfaces should help significantly in
making this formalization and proof effort tractable.
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