
Desynchronized Multi-State
Abstractions for Open Programs in Dynamic Languages

Arlen Cox1,2, Bor-Yuh Evan Chang1, and Xavier Rival2

1 University of Colorado Boulder
2 INRIA/CNRS/ENS Paris

Abstract. Dynamic language library developers face a challenging problem: ensuring
that their libraries will behave correctly for a wide variety of client programs without
having access to those client programs. This problem stems from the common use of
two defining features for dynamic languages: callbacks into client code and complex
manipulation of attribute names within objects. To remedy this problem, we introduce
two state-spanning abstractions. To analyze callbacks, the first abstraction desynchro-
nizes a heap, allowing partitions of the heap that may be affected by a callback to
an unknown function to be frozen in the state prior to the call. To analyze object
attribute manipulation, building upon an abstraction for dynamic language heaps, the
second abstraction tracks attribute name/value pairs across the execution of a library.
We implement these abstractions and use them to verify modular specifications of
class-, trait-, and mixin-implementing libraries.

1 Introduction

“Don’t Repeat Yourself!” This DRY mantra leads JavaScript developers to minimize the code
that they write and thus minimize the number of places bugs can occur. As a result, there is
a proliferation of generic libraries and code reuse in the JavaScript community. Unfortunately,
even though library authors would like to know that their libraries work correctly with any
client, current verification techniques cannot verify this because they do not also follow the
DRY mantra – they require reverifying libraries along with each and every client [15, 17–
19, 27]. This paper brings the DRY mantra to automatic dynamic language verification by
modularly verifying libraries without the presence of client code.

While there are many kinds of libraries for many dynamic languages, this paper focuses on
meta-feature libraries for JavaScript. Meta-feature libraries add functionality that is commonly
built-in to languages, such as mixins, traits, classes, and memoization. These features are not
first-class features of the JavaScript language, but they aid software engineering, so nearly
every program includes them in some form or another. For example, the ubiquitous jQuery,
Prototype, and MooTools libraries all include implementations of mixins. Similarly, MooTools,
Prototype, and the Microsoft Ajax Library include class implementations. What makes these
libraries unique is their use of open object manipulation, functions, and encapsulation to
implement language features as libraries.

For example, while JavaScript does not contain classes, a simple version of classes can
be implemented with the few lines shown in Figure 1. These few lines implement classes by
constructing a class instantiation function (highlighted) that is responsible for creating new
instances of the class. This class instantiation function is derived from a configuration object

1 var Class = function(cfg) { //make class
2 var copy = function(src,exc) {...};
3 var attrs = copy(cfg,{});
4 var init = cfg.init;
5 return function(args) { //make instance
6 var result = copy(attrs,{init:null});
7 init(result, args);
8 return result;
9 };

10 }

Fig. 1: Class implements a simple version of classes. The class is essentially allocated by
the call to copy on line 3. The instance is allocated by the call to copy on line 6. Line 7
calls the initialization function on the instance.

cfg that describes not only a template for the instance object, but an initialization function
init. The init function is run on each newly created instance, completing the initialization
of the new object using arguments passed to the instantiation function. Note that because
JavaScript allows the attributes of objects to be mutated (i.e. objects are open), it is necessary
to copy the configuration object twice to create an instance. The first copy (underlined) creates
a backup that ensures that if the configuration object is mutated, already constructed classes
are not mutated as well. The second copy (line 6) creates the instance object.

A key challenge of verifying library implementations is that developers specify libraries in
terms of input/output behaviors. If a particular kind of input is given, a particular, but related
kind of output is given. For example, in Class, the object generated by instantiating a class
is related to the cfg object that was passed in to Class. This means inputs to a library must
be treated as unknowns that can be related to the outputs of that library — even when the
inputs are unknown functions or objects with unknown attribute name/value relationships.

The core problem with unknown functions (such as init) as input to a library is that
they may be called by the library. If they are, they may have wide-reaching effects on the state
of the program. However, developers are not stymied by these function calls when reading
code because the effects are usually well contained by the surrounding code. Developers use
conventions such as copying into local, non-escaping variables (like attrs and init) to
ensure that certain parts of the program’s state cannot be affected by calls to unknown functions.
Therefore, when developers are reasoning about this code, they optimistically assume that
when a call to one of these unknown functions occurs, there are two parts of the program
memory: (1) the part unaffected by the call, which may be freely accessed and modified after
the call and (2) the part affected by the call, which, over the remainder of the function is solely
described as “the result of calling the function on whatever that part was before the call.” In
this paper, we observe that analyses that are designed for such library code can optimistically
split the heap into two parts, where the analysis can proceed on the unaffected part and the
affected part can be saved along with the function that affected it until that function is known.

Furthermore, existing analyses have problems with input objects that have unknown
attribute name/value relationships. Most analyses represent containers by partitioning them.

However only using partitions, it is not possible to represent the fact that attribute/value
pairs are often preserved. For example, when cfg is copied to attrs, it is clear that every
attribute/value pair is copied and therefore, all attribute/value pairs are preserved as-is across
this computation. As Halbwachs and Péron [14] discovered for arrays, it is beneficial to
capture relations between individual attributes and values and to share those relations between
multiple containers. However, these relations can be generalized beyond arrays to any con-
tainer and can be extended to relate partitions across multiple states. This allows proving that
attrs is equal to what cfgwas at the beginning of the class creation.

To verify modular specifications of JavaScript libraries, even when client code is absent,
and thus enabling reuse of specifications, and improving library reliability, we make the
following contributions:

– To abstract open objects and containers with unknown attribute name/value relationships,
we introduce attribute/value trackers that extend existing container and open-object ab-
stractions with the ability to perform fully precise partitioning when attributes and values
are copied. Trackers represent a form of parametric polymorphism for attribute/value
relationships that can be applied across multiple abstract heaps to relate unknown input
objects to unknown output objects.

– For the analysis of a call to an unknown function, we introduce desynchronized sepa-
ration, which splits off a region of the heap by representing it as an old analysis state
along with the code required to synchronize that portion of the state with the rest of the
analysis. This creates a form of assume-guarantee reasoning that mimics the programmer
intuition for simple, well-contained callbacks, while enabling automatic analysis.

– We extend the heap with open objects abstraction (HOO) with attribute/value trackers
and desynchronized separation and evaluate these additions to HOO by automatically
verifying specifications written for JavaScript meta-feature libraries. We analyze the core
functionality of libraries that implement mixins, traits, classes, and memoization. By
utilizing HOO along with both desynchronization and attribute/value trackers, we are
able to fully precisely analyze these library cores, even without any knowledge of specific
attribute names used in input objects or code for client-supplied callbacks.

2 Overview

In this section we demonstrate the power of attribute/value trackers and desynchronized
separation applied to HOO (the Heap with Open Objects Abstraction [8]) by showing key
parts of the analysis of instantiation of a class created by the Class library introduced
in Figure 1. First we show how attribute/value trackers enhance open-object and container
abstractions with the analysis of the copy function used by Class. Then, we show how
desynchronization allows analysis of calls to unknown functions.

2.1 Preliminaries

Before we explain attribute/value trackers and desynchronized separation, we introduce the
basics of the HOO abstraction. HOO is a separation-logic-based abstraction for dynamic
language heaps that supports reasoning about open objects, which behave like containers

[
I obj V V = {undefined}

]
I

var obj = {fld1: 1, fld2: 2};[
II

A

F ⇢

obj V0 F = {f1} [{f2} ^ f1 = 'fld1' ^ f1 = 'fld2'
^ V0 = {v1} [{v2} ^ v1 = 1 ^ v2 = 2 ^ A = {a}

]
I

Fig. 2: The HOO abstract domain represents a heap of open objects using a combination
of a heap graph and pure side constraints

mapping strings representing attribute names to values. HOO supports the basic requirements
for both attribute/value trackers and desynchronization. It partitions open objects by the
attributes (as most container abstractions do) and it supports partitioning the heap (as all
separation-logic-based abstractions do). What makes HOO unique is its use of a set abstraction
to relate partitions to one another. However, this functionality is not strictly required to make
use of trackers and desynchronized separation.

Because we are concerned with input/output relationships, Figure 2 shows a simple pro-
gram annotated with two-state HOO invariants. The first invariant I shows the initial heap
containing the variable obj pointing to the value undefined. The input heap is indicated
with its program point in the lower right hand corner of an invariant. In the case of I , the
input heap is the same as the heap shown in brackets at I . The current heap, relative to that
input heap is shown in the brackets along with a constraint on the logic variables used in both
heaps. This constraint is represented and manipulated by an abstract domain for sets.

This program creates a new object pointed to by obj that has two attributes: 'fld1' corre-
sponds to the value 1 and 'fld2' corresponds to the value 2. The abstract state II highlights the
important parts of the abstraction. The heap part in brackets shows an abstract object that is
represented as a table. The shaded top row is the set symbol A for the base address of objects.
If this is not a singleton set, the object is a summary. On the right, A is constrained to be a sin-
gleton set of addresses and thus it is not a summary object. Below the shaded top row are rows
each describing a partition of attribute names for that object. Here we have decided to represent
these two attribute names 'fld1' and 'fld2' using a single partition that conflates the two attribute
names. This partition is represented with the set symbol F, where it is equated to the union
of two singleton sets with attribute names fi. Additionally, this partition has been assigned the
attribute/value tracker ρ, which can keep track of specific attribute/value pairs from the begin-
ning of the function to the end, as will be demonstrated in next section. Finally, the partition
points to a set of values V′ that is made up of individual values vi. Note that this is not the most
precise abstraction because the two attributes have been summarized into a single partition.
An alternative abstraction would construct a separate partition for each known attribute name.

In this paper we will often use a shorthand notation where instead of showing a set symbol
such as A in the heap, we will show instead a singleton set in brackets, such as {a}. This is
equivalent to having a set symbol and then constraining that set symbol to be equal to the
singleton set. This is useful for improving the readability of the notation, but formally all
symbols in the heap are set symbols.

[
1

{a1}
F1 ⇢1

attrs V

]
1

var exc = {init:1};
var result = {};
for(var a in attrs) {
if(attrs.hasOwnProperty(a) && !exc.hasOwnProperty(a)) {

result[a] = attrs[a];
}

}[
2

{a1}
F1 ⇢1

attrs {a2}
F2 ⇢1

result V
F2 = F1 \ {'init'}

]
1

Fig. 3: Analysis of class instantiation uses attribute/value trackers to maintain precision when
attributes are copied

2.2 Attribute/Value Trackers

At the start of the analysis of the class instantiation function (the highlighted part of Figure 1),
the first code that the analysis encounters is the call to the copy function. Figure 3 shows the
body of the copy function after it has been inlined into the context of the class instantiation.
This function iteratively copies one open object attrs to another open object result
by first checking if the attribute name that is being copied is in the exclusion object exc.
Accompanying the copy function are pre/postconditions that show a portion of heap that
is relevant to this function.

An abstraction such as HOO does a nice job of incrementally inferring the relationship that
forms between the result object and the attrs object. While, as a two-state abstraction,
HOO can relate initial objects to final objects, it still conflates all of the attributes and values
that may have been in that object into a single partition. This means that while HOO can
prove that the result object has a subset of the attributes of the initial attrs object, it
cannot prove by itself that the attribute/value relationship was maintained for everything that
was copied. This is where attribute/value trackers come in.

An attribute/value tracker is an uninterpreted symbol for some relationship between
attributes and values. When a tracker is applied to a particular partition and corresponding
values, it uses that “global” relationship to constrain exactly which values can possibly
correspond to which attributes that are described by the partition. The most important aspect of
an attribute/value tracker is that it is “global” in the sense that the symbol is shared between the
two-states of the invariant. A tracker’s meaning is consistent across these two abstract heaps.

Throughout this analysis, there is only one attribute/value tracker ρ1. In the precondition
the attribute/value tracker ρ1 can be automatically added, as at that point the true relationship
between attributes and values is unknown. But in the postcondition, the fact that ρ1 is used for
two partitions means not only that attrs and result have the same attribute and value
relationship after the loop, but that the relationship is the same one that existed before the loop.

Critically, once a tracker is associated with a partition, that tracker can be reused with any
other partition that is a subset of that initial, associated partition. Here, we see that the same
tracker ρ1 is used in the F2 partition of the object at address a2. Even though the F2 partition

{a1}
F1 ⇢1

attrs V {a1}
F0

1
⇢1

attrs V

{f} ⇢1

F1 = F0
1] {f})

Fig. 4: Materialization maintains the attribute/value tracker ρ1

is a subset of F1 used in the object at address a1, the same tracker can be used. As a result,
this constraint says that the result object is exactly the same as the attrs object except
that the 'init' attribute has been removed if it was present.
Materialization with Attribute/Value Trackers: In the loop body, before the object pointed to
by attrs can be read, the single attribute that will be read must be materialized in that object.
This ensures strong updates occur. An example materialization is shown in Figure 4. On the
left is the object at address a1 before materialization and on the right is the same object after
materialization. Here, we assume that the particular attribute is represented by the symbol
f, and while f is not explicitly constrained, it is known that f is one of the attributes from F1.

What is special about attribute/value trackers is that rather than requiring a new description
of the partition when a materialization occurs; here they can be duplicated. On the right the
tracker ρ1 occurs in both partitions F′1 and {f}. This is because the tracker only restricts the
values that correspond to those in the partition. Since the partition has been refined, the same
restriction can be applied to both new partitions.
Transfer of Attribute/Value Trackers: As part of analyzing code like copy above, there is
a transfer of an attribute/value pair from one object to another. This transfer maintains the
relationship between attributes and values. When transfer occurs, the attribute/value tracker
can be transfered along with the attribute and value. Therefore, even if the particular attribute
and particular value cannot be identified from their sets, the tracker maintains whatever the
original relationship was and allows it to be transfered to other objects.

Here this property of trackers ensures that ρ1 is transfered from the attrs object to
the results object. Since the transfer occurs whenever the attribute/value pair is copied,
the tracker can be unconditionally copied. However, because the resulting partition F2 is
restricted, this simply limits the scope of where the tracker can be applied.

While we have not demonstrated the use of summaries generated by this analysis, at-
tribute/value trackers are critical to this application. With the use of attribute/value trackers,
a general precondition can be specialized for a particular calling context, essentially a form
of parametric polymorphism. That is, partitions can be more finely specified corresponding
to the actual objects passed into library functions. This very same partitioning can be applied
to postcondition, allowing precision that was made available well after the analysis was
completed to be preserved by the analysis.

2.3 Desynchronized Separation

When analysis reaches the call to the client-supplied initializer that is shown in Figure 5, there
is a problem. The actual function that is called is an input to the class library and as a result it
is unknown to the analysis. However, despite the fact that this function is unknown, developers
might optimistically reason about what this class library does as follows: attrs is protected
by lexical scoping, so it should not change, and result is initialized by the copy and then

[
a

{a1}
F1 ⇢1

attrs {a2}
F2 ⇢1

result V F2 = F1 \ {'init'}· · ·
]

1

init(result, args); b

{a1}
F1 ⇢1

attrs

{a2}
F2 ⇢1

result

V

F2 = F1 \ {'init'}V {a2}

· · ·

· · ·

call {init_fun}({a2}, . . .)


1

Fig. 5: Desynchronized terms are introduced by function calls to unresolvable functions

the return value is whatever result is after running the client-supplied initializer init on
it. Desynchronized separation is a means for capturing this kind of optimistic reasoning in
a sound manner using a form of assume-guarantee reasoning.

Immediately before the call to the initializer, there are two objects shown: a1 is the attrs
object, which is the backup copy of the cfg object that was passed in to Class and a2 is the
result object that is the class instance that is currently in the process of being constructed.
The relationship between F1 and F2 carries over from the copy as before. Other parts of the
heap are not shown, as they are not necessary for explaining desynchronized separation.

When the analysis reaches the call to init, desynchronized separation optimistically
splits the heap into two separate parts: (1) the part that shall not be used by the client-supplied
initializer and (2) the part that shall be used by the client-supplied initializer. In our algorithm,
we make this split based on reachability: optimistically assuming the post-call code in the
caller does not use anything reachable from the arguments to the call. Thus for the unused
portion, there is no change and thus it is directly represented in the post-state b . For the used
portion, the function call may have changed it and thus it is desynchronized. Desynchroniza-
tion represents the resulting heap as a term that stores the used portion of the heap before the
call and the function that is applied.

The desynchronization process introduces a desynchronized term, written JHKcall V(...),
whereH is the portion of the heap that is desynchronized and callV(...) is the function called
and the arguments passed to it. By introducing this desynchronized term, the post-state of
the call can be written in such a way that, when the client-supplied initializer becomes known,
such as when a function summary generated by HOO is reused, the now known function can
convert the desynchronized portion back into a normal, “synchronized” heap formula.

In b we can see that the heap has been split so that a2 has been desynchronized. Because
it may have been modified by the call, it is “locked” in a state from before the function call.
That is, we guarantee in the analysis that the post-call code does not access desynchronized
sub-heaps by ensuring the analysis gets stuck (raises a warning) if accessing desynchronized
memory. Desynchronization is different from simply separating the two parts of the heap
because the desynchronized region represents the portion of the heap that results from calling
the desynchronized function on the desynchronized part of the heap. In this way it soundly

abstracts calls to unknown functions by explicitly representing the precondition to the call
and implicitly representing the postcondition of the call.

A significant part of implementing desynchronized separation is the operation used to
split the heap into the desynchronized and non-desynchronized parts. In this paper we outline
a simple means of splitting the heap based on reachability as in [25] that exploits the fact
that JavaScript developers, by convention, protect regions of the heap using closures for
encapsulation. Here, attrs is protected in such a way. Consequently, the heap split that is
automatically inferred leaves a1 and all local variables outside the desynchronized term and
places a2 inside the desynchronized term. With this split, it is possible to verify that attrs
is unmodified by class instantiation, which means that classes are immutable and it is possible
to verify that the object built in the class is the one returned by the class after calling the
client-supplied initializer on it starting from elements copied from attrs.

3 Abstracting Callbacks and Objects with Multi-State Abstraction

In this section we define attribute/value trackers and desynchronization as an extension to the
heap with open objects (HOO) abstract domain [8]. First we present attribute/value trackers
and how they are added to HOO. Then we present desynchronized separation, also adding
it to HOO.

Throughout these sections we utilize the following symbols in the definitions.

Address⊆Value d⊆Attribute

Attribute⊆Value o∈Object=Attribute⇀Value

v∈Value σ∈State=Address⇀Object

f∈Attribute

Address is the set of all concrete addresses, Attribute is the set of all concrete attributes
(strings), and Value is the set of all values including addresses and attributes. Object is the set
of partial functions from attributes to values, where unmapped attributes are not attributes in
the object. Similarly concrete states are a partial function from addresses to objects. Individual
concrete values v, attributes f , and object domains d are used in defining semantics.

3.1 Attribute/Value Trackers on HOO

Attribute/value trackers extend an existing domain for containers that supports strong updates.
Attribute/value trackers significantly increase the precision of the existing container domains
by precisely keeping track of the relationship between individual attributes and individual
values, even when the container has summarized many attributes and values into a single
partition. An attribute/value tracker is an uninterpreted partial function ρ that is optionally
added to each container partition in an existing abstract domain for containers.

HOO is a separation-logic-based approximation of a heap that is restricted by an abstrac-
tion for sets of values. This abstraction for sets restricts relationships between symbols each
representing a set:

{a},{f},{v},A,F,V∈Symbol

where A represents a set of addresses, F represents a set of attributes, and V represents a set
of values. The {a}, {f}, and {v} sets are the respective singleton forms.

Definition 1 (Attribute/Value Trackers with HOO). The heap with open objects abstract
domain, when extended with attribute/value trackers, is represented with the following logical
syntax:

Ĥeap3H ::=H1∗H2 |A·〈O〉 | EMP | TRUE

Ôbject3O ::=O1;O2 | F:ρ 7→V | F:– 7→V | NONE

D̂omain3D ::=D1∨D2 | [H2]H1
|P

An abstract stateD is either a disjunction of abstract states, or a triple [H2]H1
|P repre-

senting an initial heapH1 and a current heapH2 restricted by a domain instance P for sets.
The domain responsible for representing P is a parameter to this abstraction and unspecified.
An individual heap H is a standard separation logic heap consisting of two disjoint parts
combined with separating conjunction, a set of objects A·〈O〉 at addresses described by A
with structureO, or the empty EMP or unknown TRUE heap. Objects are a form of container,
which is represented by a number of disjoint partitions of the attributes. A single partition
is represented as either F : ρ 7→V or F : – 7→V depending on whether the attribute/value
tracker ρ is present or not. Partitions are joined together into objects using another form of
separating conjunction ; whose unit is the empty object NONE.

Figure 6 shows that an instance of HOO concretizes to a set of pairs of concrete states
along with a valuation. The σ0 state represents a starting state for a library function and the σ1
state represents the current state relative to σ0. The valuation maps each symbol that occurs
in the heap formula, including those representing sets of addresses, attributes and values to
a set of concrete addresses, attributes, or values:

η :Valuation=Symbol→P
(
Value

)
The valuation ensures that symbols map to consistent values throughout a concretization,
even if the symbol is used multiple times. The concretization of P produces a set of these
valuations as must be defined by the abstraction for sets. The concretization for any instance
of the abstraction for sets must have the following type.

P ∈ Ŝets γP : Ŝets→P
(
Valuation

)
For the concretization of heaps and objects, there is an additional value that is returned

besides the valuation η and the state σ. The attribute/value tracker map µ binds trackers to
their corresponding partial functions:

ρ∈TrackSym

µ∈TrackerMap=TrackSym⇀Attribute⇀Value

An element µ∈TrackerMap maps a tracker symbol to a partial function from attributes to
values. The domain of that function is fixed when the tracker is introduced (Section 4.2).

γ :Ôbject→P
(
Valuation×TrackerMap×Object×P

(
Attribute

))
γ(O1;O2) =

{
η,µ,o,d

∣∣∣∣∃o1,o2,d1,d2.(η,µ,o1,d1)∈γ(O1)∧(η,µ,o2,d2)∈γ(O2)
∧o=o1∪o2∧d=d1]d2∧Dom(o1)∩Dom(o2)=∅

}
γ(F:ρ 7→V)=

{
η,µ,o,d

∣∣∣∣d=η(F)∧∀f∈η(F).
o(f)∈η(V)∧µ(ρ)(f)=o(f)

}
γ(F:– 7→V)=

{
η,µ,o,d

∣∣d=η(F)∧∀f∈η(F).o(f)∈η(V)
}

γ(NONE) ={η,µ,[],∅}

γ :Ĥeap→P
(
Valuation×TrackerMap×State

)
γ(H1∗H2)=

{
η,µ,σ

∣∣∣∣∃σ1,σ2.(η,µ,σ1)∈γ(H1)∧(η,µ,σ2)∈γ(H2)
∧σ=σ1∪σ2∧Dom(σ1)∩Dom(σ2)=∅

}
γ(A·〈O〉) =

{
η,µ,σ

∣∣∣∣∀a∈η(A).∃o,d.
σ(a)=o∧(η,µ,o,d)∈γ(O)∧Dom(o)=d

}
γ(EMP) ={η,µ,[]}
γ(TRUE) =Valuation×TrackerMap×State

γ :D̂omain→P
(
Valuation×State×State

)
γ(D1∨D2) =

{
η,σ1,σ2

∣∣(η,σ1,σ2)∈γ(D1)∨(η,σ1,σ2)∈γ(D2)
}

γ([H2]H1
|P)=

{
η,σ1,σ2

∣∣∣∣∃µ.(η,µ,σ1)∈γ(H1)
∧(η,µ,σ2)∈γ(H2)∧η∈γ(P)

}

Fig. 6: Concretization of HOO abstract states along with attribute/value trackers

Example 1 (Attribute/Value Trackers with HOO). In the following state, there are two abstract
heaps and a single pure domain instance.

[{a}·〈F′ :ρ 7→{v}〉]{a}·〈F:ρ7→{v}〉|F′⊆F

This constrains the relationship between the pre-state and the current state so that they both
refer to the same object because they use the same symbol {a} and the number of attributes
has been possibly reduced: some attributes may have been deleted. All other attributes remain
the same and no attributes can have been observably added (added and then later removed is
acceptable).

Additionally, the attribute/value tracker ensures that the partition F′ is exactly the same
as F except for the elements that are removed.

3.2 Desynchronized Separation

Desynchronized separation is an extension to a separation logic that adds a desynchronized
term to the logical formulas. It is useful for representing different parts of the heap from

A CB

D

Ti
m
e

1

2

3

4

fun1(D)

A B C D

(a) After call to fun1(D)

A C

B

D1

2

3

4

fun1(D)

fun2(B)

A B C D

Ti
m
e

(b) After call to fun2(B)

A

C

B

D1

2

3

4
fun3(C, D)

fun2(B)

fun1(D)

A B C D

Ti
m
e

(c) After call to fun3(C,D)

Fig. 7: Three separate desynchronizations after calling three successive functions to on four
regions of memory. In (c) A is the current analysis state where as regions B, C, and D have
all been desynchronized. The D region has been desynchronized twice.

different times during an analysis. As a result, it allows a meaningful representation of the
heap after a call to an unknown function has been made.

Example 2 (Desynchronization). To demonstrate the power of desynchronization, Figure 7
shows the process of desynchronization pictorially. The program being considered has four
separate regions of memory A, B, C, and D that are entirely self contained (no pointers
between regions) and the program is about to evaluate three function calls whose bodies
are unknown in sequence: fun1(D); fun2(B); fun3(C,D). Figures 7 (a), (b), and (c) show
the state of desynchronization after each of these calls. Initially, at time 1, all memory is
synchronized and represented at time 1.

When analyzing the call to fun1(D), the body is unknown and thus the analysis cannot
continue. However, because the function can only affect the memory region D, it is possible
to proceed if we desynchronize the heap. The result of the desynchronization is shown in
Figure 7a. Regions A, B, and C are allowed to proceed on to time 2, but region D stays locked
at time 1 and becomes inaccessible. This inaccessibility is critical because any of that memory
in region D may have been mutated by the call to fun1, and without any knowledge of what
fun1 did, it is impossible to say what the effect of accessing such memory would be.

Even though D has been desynchronized, we can still know a lot about the region after
the function has been evaluated. Specifically, we can save which function was supposed to
be evaluated, thus we know not only the state of the program before the function call, but we
know the function call. With this information, if the function body were provided later, we
could quickly resynchronize D with A, B, and C by applying the analysis to that function
body starting from D.

In Figure 7b we show the result after the call to fun2(B). The only accessible region is
B and thus it is desynchronized from the A and C regions. Because D is still inaccessible,
it just becomes farther in time from being synchronized, but it is no more challenging to
resynchronize it. Because B and D are completely distinct regions, there is no affect on B
(or A or C) when resynchronizing D and thus even though B and D were desynchronized
at different times, the resynchronization is no different.

Finally, in Figure 7c we show the result after the call to fun3(C,D). Because it is possible
that the result of region D is accessed here, the same region must be desynchronized again.

We show this nested desynchronization in the dashed box. Both C and D are desynchronized
from A, which D is also now desynchronized from C.

To resynchronize everything after Figure 7c, the three functions must be evaluated. How-
ever, the order in which the functions are evaluated is irrelevant. Evaluating fun1(D) first
would resynchronize D with C (but not with A). Evaluating fun2(B) first would resynchronize
B with A. Evaluating fun3(C,D) first would resynchronize C with A and would allow D to
be resynchronized with A by only evaluating fun1(D).

Definition 2 (Desynchronized Separation). Desynchronized separation extends the logic
presented in HOO with a desynchronizing term, an extra kind of heapH that represents a
desynchronized portion of the heap along with the function to call and the arguments to pass
to resynchronize that portion of the heap with the surrounding heap. The heapH now has the
following grammar:

Ĥeap3H ::=JHKcall Vf(V1,...,Vn) | ...
To define the concretization of a desynchronized term, concrete values must be extended

with functions. We do not give any specific semantics to these functions, but we do assume
that while they can mutate the heap, they can only mutate the portion of the heap reachable
from global variables, local variables or any closed variables. Essentially, the functions adhere
to the standard framing conditions of separation logic [24]. The evaluation of a function is
described by the relation

〈σ〉call v(v1,...,vn)〈σ′〉
which evaluates a call to the function v starting from state σ, passing arguments v1 to vn
and results in state σ′. Note that we assume all variables have been resolved to values before
evaluating this function and thus no environment is necessary to express this computation. This
minimizes the reachable heap, which may reduce the footprint of the desynchronized term.

The concretization of HOO with desynchronization is defined as an extension to the
concretization of HOO. Because the signature of the function is not required to change, we
only define the concretization of the new desynchronized terms:

γ(JHKcall Vf(V1,...,Vn))
def
=

η,µ,σ
∣∣∣∣∣∣
(η,µ,σo)∈γ(H)∧v∈η(Vf)
∧(v1,...,vn)∈η(V1)×...×η(Vn)
∧〈σo〉call v(v1,...,vn)〈σ〉


The γ function concretizes the embedded heap H to a pre-state σo and its corresponding
valuation. Then for each possible concrete value of the function and each argument, the state
σ is the result of evaluating that function on those arguments starting from σo. Of course, what
makes it possible to reason about applying a function to a portion of the heap is separating
conjunction. This dictates that the portion of the heap σo was disjoint from the rest of the
heap when the desynchronization was created and thus, after this call to a possibly unknown
function, σ must be disjoint from the rest of the heap as well.

3.3 Desynchronization, and Attribute/Value Trackers

We have presented both desynchronized separation and attribute/value trackers separately to
ensure that they are standalone improvements to HOO. However, for the class of libraries that

we are interested in analyzing, both enhancements are required. The combination of these
two enhancements to HOO is obvious. Because desynchronized separation only affects the
definition ofH, adding this logical extension to the presentation of HOO with attribute/value
trackers is straightforward and thus elided. The only caveat is that, µmust be also shared with
the heap that is captured in the desynchronized region.

4 Analysis Using Multi-State Abstraction

In this section we formalize analysis using HOO with desynchronized separation and attribute/-
value trackers. Because most of the JavaScript language has little effect on desynchronization
or attribute value trackers, we focus on the analysis of two core commands. Other commands
are either critical to HOO (loops and branches) and documented in [8] or are not critical to
any of these analyses. The two core commands are:

c ::=call x(y1,...,yn) | x1[x2] :=x3[x4]

The first command is a call to a function, where the function has been closure converted.
We assume the corresponding closure and the global object are passed as arguments. The
second command is responsible for copying an attribute/value pair from one object to another
(handling missing attributes appropriately).

Analysis using HOO is standard abstract interpretation [7]. It infers invariants for each
point in the program. Because HOO is a heap abstraction, each command in the language
mutates the heap graph, but does not mutate the pure set abstraction P . Destructive updates
are achieved by swinging pointers to fresh symbols and constraining those fresh symbols in P .

HOO’s inclusion checking, join, and widening algorithms involve an object matching
procedure where variables are matched, then objects pointed to by those variables are cor-
respondingly matched. Within each of those objects, partitions are matched. This matching
process proceeds summarizing objects from the same allocation site until all objects are
matched (and summarized).
Inclusion checking: When performing an inclusion check such as the following, there are
two kinds of mappping. The address mapping M : Symbol→ Symbol maps each object
symbol from the left-hand side to an object symbol from the right-hand side. Whereas the
attribute mapping J :P

(
P
(
Symbol

)
×Symbol

)
is a set of sets of attribute partitions from

the left-hand side and the corresponding attribute partition from the right-hand side.

H |PvJMH′|P ′

For each matched partition (F̄,F)∈J if each Fi∈ F̄ is included in F, the inclusion check
can hold. Otherwise it fails. Similarly, for each A1 7→A2∈M , if A1 is included in A2, the
inclusion check can hold.
Join and widening: When performing join or widening the underlying operation is similar.
The objects must be matched. The difference between the two algorithms is that the widening
algorithm makes use of the underlying widening algorithm for pure operations and may
produce different matchings in order to ensure analysis convergence. There are three kinds of
matching for the following join: (1)M1 :Symbol→Symbol is a mapping from the left-hand
side to the result object; (2)M2 :Symbol→Symbol is a mapping from the right-hand side

to the result object; and (3) J :P
(
P
(
Symbol

)
×P
(
Symbol

)
×Symbol

)
, which is a set of

mappings where each mapping contains a set of attribute partitions from the left-hand side
and a set of attribute partitions from the right-hand side to a single partition in the join result.

H |PtJM1,M2
H′|P ′=H′′|P ′′

For each matched partition (F̄1,F̄2,F
′) ∈ J, F′ must over-approximate

⋃
F̄1 and

⋃
F̄2.

Similarly, for each pair Ai 7→ A′ in M1 and M2, A′ in the output of the join must over-
approximate Ai in the appropriate input to the join. The algorithm for the join is detailed in [8].

4.1 Desynchronized Separation

Desynchronized terms can be introduced at any function call. They are automatically derived
by evaluating all of the arguments to symbols, possibly eliminating already existing desyn-
chronized terms to do so. Once this has been completed, a special function reach is used to
determine the desynchronized region.

reach:P
(
Symbol

)
×Ĥeap→Ĥeapu×Ĥeapr

The function reach returns a partitioning (Hu,Hr) of the passed heap. The partitionHr is the
part possibly reachable from the arguments of the function, including the global object and any
closed variables. The partitionHu is the part unreachable from the arguments of the function.
With reach, a frame Hu is inferred. The introduction of desynchronization is given with a
transfer function judgment and relies on an abstract environment Ê to map variables to abstract
addresses and then relates a pre abstract stateD1 to a post abstract stateD2 via a command c:

Ê` [D1]c [D2]

DESYNC-INTRO

Ê(x)=Vf Ê(y1)=V1 ··· Ê(yn)=Vn
reach({Vf ,V1,...,Vn},H)=(Hu,Hr) H′=Hu∗JHrKcall Vf(V1,...,Vn)

Ê` [H |P]call x(y1,...,yn)[H′|P]

If function footprint Hr is over-approximated (as in the implementation, which roughly
defines reach as heap reachability [25]), i.e. all memory possibly modified by the function
call is contained inHr, the result is fully general. Any client-supplied function can be soundly
substituted when resynchronizing. Note that any memory that has been desynchronized is
no longer accessible in the analysis (when accessed, a warning will be raised), so it may
be that, with an imprecise reach(), analysis cannot proceed. However, it is also possible to
not over-approximate the footprint. Doing so means possibly not every function could be
substituted for that computation.

Example 3 (Desynchronization introduction). In Figure 5 there is a call to the client-supplied
initialization function. This is a function that originated outside the class library and thus is
necessarily undefined. When this call occurs, we introduce a desynchronized term representing
the effects of this constructor. We use an “arrow-following” reach() function that determines
that one (shown) object is reachable from the arguments and thus in Hr at a : {a2}. This
leaves the objects pointed to by attrs inHu. The resulting introduced desynchronized term
is shown in b .

In other abstract domain operations such as transfer functions, join, widening, or inclusion
checking on a domain constructed with desynchronized separation, desynchronized terms
must be treated as unknown, but separate portions of the heap. As a consequence desynchro-
nized memory is inaccessible as part of transfer functions and any transfer function that must
access it may not proceed:

DESYNC-FRAME

Ê` [H |P]c [H′|P]

Ê` [H∗JHdKcall Vf(V1,...,Vn)|P]c [H′∗JHdKcall Vf(V1,...,Vn)|P]

This DESYNC-FRAME rule is a special case of the separation logic frame rule that frames
out the desynchronized part of memory and applies the transfer function to the remainder of
memory. If this is not well defined because memory in the result of the desynchronized term
must be accessed, either a different definition of reach() should be used or the code must be
changed to ensure that the needed memory is not in a desynchronized region.

Similar rules apply for join, widening, and inclusion checking. Desynchronized regions
can be joined or widened if they syntactically match, producing the same desynchronized
region. Otherwise, without employing a variety of precondition generalization, a join or
widening can only be completed if the logic supports TRUE, in which case all precision for
this region is lost. Similarly for inclusion checking, only if there is a syntactic match does
it return true for desynchronized regions.
Introduction heuristics and elimination: For the purposes of analyzing JavaScript libraries,
we use a simple introduction heuristic for desynchronized terms: if a function call can be
resolved to a known function, a desynchronized term should not be introduced. This policy
has the effect that desynchronized terms only represent unknown functions and thus we do
not want to eliminate these terms from the heap. In fact, they nicely represent the callback
behavior that occurs in the library in the library’s inferred postcondition.

However, there are circumstances where such a simple heuristic may be non optimal, and
it may be desirable to introduce desynchronized terms even when the code for a called function
is available. For example, sufficiently surjective functions [28] are functions where after a num-
ber of recursions the effect of continued recursion does not matter. In these situations desyn-
chronization can represent the behavior of the unbounded number of recursive calls without ac-
tually evaluating all of those calls. Another situation where desynchronization can benefit is in
speedup up analysis when known functions may take too long to analyze, but do not affect the
result in any meaningful way. In these situations, the postcondition includes a desynchronized
term that refers to the known function, but the result of that function has not been evaluated.

If desynchronized terms are introduced anywhere, it may be necessary that due to access
of desynchronized memory, the term that describes that memory has to be eliminated. This can
be done if, for example, the synchronizing function’s code is available. The resynchronization
process takes advantage of the separation logic frame rule by running the analysis on the
synchronizing function starting from the desynchronized term:

DESYNC-ELIM

·` [Hd|P]call Vf(V1,...,Vn)[H′d|P] Ê` [H∗H′d|P]c [H′|P]

Ê` [H∗JHd|PKcall Vf(V1,...,Vn)]c [H′|P]

With such an elimination rule it is possible to eagerly introduce desynchronized terms on
every function call and then lazily eliminate them as portions of the heap are needed.

When employing such an elimination rule, it is possible to consider the variety of ways
in which the ·` [Hd|P]call Vf(...) [H′d|P] judgment could be satisfied. One way is if each
function in Vf can be resolved to known code. In this case the analyzer can be run on each
resolvent and a disjunction of postconditions considered. Alternatively, the formulaH could
carry the information to satisfy this judgment in the form of a nested Hoare triple [26].

Example 4 (Desynchronization elimination). A region of the heap can be resynchronized by
eliminating a desynchronized term:

A

B

C1

2

3
fun2(B, C0)

fun1(C)

A B C
Ti
m
e

A

B C'

1

2

3
fun2(B, C0)

A B C

Ti
m
e

Here, the region C is resynchronized with B by analyzing the call to fun1(C) starting from
the memory state C resulting in memory state C′. Note that this resynchronization does not
require analyzing fun2(B,C

′). This combined region can stay desynchronized if none of the
desynchronized memory is required to proceed with the analysis.

Theorem 1 (Soundness of desynchronization introduction). Desynchronization introduc-
tion is sound because the following property holds: for all E, Ê, σ, σ′,H,H′, P . E `
〈σ〉call x(y1,...,yn)〈σ′〉 and Ê` [H |P]call x(y1,...,yn)[H′|P] and (η,σ)∈γ(H |P) implies
that there exists η′ such that (η′,σ′)∈γ(H′|P).

4.2 Attribute/Value Trackers

The primary benefit of attribute/value trackers occurs when they can be preserved from
one abstract state to the next. To do so requires extending HOO transfer functions for the
multi-state abstractions. The extension is trivial by appending the abstract heap from the
precondition to each state in the transfer functions:

Ê` [H |P]c [H′|P]

Ê`
[
[H]H1

|P
]
c
[
[H′]H1

|P
]

To utilize attribute/value trackers, they must be introduced and managed appropriately.
The goal is to reuse the same tracker whenever it is possible to do so and to only introduce
fresh trackers when it is otherwise impossible. A key aspect of trackers is that the domain
of a tracker is determined by the corresponding attribute set F at the point of introduction and
thus the same tracker can be applied to any attribute set F′ such that F′⊆F if the values also
match appropriately.

There are three key steps in managing this behavior of attribute/value trackers. First,
materialization is responsible for splitting a singleton set off of a summary. In doing so, trackers
can be preserved, even when the partition tied to a particular tracker is split. Second, trackers

D1⇒D2

MAT-VALUE
v is fresh P ′=P∧{v}⊆V

[H2∗{a}·〈O;{f} :ρ 7→V〉]H1
|P⇒ [H2∗{a}·〈O;{f} :ρ 7→{v}〉]H1

|P ′

MAT-ATTR
F′ is fresh P ′=P∧{f}]F′=F P ′′=P∧{f}∩F=∅

[H2∗{a}·〈O;F:ρ 7→V〉]H1
|P⇒

[H2∗{a}·〈O;F′ :ρ 7→V;{f} :ρ 7→V〉]H1
|P ′∨[H2∗{a}·〈O;F:ρ 7→V〉]H1

|P ′′

MAT-ADDR
A′ is fresh P ′=P∧{a}]A′=A P ′′=P∧{a}∩A=∅

[H2∗A·〈O〉]H1
|P⇒ [H2∗{a}·〈O〉∗A′·〈O〉]H1

|P ′∨[H2∗A·〈O〉]H1
|P ′′

Fig. 8: Materialization of all of the parts of objects never produces fresh attribute/value
trackers. It reuses existing trackers.

can be transfered along with attributes and values when an attribute/value pair is copied from
one object to another. Finally, trackers can be introduced when not otherwise available.
Materializing with attribute/value trackers: Since JavaScript does not have operations that
allow many attributes and values to be copied or manipulated at once, a key operation for
maintaining precision with attribute/value trackers is preserving them when splitting summa-
rized objects/attributes/values so that there is a single attribute/value pair from a single object
to be copied to another object. This operation is materialization and is described in Figure 8
in three parts.

Each materialization rule is of the formD1⇒D2 and thus intended to be used with the
rule of consequence from Hoare logic [16] to allow a future rule to be applied. For example,
rules for assignment (next section) can only be applied to singleton object addresses, singleton
attributes, and often singleton values. By applying materialization correctly, an abstract heap
element that consists of summary object addresses, summary attributes, and summary values
can be converted to the appropriate singleton form without loss of precision, assuming a
precise pure domain.

The first rule for materialization MAT-VALUE materializes a single value from a summary
value, assuming that the object address, and attribute are already materialized. Because the
object address and attribute are singletons, it must be that there is a singleton value {v} and
thus it can be materialized from the summary V. Doing so produces the additional constraint
that {v} is a subset of V. Because the materialized value {v} is a fresh variable, this added
constraint does not affect soundness.

The second rule for materialization is the primary rule for materializing attribute/value
trackers. The MAT-ATTR rule splits an attribute set F into two attribute sets F′ and {f}.
There are two possible outcomes of this split. Either {f} was already a subset of F, in which
case the materialization can proceed, or {f} is disjoint from F, in which case there is no

A-OVERWRITE-DISTINCT

Ê(x1)=a1 Ê(y)=f Ê(x2)=a2

Ê`

[[
H1∗{a1}·〈O1;{f} :ρ1 7→V1〉∗{a2}·〈O2;{f} :ρ2 7→{v2}〉

]
H0

|P
]

x1[y] :=x2[y][[
H1∗{a1}·〈O1;{f} :ρ2 7→{v2}〉∗{a2}·〈O2;{f} :ρ2 7→{v2}〉

]
H0

|P
]

Fig. 9: Example abstract transfer function for assignment where the attribute/value tracker
ρ2 is transfered from the object at a2 to the object at a1

materialization. In the case that the materialization proceeds, when the set F is split into two,
both new partitions can be assigned the same tracker as was present in the original partition.
This is because such a split does not require an extension of the domain of the tracker.

This second rule is applied whenever an object is being read. The attribute that is being
read must be materialized from each partition of the object that may contain the attribute
in question. Therefore, the read operation must consider a case where the attribute is in
each partition of the object. The resulting pure constraints of MAT-ATTR may thus produce
conflicts, causing such cases to be dropped.

The third rule for materialization MAT-ADDR also manipulates attribute/value trackers,
but less directly than the previous rule. This rule materializes a particular address {a} from
a summary of addresses A. Like the previous rule, if {a} is a subset of A, the summary can
be split. When this split occurs, the whole object definition is duplicated. Consequently each
tracker is also duplicated. In the event that the materialization cannot occur, this constraint
is added to indicate in the future that such an attempt was already considered.

Example 5 (Materializing a summary). Consider the heap abstraction [A·〈F:ρ 7→V〉]H1
|{a}⊆

A∧{f}⊆F. If the analysis needs to read from a[f], this must be materialized. To achieve the
following heap abstraction first the MAT-ADDR rule is applied, then the MAT-ATTR rule is
applied to the result, then the rule MAT-VALUE is applied:

[
A′·〈F:ρ 7→V〉∗
{a}·〈F′ :ρ 7→V;{f} :ρ 7→{v}〉

]
H1

|
{a}]A′=A
∧{f}]F′=F
∧{v}⊆V

Transfering attribute/value trackers: Attribute/value trackers are transfered from one object
to another by assignment. For simplicity, we assume here that all assignments between objects
are transformed into the form of a simultaneous read from an object and a write to another
object. When the attribute being read and written matches so that an attribute/value pair is
being copied, there is an opportunity to transfer that attribute/value pair from one object to
the other. When this transfer happens, the attribute/value tracker can be transfered as well.

Figure 9 shows one of the transfer functions that enables an attribute/value tracker transfer.
The A-OVERWRITE-DISTINCT rule uses the abstract environment Ê to map variables onto
addresses and then if the same attribute exists in two distinct objects the transfer occurs, in
this case replacing ρ1 with ρ2.

Introducing attribute/value trackers: Attribute/value trackers should be introduced at chosen
program points where the first of the paired states is selected. For example, when constructing
an initial abstract state it would be normal to express it as [H]H |P where the two described
heaps are identical. In this instance, fresh attribute/value trackers should be introduced for
each partition inH. This establishes the initial relationship between the initial abstract state
and the current abstract state and then any attribute/value trackers that are preserved strengthen
the relationship between the two states.

Additionally, attribute/value trackers can be introduced at other times. The benefits of do-
ing so are less significant as freshly introduced trackers cannot relate objects from one time to
another, but instead are limited to relating multiple objects in the same time. However as track-
ers are incomparable unless they are equal, freely introducing fresh trackers will prevent inclu-
sion checking from succeeding and prevent the analysis from terminating. In the current imple-
mentation, we avoid this problem by only introducing absent trackers – after the precondition.
Other domain operations: Other domain operations such as join, widening, and inclusion
check are largely the same as with HOO. Attribute/value trackers form a partition-by-partition
lattice where any tracker ρv –. Join, widening, and inclusion follow from this: identical
trackers can be matched and maintained through join and widening. Differing trackers must
be replaced with –.

Theorem 2 (Soundness of tracker materialization). Tracker materialization is sound be-
cause the following property holds:
For allD,D′,η,σ1,σ2.D⇒D′ and (η,σ1,σ2)∈γ(D) implies that (η,σ1,σ2)∈γ(D′).

Theorem 3 (Soundness of transfer functions). Transfer functions including desynchroniza-
tion introduction, elimination, framing, and attribute/value tracker transfer are sound because
the following property holds:
For all D,D′,σ,σ′,σ0,η. E`〈σ〉c〈σ′〉 and Ê` [D] c [D′] and (η,σ0,σ)∈γ(D) implies that
there exists a η′ such that (η′,σ0,σ′)∈γ(D′)

5 Empirical Evaluation

In this section, we evaluate the use of desynchronized separation and attribute/value trackers
on JavaScript meta-feature libraries – libraries that add language features to JavaScript through
the use of object manipulation and callbacks. To do so, we test two hypotheses: (1) Does
desynchronization provide the necessary precision for analyzing libraries that call unknown
functions. (2) Do attribute/value trackers provide necessary precision for analyzing libraries
that manipulate objects with unknown attribute/value relationships.

To evaluate these hypotheses, we identified several classes of meta-feature libraries that
are available in JavaScript: classes, traits3, mixins4, and memoization5. From each of these
candidates, we selected a small, but complex core (Table 1a) and annotated that functionality
with preconditions. These preconditions indicate aliasing in the heap as well as give names to
sets of attributes. Then, on each library, we compared expected postconditions against those
generated by the JSAna analyzer for JavaScript, which is based on HOO with desynchronized
separation and attribute value trackers.
3 Extracted from http://soft.vub.ac.be/˜tvcutsem/traitsjs/ 4 Extracted from http://prototypejs.org/
5 Extracted from https://developers.google.com/closure/library/

Table 1: Results of running HOO with desynchronized separation and attribute/value trackers
on JavaScript meta-feature libraries.

(a) Test Library Code: Stmts is the num-
ber of statements in the program after
preprocessing and lowering. Vars is the
peak number of pure symbols used in the
analysis. JP is the number of join points.

Test Stmts Vars JP Time (s)

Mixin 33 52 1 0.16
Traits 131 111 1 7.20
Memo 149 179 0 0.24
Class 128 118 1 8.13

(b) Properties: HOO is a property proven solely by HOO. D
is HOO with desynchronized separation. T is HOO with at-
tribute/value trackers. D+T is HOO with both enhancements.

Test Property HOO D T D+T

Traits Conflict managed 3 3 3 3
Memo In table 3 3 3 3
Class Constructor Call 7 3 7 3
Memo Call saved 7 3 7 3
Mixin Object extended 7 7 3 3
Traits Object extended 7 7 3 3
Class Resulting Object 7 7 7 3

The results of these experiments are shown in Table 1b. The first two properties are able to
be proven solely with HOO. In the Traits example, which combines two objects into one, when
the same attribute is present in both source objects, a single, global conflict value is used in the
place of either source value. Because it is a single value, partitioning is sufficient to distinguish
it. Similarly, in Memo, while Memo makes a call to an unknown function, if the precondition
indicates that the call has already been memoized, that function call never happens and thus
HOO’s object-level reasoning, given a sufficiently precise set domain, is fully precise.

The second two properties actually require analyzing calls to unknown functions. In Class
this is the call to the initializer and in Memo this is the call to the memoized function. In both
cases, the reachability analysis identifies suitable heap regions to allow the analysis to be full
precise. By comparison HOO, without desynchronization, cannot handle these calls and thus
cannot prove the desired property.

The two object extended properties reason about the precise extension of objects that
occurs in mixins and traits. In Mixin, an existing object has a number of attributes and corre-
sponding values that may be overwritten by adding attributes and values from another object
into it. Similarly, the Traits adds attribute and values from two different objects. Maintaining
exact relationships between attributes and values is impossible without the use of attribute/-
value trackers, which allow the inferred postconditions for these analyses to be fully precise.

The last property, which checks that the instance created by the class is correct requires
both attribute/value trackers and desynchronization to be precise. Because it uses both ob-
ject manipulations and calls to the initializer, this indicates that these two additions are
complementary and necessary for analyzing meta-feature libraries in JavaScript.

While it is not a goal to highly optimize for performance at this time, the results indicate
that the analysis time is dependent on the number of pure symbols (Vars) and the number
of join points (JP). When the variables increases, as long as there are join points the overall
analysis slows down. As in [8], nearly all of the cost can be attributed to the exponential set
domain, which is implemented using binary decision diagrams. On top of this, the overhead
of adding desynchronization and attribute/value trackers is negligible.

6 Discussion

In this section, we discuss the features and limitations of the analysis by considering two of
the benchmarks in more detail. Additionally, we give some perspective on situations where
the analysis loses precision.

6.1 Case Study: Class

The class benchmark is similar to the function Class presented in the introduction and the
overview. Here we examine the similarities between the theory presented in the overview and
what occurs in practice. We use program points from the overview for reference to the code
used in the benchmark (which is complicated by more complete JavaScript support).

The analysis of the copy function proceeded exactly as shown in the overview. On each it-
eration of the analysis, a tracker was duplicated via materialization. That tracker was transfered
to the result object. Consequently, the postcondition 2 of copy was fully precise.

The desynchronization also works as expected. Critically, reachability identifies that a1
and the local variable result are both outside the desynchronized region. This means that
these things are unmodified by the call to the client-supplied initializer. Consequently, the
resulting postcondition shows that the result object is the object created by the constructor
and that constructor always produces exactly the same object attributes and values prior to
the call to the client-supplied initializer regardless of how many times it is called.

6.2 Case Study: Memoization

The Memo benchmark transforms a function into a memoized version of that function. To
accomplish this, it first translates the arguments array into a unique identifier by calling a uid()
function passing it the entire arguments object. Then it determines if that unique identifier
is already in the memoization table. If so, it returns the value from the table. Otherwise it calls
the function to be memoized, f, passing it arguments (via JavaScript’s apply functionality)
and then memoizing the result.

Each of the function calls is challenging. The uid() function is essentially a hash function.
It is responsible for converting data of any type into a unique string suitable for use in indexing
into an object. Because hash functions are typically hard to analyze and this is a hash function
that hashes to strings, this function presents a problem for analysis. Even if we had the code
for it, it would be undesirable to analyze it.

The second function call is also challenging because it is a callback into client-supplied
code. The behavior of the function could be anything. It could have side-effects or it could
be pure. Its only restriction is from JavaScript being memory safe (it cannot create pointers
to previously unreachable parts of the heap).

Both of these problems are addressed by desynchronization as shown in Figure 10. Fig-
ure 10 shows as representation of the postcondition of the library function. In it we can see
that not only was the callback to the client-supplied function f() desynchronized, but the call
to uid() was desynchronized. Additionally, because the arguments object may have been mod-
ified by the uid() function, it is necessary to nest the desynchonizations to represent the result.

Nested desynchronization allows continuation-like behavior to be analyzed over parts of
the program. Here the arguments object was possibly modified by the uid function before

memo table

other

arguments

uid(arguments)

f(arguments)

Ti
m

e

Fig. 10: Desynchronization phases of the memoization example

being possibly modified by the callback. The benefit of this nested structure is even if there
is a sequence of functions that all touch the same memory, analysis can proceed by nesting
all of these individual functions.

6.3 Boundaries of Analysis and Future Improvements

While our results suggest that both desynchronization and attribute/value trackers can be
effective on JavaScript code, there are limitations to the precision. The most significant
limitation is that attribute/value trackers are dropped when direct copies are not used. In
particular, complex, nested copies are not currently supported by these trackers. For example,
the following code wraps each value inside a newly allocated object.

result[a] = {value: attrs[a]};

Without the ability to reason about intermediary objects, full precision cannot be maintained
and such abstractions fall back to what HOO can do. However, this behavior does not appear
to occur in most libraries and thus may not be a significant issue. Adding support for this par-
ticular case is another form of tracker, but the inference of such trackers remains challenging.

While we find that reachability is a suitable heuristic for the analysis of many libraries,
it may be overly pessimistic. In certain situations developers intentionally make portions of
libraries globally mutable, but mutation is still not the common case.

7 Related Work

JavaScript specification and analysis: JuS [12] is an abduction-based inference tool for
JavaScript targeted at the prototype and the scope chain. It is based on a detailed model
of JavaScript semantics [2, 11] and thus automation is limited to resolving variable lookup
through a prototype and scope chain. DJS [5, 6], which is a specification language and a
dependent refinement type system for JavaScript, by comparison is more restricted in its
support of JavaScript and thus offers more automation in that straight-line code can be reli-
ably analyzed (loops and functions require annotations). The work presented in this paper
automates discovery of loop invariants and callback summaries. This is significantly more
automation than is provided by existing systems without sacrificing language features.

TAJS [17, 18], WALA [27], JSAI [15, 19], and SAFE [1, 21] are whole-program
JavaScript analyses. Unlike the above systems, they require no annotations at all and are
highly automated. However, they are ill suited to analyzing partial programs as is the case

when verifying libraries. Because whole-program analysis has extensive context informa-
tion, including object attributes and function bodies, there is less complexity involved in
handling first-class functions (the function body can usually be resolved) or open objects (the
attribute names are often fully known) and thus the abstractions used by these analyzers are
incomparable to those that we employ.

The idea of attribute/value trackers comes from correlation tracking [27], which is im-
plemented in both WALA and TAJS. Correlation tracking uses context sensitivity to exactly
determine the constant attribute/symbolic value pairs needed for loops. Attribute/value trackers
generalize this to symbolic attribute/symbolic value pairs that are each elements of summaries.
Higher-order separation logic and contracts: Desynchronized separation is closely tied to
the concept of nested Hoare triples [26] and higher-order separation logic [20]. However,
there are several key differences.

The goal of desynchronized separation is fundamentally different from that of nested
Hoare triples. Unlike desynchronized separation, nested Hoare triples are intended to be
used in program logics and not for automated inference. While there are efforts to automate
some amount of reasoning [4], current techniques require significant annotation overhead and
perform no inference, only inclusion checking.

The other significant difference is that nested Hoare triples strive for complete generality.
A desynchronized term carries the following correspondence with nested Hoare triples:

JH1Kcall Vf(V1,...Vn)∗Ho ⇒ ∃H2. [H1]call Vf(V1,...Vn)[H2]∧H2∗Ho
where an equivalence holds if an appropriateH2 is chosen. The additional heapHo is here
to illustrate the key differentiating factor. A nested Hoare triple is a pure part of a formula that
describes a value whereas a desynchronized term describes a heap that results from calling
a function. The ∗Ho illustrates which parts of the description are heap and which are pure.

The process of inference using desynchronization is significantly simpler than using
nested Hoare tripes. This is due to the fact that desynchronization is less expressive than
nested Hoare triples. There are fewer existentially quantified variables, and there is no need to
treat portions of the heap that are simply passed through the unknown function call as separate
portions of the heap that are manipulated. As a result, it is possible to (1) easily adapt existing
separation-logic-based analyses to higher-order tasks and (2) easily perform necessary heap
splits during the analysis because there are two possible ways the heap can be split.

The key idea of nested Hoare triples is also similar to static contract checking for higher
order languages [23, 29], which requires a pure specification of any callback’s behavior up
front. It is also similar to [22], except that it relies on separation logic and is applied to a
stronger heap abstraction.

The goal of desynchronized separation is to not require a specification for callbacks at all,
if the developer is judicious with built-in language protection mechanisms. In the event that
memory is insufficiently protected, or the reachability analysis is too coarse, desynchronized
separation can be trivially extended with nested Hoare triples. In such case, the nested Hoare
triple is practically the same as a resolvable function call and no desynchronization is required.
However, it is possible to imagine a simpler version of nested Hoare triples where only a
footprint for the function is specified. In such a case, desynchronization would be required,
but it would be applied only to the supplied footprint.
Container analysis: A significant part of HOO resembles an analysis for containers. Keeping
track of object attribute names and values is similar to what is required for reasoning about

mapping containers. The analysis in [10] also uses uninterpreted functions. However, the
purpose of their uninterpreted functions is not to keep track of unknown attribute/value
relationships, but instead to handle the sparsity problem of containers. Instead, they use
uninterpreted functions to map a elements of a key/attribute type to a natural number that is
the array index containing the value. The value arrays are then represented and manipulated
using fluid updates [9].
Uninterpreted functions: There are several analyses [3, 13] that use uninterpreted functions
to combine multiple abstract domains. While this work is also used for object and heap
abstractions, the purpose of uninterpreted functions is different from attribute/value trackers.
The uninterpreted functions in [3, 13] are used to transfer information between multiple
abstract domains, whereas attribute/value trackers disambiguate individual symbolic elements
of summaries across an analysis.

8 Conclusion

In this paper, we presented two multi-state abstractions that build upon abstract domains for
heaps like HOO. Desynchronized separation gives a means for automatically reasoning about
callbacks to unknown functions, while attribute/value trackers improve upon the partitioning of
object attributes performed by HOO by maintaining consistent relationships between symbolic
attribute names and symbolic values that are both members of summaries. Collectively these
multi-state abstractions perform precise analysis of several core routines in JavaScript libraries.

References

[1] SungGyeong Bae, Hyunghun Cho, Inho Lim, and Sukyoung Ryu. SAFEWAPI: Web api misuse
detector for web applications. In FSE, 2014.

[2] Martin Bodin, Arthur Charguéraud, Daniele Filaretti, Philippa Gardner, Sergio Maffeis, Daiva
Naudziuniene, Alan Schmitt, and Gareth Smith. A trusted mechanised JavaScript specification.
In POPL, pages 87–100, 2014.

[3] Bor-Yuh Evan Chang and K. Rustan M. Leino. Abstract interpretation with alien expressions
and heap structures. In VMCAI, pages 147–163, 2005.

[4] Nathaniel Charlton, Ben Horsfall, and Bernhard Reus. Crowfoot: A verifier for higher-order store
programs. In VMCAI, pages 136–151, 2012.

[5] Ravi Chugh, David Herman, and Ranjit Jhala. Dependent types for JavaScript. In OOPSLA,
pages 587–606, 2012.

[6] Ravi Chugh, Patrick Maxim Rondon, and Ranjit Jhala. Nested refinements: a logic for duck
typing. In POPL, pages 231–244, 2012.

[7] Patrick Cousot and Radhia Cousot. Abstract interpretation: A unified lattice model for static anal-
ysis of programs by construction or approximation of fixpoints. In POPL, pages 238–252, 1977.

[8] Arlen Cox, Bor-Yuh Evan Chang, and Xavier Rival. Automatic analysis of open objects in
dynamic language programs. In SAS, 2014.

[9] Isil Dillig, Thomas Dillig, and Alex Aiken. Fluid updates: Beyond strong vs. weak updates. In
ESOP, pages 246–266, 2010.

[10] Isil Dillig, Thomas Dillig, and Alex Aiken. Precise reasoning for programs using containers. In
POPL, pages 187–200, 2011.

[11] Philippa Gardner, Sergio Maffeis, and Gareth David Smith. Towards a program logic for
JavaScript. In POPL, pages 31–44, 2012.

[12] Philippa Gardner, Daiva Naudziuniene, and Gareth Smith. JuS: Squeezing the sense out of
JavaScript programs. In JSTools, 2013.

[13] Sumit Gulwani and Ashish Tiwari. Combining abstract interpreters. In PLDI, pages 376–386, 2006.
[14] Nicolas Halbwachs and Mathias Péron. Discovering properties about arrays in simple programs.

In PLDI, pages 339–348, 2008.
[15] Ben Hardekopf, Ben Wiedermann, Berkeley R. Churchill, and Vineeth Kashyap. Widening for

control-flow. In VMCAI, pages 472–491, 2014.
[16] C. A. R. Hoare. An axiomatic basis for computer programming. Commun. ACM, 12(10):576–580,

1969.
[17] Simon Holm Jensen, Anders Møller, and Peter Thiemann. Type analysis for JavaScript. In SAS,

pages 238–255, 2009.
[18] Simon Holm Jensen, Anders Møller, and Peter Thiemann. Interprocedural analysis with lazy

propagation. In SAS, pages 320–339, 2010.
[19] Vineeth Kashyap, John Sarracino, John Wagner, Ben Wiedermann, and Ben Hardekopf. Type

refinement for static analysis of JavaScript. In DLS, pages 17–26, 2013.
[20] Neelakantan R. Krishnawami. Verifying Higher-Order Imperative Programs with HIgher-Order

Separation Logic. PhD thesis, Carnegie Mellon University, 2011.
[21] Hongki Lee, Sooncheol Won, Joonho Jin, Junhee Cho, and Sukyoung Ryu. SAFE: Formal spec-

ification and implementation of a scalable analysis framework for ECMAScript. In FOOL, 2012.
[22] Ravichandhran Madhavan, G. Ramalingam, and Kapil Vaswani. Modular heap analysis for

higher-order programs. In SAS, pages 370–387, 2012.
[23] Phuc C. Nguyen, Sam Tobin-Hochstadt, and David Van Horn. Soft contract verification. In ICFP,

2014.
[24] John C. Reynolds. Separation logic: A logic for shared mutable data structures. In LICS, pages

55–74, 2002.
[25] Noam Rinetzky, Mooly Sagiv, and Eran Yahav. Interprocedural shape analysis for cutpoint-free

programs. In SAS, pages 284–302, 2005.
[26] Jan Schwinghammer, Lars Birkedal, Bernhard Reus, and Hongseok Yang. Nested hoare triples

and frame rules for higher-order store. Logical Methods in Computer Science, 7(3), 2011.
[27] Manu Sridharan, Julian Dolby, Satish Chandra, Max Schäfer, and Frank Tip. Correlation tracking

for points-to analysis of JavaScript. In ECOOP, pages 435–458, 2012.
[28] Philippe Suter, Ali Sinan Köksal, and Viktor Kuncak. Satisfiability modulo recursive programs.

In SAS, pages 298–315, 2011.
[29] Dana N. Xu, Simon L. Peyton Jones, and Koen Claessen. Static contract checking for haskell.

In POPL, pages 41–52, 2009.

