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Abstract. Detailed memory models that expose individual fields are
necessary to precisely analyze code that makes use of low-level aspects
such as, pointers to fields and untagged unions. Yet, higher-level repre-
sentations that collect fields into records are often used because they are
typically more convenient and efficient in modeling the program heap.
In this paper, we present a shape graph representation of memory that
exposes individual fields while largely retaining the convenience of an
object-level model. This representation has a close connection to partic-
ular kinds of formulas in separation logic. Then, with this representation,
we show how to extend the Xisa shape analyzer for low-level aspects,
including pointers to fields, C-style nested structures and unions, malloc
and free, and array values, with minimal changes to the core algorithms
(e.g., materialization and summarization).

1 Introduction

At the core of precise program analyzers, such as verification tools and shape
analyses, is an abstract memory model that represents the program heap. The
design of such representations for C code is particularly challenging because of a
tension between keeping it simple and supporting low-level pointer manipulation.
Specifically, the level of detail exposed in an abstract memory model determines
whether the analyzer can even reason about particular low-level aspects. For

!

(a) Traditional shape graph.

!"##

!"##

$

%!"##

$

%

(b) Informal box diagram.

Fig. 1. A shape graph for
Java-like structures.

example, does the representation allow the ad-
dressing expression &(p->f1.f2) (i.e., taking
the address of a nested structure or union field),
while supporting basic field read expressions
p->f easily?

To illustrate this tension, we show in Fig. 1,
a simple, traditional shape graph (a) that rep-
resents the concrete memory shown in (b) as an
informal box diagram. In this shape graph, each
node corresponds to an object (i.e., a record of
fields) and each edge stands for a points-to rela-
tion between objects. Historically, shape analyz-
ers have focused on Java-like structures where
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memory can be viewed as a simple collection of objects with field reads but
no complex addressing expressions (e.g., [23,24,11]). Consequently, such a shape
graph is convenient and widely used. For example, TVLA [24] uses three-valued
logical structures to encode such shape graphs. In TVLA, the shape graph in
Fig. 1a corresponds to the two-valued formula f(u1, u2) over individuals u1 and
u2. Similarly, in separation logic [22] and separation logic-based shape analyz-
ers, we might represent the memory shown in Fig. 1b with the following formula:
u1 7→ {f : u2, g : null} ∗ u2 7→ {f : null, g : null} as, for example, in Berdine et
al. [1]. This formula says that there are two disjoint records pointed to by u1

and u2, each with fields f and g, and where the f field of u1 points to u2 (and
all other fields are null).
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Fig. 2. Box diagram with
exposed components.

We see that something more detailed is needed
to express, for example, a pointer to a field (i.e.,
&(p->f)). In particular, we must expose the indi-
vidual fields (i.e., the components of a record) as
shown informally in Fig. 2. However, if we simply
take the components as the unit memory cells, then
we lose the object-level structure. Such an object-
level view is convenient for the common case with
Java-like structures and necessary for the sound modeling of object-level prop-
erties, such as for analyzing uses of malloc and free.

In this paper, we make the following contributions:
– We describe a graph-based memory representation that permits reasoning at

the object level and the field level simultaneously. The key idea is to represent
abstract memory cells with edges (rather than nodes as is traditional) and
to view nodes as aggregates of their outgoing edges. This simple shift in view
allows us to cleanly separate object-level properties from field-level ones. In
particular, we show how this representation can be instantiated in different
ways to express varying degrees of detail (Sect. 3).

– We present a particular instantiation of separating shape graphs to model
low-level aspects of C, including pointer-to-field (i.e., &(p->f)), nested struc-
tures, untagged unions, C-style malloc-free, and array values (Sect. 4).

– We demonstrate the applicability of our representation by extending the
Xisa analyzer [6,5] for these low-level aspects of C, often unhandled in shape
analyzers. In particular, our extension required minimal changes to the orig-
inal object-based algorithms for materialization and summarization that are
key to shape analysis (Sect. 5).

To motivate and provide intuition for separating shape graphs, the next section
(Sect. 2) presents an example shape analysis with nested structures and unions.

2 Background and Overview

In separation logic, the record-level points-to relation is a standard abbreviation
for separated points-to relations of components:

e 7→ {f1 : e1, . . . , fn : en}
def= e @f1 7→ e1 ∗ · · · ∗ e @fn 7→ en (?)
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where e @f is a field offset expression (i.e., the offset corresponding to field f
from the base pointer given by expression e). By using formulas of the form on
the right side, we essentially expose individual fields (referred by Parkinson as
taking a field-splitting model of memory [21]).

null

β

null
α

null

f

g

f

g

Fig. 3. A simple separat-
ing shape graph for the con-
crete memory in Fig. 1b.

For shape analysis of C code, we essentially
want a representation that minimizes the need to
convert back-and-forth between the left and right-
hand sides of definition (?). In other words, we
want a model that exposes individual fields and
permits complex addressing expressions but main-
tains object-level structure. To begin, consider the
graph shown in Fig. 3. A node denotes a value
(e.g., a memory address, an integer, null) labeled
by a symbolic value, which is an existentially quantified variable. We use low-
ercase Greek letters (α, β, γ, . . .) to range over symbolic values. An edge corre-
sponds to a unit memory cell or a points-to relation at the component level (like
on the right in definition (?) and Fig. 2); for instance, the edge between α and β
says that at field f from address α, the contents of the cell is β. At the same time,
if we ensure that all symbolic values correspond to base pointers of objects, we
have a representation that also can be read as an object-level formula (like on the
left in definition (?) and Fig. 1b) and looks fairly similar to the traditional shape
graph in Fig. 1a. It is important to note that edges represent disjoint memory
cells (like nodes in traditional shape graphs) but that nodes may correspond to
the same concrete value (unlike in traditional shape graphs).

Thus far, we have a shape graph representation for Java-like structures as
in our prior work [6,5] and similarly used by others (e.g., [1]). In this paper, we
make the connection between such graphs and a restricted language of separation
logic formulas explicit and take this view further to capture low-level aspects of
C (see Sect. 3). In the remainder of this section, we provide intuition for our
C-level model of memory with an example shown in Fig. 4. In particular, we
consider the analysis of code for evaluating arithmetic expressions represented
by a syntax tree (using the C-type Arith). These syntax trees feature several
kinds of nodes (constants cst, unary operators uni, and binary operators bin)
that are encoded with a union type. The op field is a tag, or discriminant, that
indicates which branch of the union field node is being used.

Our shape analysis proceeds by abstract interpretation [10] computing sound
local invariants at each program point (i.e., graphs that over-approximate the set
of possible concrete memory states). In the figure, we show the local invariants
inferred by our analysis boxed and right-justified at a number of program points.
Like in our prior work [6,5], a thick edge, or a checker edge, represents a memory
region summary (i.e., a set of points-to edges abstractly). Our abstract domain
is parametric in inductive definitions that give rise to such summaries. These
user-supplied inductive definitions come in the form of invariant checkers; that
is, they can be viewed as code that traverses a data structure to check a run-time
invariant. The first invariant at program point 2 indicates the pre-condition that
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typedef struct Arith {

char op; // the tag: 0 for constants, 1 for unary −, 2 for +, 3 for ∗, . . .
union {

struct { long long int value; } cst; // a constant value
struct { struct Arith* s; } uni; // a unary operator
struct { struct Arith* l; struct Arith* r; } bin; // a binary operator

} node;

} Arith;

1 int eval(Arith* a) {

2

�
�

�
�α

a

arith

Arith* c; Arith* n;

3 while (a->op != 0) { // 0 stands for a constant
4 c = a; // initialize the cursor
5 while (1) { // traverse a branch until some

// simplification can be done
6

�
�

�
�α β

a c

arith arith arith

if (c->op == 1) {

7 // 1 stands for unary negation
n = c->node.uni.s;

8

�
�

�
�α β γ δ

a c n

= 1
op

node@uni@s

arith arith arith

if (n->op == 0) {

9 // simplify

�
�

�
�α β γ δ ε ζ

aa c n

= 1 = 0
op

node@uni@s

op

node@cst@value

arith arith

c->op = 0; c->node.cst.value = - n->node.cst.value; free(n);

10

�
�

�
�α β γ δη

a c n

= 0
op

node@cst@value

arith arith

break;
11 }

12 else { c = n; }

13 }

14 else { . . . /∗ other cases for addition, multiplication, etc. ∗/ . . . }
15 }

16 }

17

�
�

�
�α β γ

a

= 0
op

node@cst@value

return a->node.cst.value;

18 }

Fig. 4. An example analysis of a syntax tree operation using C-style unions.

a is a well-formed syntax tree given by the inductive checker arith. For now, we
focus on the analysis (the formal definition of the arith checker will be given in
Sect. 4.2). The loop invariant in the second loop at program point 6 expresses
the fact that c points to a subtree of the syntax tree pointed to by a; specifically,
there is a syntax tree segment between α and β described by a partial instance
of checker arith, and separately, there is a completion of the tree from β.



Separating Shape Graphs 5

The condition test on field op of c causes the analyzer to unfold the definition
of arith for the syntax tree pointed to by c to produce the invariant at program
point 8. Unfolding is a partial concretization or refinement step that materializes
points-to edges, typically by considering cases. Here, the fact that γ = 1 (given
by the guard that c->op == 1) leaves the one case where the uni branch of the
union is active. Thus, we have two points-to edges materialized: one labeled with
op for the op field of c and one labeled with node@uni@s for the subexpression
pointer of the unary operator (i.e., c->node.uni.s). Data constraints, such as
γ = 1, are captured by a base abstract domain that is also a parameter of our
analysis; in our examples, we will note such constraints as necessary and assume
that we are using a base domain that can capture them. Next, a similar unfolding
happens at the syntax tree node pointed to by n (i.e., δ) to produce the invariant
at program point 9. At this point, the structure below c is fully materialized, and
the subsequent sequence of updates is reflected by modifications and deletions
of points-to edges to produce the invariant at program point 10. The result of
the outer evaluation loop is a syntax tree node for a constant corresponding to
the inferred invariant at program point 17.

As alluded to earlier, the key challenge addressed in this paper is creating
an analysis that is capable of reasoning about low-level C features, such as
unions, while not unnecessarily complicating the analysis of higher-level, Java-
like code. This challenge is highlighted in this example analysis. Focus again on
the transition between points 9 and 10. On one hand, the view of the syntax
tree node pointed to by c changes by writing through node.cst.value in the
second statement, which is not evident in the state at point 9. Analyzing code
with unions requires careful management of several such views of the same or
overlapping memory cells (e.g., c->node) (Sect. 3.2); such views are accompanied
by fields of varying sizes and thus necessitating delicate treatment of values and
memory cells (Sect. 4). At the same time, the first statement updates the op
tag, which is an ordinary field except for its role in discriminating the union.
We want the modeling of this field to be largely independent of the complexities
introduced by the union type (Sect. 3.1).

The most intricate aspect of most program analysis algorithms is the widen-
ing operator that extrapolates loop invariants—in our domain, it folds points-to
edges into checker edges. Our algorithm is no exception but by encapsulating
unions within a shape graph representation, our widening operator described in
great detail in earlier papers [6,5] remains essentially unchanged (Sect. 4.3)

3 Separating Shape Graphs for Modeling Memory

In this section, we gradually evolve an abstract domain for shape analysis to
model successively lower-level aspects. In particular, we want a domain that can
be instantiated differently depending on the desired level of detail. For exam-
ple, we may want to analyze code that relies on compiler implementation-specific
details such as the size and packing of fields, or we may want to be compiler inde-
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memories M ::= emp empty
| M1 ∗M2 separate regions
| S region summary
| α ` q7→ β r memory cell

summaries S
l-exprs, r-exprs `, r
points-to properties q

variable environment E ::= · | E, x 7� α static scope

value constraints P ∈ P] base domain
analysis state A ::= ⊥ | ∃~α. 〈E,M,P 〉 | A1 ∨A2 disjunctive domain

Fig. 5. An abstract shape domain with separating shape graphs (M).

pendent and reject certain low-level idioms. In Sect. 4, we formalize a particular
instantiation with the lower-level aspects.

In Fig. 5, we show such an abstract domain using separating shape graphs.
Separating shape graphs represent memories M , which consist of either an empty
memory emp or separate regions M1 ∗M2 like in separation logic. Regions may
be either a summary region S or a points-to relation. Summaries S abstract some
configuration of points-to edges. They are necessary to capture an unbounded
number of configurations needed by shape analysis. For example, in Xisa [6,5],
summaries consist of instances of inductive definitions and inductive segments
derived from user-supplied checkers. However, because their exact form is unim-
portant here, we leave them unspecified. Instead, in this section, we focus on
fully unfolded separating shape graphs, or unfolded graphs for short, that consist
only of points-to edges.4

The rest of the analysis state is straightforward and mostly standard. We
have an environment E that maps variables to their addresses, which allows us
to model address-of-locals (i.e., &x), as in our prior work [6,5]. A base abstract
domain P] tracks constraints on values (e.g., α, β). Overall, an analysis state is
a finite disjunction of 〈E,M,P 〉 tuples; we simply make explicit that symbolic
values are existential variables at the analysis state-level. Recall from Sect. 2
that nodes correspond to values—typically base pointers of objects. The points-
to relation α `

q7→ β r is an edge from α to β and represents a singleton memory
cell (e.g., fields in the case of a field-splitting model for Java-like structures). The
address expression ` and contents expression r allow for computing offsets from
base values α and β, respectively. Finally, we allow edges to be decorated with
properties q, which are used in the subsequent subsections. Note how memory
layout properties (e.g., field size) can be captured on edges, while value properties
(e.g., type of a value, range of an integer constant) refer to nodes. In particular,
memory cells are modeled by edges not nodes as with traditional shape graphs.

` ::= ε | @f
r ::= ε

To obtain separating shape graphs for Java-like structures
(as in our prior work [6,5]), we simply define ` and r as shown
inset. That is, we allow field offsets @f on the left but only base
pointers on the right (ε indicates empty). Pictorially, we show an

4 Unfolded graphs are analogous to TVLA’s two-valued structures.
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example separating shape graph (ssg) along with the corresponding separation
logic formula (sl), two-valued structure (2-val), and informal box diagram (boxes)
in the following:

Example 1 (A Java-Like Structure with One Field).

α null
f

α @f 7→ null
!

!"##$

ssg sl 2-val boxes

Kreiker et al. in a recent paper [18] present a “fine-grained semantics” in the
context of TVLA using one node per component plus one node for the enclosing
record in order to model pointer-to-field and nested structures. In Example 1,
the two-valued structures we draw uses this one node per component model.5

While the picture looks the same as Fig. 1a, the two-valued structure above
represents an object with one field f not two objects.

In the subsequent sections, we consider low-level aspects of the C memory
model. Note that we do not directly jump to a byte-level or assembly-level model,
rather we want object-level notions like field names to coexist with lower-level
aspects like numeric offsets. We first consider lowerings that are mostly compiler
independent based solely on the semantics of C (Sect. 3.1) followed by those that
are compiler dependent, such as field sizes (Sect. 3.2).

3.1 Compiler Independent Use of Aggregates

` ::= ε | @f
r ::= `

Internal Pointers. With individual fields exposed, the exten-
sion to internal pointers becomes clear. We simply need to allow
field offset expressions on the right side of points-to in addition
to the left side, instantiating ` and r as shown in the inset.

Example 2 (An Internal Pointer). A pointer to the g field of a structure is rep-
resented as follows:

α β null
f g g

α @f 7→ β @g
∗ β @g 7→ null ! "

#

!"##$%

ssg sl 2-val boxes

` ::= ε | `@f
r ::= `

Nested Structures. The base pointer of a nested structure
is the field offset of its enclosing struct, so we need to allow
for a path of field offsets with ` and r as defined in the inset.
With nested structures, the contents or value of a field may
5 Note that in that paper, they also present a “coarse-grained semantics” that goes

back to the one node per record model while retaining the ability to reference field
pointers and nested structures. In addition to pointer-to-field and nested structures,
we also consider untagged unions, field sizes, and array values in this paper.
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addressing expressions e ::= x | ∗e | e�f | &e | e.f e ↓E,M (α ` 7→ β r) e ⇓E,M β r

Var
(E(x) 7→ β r) ∈M
x ↓ (E(x) 7→ β r)

Deref
e ⇓ β r1

∗e ↓ (β r1 7→ γ r2)

FieldDeref
e ⇓ β r1

e�f ↓ (β r1@f 7→ γ r2)

RVal
e ↓ (α ` 7→ β r)

e ⇓ β r

AddrOf
e ↓ (α ` 7→ β r)

&e ⇓ α `

FieldOffset
e ↓ (α ` 7→ β r1)

e.f ↓ (α `@f 7→ γ r2)

Fig. 6. Evaluation of program addressing expressions for structures.

be a record (i.e., another structure of subfields). Thus, in our representation,
symbolic values may now take on record values {f1 : β1 r1, . . . , fn : βn rn} in
addition to, for example, null and integers. As a consequence, we may need to
reduce between an edge containing a record and a set of edges of its components
(essentially using definition (?) in Sect. 2).

Example 3 (Reduction for Nested Structures). Consider the following nested
structure declaration: typedef struct { struct { int i; int j; } t; } S;.
Then, the following is an example equivalence:

α β
= {i : γ, j : δ}

t ⇐⇒ γα δ

t@i

t@j

Thus far, we have been able to view all points-to edges as word-sized cells
containing word-sized values. We now have irregularly-sized cells and values and
thus want to ensure that updates at least respect cell size. We consider this issue
further in Sect. 3.2.

Program Expression Evaluation. In an unfolded graph, pointer updates
amount to the swinging of an edge. Such a destructive update is sound because of
separation. To determine which edge to swing and how to update it, we traverse
the graph starting from variables and following dereferences to find the edges
corresponding the cell being written and the cells being read. To describe this
traversal precisely, we define two judgments e ↓E,M (α ` 7→ β r) and e ⇓E,M β r
that evaluate a program expression e in an environment E and graph M to yield
a cell and a value, respectively, in Fig. 6. These expressions allow dereferences of
internal pointers, access of arbitrarily nested structures, and taking the address
of any cell. To keep the rules concise, we elide the environment and graph pa-
rameters, as they are constant. Furthermore, we implicitly require that any edge
appearing in the rules exists in the graph (though we show this side-condition
explicitly in Var as an example). The cell of a variable x is the one whose left
side of points-to is the address given by the environment (Var). Dereferences ∗e
and e�f follow an edge, that is, they get the value of their subexpression and find
the edge whose left side of points-to is that value or that value plus the field off-
set, respectively (Deref and FieldDeref). To find the value of an expression,
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we simply find the cell corresponding to the expression and yield the right side
(i.e., the contents) (RVal). The rule for the address-of operator &e (AddrOf)
is more interesting in that its role as converting l-values into r-values is made
evident. In particular, it makes sure the cell corresponding to e exists and then
returns its address. Thus, l-expressions ` must be contained in r-expressions r to
capture internal pointers, as addresses can be returned as values. The rule for
the field offset expression e.f (FieldOffset) captures the shift from a points-to
edge representing a record to edges for its components (see Example 3). Note
that the cell evaluation judgment e ↓ (α ` 7→ β r) is needed only for expressions
&e and e.f (i.e., the value evaluation judgment e ⇓ β r could be defined directly
for x, ∗e, and e�f without it). Thus, in essence, the cell evaluation judgment
captures the additional complexity of internal pointers (from &e) and nested
structures (from e.f). In fact, we include the FieldDeref rule even though the
expression e�f is a synonym for (∗e).f as in C to emphasize this point. Now,
the transfer function for an update can be captured extremely concisely with
the following forward Hoare rule:

e ↓ (α ` 7→ β r) e′ ⇓ β′ r′

{α ` 7→ β r} e := e′ {α ` 7→ β′ r′}

Note that this one rule captures updates to variables and fields given by arbitrary
access paths involving ‘∗’, ‘.’, and ‘&’ (but ignoring size constraints).

Analyzing C-Style Dynamic Memory Management. Intuitively, the trans-
fer function for free should simply delete the outgoing points-to edges from the
pointer being freed. However, according to C standard, free can only be called
on pointers to the base address of an allocated block previously returned by
malloc. For instance, in the code below, the pointer value &y cannot be passed
to free because it was not returned by malloc:

S* x = (S*)malloc(sizeof(S)); S y = *x;
free(x) /∗ ok ∗/; free(&y) /∗ fails ∗/;

The address-of operator &e permits the creation of pointer values that are not
necessarily returned by malloc. The analysis must therefore track the nodes
that represent the base address of an allocated block along with those edges
that make up the block. Such a “tag” for allocated blocks is an example of a
property that naturally applies to nodes.

3.2 Compiler Dependencies Induced by Union Types

Thus far, we have focused on compiler independent modeling. However, one
prevalent use of C is to access low-level features that are necessarily dependent
on the compiler implementation. For example, a program may rely on sizes (e.g.,
int being 32-bits), address arithmetic, or a particular struct/object layout. In
this section, we describe language features that are often used in a way dependent
on the compiler implementation. Others have also realized that sometimes it is
necessary to analyze code in a compiler-dependent manner (e.g., [20]).
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1 union {

2 struct { int f; int g; int h; } s;

3 long long l;

4 } x, y;

5 x.s.f = . . .;
6 x.s.h = . . .;
7 y.l = x.l;

(a) Union-manipulating code.

!

" #

$

%

(b) An instance of the union type.

Fig. 7. An example to illustrate compiler dependence with C-style unions.

Untagged Unions and Overlapping Cells. One such instance is dependence
on multiple access paths mapping to the same memory location, which may occur
with untagged unions in C. For example, consider the C code in Fig. 7. There are
several questions that are compiler dependent. Will the write to x.s.h on line 6
modify x.l? Will the write on line 7 copy x.s.f and x.s.g to y.s.f and y.s.g?
Should the read from x.l be allowed? Strictly according to the C specification,
we might say no [16], but we might also want to analyze programs that use such
assumptions. Furthermore, regardless of layout, a suitable representation must
allow us to determine that the write to line 5 modifies x.l but not x.s.g and
x.s.h. Note that the same kind of issues arise with type conversions and pointer
arithmetic.

` ::= path | path +o/path

r ::= `
path ::= ε | path@f

For such reasoning, we must expose byte-level off-
sets and field sizes. Offset expressions ` are now ac-
cess paths path as before (for compiler-independent ac-
cesses) or a path followed by a pair of a byte-level
numeric offset o and an access path (for compiler-
dependent ones) as defined in the inset. The byte-level numeric offset is given
by the compiler to correspond to the bundled access path. To expose field sizes,
we annotate points-to edges with the size of the memory cell it represents as
a compiler-provided integer sz (where necessary). We thus have edges of the
following form: α ` 7→ β r or α `

sz7→ β r. Note that this size information is a
property of the memory cell and thus appears on the edge and not on the nodes.

These offset expressions allow us to express untagged unions directly. All
fields of a union will have the same numeric offset but different access paths. Con-
ceptually, with additional compiler-specific information about sizes, the analyzer
can ensure that writes to any field will overwrite and remove the information
about overlapping fields. Reading from a field that was not previously written
can also be detected and either throw an error or rely on compiler dependent
behaviors to interpret the data from the other field depending on the desired
model. However, having a points-to edge for each union field would violate our
representation invariant that all edges in the graph are separately conjoined.
Union fields share the same concrete memory cells and thus are clearly not sep-
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arate. What we want is some amount of local sharing (or use of non-separating
conjunction) but we want to keep this additional complexity isolated.

To address this issue, we first introduce memory region values that corre-
spond to memory regions on which there exists multiple views. In essence, to
represent a union, the graph contains a points-to edge for the entire union and
whose contents are points-to edges for the substructure. We notate a memory
region value as follows: [ +o1/path1

sz17→ γ1 r1 | · · · | +on/pathn
szn7→ γn rn ].

Example 4 (Representing a Union). With memory region values, we represent
an instance of the union type described in Fig. 7b (e.g., x) as follows:

α
127→ β ∧ β = [ +0/@s@f

47→ γ | +4/@s@g
47→ δ | +8/@s@h

47→ ε | +0/@l
87→ η ]

Note the similarity of memory region values with record values for nested struc-
tures (Sect. 3.1). In particular, we can interpret memory region values as follows
in separation logic:

α `
sz7→ β ∧ β = [ +o1/path1

sz17→ β1 r1 | · · · | +on/pathn
szn7→ βn rn ]

def= (α ` +o1/path1
sz17→ β1 r1 ∗ true) ∧ · · · ∧ (α ` +on/pathn

szn7→ βn rn ∗ true)

We write ` +o′/path
′ for the concatenation of paths and offsets as appropri-

ate (i.e., instantiating `, we have two cases: path +o′/path
′ def= path +o′/path

′ and
+o/path +o′/path

′ def= +(o + o′)/path path
′ where path path

′ is the concatenation of
paths). Observe that the memory region edge (whose contents is a memory re-
gion value) encloses the complex sharing and can coexist with edges that do
not have numeric offsets or even sizes. Also, note that with numeric offsets, it is
tempting to compile away access paths into numeric offsets. However, doing so
throws away useful object-level information.

At the same time, the above definition is not completely satisfactory from
the point of view of representing unions entirely in the separating shape graph
because of the use of non-separating conjunction (∧). Specifically, we desire a
rule to push union edges of a memory region value into the graph (like for record
values in Example 3). We observe that this use of non-separating conjunction
is local to a node (i.e., it involves only outgoing points-to edges from α in the
above). Thus, we simply need a mechanism to mark that a set of points-to edges
from a node may share the same concrete memory cells (e.g., the edges on the
right-side of the definition would be marked as such a set). The analyzer must
then consider all of the points-to edges in the set simultaneously whenever one
of them is updated. For example, the separating shape graph at program point 8
in Fig. 4 shows the edge labeled node@uni@s that is in fact one such shared edge.
In the figure, we have elided other edges in its shared set; being more explicit,
there are four edges in the set with the following addresses: β @node +0/@uni@s,
β @node +0/@cst@value, β @node +0/@bin@l, and β @node +4/@bin@r. Note that
one elegant way to keep track of which edges may share the same memory region
is to apply the idea of fractional permissions [2,3]. Intuitively, reading from a
union field requires only shared permission (0 < permission < 1) but writing to
a union field requires exclusive permission (permission = 1) to ensure all other
union fields are updated appropriately.
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Compiler Independent Uses of Unions. Not all uses of unions depend on the com-
piler implementation like in Example 4. We may instead conservatively model
that all branches of a union may overlap (e.g., x.s.h and x.l is not known to be
disjoint). To do so, observe that the size and offsets need not correspond to sizes
and offsets in bytes as long as they conservatively model overlap. For example,
consider the following that conservatively approximates Example 4:

α
17→ β ∧ β = [ +0/@s@f

0.37→ γ | +0.3/@s@g
0.37→ δ | +0.6/@s@h

0.47→ ε | +0/@l
17→ η ]

Here, we say α 7→ β is of “unit size” and where the union fields s and l occupy
the entire region; then, the structure fields within s divide up the region.

4 A C Memory Model as Separating Shape Graphs

In this section, we formalize a static analysis abstraction, instantiating the shape
graphs introduced in Sect. 3, with explicit byte-level offsets and sizes.

A classical definition for memory states Mem is a finite map from values into
values, that is, to let Mem = Val ⇀fin Val where Val denotes machine values.
However, this definition does not directly capture the properties we want to
express and abstract. First, we need a detailed description of memory with fields,
addresses, and sizes. Second, we need to account for memory management—we
need to know for each byte, in which block it was allocated. Therefore, we adopt
a lower-level and more precise definition here. Our definition is based on a notion
of contiguous regions, that is, unbroken chunks of memory. A memory state is
specified as a set of allocated regions, a subdivision of these chunks into fields,
and a value mapping for each element of this subdivision. A contiguous region
r is defined by its base address ba and its size in bytes sz. We use subscripts to
indicate the region of a particular component (e.g., bar for the base address of
region r). A region r then covers the range of addresses R = [bar, bar + szr − 1].
We say that regions r and r′ are disjoint if and only if their ranges are disjoint
(i.e., Rr ∩Rr′ = ∅). A concrete memory state σ is a tuple (m, s, c) composed of
the following:

– A table of allocated memory chunks m, which we model with a set of regions.
These chunks represent allocation with malloc or on the stack.

– A subdivision s, which is a set of regions such that for all r, r′ ∈ s, regions r
and r′ are disjoint, and for all r ∈ s, there exists an allocated memory chunk
k ∈ m such that Rr ⊆ Rk.

– A content function c, which consists of a function from s into content values
such that for all regions r = (bar, szr) ∈ s where c(r) is defined, it denotes a
value of szr bytes.

Two concrete memory states are equivalent if and only if their content functions
describe the same address to byte mapping. In the following, we reason up to
this equivalence and consider two equivalent memory states equal.

Figure 8a depicts an excerpt from a concrete store, which contains an Arith
structure from Fig. 4 that represents the expression −val . Note that the Arith
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0xNa 1

0xNb

0xNb 0

val

(a) Concrete store.

α

β

pad

γ

pad

δ

pad

ǫ

= 1 = 0

= val

op : [0, 1[

0

[1, 4[

0

node@uni@s : [4, 8[
0

[8, 12[ 0

op : [0, 1[

0

[1, 4[

0

node@cst@value : [4, 12[
0

(b) Unfolded graph.

α

arith

(c) Folded graph.

Fig. 8. Representation of an Arith object from Fig. 4.

expression nodes do not have the same layout due to the union field in use. Each
bold block corresponds to an allocated region (of size 12) and is partitioned into
smaller regions that correspond to each field.

We can now describe the concretization of a separating shape graph M ∈M]

as a set of concrete stores σ. Recall from Fig. 5 that the analysis state contains
an element P ∈ P] that tracks properties of values. For example, we may need
numeric information (e.g., α = 42) or to tag a value with its size (e.g., sizeof(β) =
8). To express the denotation of such an abstract element, we need to take into
account the mapping of symbolic values α ∈ Val] into values (e.g., addresses,
integers, record values). This mapping is given by valuations ν : Val] → Val,
which describes a physical mapping. Formally, the concretization is defined by

γM : M] → P(Mem× (Val] → Val))
γP : P] → P(Val] → Val)

γ : D] → P(Mem)
def= (M,P ) 7→ { σ ∈Mem | ∃ν. ν ∈ γP(P ) ∧ (σ, ν) ∈ γM(M) }

where γM and γP are the concretization functions for separating graphs and
elements of the base domain, respectively. The function γ is the concretization
for the product domain D] of separating shape graphs and the base domain; note
that the valuation ν connects the concretizations of the components M and P .
In the following, we detail the main features of γM, including how we concretize
edges, disjoint regions, contiguous region summaries, and non-contiguous region
summaries. We discuss these aspects in the context of the shape graphs in Fig. 8b
and Fig. 8c that abstract the concrete store shown in Fig. 8a.

Concretizing Points-To Edges. A points-to edge models one memory cell
with an address and contents. The address of the memory cell is represented by
a base address—it’s source node—and optionally an offset expression `. Similarly,
the contents of a memory is given by a base address—it’s target node—and an
optional offset. In the following, we use only byte-level offsets (i.e., +o), as sym-
bolic access paths simply concretize to byte-level offsets in a compiler-dependent
manner (e.g., @f lowers to + offset(f)). Similarly, we assume points-to edges have
been annotated with the size of the cell they represent (e.g., by looking at field
types in a compiler-dependent way).
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Definition 1 (Concretization of Points-To Edges). A points-to edge is
given by a source (α, o) ∈ Val]×N, a destination (α′, o′) ∈ Val]×N, and a size
sz ∈ N. We notate such an edge as α+o

sz7→ α′+o′. The concretization on edges
for points-to γE (α+o

sz7→ α′+o′) is defined as follows:

(σ, ν) ∈ γE (α+o
sz7→ α′+o′) if and only if

σ = (m, s, c) and
s = { (ν(α) + o, sz) } and
c(ν(α) + o, sz) = ν(α′) + o′

That is, the concrete memory is a single region with base address ν(α) + o and
size sz with contents ν(α′) + o′. Note that ν should interpret α′ as an sz-bytes
value (while we keep this implicit here, type and size information of values should
be tracked in practice).

Offsets o, o′ are integers. Hence, this presentation allows for a straightforward
handling of field-level pointer arithmetic. For instance in Fig. 8b, the edge drawn
from α to γ is annotated with the range [4, 8[ and the target offset 0: it corre-
sponds to a memory cell of size 4, with base address ν(α) + 4, and with contents
ν(γ) and thus concretizes to part of the concrete store shown in Fig. 8a assuming
ν(α) = 0xNa and ν(γ) = 0xNb.

Concretizing Disjoint Memory Chunks. Recall from Sect. 2 and Sect. 3
that in a separating shape graph, distinct edges stand for disjoint chunks of
memory (assuming unions are represented as memory region values). Thus, the
concretization of a graph is the union of the concretizations of each edge with a
disjointness or separation constraint. This constraint is analogous to formulas in
separation logic conjoined with ∗; however, to treat allocated memory explicitly,
we give direct a formalization here. For the moment, assume that the graph M
is fully unfolded (i.e., contains only points-to edges), then we define γM(M) as
the set of all (σ, ν) ∈Mem× (Val] → Val) where σ = (m, s, c) and such that

– For each node α in graph M , if α is the base address of a memory region
of size sz, then region (ν(α), sz) belongs to m. In other words, the concrete
memory state σ has an allocated region at ν(α) of size sz.

– There exists a family of memory states (σe)e∈M such that

σ = ∗{σe | e ∈M} and σe ∈ γE (e) for all e ∈M

where we write e ∈ M for an edge e in graph M and overload σ1 ∗ σ2 on
concrete states to mean the combining of disjoint memories σ1 and σ2. That
is, memory state σ can be partitioned into a set of memory states that are
the contributions of each of the edges of the graph.

A C struct consists of a set of contiguous cells. For instance, the concrete store
presented in Fig. 8a is abstracted by the unfolded graph of Fig. 8b where each
edge corresponds to a subregion of the concrete store. Note that to be completely
explicit, some edges correspond to padding generated as part of the compiler-
dependent lowering (no information is ever available about the content nodes).
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In the remainder of this section, we consider the concretization of memory region
values introduced in Sect. 3.2 to capture C-style unions (Sect. 4.1) and of in-
ductive summaries (Sect. 4.2). Section 4.3 sums up the analysis operations using
this instantiation of separating shape graphs.

4.1 Concretizing Contiguous Regions

Arrays and Points-To Edges over Non-Constant Ranges. Arrays correspond to
contiguous sequences of bytes in memory, so sized points-to edges can be used to
capture array values. For a fixed-length array, we can split it into a points-to edge
for each cell, but we can also choose to represent it as one large cell and abstract
its contents with a dedicated array domain (e.g., [12,13,15]) as part of P]. With
a slight extension to allow field sizes and offsets to be expressed symbolically
(i.e., in terms of symbolic values), we can also model non-fixed-length arrays as
one large region or some finite number of chunks. The base domain P] should
express range and congruence constraints about that offset, like in Miné [20].
This representation is similar in purpose to iterated separating conjunction [22],
but we generally want the entire contents to be modeled as a single value.

In certain cases, using one large cell may be desirable, as existing array
abstractions can be re-used together with our shape abstraction. Thus, we can
avoid a need to reason precisely about indexing expressions in the shape domain.
At the same time, this choice potentially limits the interaction between the
domains making it more difficult to analyze code that, for example, have an
inductive structure using arrays of pointers.

Untagged Unions and Overlapping Regions. As alluded to Sect. 3.2, memory
region values are key to capturing untagged unions or in general multiple regions
for the same memory region.

Definition 2 (Concretization of Memory Region Values). A multi-view
points-to edge is a points-to to a memory region value, that is, α+o

sz7→ β and
β = [ o1

sz17→ α′1 o
′
1 | · · · | on

szn7→ α′n o′n ] such that for all i such that 1 ≤ i ≤ n,
oi+szi ≤ sz. The concretization of such a family of edges is the set of pairs (σ, ν)
such that σ = (m, s, c) where s = { (ν(α)+o, sz) } and read(c, ν(α)+o+oi, szi) =
ν(α′i) + o′i (for all i). The operation read(c, v, sz) stands for the sz-bytes value
that can be read in contents c from address v. In other words, the concrete
memory is a single region given by the points-to edge α+o

sz7→ β but whose contents
are also described by each of the views of β.

4.2 Summarizing Complex Regions using Inductive Definitions

Recall that we summarize non-contiguous regions of unbounded size with checker
edges that correspond to inductive structures. As in our prior work [6,5], we take
advantage of user-supplied inductively-defined checkers c and generate sum-
maries that correspond to complete and partial structures. In particular, a
checker edge (α+o).c(δ) is an instance of an inductive checker definition c, and
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a segment edge (α+o).c(δ) ∗= (α′+o′).c′(δ′) is a partial derivation of checker c
from α+o up to α′+o′ and expecting checker c′.

We give here an indirect definition of the concretization of graphs containing
summary edges: in a first step, we unfold shape graphs into fully unfolded shape
graphs with no summary edges; in a second step, we concretize these using
the previously defined concretization. This definition captures the same notion
of inductively-defined regions as our previous definition [6,5], yet we take this
indirect approach here since it extends more cleanly to the case where we take
allocated regions into account. As a notation, we write (M,P )  (M ′, P ′) to
mean that the pair of graph and base domain element (M ′, P ′) can be obtained
from (M,P ) by unfolding one summary edge in M once. As inductive checkers
include data constraints, unfolding updates both the graph and the base domain
element.

Definition 3 (Concretization of a Graph with Summary Edges). The
concretization γM(M) is the set of pairs (σ, ν) such that (M,>)  ∗ (M ′, P ′),
M ′ is fully unfolded, σ ∈ γM(M ′), and ν ∈ γP(P ′). Note that we write > for
the top element of the base domain (i.e., no data constraints) and  ∗ for the
reflexive-transitive closure of  .

Returning to the syntax tree example from Fig. 4, a user-supplied checker
for arith may specify that op serves as the discriminator:

t.arith() :=

if (t.op = 0) then true
else if (t.op = 1) then t.node.uni.s.arith()
else if (t.op >= 2) then t.node.bin.l.arith() and t.node.bin.r.arith()

(i.e., 0 is for constants, 1 is a unary operator, and ≥ 2 are binary operators).
This checker translates to the following low-level definition with compiler-specific
offsets and sizes made explicit (which could be obtained from the C types):

π.arith() :=

〈π@op
17→ β ∗ π@node

87→ γ,alloc(π, 12) ∧ β = 0 ∧
γ = [+0/@cst@value

87→ δ1 | +0/@uni@s
47→ δ2 | +0/@bin@l

47→ δ3 | +4/@bin@r
47→ δ4] 〉

∨ 〈π@op
17→ β ∗ π@node

87→ γ ∗ δ2.arith(),alloc(π, 12) ∧ β = 1 ∧ γ = . . . 〉
∨ 〈π@op

17→ β ∗ π@node
87→ γ ∗ δ3.arith() ∗ δ4.arith(),alloc(π, 12) ∧ β ≥ 2 ∧ γ = . . . 〉

The predicate alloc expresses that a base address is an allocated region of a
particular size. We note that Fig. 8b is one of the unfolded versions of Fig. 8c;
that is, Fig. 8c abstracts the concrete store of Fig. 8a.

4.3 Shape Analysis for Compiler-Dependent C

Given a concrete operation Φ : Mem → Mem, the corresponding abstract
transfer function Φ] : D] → D] should be sound, that is, for all D ∈ D] and for
all σ ∈ γ(D), it is the case that Φ(σ) ∈ γ(Φ](D)). In other words, performing
the operation at the abstract level does not lose any concrete behavior.
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Transfer Functions and Materialization. To reflect assignment statements and
conditional guards, transfer functions evaluate expressions to cells and values us-
ing the rules given in Fig. 6 to determine which edges should be modified. How-
ever, in many cases, the edges corresponding to subexpressions are not readily
available in shape graphs. They need to be materialized, that is, we need to con-
cretize part of the summarized regions so that the appropriate points-to edges are
revealed. Since materialization is a partial concretization operation, we now have
two ways to materialize: for non-contiguous regions (Sect. 4.2) and for contigu-
ous regions (Sect. 4.1). The former case corresponds to unfolding an inductive
summary and is described in detail in our previous work [5]; the latter case
corresponds to splitting a subpart of a points-to edge and is new to our frame-
work. To describe this new materialization operation, we write extract[i,j[(α)
for the operation that extracts bytes i to j from the value represented by α.
Now, if 0 ≤ sz0 < sz, then the following pair of edges and constraints can be
materialized from the edge α+o

sz7→ α′:

α+o
sz07→ α′0 ∗ α+(o+ s0) sz−sz07→ α′1
where α′0 = extract[0,s0[(α′) and α′1 = extract[s0,s[(α′)

The two last constraints are represented (in a conservative way) in P]. This rule
allows, for example, to materialize a single array cell from a whole array value.

Memory Management Operators. To model a successful call to malloc, the anal-
ysis creates a fresh memory region value β tagged with the size of the allocated
area; it then creates a points-to edge of that size to β. To analyze a call to free,
we need to materialize the entire region to free based on the allocated-size pred-
icate on the node. We then check that the region to free was indeed allocated
before discarding the edges corresponding to the region. The pointer to the ad-
dress of the freed block becomes dangling (i.e., all outgoing edges are removed).
Parkinson [21] has also described this need to track allocated regions.

Widening. To enforce termination, we use a widening operator, which was ex-
tensively described in our prior work [6,5]. What is particularly interesting is
that this operator requires minimal changes to accommodate the new kinds of
edges introduced in this paper. Intuitively, the widening relies only on the graph
structure, which is conserved by our extensions in this paper. It is sound (i.e.,
computes an over-approximation of concrete joins) and terminating (there is no
infinite, non-converging sequence of widening iterates).

5 Implementation and Timing Results

We have extended the memory model of Xisa to reflect the features introduced
in Sect. 4, including support for nested structures, pointers to internal fields,
numerical offsets and sizes, memory region values, and base address of allocated
blocks (to check malloc and free in a sound manner). The overall structure of
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Size Time Peak Disj. Iter.
Benchmark (loc) (sec) (num) (num)

traversal 20 0.036 8 2
eval 70 0.060 24 2x2
remsub 37 0.116 8 2
distribute 41 0.144 14 2
move neg up 120 0.488 38 2

Table 1. Benchmark results for verifying shape preservation. We show the size
of the benchmark in lines of code (number of lines of the relevant function), the
analysis time, the maximum number of disjuncts at any program point (Peak
Disj.), and the maximum number of iterations at any point (Iter.).

unfolding and folding (widening) algorithms remained largely unchanged; there
were only small, local extensions to deal with the new annotations on points-
to edges. Code that was analyzable by the previous Xisa implementation is
analyzable with this finer model. Support for arrays does not yet exist, primarily
because it would require a more expressive numerical domain P] and extensions
to the base domain interface.

Table 1 shows some implementation results that require this refined memory
model. These examples are algorithms that traverse and/or modify in place a
syntax tree structure like the one shown in Fig. 4. They evaluate or simplify
arithmetic expressions (e.g., by distributivity) and delete or create new nodes as
needed. In the table, we show analysis times, the maximum number of disjuncts
at any program point, and the number of widening iterations needed in each loop
(in the case of the “eval” example, we give numbers for each nested loops). The
low values for number of iterations provides evidence that our widening operator
enforces quick convergence while retaining precise results. We note that the peak
number of disjuncts is rather high in the last example. This high number is due
to the presence of nested if-statements that lead to successive unfolding of several
levels of checker edges. Since we only try to collapse disjuncts at widening points,
this implementation choice results in an exponential number of disjuncts in short
code sections. Better heuristics to control the maximal number of disjuncts could
improve performance, though we leave this to future work.

6 Related Work

The use of shape graphs for approximating unbounded structures dates back to
at least Jones and Muchnick [17]. Their design and use have formed the basis
of several steps in the development of shape analysis. Sagiv et al. [23] defined
an early version of materialization with shape graphs that was subsequently
refined in TVLA [24] with the perspective of “partial concretization” and the
ability to simultaneously express both may and must relations between objects.
A line of subsequent work has looked at compacting this representation (e.g.,
by merging similar graphs [19]). Traditionally, shape graphs have been applied
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on Java-like structures using the the “object-as-node” paradigm. Very recently,
Kreiker et al. [18] have formulated an extended memory model in the TVLA
framework to reason about pointers to nested structures. They describe shape
graph models that capture nested structures and internal pointers using both
“field-as-node” and “object-as-node” paradigms. In contrast, separating shape
graphs take a “cell-as-edge” approach inspired by separation logic [22], which we
use to separate object or value-level properties on nodes from field or component-
level properties on edges.

There has also been a line of work that builds shape analyzers around formu-
las in separation logic (e.g., [11,14,6]). In the last few years, significant progress
has been made in handling realistic C code. For example, Berdine et al. [1] han-
dle composite data structures, such as lists of lists, and Yang et al. [26] have
looked at a ≈10,000 line device driver. Nonetheless, the focus has been on Java-
like structures (i.e., limited reasoning on internal pointers or layout dependent
features). One exception is Calcagno et al. [4] that have described a low-level
analyzer with pointer arithmetic inside memory blocks.

There are also program analyzers, such as Miné [20], that address many low-
level aspects of C, including unions and pointer casts, but they are not typically
concerned with dynamic memory allocation and unbounded structures as in
shape analysis. Another class of tools focuses on being as concrete as possible
potentially trading off some automation or exhaustiveness. We take a different
angle where we want a representation that supports user-guided abstraction.
The HAVOC tool [7] combines reachability predicates with pointer arithmetic
reasoning and has been applied to verify low-level properties of system drivers [9].
Clarke et al. [8] give a low-level encoding of C features for model checking.
Xie and Aiken [25] perform exact bit-level encoding with bounded symbolic
execution.

7 Conclusion

In this paper, we propose separating shape graphs as an abstraction that can
handle typical, high-level data types and low-level aspects of C in a compositional
manner. From the analysis point of view, the main result is that existing algo-
rithms for unfolding and widening of shape abstractions are mostly unaffected
in this extended framework.

Acknowledgments. We thank Jörg Kreiker, Antoine Miné, Hongseok Yang,
Matthew Parkinson and Peter O’Hearn for stimulating discussions.
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