
Abstraction of Optional Numerical Values

Jiangchao Liu and Xavier Rival

INRIA, ENS, CNRS, PSL*, Paris, France,
jliu@di.ens.fr, rival@di.ens.fr

Abstract. We propose a technique to describe properties of numerical
stores with optional values, that is, where some variables may have no
value. Properties of interest include numerical equalities and inequalities.
Our approach lifts common linear inequality based numerical abstract do-
mains into abstract domains describing stores with optional values. This
abstraction can be used in order to analyze languages with some form of
option scalar type. It can also be applied to the construction of abstract
domains to describe complex memory properties that introduce symbolic
variables, e.g., in order to summarize unbounded sets of program variables,
and where these symbolic variables may be undefined, as in some array
or shape analyses. We describe the general form of abstract states, and
propose sound and automatic static analysis algorithms. We evaluate our
construction in the case of an array abstract domain.

1 Introduction

The abstraction of sets of stores is a common problem in static analysis. At a high
level, it boils down to identifying a set of predicates over functions that map vari-
ables into values. In particular, when the set of variables X is of fixed and finite
size N and the values are scalars (typically, machine integers or floating point
numbers), concrete stores are functions of the form σ : X → V (where V stands
for the set of values), and can equivalently be described by finite vectors of scalar
values σ ∈ VN . Then, an abstract state describes a set of finite scalar vectors.
Typical sorts of abstract states consist of conjunctions of equality constraints [11]
or inequality constraints [3,5,13] over variables.

Optional values. Many programming languages feature possibly empty memory
locations. For instance, OCaml and Scala have an option type. This type can be
defined by type ’a option = None | Some of ’a, which means a value of type
int option may either be an integer, or undefined, represented by None. Sim-
ilarly, spreadsheet environments feature empty cells as well as an empty type.
When each variable either contains a scalar or no value, then the set of stores
is P(X → {
}⊎V) where
 stands for “no value”. The conventional abstract do-
mains mentioned above fail to describe such sets, as they require each dimension in
the abstract domain to correspond to one concrete memory location, i.e., concrete
stores should be of the form −→σ ∈ VN . Therefore, they would need to be extended
with support for empty values in order to deal with optional values.

2 Jiangchao Liu and Xavier Rival

Packing memory locations. Another situation where support for optional val-
ues would be needed occurs when designing abstract domains for complex data-
structures. Indeed, a common technique packs sets of memory locations together,
so that a single abstract constraint describes the values stored in a groupofmemory
locations. For instance, array analyses often rely on array partitioning techniques,
that divide an array into groups of cells. Then, the values of the cells of a group
are described by a single abstract dimension. Many array analyses do not allow
empty groups or treat them in a specific way [8,9,4]. In this case, summarizing
dimensions [8] can be used in the abstract domain, so as to describe groups of sev-
eral concrete locations. However, other analyses such as [12] allow empty groups.
Then, considering an abstract state, a given abstract dimension may describe an
empty set of values, even though the abstract state itself describes a non empty
set of stores. A similar situation arises in some shape analyses [18]. Again, the
aforementioned numerical domains do not support such an abstraction relation.

Abstraction of stores in presence of possibly empty locations. In the previous two
paragraphs, we have shown several cases where abstractions for stores with op-
tional numerical values are needed. A first approach relies on disjunctions so as to
partition a set of storesS into several setsS0, . . . , Sp, such that, eachSi corresponds
to a fixed set of defined variables. However, when k variables may be empty or not,
this would lead to an exponential factor of complexity. Another solution consists in
adding a flag fx for each variable x, such that fx = 1 if x is defined and fx = 0 other-
wise [16]. While this technique nicely describes relations of the form “x is defined if
and only if y is defined”, it is less adapted to infer that a variable is undefined from
a set of constraints that show no value can be found for x thus it is undefined. The
latter situation is common in array analyses like [12] and where the emptiness of
a group of cells may follow from the numerical constraints over the values of these
cells. To alleviate this issue, [6,12] deploy one relational abstract value per possibly
empty zone, which is overly costly and limits the relations that can be expressed.

In this paper, we take a radically different approach, where constraints over a
variable x may prove that no value is admissible for x, hence it is undefined. Yet,
the concretizations of the existing numerical abstract domains do not cope with
one dimension describing the empty set while the others are still defined. There-
fore, we let a variable x that may be undefined be described by a group of avatars
x0, . . . , xk, and assume that x can be defined if and only if all its avatars may be
defined to a common value. For instance, constraints x0 < 10∧x1 > 20 cannot be
satisfied with a value assignment that maps x0 and x1 to the same value, hence
this pair of constraints describes states where x is necessarily undefined. This prin-
ciple can be applied to any numerical abstract domain where abstract values are
finite conjunctions of constraints (the vast majority of numerical abstract domains
are of that form). We propose an abstract domain functor for linear inequalities
abstractions, called the Maya functor 1. We present the following contributions:

– we define a concrete model for optional values (Section 3);

1 Mayas are among the civilizations believed to have independently invented number
“zero”.

Abstraction of Optional Numerical Values 3

1. int option y; int x;
2. if(y == Some vy)
3. assume(vy ≤ x && vy ≥ 20);
4. if(x ≤ 10)
5. assert(y == None);

Fig. 1. A routine involving optional variables

– we set up a general functor lifting a numerical abstract domain without op-
tional dimensions into a domain with optional dimensions (Section 4);

– we define sound transfer functions and lattice operators for the automatic anal-
ysis of programs with optional variables, with linear inequalities (Section 5);

– we handle possibly empty summary dimensions (Section 6);
– we evaluate an implementation of the Maya functor (Section 7).

2 Overview

In this section, we demonstrate the principle of our abstraction, with a numeric
analysis on a program involving optional variables and a basic array analysis ap-
plied to an initialization routine.

Abstraction of optional variables. We first consider the code fragment shown in
Figure 1. It is written in a C-like language extended with optional variables. An
optional variable (as int option y in line 1) could be either no value (represented
byNone) or one value (represented by Some vy where vy is an integer). The state-
ments in line 2 and 3 constrain vy to be between 20 and the value of x (20 ≤ vy ≤ x)
if optional variable y stores an integer vy. The test in line 4 constrains variable x
to be smaller or equal than 10 (x ≤ 10). This implies that, if y stores an integer vy,
then vy is greater or equal than 20 and smaller or equal than 10 (20 ≤ vy ≤ 10).
There exists no such integer, thus, y may only store None, and the assertion in
line 5 never fails. To prove this assertion by static analysis, we first need to repre-
sent all numerical properties using a numerical abstract domain. All the numeric
constraints in this example are of the form ±x± y ≤ c and can thus be described
in the octagons abstract domain [13]. However, an octagon describes either the
empty set of stores, or a set containing at least one store, that maps each variable,
including y, into a value. Thus, this abstract domain cannot express that y stores
None, while the other variables hold a value. Siegel et al [16] add a flag variable fy
to indicate whether y stores one value or no value. However, solving the problem
using this approach requires to precisely capture the property that 20 ≤ vy ≤ x

when fy = 1 and y = None when fy = 0. This property cannot be expressed in a
single octagon. Hence, the approach of [16] would require a stronger, more ad hoc
abstract domain (most likely, using a disjunction of octagons).

Abstraction of possibly empty sets of values. The key idea of our method is to
represent a single variable using several instances called avatars, carrying differ-

4 Jiangchao Liu and Xavier Rival

int i = 0; int a[8];
while(i < 8){

⋆ 0 ≤ Idx0 ≤ i− 1∧ i ≤ Idx1 ≤ 7

a[i] = 0;
i = i+ 1;
}

(a) Array initialization routine and invariant

0 0 0 0

Initialized Uninitialized

0 i− 1 i 7

(b) Shape of intermediate states

Fig. 2. An array initialization example

ent constraints. This way, we ensure both that (1) the abstract domain describes
stores which map each variable to one value and (2) we can express either that y
must be empty (when it is not possible to find a value all its avatars can be mapped
to) or that it may store some value v (when all constraints are satisfied when all
the avatars of y are mapped to v). To implement this idea using the octagons
abstract domain, we simply distinguish, for a variable y that may have an empty
set of values, two sets of constraints: the constraints of the form y ± x ≤ c (resp.,
−y±x ≤ c) are carried out by its upper-bound avatar y+ (resp., lower-bound avatar
y−). This means, that a (non-bottom) octagon containing constraints y+ ≤ 0 and
1 ≤ y− expresses y is necessarily mapped to no value, as there is no way to sat-
isfy the constraints over its two avatars, while mapping them to a common value.
Applying this method to the example in Figure 1, we associate two avatars y−

and y+ to the optional variable y (non-optional variable x is not associated with
distinct avatars). Three numeric relations (20 ≤ y− ∧ y+ ≤ x ∧ x ≤ 10) are
observed before the assertion in line 5. According to the constraints, y− may take
any value greater than 20, whereas y+ may take any value smaller than 10, so the
concretization of this abstract state contains no state that maps both avatars of
y to a common value. Thus y stands for no value, which proves the assertion in
line 5. Unlike [16], the bi-avatar approach allows constraints 20 ≤ y and y ≤ 10
to co-exist in a single abstract element, that does not describe the empty set of
states. The computation of abstract post-conditions is quite standard, except that
it needs to always associate upper and lower constraints to the right avatar.

Packing array cells. Figure 2(a) shows a C code segment of array initialization. We
consider an array analysis inspired by [12], which proceeds by forward abstract
interpretation [3] (note that the main emphasis of this section is not the array
analysis itself, but the abstraction of optional values). A store observed after 4
iterations is shown in Figure 2(b). We note the array can be divided into two sets
of cells, namely initialized cells and uninitialized cells. As in [12], we consider an
abstraction of the array, that partitions it into two groups of cells G0, G1 (where
all cells in G0 are initialized to zero and cells in G1 may hold any value), and we
let two summary variables Idx0, Idx1 over-approximate the sets of indexes corre-
sponding to the cells of each group. Before the loop starts, Idx0 stands for ∅. In
Figure 2(b), Idx0 stands for set {0, 1, 2, 3}. Before the loop execution, group G0 is

Abstraction of Optional Numerical Values 5

empty. Actually, [12] will introduce it only during the first iteration of the loop. At
this point, the analysis infers that Idx0 = {0} (group G0 has a single element at
this point); moreover, it computes that 1 ≤ Idx1 ≤ 7. During the loop execution,
we observe the following constraints over group indexes form a loop invariant:

0 ≤ Idx0 ≤ i− 1∧ i ≤ Idx1 ≤ 7

After the loop exit, 8 ≤ i, therefore the analysis will return 8 ≤ Idx1 ≤ 7. Ob-
viously no value satisfies this constraint. This actually means that group G1 is
empty at this stage, thus, the analysis proves the whole array is initialized to 0.
The representation of the numerical properties over group indexes suffers from the
same issue as for the optional values, in the analysis of the program of Figure 1:
a non bottom octagon element cannot express 8 ≤ Idx1 ≤ 7. The solution used
in [12] describes each group with a separate octagon. In this layout, an empty
group is naturally described by a bottom octagon attached to its Idxi variable.
Yet, this prevents the analysis from inferring constraints across distinct groups.

Using our method, the analysis could describe symbolic variables associated to
the groups (that is, in our example, Idx0, Idx1) by a pair of avatars (while program
variables (like i) are not associated to distinct avatars in octagons). It computes
the following invariants:

before the loop i = 0∧ 0 ≤ Idx−1 ∧ Idx+1 ≤ 7

end of the 1st iter i = 1∧ 0 ≤ Idx−0 ∧ Idx+0 ≤ 0∧ 1 ≤ Idx−1 ∧ Idx+1 ≤ 7

loop invariant 0 ≤ i ≤ 7∧ 0 ≤ Idx−0 ∧ Idx+0 ≤ i− 1∧ i ≤ Idx−1 ∧ Idx+1 ≤ 7

loop exit 8 ≤ i∧ 0 ≤ Idx−0 ∧ Idx+0 ≤ i− 1∧ i ≤ Idx−1 ∧ Idx+1 ≤ 7

When the loop terminates, we observe that the abstract state contains constraints
8 ≤ i, i ≤ Idx−1 and Idx+1 ≤ 7. Since Idx−1 and Idx+1 cannot be concretized to a
common value, Idx1 describes an empty set of values at this point, thus group G1

is empty. In other words, all cells of the array are initialized at this point.

3 A language with optional values and its semantics

Before we can formalize the abstraction relation of our domain functor, we need to
specify a concrete semantics. To do that, we describe a basic imperative language
where some variables have an optional value. It models both languages with an
option type as well as the operations shape and array analyses with empty groups
require their base domain to provide. The semantics of this language will serve as
a basis to state the soundness properties of the transfer functions defined in the
functor for the abstraction of optional scalar values.

Syntax. The syntax is shown in Figure 3. We distinguish the variables that may be
empty, called the optional variables from the standard variables, that must store
one value. We let X denote the set of standard variables, and we write Y for the set
of optional variables (we assume X∩Y = ∅). These two sets are assumed to be fixed
throughout the paper. We also let V stand for the set of values. Values and variables

6 Jiangchao Liu and Xavier Rival

X : standard (non empty) variables (x ∈ X)
Y : optional variables (may be empty) (y ∈ Y)
V : values (c ∈ V)

t ::= x | y ⊕ ::= + | − | ∗ | ÷ ⊗ ::= < | ≤ | == | ! =
ex ::= t | c | ex⊕ ex scalar expressions

cond ::= TRUE | FALSE | ex⊗ ex | is_empty(y) condition tests
s ::= skip | t = ex | assume(cond) | assert(cond) basic statements

| s; s | if(cond){s}else{s} | while(cond){s} compound statements

Fig. 3. A language with optional values: syntax

Evaluation of Expressions: JexK : S → V ⊎ {
}

JtK(σ) = σ(t) JcK(σ) = c

Jex0 ⊕ ex1K(σ) =

{

Jex0K(σ)⊕ Jex1K(σ) ∀i ∈ {0, 1}, JexiK(σ) ∈ V

 ∃i ∈ {0, 1}, JexiK(σ) =

Condition tests: JcondK : P(S) → P(S)

JTRUEK(S) = S JFALSEK(S) = ∅ Jis_empty(y)K(S) = {σ ∈ S | σ(y) =
}
Jex0 ⊗ ex1K(S) = {σ ∈ S | Jex0K(σ)⊗ (Jex1K(σ) = TRUE)∨(Jex0K(σ) =
)∨(Jex1K(σ) =
)}

Main statements: JsK : P(S) → P(S)

JskipK(S) = S Js0; s1K(S) = Js1K ◦ Js0K(S)
Jt = exK(S) = {σ[t 7→ JexK(σ)] | σ ∈ S, JexK(σ) ∈ V∨ t ∈ Y}

Jif(cond){s0}else{s1}K(S) = Js0K ◦ JcondK(S) ∪ Js1K ◦ Jcond == FALSEK(S)
Jwhile(cond){s}K(S) = Jcond == FALSEK(lfp λS′ · S ∪ JsK(JcondK(S′)))

Fig. 4. A language with optional values: concrete semantics

all have scalar type (integer or floating point). Finally, we let
 6∈ V denote the
absence of value. Conditions include usual arithmetic tests and the emptiness test
of an optional variable. Statements include the usual skip statement (that does
nothing), assignments, sequences, condition tests and loops.

Memory states. A concrete memory (or store) σ maps each standard variable into
a value and each optional variable to either a scalar value or to the
 placeholder,
meaning that this variable is not defined. Therefore the set of stores is:

S
def.

::= (X → V)⊎(Y → (V ∪ {
}))

Semantics. The concrete semantics is formally defined in Figure 4 (assume and
assert statements are classical and omitted). While the overall structure of this
semantics is standard, a few points should be noticed. The semantics JexK of ex-
pression ex evaluates it in a given store, and produces either a value or the no

Abstraction of Optional Numerical Values 7

value
 element. It produces
 whenever it reads an empty optional variable: all
operators are
-strict, i.e., they return
 whenever one of their arguments is equal
to
, thus
 always propagates. The semantics JcondK of condition cond filters
out the stores in which cond does not evaluate to TRUE, thus, it will also include
stores where the evaluation encounters
.

The semantics JsK of statement s takes a set of input stores and returns the
corresponding set of output stores, following an angelic denotational semantics [2]
(non terminating behaviors are not represented —this choice simplifies the presen-
tation, while it does not change anything to the core points of the paper). Note
that the semantics of an assignment x = ex where x ∈ X will produce no output
store when ex evaluates to
. Intuitively, we consider only executions where the
empty value is never assigned to a standard variable.

Example 1. We consider the program below, where X = {x} and Y = {y, z}:

if(x ≤ y){
if(y ≤ 6){

① z = y+ 2;
② . . . ;

Assuming that all variables may take any value (including
 for optional variables)
at the beginning of the execution:
– at point ①, we can observe exactly the stores such that σ(x) ≤ σ(y) ≤ 6, and

the stores defined by σ(y) =
;
– at point ②, we can observe exactly the stores such that σ(x) ≤ σ(y) ≤

6∧σ(z) = σ(y) + 2 and the stores where σ(y) =
 or σ(z) =
.

4 Abstraction in presence of optional numerical values

In this section, we assume a numerical domain N♯ is fixed, where abstract values
correspond to conjunctions of constraints. For instance, linear equalities [11], in-
tervals [3], octagons [13] and polyhedra [5] fit into this category. An abstract value
N ♯ ∈ N♯ describes constraints over a finite set of “abstract variables” that we refer
to as dimensions (so as to distinguish them from the “concrete” —standard or
optional— variables). Dimensions range over a countable set D, and we write
Dim(N ♯) for the dimensions of abstract value N ♯ (Dim(N ♯) ⊆ D). We let
γN♯ : N♯ → P(D → V) denote its concretization function.

Abstract states. An abstract state of the Maya abstract domain over N♯ is defined
by an abstract value N ♯ ∈ N

♯ describing constraints over a set of dimensions
defined as follows:
– each standard variable x corresponds to exactly one dimension, also noted x;
– each optional variable y corresponds to a finite set of avatar dimensions (for

clarity, we always mark avatars with superscripts such as: y−, y+, y0, . . .).
Therefore, we attach a function A : Y → P(D) which describes the mapping of
optional variables into their set of avatars to numerical abstract value N ♯.

8 Jiangchao Liu and Xavier Rival

Definition 1 (Abstract state). An abstract state of the Maya abstract domain
over N♯ is a pair M ♯ = (N ♯,A) such that:

Dim(N ♯) =
(

⊎

{A(y) | y ∈ Y}
)

⊎ X

We let M♯ denote the set of such states.

Note that the above definition implicitly asserts that distinct variables are repre-
sented by disjoint sets of dimensions.

Example 2. In this example, we assume N♯ is the octagon domain, and that X =
{x}, Y = {y}. Furthermore, as shown in Section 2, we let each optional variable be
described by two avatars. Thus, D = {x, y−, y+}. Moreover, an example abstract
state is M ♯ = (N ♯,A), with:

N ♯ =
{

0 ≤ x∧ x ≤ 10∧ 5 ≤ y− ∧ y+ ≤ x
}

A : y 7−→ {y−, y+}

Concretization. To express the meaning of an abstract state M ♯ = (N ♯,A), we
use a valuation ν, that maps all dimensions to a value, as an intermediate step
towards the concrete stores. Then, we retain only the concrete stores, that can be
obtained by collapsing all avatars of each optional variable to a unique value. This
second step is described by a pair of consistency predicates, which state when a
store σ is compatible with ν:

Definition 2 (Concretization). Given abstract state M ♯ = (N ♯,A), we define
the following consistency predicates:

PX(σ,M
♯, ν)

def.
⇐⇒ ∀x ∈ X, σ(x) = ν(x)

PY(σ,M
♯, ν)

def.
⇐⇒ ∀y ∈ Y, (∀d ∈ A(y), ν(d) = σ(y))∨σ(y) =

Then, the concretization of M ♯ = (N ♯,A) is defined by:

γM♯(M ♯)
def.
::=

{

σ ∈ S | ∃ν ∈ γN♯(N ♯), PX(σ,M
♯, ν)∧PY(σ,M

♯, ν)
}

Intuitively, consistency predicate PX asserts that the valuation and the concrete
store agree on the mapping of the standard variables, whereas consistency predi-
cate PY asserts that the valuation assigns all avatars of each optional variable to
the value of that variable in the store.

Example 3. We consider the abstract state shown in Example 2. Its concretization
consists of:
– the stores defined by σ(x) ∈ [5, 10], σ(y) ∈ [5, σ(x)] (the valuation is then fully

defined by the store since no variable stores
);
– the stores defined by σ(x) ∈ [0, 10], σ(y) =
 (a possible valuation is defined

by ν(x) = σ(x), ν(y−) = 15, ν(y+) = ν(x)).

This example shows how our domain can distribute the constraints on an optional
variable y over several dimensions, so as to express the fact that y must store
.

Abstraction of Optional Numerical Values 9

Remark 1. In this example, we also observe that, given σ ∈ γM♯(M ♯), and if σ′ is
such that, for all standard variable x, σ′(x) = σ(x), and for all optional variable y,
either σ′(y) = σ(y) or σ′(y) =
, then σ′ ∈ γM♯(M ♯). In other words, our functor
cannot express that an optional variable must not store
. In the context of array
analyses such as [12], this is not a limitation: that analysis can already express
that a group cannot be empty (using size constraints). However, our abstraction
also allows to derive emptiness of a group via constraints over multiple avatars
of variables denoting its contents or indexes, which [12] does in a rather ad hoc
manner, at the expense of relations between groups.

Choice of avatar dimensions. The definition of abstract elements assumes nothing
about the number of avatar dimensions, and about the way the constraints over
an optional variable are distributed over its avatars. However, in practice, the way
avatar dimensions are managed has a great impact on the efficiency and precision
of the analysis. It is the role of the transfer functions and abstract lattice operations
to implement an efficient strategy to manage these dimensions. In particular at
certain stages, new avatars have to be introduced so as to avoid a loss of precision.

Example 4. We discuss possible abstract invariants for the program shown in Ex-
ample 1, starting with the set of all stores as a pre-condition, described by abstract
state ⊤. After test x ≤ y, the analysis should compute an abstraction of the stores
where, either y is mapped only to
 or where the numerical constraint is satisfied.
Using the octagon abstract domain, and a single avatar y0 for y, this boils down
to abstract state (x − y0 ≤ 0, y 7→ {y0}). After the second test, we get the set of
stores observed at point ①, that is such that, either σ(x) ≤ σ(y) ≤ 6 or σ(y) =
.
Note that this set of stores cannot be described exactly with octagons using a
single avatar. Indeed, this set contains stores such that σ(x) > 6 (when σ(y) =
).
Thus, using a single avatar to describe constraints over y would force the analysis
to drop either constraint y ≤ 6 or constraint x ≤ y. Keeping both constraints
would unsoundly assert x ≤ 6. Thus, adding a second avatar for y at this point is
necessary in order to maintain maximal precision. In particular, the abstract state
below describes exactly the stores that can be observed at point ①:

(x ≤ y0 ∧ y1 ≤ 6, y 7→ {y0, y1})

The above example demonstrates the need to introduce enough avatars so that all
constraints on optional variables can be maintained, without “over-constraining”
standard variables (which would result in an unsound analysis). Intuitively, each
avatar should not carry too much information: the base numerical domain cannot
express emptiness of a specific avatar; instead, only the conjunction of all avatars
of an optional variable y may express that y is empty. We formalize this as a
sufficient condition, that we call the independence property, and that should be
maintained by all abstract operators in the Maya domain. This property states
that dropping the constraints over an avatar dimension y0 associated to variable
y should have no impact on the variables other than y. To maintain this property,
transfer functions and abstract operators may either pay the cost of adding new
avatar dimensions or will have to drop constraints that cannot be represented

10 Jiangchao Liu and Xavier Rival

without adding more avatars. To formalize the independence property, and given
abstract value N ♯ ∈ N♯ and dimension d, we note drop(N ♯, d) for the abstract
value obtained by removing from N ♯ all the constraints that involve d (this oper-
ation is well defined since we assumed elements of abstract domain N♯ correspond
to the finite conjunctions of all the constraints of a certain form). Moreover, if ν
is a valuation, we write ν|¬d for the restriction of ν to D \ {d}.

Definition 3 (Independence property). Let M ♯ = (N ♯,A) be an abstract
state. We say M ♯ satisfies the independence property if and only if

∀y ∈ Y, ∀d ∈ A(y), {ν|¬d | ν ∈ γN♯(N ♯)} = {ν|¬d | ν ∈ γN♯(drop(N ♯, d))}

Example 5. The abstract state given at the end of Example 4 satisfies the inde-
pendence property, using two avatars, that respectively carry the lower and upper
bound constraints over y. Section 5 generalizes this approach to lift any domain
based on linear inequalities.

Example 6. Intuitively, the independence property is likely to break when an
avatar dimension carries several constraints, the conjunction of which may be
unsatisfiable. Therefore, an alternate technique to achieve it consists in using
one avatar per constraint over each optional variable. As an example, we con-
sider the set of concrete states defined by X = {x} and Y = {y, z} and where
the optional variables are either undefined or satisfy the following conditions:
x ≤ y∧ y ≤ 2x∧y = z + 2. Then, assuming N♯ is the polyhedra abstract do-
main, this multi-avatar strategy will construct the following abstract state:

N ♯ =
{

x ≤ y0 ∧ y1 ≤ 2x∧y2 ≤ z0 + 2∧z1 + 2 ≤ y3
}

A : y 7→ {y0, y1, y2, y3}, z 7→ {z0, z1},

This strategy is general (it can be applied to, e.g., linear equalities [11]) but costly.

5 Application to numerical domains based on linear

inequalities

We nowpropose a strategy to manageavatar dimensions anddesign abstract opera-
tions under the hypothesis that base abstract domainN♯ expresses linear inequality
constraints (which includes intervals, octagons, polyhedra, and their variants).

5.1 The bi-avatar strategy

Numerical constraints in the base domain are all of the form a0d0+ . . .+andn ≤ c

(where a0, . . . , an, c are constants), thus a constraint involving di (i.e., where
ai 6= 0) is either specifying an upper bound for di (if ai > 0) or a lower bound
(if ai < 0). The bi-avatar strategy treats those two sets of constraints separately,
using two avatar dimensions per optional variable, as shown in Section 2:

Abstraction of Optional Numerical Values 11

Definition 4 (The bi-avatar strategy). Abstract state M ♯ = (N ♯,A) follows
the bi-avatar strategy if and only if A maps each optional variable y to a pair of
dimensions {y−, y+}, and is such that each “upper” avatar y+ (resp., “lower” avatar
y−) carries only “upper bound constraints” (resp., “lower bound constraints”).

In other words, the bi-avatar strategy fully determines A. In order to implement
this strategy, we need to ensure that all abstract operators preserve A, and the
property of lower and upper avatars.We define such abstract operations in the next
subsections. Interestingly, whenever an abstract state satisfies this strategy, and
if we drop all constraints over an (upper or lower) avatar of y, the concretization
restricted to the dimensions other than that avatar do not change. This entails:

Theorem 1 (Independence property). All abstract values following the bi-
avatar strategy satisfy the independence property (Definition 3).

To express the emptiness of an optional variable, we simply need to let its avatars
carry a pair of constraints that would be unsatisfiable, if carried by a unique di-
mension, such as 1 ≤ y− ∧ y+ ≤ 0.

Example 7. Let X = {x},Y = {y}, and let A specify the avatars defined by the
bi-avatar strategy. Then, the following numerical abstract values specify the sets
of concrete states below:

abstract numerical state N ♯ concretization γM♯(N ♯,A)
1 ≤ x∧ x ≤ 1∧x ≤ y− ∧ y+ ≤ x {x 7→ 1, y 7→ 1}, {x 7→ 1, y 7→
}
1 ≤ x∧ x ≤ 1∧x ≤ y− ∧ y+ ≤ x− 1 {x 7→ 1, y 7→
}

Preservation. The abstract operators described in the remainder of this section
either discard constraints violating the bi-avatar strategy (such as assignment, in
Section 5.4), or never apply operations of N♯ that would cause them to bound a y+

(resp., y−) avatar below (resp., above). This implies straightforwardly that, in the
resulting domain, all abstract elements with a non empty concretization follow
the bi-avatar strategy (all y− dimensions are not bounded by above and all y+

dimensions are not boundedbybelow).The only abstract operation thatmay input
an abstract state with non empty concretization and return an abstract state with
empty concretization is the abstract condition test testN♯ [.] (used in Section 5.2)
and requires an output check that no constraint violates the bi-avatar strategy.

Expressiveness. Under the bi-avatar strategy, we can compare the expressiveness
of Maya domain M♯ with that of its base domain N♯: if a set of stores S with no
optional variable containing
 can be described exactly by N ♯ ∈ N♯, we can still
describe S in M♯, up-to the change of any set of optional variable to
. Indeed, if
we let Sdef = (X⊎Y) → V, we have:

Theorem 2. If A follows the bi-avatar strategy, then:

∀N ♯
0 ∈ N

♯, Dim(N ♯
0) = X⊎Y =⇒

(

∃N ♯
1 ∈ M

♯, γN♯(N ♯
0) = γM♯(N ♯

1 ,A) ∩ Sdef

)

12 Jiangchao Liu and Xavier Rival

5.2 Condition test

The concrete semantics of a condition test cond filters out stores for which cond

does not evaluate to TRUE. We assume N♯ provides a sound abstract function
testN♯ [cond] : N♯ → N♯, and build an abstract operator testM♯ [cond] : M ♯ → M ♯.

Optional variable emptiness test. To evaluate condition testM♯ [is_empty(y)],
and filter out stores that do not map y into
, we can simply add two constraints
on y− and y+ that would be unsatisfiable, if added on a same dimension, such as
1 ≤ y− and y+ ≤ 0. This can be done using testN♯ [.].

Numerical tests. We consider only conditions that are linear inequalities, as non-
linear conditions are often handled by linearization techniques [14], and a linear
equality is equivalent to a pair of inequalities.

Intuitively, testM♯ [.] should simply add a linear constraint to some abstract
state M ♯ (with some approximation, as this constraint is in general not repre-
sentable exactly in N♯). Given condition test a0x0+. . .+anxn+b0y0+. . .+bmym ≤
c (where xi ∈ X and yi ∈ Y), we can produce another constraint that involves only
standard variables and avatar dimensions by replacing yi either by y−i or by y+i
depending on the sign of bi. This constraint is compatible with the bi-avatar strat-
egy (Section 5.1), hence it can be represented precisely in the numerical domain,
even if it indirectly entails emptiness of some optional variables (in other words,
not using the bi-avatar property would cause a severe precision loss here). Thus,
numerical condition test can be applied to this constraint. In turn, the absence of
constraints violating the bi-avatar strategy needs to be verified on the output of
testN♯ [.]. Moreover, this constraint is equivalent to the initial constraint up-to the
γM♯ concretization function. Thus, this principle defines a sound abstract transfer
function for condition tests.

Theorem 3 (Soundness of condition test). The abstract transfer function
testM♯ [.] is sound in the sense that, for all linear inequality constraint cond and
for all abstract state M ♯ satisfying the bi-avatar strategy:

JcondK(γM♯(M ♯)) ⊆ γM♯(testM♯ [cond](M ♯))

Example 8. In this example, we assume that N♯ is the octagon domain, and that
X = {x}, and Y = {y} (thus, A : y 7→ {y−, y+}). We consider an abstract

pre-condition M ♯ = (N ♯
0 ,A), where N

♯
0 = (5 ≤ x∧ x ≤ 5), and a condition

test y − x ≤ 3. Abstract test testM♯ [y − x ≤ 3](M ♯) first substitutes y+ for
y in (y − x ≤ 3), which generates condition y+ − x ≤ 3. Then, it computes

testN♯ [y+ − x ≤ 3](N ♯
0). Thus, we obtain the abstract post-condition (N ♯

1 ,A)

where N
♯
1 = (5 ≤ x∧ x ≤ 5∧ y+ − x ≤ 3).

5.3 Verifying the satisfaction of a constraint

To verify assertions, we need an operator satM♯ [cond] : M♯ → {TRUE, FALSE} such
that, if σ ∈ γM♯(M ♯) and satM♯ [cond](M ♯) = TRUE, then JcondK(σ) = TRUE. The
case of numerical assertions is very similar to the case of numeric tests.

Abstraction of Optional Numerical Values 13

To test whether y can store only
 in any store described by (N ♯,A), we
simply need to check whether constraint y− = y+ is unsatisfiable. This sug-
gests satM♯ [is_empty(y)](N ♯,A) = is_bot

N♯(testN♯ [y− = y+](N ♯)), where
is_bot

N♯ : N♯ → {TRUE, FALSE} is a sound emptiness test (if is_bot
N♯(N ♯) =

TRUE, then γN♯(N ♯) = ∅).

5.4 Assignment

We now describe a transfer function assign
M♯ that over-approximates the effect of

an assignment. We consider assignments with a linear right hand side expression
(non linear assignment can be implemented using linearization [14]).

Emptiness test. If the left-hand side x is a standard variable and optional vari-
able y appears in the right hand side, the concrete semantics produces no output
state when y takes no value. Therefore, given abstract pre-condition M ♯ and op-
tional variable y appearing in the right hand side, if satM♯ [is_empty(y)](M ♯)
(Section 5.3), assign

M♯ can safely return ⊥. The computation of the abstract as-
signment starts with this check for all optional variables in the right hand side.

Numerical assignment. We first consider basic assignment y = y + z, where
Y = {y, z}, in order to give some intuition. If M ♯ = (N ♯,A) is an abstract pre-
condition and σ ∈ γM♯(M ♯) is such that σ(y) 6=
 and σ(z) 6=
, there exists a val-
uation ν ∈ γN♯(N ♯) such that ν(y−) = ν(y+) = σ(y) and the same for z. After the
assignment evaluates, we obtain a store σ′ such that σ′(y) = σ(y)+σ(z) (and is un-
changed for all other variables). Therefore, we need to make sure that the abstract
post-condition will describe a valuation ν′ such that ν′(y−) = ν(y+) = σ(y)+σ(z).
We can achieve that by performing a pair of assignments to y−, y+ using any combi-
nation of avatars to represent y, z in the right hand side. For instance, the following
choices are sound:

{

y− = y− + z−;
y+ = y+ + z+;

{

y− = y− + z+;
y+ = y+ + z−;

Yet, not all choices are of optimal precision. To show this, we assume that the
pre-condition bounds both y and z from the above, for example with octagon
N ♯ = {y+ ≤ 0∧ z+ ≤ 0}. Then, only the left choice will produce a precise upper
bound on y+. However, this approach may also produce constraints that violate the
bi-avatar strategy, such as y+−z+ ≤ 0, where z+ gets assigned a lower bound. Such
a lower bound can be removedby adding a temporary dimension t, assuming that it
is positive (using testM♯ [t ≥ 0]), and performing assignment z+ = z+−t. To con-
clude, the analysis of assignment y =

∑n
i=0 aixi+

∑m
i=0 biyi+c proceeds as follows:

1. assign
M♯ performs in parallel [10] the two assignments y− = ex− || y+ = ex+,

where ex−, ex+ are obtained from the assignment right hand by substituting
yi with y−i or y+i depending on the sign of the bis (see below);

2. then it forces the removal of constraints violating the bi-avatar property, using
the aforementioned method.

14 Jiangchao Liu and Xavier Rival

Expression ex+ is defined as
∑n

i=0 aixi +
∑m

i=0 biy
ǫi
i + c where avatar signs are

determined as follows (ex− uses the opposite avatar dimensions as ex+):
– if the assignment is not invertible (y does not appear in the right hand side),

then ǫi is the sign of bi;
– if the assignment is invertible and y is y0, then ǫi is the sign of the product b0bi.

Finally, an assignmentwith a standard variable x as a left hand side can be handled
in a similar manner (after the emptiness test described earlier): it will boil down
to the introduction of a temporary dimension x′, the analysis of two assignments
x = ex+ and x′ = ex− with the above notations, the application of testM♯ [x = x′],
and finally the removal of x′. By contrast, doing a single assignmentwould possibly
cause relations between x and avatars be discarded.

The resulting abstract operator is sound in the following sense:

Theorem 4 (Soundness). If t ∈ X⊎Y and ex is a linear expression, then:

∀M ♯ ∈ M
♯, Jt = exK(γM♯(M ♯)) ⊆ γM♯(assign

M♯(t, ex,M ♯))

Example 9. We assume X = {x}, Y = {y, z} and consider the abstract pre-
condition defined by octagon N ♯ = {0 ≤ y− ∧ y+ ≤ 10∧ 0 ≤ z− ∧ z+ ≤ 1 + x}.
– non invertible assignment y = 1 − z boils down to parallel assignments

y+ = 1 − z− || y− = 1 − z+ in Octagons [13] and produces numerical post-
condition {−x ≤ y− ∧ y+ ≤ 1∧ 0 ≤ z− ∧ z+ ≤ 1 + x};

– invertible assignment y = y+ z boils down to parallel assignments y+ = y+ +
z+ || y− = y− + z−, and produces numerical post-condition {0 ≤ y− ∧ y+ ≤
11 + x∧ 0 ≤ z− ∧ z+ ≤ 1 + x}.

5.5 Inclusion checking, join and widening

To analyze condition tests and loops, we also need abstract operations for join,
widening and inclusion test. Using the bi-avatar strategy, these operations can be
implemented in a straightforward manner, using the operations of the underlying
domain, since avatars are the same for all abstract values. We write A for the
set of avatars defined by the bi-avatar strategy in X⊎Y. We let is_le

N♯ , joinN♯ ,
widenN♯ denote the abstract inclusion check, abstract join and abstract widening
of abstract domain N♯, satisfying the following soundness conditions:

∀N ♯
0 , N

♯
1 ∈ N

♯, is_le
N♯(N

♯
0 , N

♯
1) = TRUE =⇒ γN♯(N ♯

0) ⊆ γN♯(N ♯
1)

∀N ♯
0 , N

♯
1 ∈ N♯, γN♯(N ♯

0)∪ γN♯(N ♯
1) ⊆ γN♯(join

N♯(N
♯
0 , N

♯
1))

∀N ♯
0 , N

♯
1 ∈ N♯, γN♯(N ♯

0)∪ γN♯(N ♯
1) ⊆ γN♯(widenN♯(N ♯

0 , N
♯
1))

Furthermore, we assume that widenN♯ ensures convergence of any sequence of
abstract iterates [3].

Definition 5 (Inclusion checking, join and widening). We let the operators
over M♯ be defined by:

is_le
M♯((N

♯
0 ,A), (N ♯

1 ,A)) = is_le
N♯(N

♯
0 , N

♯
1)

join
M♯((N

♯
0 ,A), (N ♯

1 ,A)) = (join
N♯(N

♯
0 , N

♯
1),A)

widenM♯((N ♯
0 ,A), (N ♯

1 ,A)) = (widenN♯(N ♯
0 , N

♯
1),A)

Abstraction of Optional Numerical Values 15

JskipK#(M ♯) = M ♯ Jz = exK#(M ♯) = assign
M♯(M ♯, z, ex)

Js0; s1K
#(M ♯) = Js1K

◦ Js0K
#(M ♯) Jassume(cond)K#(M ♯) = test

M♯ [cond](M ♯)

Jif(cond){s0}else{s1}K
#(M ♯) = join

M♯(Js0K
◦ testM♯ [cond](M ♯),

Js1K
◦ testM♯ [cond == FALSE](M ♯))

Jwhile(cond){s}K#(M ♯) = testM♯ [cond == FALSE](lfp#

M♯F
#)

where F# : M ♯ 7→ JsK#(test
M♯ [cond](M ♯))

Fig. 5. Abstract semantics

These operators trivially inherit the properties of the operators of N♯:

Theorem 5. Operations is_le
M♯ , joinM♯ and widenM♯ satisfy soundness condi-

tion of the same form as their underlying counterpart. In particular:

∀N ♯
0 , N

♯
1 ∈ N

♯, γN♯(N ♯
0)∪ γN♯(N ♯

1) ⊆ γN♯(join
N♯(N

♯
0 , N

♯
1))

Moreover, widenM♯ also ensures termination.

5.6 Analysis

We now propose a static analysis for the language of Section 3. We define the ab-
stract semantics of programs in Figure 5. It uses the abstract operators defined in
the previous subsections and an abstract least fixpoint operator lfp#, which per-
forms abstract iterationswith wideningwidenM♯ until convergence can be checked
using abstract inclusion test is_le

M♯ [3]. Operator lfp# ensures that, when F :
P(S) → P(S) is continuous and F# : M♯ → M♯ satisfies F ◦ γM♯ ⊆ γM♯ ◦ F#, then

lfpγ
M♯ (M♯) ⊆ γM♯(lfp#

M♯F
#). The analysis of statement assert(cond) (not shown

in the figure) simply reports failure to prove the assertion cond if satM♯ [cond] does
not return TRUE.

The abstract semantics JsK# : M
♯ → M

♯ takes an abstract pre-condition and
returns an abstract post-condition. We can prove by induction over the syntax of
programs that this abstract semantics is sound:

Theorem 6 (Soundness). Given a program s and an abstract pre-condition M ♯,
the post-condition derived by the analysis is sound:

JsK(γM♯(M ♯)) ⊆ γM♯(JsK#(M ♯))

6 Possibly empty summary variables

While Sections 3 to 5 studied the abstraction of stores where optional variables
may contain either one value or
, the array analysis shown in Section 2 makes
use of summary dimensions, which may take no value, one value, or many values.
We extend the analysis shown in the previous sections to handle such cases. The
construction of Gopan et al [8] handles non empty summary dimensions (the main

16 Jiangchao Liu and Xavier Rival

feature of this abstraction is to perform weak updates when writing into a sum-
mary dimension). We apply the same technique to the Maya functor, and call the
resulting abstract domain functor Maya+, that lifts an abstraction of numerical
vectors into an abstraction of sets of vectors of sets of numerical values. As the
extension is fairly straightforward, we present only its novel characteristics.

Concrete states and abstraction. First, we extend the language of Section 3. We
now let Y denote summary dimensions, that may take zero, one or several values.
The concrete states are now defined by:

σ+ ∈ S+
def.

::= (X → V)⊎(Y → P(V))

An abstract state M
♯
+ in the resulting Maya+ domain is a tuple composed of a

numeric abstract value N ♯ and an avatar mapping function A, as in the Maya do-
main. However, the concretization is different: Maya+ assumes a concretization
function γ+ of a numeric domain with summarized dimensions, which returns sets
of valuations ν+ which map each avatar dimensions into a set of values.

Definition 6 (Concretization). Given an abstract state M
♯
+ = (N ♯,A), we

define the following consistency predicates:

PX(σ+,M
♯
+, ν+)

def.
⇐⇒ ∀x ∈ X, σ+(x) = ν+(x)

PY(σ+,M
♯
+, ν+)

def.
⇐⇒ ∀y ∈ Y, σ+(y) ⊆

⋂

d∈A(y) ν+(d)

Then, the concretization of M ♯
+ = (N ♯,A) is defined by:

γ
M

♯
+

(M ♯
+)

def.
::=

{

σ+ ∈ S | ∃ν+ ∈ γ+(N
♯), PX(σ+,M

♯
+, ν+)∧PY(σ+,M

♯
+, ν+)

}

Example 10 (Concretization of Maya+). We assume X = {x}, Y = {y}, and con-
sider the abstract element (3 ≤ x∧ x ≤ 4∧ 0 ≤ y− ∧ y+ ≤ x − 3,A) where
A follows the bi-avatar strategy. These constraints define valid elements of both
Maya and Maya+ domains. However, the concretizations of this abstract element
in both domains are different as shown below:

Maya : ① x 7→ 3 y 7→ 0 Maya+ : ① x 7→ 3 y 7→ {0}
② x 7→ 3 y 7→
 ② x 7→ 3 y 7→ ∅
③ x 7→ 4 y 7→ 1 ③ x 7→ 4 y 7→ {1}
④ x 7→ 4 y 7→ 0 ④ x 7→ 4 y 7→ {0}
⑤ x 7→ 4 y 7→
 ⑤ x 7→ 4 y 7→ ∅

⑥ x 7→ 4 y 7→ {0, 1}

Concrete Semantics. The extension of the concrete semantics is mostly straight-
forward. We describe its salient aspects below.
– The semantics of arithmetic expressions JexK : S+ → P(V) evaluates each

expression into a set of values.

JcK(σ+) ∀x ∈ X, JxK(σ+) = {σ+(x)} ∀y ∈ Y, JyK(σ+) = σ+(y)

Jex0 ⊕ ex1K(σ+) =

{

∅, if ∃i, JexiK(σ+) = ∅

{c0 ⊕ c1 | ∀i, ci ∈ JexiK(σ+)}, otherwise

Abstraction of Optional Numerical Values 17

– Since the operands of a logical operator are sets of values, the evaluations of
logical expressions may also return a set of booleans, thus we can define two
semantics for conditions, that filter states where the condition must (resp.,
may) evaluate to true.
(1) Given S+ ⊆ S+, the strong condition semantics JcondKs(S+) : P(S+) →
P(S+) narrows S+ to stores that always make cond evaluate to TRUE:

Jex0 ⊗ ex1Ks(S+) = {σ+ ∈ S+ | (∀ci ∈ JexiK(σ+), i ∈ {0, 1} c0 ⊗ c1 = TRUE)
∨Jex0K(σ+) = ∅∨Jex1K(σ+) = ∅}

(2) the weak condition semantics JcondKw(S+) narrows S+ to stores that may
make cond evaluate to TRUE:

Jex0 ⊗ ex1Kw(S+) = {σ+ ∈ S+ | (∃ci ∈ JexiK(σ+), i ∈ {0, 1} c0 ⊗ c1 = TRUE)
∨Jex0K(σ+) = ∅∨Jex1K(σ+) = ∅}

– In assignment statement Jx = exK : P(S+) → P(S+), the evaluation of the
right hand side produces a set which may have several elements; in that case,
we leave the choice of the new value non-deterministic. Optional variables are
now summaries. Thus an assignment y = ex to an optional variable results in
a weak update.

if x ∈ X, Jx = exK(S+) = {σ+[x 7→ c] | c ∈ JexK(σ+)}
if y ∈ Y, Jy = exK(S+) = {σ+[y 7→ σ+(y) ∪ JexK(σ+)] | σ+ ∈ S+}

– We apply the strong semantics of test in the semantics of assume statements
and the weak one in semantics of if and while statements.

Jassume((cond)s)K(S+) = JcondKs(S+)
Jif(cond){s0}else{s1}K(S+) = Js0K ◦ JcondKw(S+)

∪ Js1K ◦ Jcond == FALSEKw(S+)
Jwhile(cond){s}K(S+) = Jcond == FALSEKw(S

′′
+)

where S′′+ = lfp λS′+ · S+ ∪ JsK(JcondKw(S
′
+))

Analysis. The abstract interpretation of this semantics is straightforward, as it sim-
ply combines the analysis in Section 5 and the classical technique for manipulating
summarized dimensions [8]. It is worth noting that, while the abstract condition
test described in Section 5.2 precisely over-approximates the strong semantics of
tests, another abstract transfer function needs to be defined for the weak semantics.
Whenapplied to a condition that involves summaries, that function checkswhether
the condition cannotbe satisfied (by applying satM♯ [.]with the opposite condition),
and returns ⊥ if that is the case; otherwise, it leaves the abstract state unchanged.

Theorem 7 (Soundness). We let J.K# represent the abstract semantics. Given

a program s and an abstract pre-condition M
♯
+, the post-condition derived by the

analysis is sound:

JsK(γ
M

♯
+

(M ♯
+)) ⊆ γ

M
♯
+

(JsK#(M ♯
+))

18 Jiangchao Liu and Xavier Rival

int i = 0;

0 0 ≤ i∧ i ≤ 0∧ 1 ≤ Idx−0 ∧ Idx+0 ≤ 0∧ 0 ≤ Idx−1 ∧ Idx+1 ≤ 7

while(i < 8){

1 0 ≤ i∧ i ≤ 7∧ 0 ≤ Idx−0 ∧ Idx+0 ≤ i− 1∧ i ≤ Idx−1 ∧ Idx+1 ≤ 7

Idx0 = i;

2 0 ≤ i∧ i ≤ 7∧ 0 ≤ Idx−0 ∧ Idx+0 ≤ i∧ i ≤ Idx−1 ∧ Idx+1 ≤ 7

assume(Idx1! = i);

3 0 ≤ i∧ i ≤ 7∧ 0 ≤ Idx−0 ∧ Idx+0 ≤ i∧ i+ 1 ≤ Idx−1 ∧ Idx+1 ≤ 7

i = i+ 1;

4 0 ≤ i∧ i ≤ 7∧ 0 ≤ Idx−0 ∧ Idx+0 ≤ i− 1∧ i ≤ Idx−1 ∧ Idx+1 ≤ 7

}

5 8 ≤ i∧ 0 ≤ Idx−0 ∧ Idx+0 ≤ i− 1∧ i ≤ Idx−1 ∧ Idx+1 ≤ 7

Fig. 6. Analysis of the array initialization example: invariants over group indexes

7 Implementation and examples

We have implemented abstract domain functors Maya and Maya+ with the bi-
avatar strategy (so that they can be applied to numerical abstract domains repre-
senting linear inequalities), as well as the analysis of the language of Figure 3. To
assess its precision,wehave encoded into this language the computations over array
indexes related to possibly empty groups encountered in [12] for a few basic array
analyses. This approach allows to assess the optional value analysis, outside of the
array analysis. We discuss in details the analysis of the array initialization example
shown in Section 2. In this analysis Y = {Idx0, Idx1}, (Idxi over-approximates the
set of indexes of cells in group Gi), and A is defined according to the bi-avatar
strategy (A(Idxi) = {Idx−i , Idx

+
i } —note these are all summary dimensions, since

a group of cells may span several indexes). The resulting invariants are shown in
Figure 6. At point 0 , groupG1 contains all the elements of the array (uninitialized
elements) and G0 is empty (initialized elements). The weak update Idx0 = i and
statement assume(Idx1! = i) stem from the assignment a[i] = 0 in the array pro-
gram (Figure 2(a)). They are analyzed by assign

M♯ and testM♯ [.], and effectively
extend group G0 and shrink group G1 by one cell. The loop exit invariant shown
at point 5 defines stores where Idx1 is mapped to no value, which indeed means
that the group of uninitialized cells is empty.

The analysis was run on a few similar programs encoding the steps that [12]
needs to achieve to verify array programs, and the results are shown in Figure 7.
The columns shownumbers of lines of codes, standard variables, summary optional
variables, runtime, total numbers of assertions and numbers of verified assertions.
Test case "array-init" is what we show in Fig 6. Test cases "array-random-access",
"array-traverse" and "array-compare" simulate the array analysis on programs of

Abstraction of Optional Numerical Values 19

Program LOCs #Standard #Optional Time (ms) #Assertions #Verified

array-init 9 1 2 4.7 1 1

array-random-access 30 3 6 36.5 3 3

array-traverse 6 1 1 6.6 1 1

array-compare 10 3 2 14.1 1 1

Fig. 7. Analysis results

corresponding algorithm. The analyses are performed with Polyhedra as underly-
ing domain. Runtimes are comparable to those observed in [12] for the numerical
domain part. All invariants needed for the verification of array constraints are
also verified. Last, the invariants produced express relations between groups, even
when those could be empty.

8 Related works

Numerical abstract domains [11,3,13,5,1,7] describe constraints over sets of vec-
tors, where each dimension is mapped to one value. Our work aims at extending
such domains so as to abstract vectors of possibly empty sets of scalars.

Abstractions based on summary dimensions [8,17] extend basic numerical do-
mains to abstract vectors of non empty sets, so that one dimension may describe
an unbounded family of variables. Summaries are also used in shape analysis [15],
with a similar semantics. Empty summaries can be dealt with using disjunctions.

Siegel and Simon [16] abstract dynamic stores, where the set of memory cells is
dynamic, and also utilize summary dimensions. In this work, a summary variable
may also denote an empty set of values. To abstract precisely which dimension
may be empty, a flag is associated to each summary variable, and it is true if and
only if the variable is defined to at least one value. This approach allows to express
relations between the emptiness of distinct variables. However, it does not allow
to infer that a variable is undefined from conflicting constraints over its value
(as needed in, e.g., [12]). This approach is thus orthogonal to ours, and both tech-
niques could actually be combined. Another technique [6,12] uses a conjunction of

numerical abstract elements N ♯
0, . . . , N

♯
p such that a group of variables that should

either all be empty or all be defined are constrained together in a same N ♯
i . While

this approach tracks emptiness precisely and without disjunctions, it is fairly ad
hoc and expresses no relational constraints across groups.

Last, we note that other works on numerical abstract domains use several di-
mensions in the abstract domain so as to constrain a single variable. For instance,
the implementation of octagons on top of DBMs lets a variable x be described in
a DBM by dimensions x+ = x and x− = −x (so that x = 1

2 (x
+ − x−)) [13].

20 Jiangchao Liu and Xavier Rival

9 Conclusion

We have proposed the Maya functor to lift numerical abstract domains into ab-
stractions for sets of stores where some variables may be undefined, and a functor
Maya+that performs the same task in presence of possibly empty summary dimen-
sions. We have fully described the design of abstract operations using a “bi-avatar”
strategy, that allows to cope with abstract domains based on linear inequalities.
Our construction can be applied either to analyze languages that allow optional
values, or as a back-end for static analyses that rely on groups of locations to de-
scribe complex memories (such as array and shape analyses). Future work should
focus on additional strategies, for instance, based on the multi-avatar strategy (Ex-
ample 6), to accommodate other kinds of numerical abstract domains. Moreover,
it will also be interesting to integrate our functors in array or shape analyses.

References

1. L. Chen, J. Liu, A. Miné, D. Kapur, and J. Wang. An abstract domain to infer
octagonal constraints with absolute value. In SAS, 2014.

2. P. Cousot. Constructive design of a hierarchy of semantics of a transition system by
abstract interpretation. ENTS, 1997.

3. P. Cousot and R. Cousot. Abstract interpretation: A unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In POPL, 1977.

4. P. Cousot, R. Cousot, and F. Logozzo. A parametric segmentation functor for fully
automatic and scalable array content analysis. In POPL, 2011.

5. P. Cousot and N. Halbwachs. Automatic discovery of linear restraints among
variables of a program. In POPL, 1978.

6. A. Cox, B.-Y. E. Chang, and S. Sankaranarayanan. QUIC graphs: relational
invariant generation for containers. In VMCAI, 2015.

7. K. Ghorbal, F. Ivancic, G. Balakrishnan, N. Maeda, and A. Gupta. Donut domains:
Efficient non-convex domains for abstract interpretation. In VMCAI, 2012.

8. D. Gopan, F. DiMaio, N. Dor, T. Reps, and M. Sagiv. Numeric domains with
summarized dimension. In TACAS, 2004.

9. N. Halbwachs and M. Péron. Discovering properties about arrays in simple
programs. In PLDI, 2008.

10. B. Jeannet and A. Miné. Apron: A library of numerical abstract domains for static
analysis. In CAV, 2009.

11. M. Karr. Affine relationships among the variables of a program. Acta Informatica,
1976.

12. J. Liu and X. Rival. Abstraction of arrays based on non contiguous partitions. In
VMCAI, 2015.

13. A. Miné. The octagon abstract domain. In HOSC, 2006.
14. A. Miné. Relational domains for the detection of floating point run-time errors. In

ESOP, 2004.
15. M. Sagiv, T. Reps, and R. Wilhelm. Parametric shape analysis via 3-valued logic.

In POPL, 1999.
16. H. Siegel, B. Mihaila, and A. Simon. The undefined domain: precise relational

information for entities that do not exist. In APLAS, 2013.
17. H. Siegel and A. Simon. Summarized dimensions revisited. NSAD, 2012.
18. H. Siegel and A. Simon. Fesa: Fold and expand-based shape analysis. In CC, 2013.

