
Abstract Dependences for Alarm Diagnosis

Xavier Rival

École Normale Supérieure
45, rue d’Ulm,

75230, Paris cedex 5, France

Abstract. We propose a framework for dependence analyses, adapted
–among others– to the understanding of static analyzers outputs. Static
analyzers like Astrée are sound but not complete; hence, they may yield
false alarms, that is report not being able to prove part of the properties
of interest. Helping the user in the alarm inspection task is a major chal-
lenge for current static analyzers. Semantic slicing, i.e. the computation
of precise abstract invariants for a set of erroneous traces, provides a use-
ful characterization of a possible error context. We propose to enhance
semantic slicing with information about abstract dependences. Abstract
dependences should be more informative than mere dependences: first,
we propose to restrict to the dependences that can be observed in a slice;
second, we define dependences among abstract properties, so as to isolate
abnormal behaviors as source of errors. Last, stronger notions of slicing
should allow to restrict slices to such dependences.

1 Introduction

In the last few years, many static analyzers were developed so as to answer the
need for certification methods and to check that critical programs satisfy certain
correctness properties, such as memory properties [21], the safety of pointer
operations [25], the absence of buffer overruns [15], or the absence of runtime
errors [11, 5]. These tools should produce sound results (they should not claim
any false property to hold) and be automatic (they infer program invariants for
the certification instead of asking the user to provide the invariants and just
check them). Due to the undecidability of the properties they intend to prove,
these tools are necessarily incomplete: they may report false alarms, i.e. critical
operations they are not able to prove safe. From the user point of view, an alarm
could be either a true error, or a false alarm (which may be non-trivial to check
manually); hence, alarm inspection is a major issue in static analysis.

In the case of Astrée, a static analyzer for proving the absence of runtime-
errors in large C programs, a lot of work was done in order to make the analyzer
precise, i.e. reduce the number of false alarms [5]; this approach allowed us to
reduce the number of false alarms to 0 in some families of programs. Then, our
previous work [23] proposed semantic slicing as a way to approximate precisely
a set of executions satisfying some conditions; it may help to prove an alarm
false or to make the alarm diagnosis process easier. Among possible criteria

X, X0, X1, X2, X3
floating point variables

t, floating point array of length 2
initializations:
t[2] = {0, 0}; X = 0;

l0 while(true){
l1 input(X0 ∈ [−100., 100.]);
l2 input(X1 ∈ [−50 000, 50 000]);
l3 X2 = −0.5 ∗ t[0] + 5 ∗ t[1] + X;
l4 t[0] = t[1];

l5 t[1] = X1;
l6 X3 = X0 + X1;
l7 X = X3 + X2;
l8 }
l9 . . .

Fig. 1: An unstable retroaction

for defining semantic slices, we can cite the data of a (set of) final state(s) (e.g.
states which may lead to an error), of conditions on the inputs, and of “execution
patterns” which specify sets of control flow paths (described, e.g. by automata).
Semantic slices are helpful in the alarm inspection process. Yet, the amount of
data to investigate may still be fairly important. Moreover, [23] requires the user
to provide the semantic slicing criteria, so we wish to help the user with a more
automatized process, even though these criteria are usually rather simple.

We propose to reinforce the basic dependence analysis implemented in [23]
with more restrictive analyses, producing fewer dependences supposed to be
more “related” to the alarm under investigation. More precisely, we intend to
restrict to dependences that can be observed on a set of program executions
corresponding to an alarm and to compute abstract dependences, i.e. chains of
dependences among abstract properties likely to capture the cause for an alarm.
Such dependences should help making the alarm inspection process more auto-
matic, by providing good candidate slicing criteria. For instance, in the example
of Fig. 1, an unstable retroaction causes X, X2 to diverge: in case the input X1 is
large for all iterations, X will grow, and will eventually overflow –whatever X0.
Astrée discovers two alarms at l3 and l7. Semantic slicing allows to inspect sets
of diverging traces but does not lead to the causes for the divergence. We expect
some dependence analysis to provide some hint about what part of the program
to look at; for instance, the input X0 plays little role in the alarm compared to
X1, so we would expect to rule it out, which is not achieved by classical slicing
[26], conditioned slicing [6], or semantic slicing [23] methods. Last, the cyclic
dependence among “diverging” variables (X, X2) should suggest to unroll the
loop in order to study the divergence; this information may be used to inferring
semantic slicing criteria automatically, thus enhancing [23].

The contribution of this paper is both theoretical and practical:

– we introduce alternative, more selective notions of dependences and pro-
pose algorithms for computing them; we also propose new notions of non-
executable, but analyzable program slices;

– we illustrate these concepts with examples and case studies, together with
early implementation results; moreover, we show how these dependences help
for better semantic slicing and more efficient alarm inspection.

Sect. 2 defines observable and abstract dependences and shows the relevance of
these notions. Sect. 3 provides an ordering among abstract dependences. Sect. 4
focuses on the approximation of observable dependences. Sect. 5 tackles the case
of abstract dependences. Sect. 6 presents a few case studies. Sect. 7 concludes
and reviews related work.

2 Dependences framework

2.1 Basic notations

We let
�

(resp. �) denote the set of variables (resp. of values); we write � (resp. �)
for the set of expressions (resp. statements, aka programs). We assume that

�
is

finite. A variable (resp. value) has scalar or boolean type. An expression is either
a constant v ∈ � , a variable x ∈ �

, or the application e0⊕e1 of a binary operator
⊕ to a pair of expressions e0, e1 ∈ � . A statement is either an assignment x = e

(where x ∈ �
, e ∈ �), a conditional if(e){s0}else{s1} (where e ∈ � , s0, s1 ∈ �),

a loop while(e){s0}, a sequence of statements s0; . . . ; s1, or an input(x ∈ V)
statement which writes a random value chosen in V ⊆ � into variable x. We
do not consider more involved C data and control structures (pointers, unions,
functions, recursion) so as to make the presentation less technical. The control
point before each statement and at the end of each block is associated to a unique
label l ∈ � .

We let � denote the set of states; a state is defined by a control state
l ∈ � and a memory state ρ ∈ � , so that � = � × � . An execution (or
trace) σ of a program is a finite sequence of states 〈(l0, ρ0), . . . , (ln, ρn)〉 such
that ∀i, (li, ρi) → (li+1, ρi+1) where (→) ⊆ � 2 is the transition relation of
the program; Σ is the set of all traces. For instance, in the case of the assign-
ment l0 : x := e; l1, there is a transition (l0, ρ) → (l1, ρ[x ← JeK(ρ)]), where
JeK ∈ � → � ; in the case of the input statement l0 : input(x ∈ V); l1, then
(l0, ρ)→ (l1, ρ[x← v]), where v ∈ V . The semantics JsK of program s collects all
such traces. If P is a set of stores and x ∈ �

, we write P (x) for {ρ(x) | ρ ∈ P}.

2.2 Dependences on functions

Our purpose is to track the following kind of dependences: we would like to know
what observation of the program (that is, which variable, and at which point)
may affect the value (or some abstraction of it) of variable x at point l. We give
a definition for “classical” dependences in the case of functions first and extend
this definition to the dependences in control flow graphs afterwards; extended
definitions are provided in the next subsections. We write Den for � → P(�).

Definition 1 (Classical dependences). Let φ ∈ Den, x0, x1 ∈
�
. We say

that φ induces a dependence of x1 on x0 if and only if there exist ρ0 ∈ � , va, vb ∈
� such that φ(ρa)(x1) 6= φ(ρb)(x1) where ρi = ρ0[x0 ← vi]. Such a dependence is

written x1
φ
 x0 (or x1 x0 when there is no ambiguity about the function φ).

Last, we let Df [φ] denote the set of dependences induced by φ: Df [φ] = {(x0, x1) |
x1

φ
 x0} ∈ Depf (we write Depf = P(

� 2)).

Intuitively, there is a dependence of x1 on x0 if a single modification of the input
value of x0 may result in a different result for x1. This definition is comparable
to the notion of non-interference [18]; in fact the occurrence of a dependence
corresponds to the opposite of non-interference. It can also be related to the
notions of secure information flow [13]. Our motivation is to investigate the

origin of some (abnormal) results, which is clearly related to the information
flows to the alarm location. Usual notions of slicing require more dependences
to be taken into account, since they aim at collecting all parts of the program
that play a role in the computation of the result (constant parts are required
even if they do not affect the result; their case will be considered in Sect. 6).

Example 1 (Dependences of functions). Let x, y ∈ �
. Let us consider the func-

tion φ ∈ Den defined by φ(ρ) = {ρ[y ← ρ(x)]} if ρ(b) = true and φ(ρ) = ∅ if
ρ(b) = false. Then, if ρ0 ∈ � , and z ∈ �

, φ(ρ0[b ← false])(z) = ∅ 6= φ(ρ0[b ←
true])(z); hence, z

φ
 b. Similarly, we would show that y x. Last, if z ∈ � \{y},

we could prove that z z, and that φ has no other dependence.

The definition of dependences among variables in a control flow graph derives
from the above definition and the classical abstraction of sets of traces into
functions [9]. Indeed, let l0, l1 ∈ � , x0, x1 ∈

�
. Then, we shall approximate the

set of traces starting at l0 and ending at l1 with a function in fl1l0 ∈ Den defined by

fl1l0(ρ0) = {ρ1 | ∃〈(l0, ρ0), . . . , (l1, ρ1)〉 ∈ JsK}. We say that s induces a dependence

of (l1, x1) on (l0, x0) if and only if (x0, x1) ∈ Df [f
l1
l0

] (such a dependence will be
denoted by (l1, x1) (l0, x0)). Last, we note Dt[s] for {((l0, x0), (l1, x1)) | l0, l1 ∈

� , (x0, x1) ∈ Df [f
l1
l0

]} (we write Dept for P((� × �
)2)).

Example 2 (Ex. 1 continued). Let us consider the program fragment l0 : if(b){l1 :
y = x; l2 : . . .} Then, the function fl2l0 corresponds to the function φ intro-

duced in Ex. 1. Therefore, the set of dependences between l0 and l2 is Df [f
l2
l0

] =
{(b, y); (x, y)} ∪ {(v, z) | z ∈ � \ {y}, v = z ∨ v = b}.
In the following, we rely on this straightforward extension of the definition of
dependences induced by functions into dependences induced by programs (so
that we do not have to state it again). It is important to note that Df [] is not
monotone; in particular the greatest element of Den is (λρ. �) and induces no de-
pendence. The purpose of the following subsections is to select some dependences
that should be relevant to the problem under consideration.

2.3 Observable dependences

We consider now the problem of restricting the dependences that can be observed
on a subset of traces (aka a semantic slice). The semantic slice is usually defined
by a criterion c chosen in some domain � ; moreover, we assume a concretization
function γ � : � → P(Σ) describes the meaning of semantic slicing criteria in
terms of sets of traces. For instance, we may fix sets of initial and final states;
hence, � = P(�)× P(�) and γ � (I,F) = {〈s0, . . . , sn〉 ∈ Σ | s0 ∈ I ∧ sn ∈ F}; in
the end the semantic slice (traces starting in I and ending in F) boils down to
JsK ∩ γ � (I,F). Other useful examples of semantic slices were introduced in [23]
(input constraints and restriction to some execution patterns).

We let E ⊆ Σ denote a semantic slice and E] : � → P(�) denote an “ab-
straction” [10] for the semantic slice E : if 〈. . . , (l, ρ), . . .〉 ∈ E , then ρ ∈ E](l).
In practice, E] is computed by a static analyzer like Astrée [5] (E](l) is the

Initial condition (l0):
b = true

l0 if(b){
l1 y = x;
l2 }else {
l3 . . .

l4 }
l5 . . .

(a)

Initial condition (l0):
x ∈ [0, 10]
y ∈ [0, 5]
z ∈ [−4, 15]

Final condition (l5):
y ≥ 1 000

l0 if(x > 5){
l1 y = 1 000 ? x;
l2 } else{
l3 y = y + z;
l4 }
l5 . . .

(b)

Fig. 2: Observable dependences

concretization of the local, abstract numerical invariant at point l). Moreover,
we assume that E satisfies a closeness assumption: 〈s0, . . . , sn, . . . , sm〉 ∈ E ⇐⇒
〈s0, . . . , sn〉 ∈ E ∧ 〈sn, . . . , sm〉 ∈ E . This assumption is required for the deriva-
tion of computable approximations of dependences. It is satisfied for all semantic
slices proposed in [23] (a little complication arises in the case of the “pattern”-
based semantic slicing: in this case, the dependence analysis should use the same
partitioning criteria as the static analysis that computes E]; this case is evoked
in Sect. 4).

Example 3 (Semantic slicing). Fig. 2 presents some cases of semantic slices de-
fined by a set of initial and final states. In the case of Fig. 2(a) (similar to Ex. 2),
the condition on the input b entails that only the true branch may be executed;
moreover, the value of b may not change (it is equal to true), so we expect all
dependences on (l0, b) be removed.

Similarly, in the case of Fig. 2(b), the output condition on y may only be
achieved by executions flowing through the true branch of the conditional; there-
fore, we expect the dependences of (l5, y) on (l0, z), (l0, y) not to be considered.

In the same way as in Sect. 2.2, we propose a definition for dependences in-
duced by functions (the definition for dependences induced by a program fol-
lows straightforwardly). More precisely, we consider in the following definition
the case of a function φ constrained by input and output conditions; the case of
functions abstracting a program semantic slice is more technical but similar.

Definition 2 (Observable dependences). Let φ ∈ Den, Mi, Mo ⊆ � , x0, x1 ∈�
. We say that φ induces an observable dependence of x1 on x0 in the semantic

slice (Mi, Mo) if and only if ∃ρ ∈ Mi, va, vb ∈ Mi(x0) and such that φ(ρ[x0 ←
va])(x1) ∩ Mo(x1) 6= φ(ρ[x0 ← vb])(x1) ∩ Mo(x1). We write x1

φ
 Mi Z⇒Mo

x0 for
such a dependence.

Intuitively, an observable dependence is a dependence of the original function,
which can be observed even when considering executions and values in the slice
only. This notion generalizes the classical dependences presented in Def. 1: in-
deed, if we let Mi = Mo = � , we find the same notion as in Def. 1.

Other possible definitions for observable dependences could have been chosen;
however, most of them are flawed. For instance, considering the dependences of

the restriction φ̃ : ρ 7→ φ({ρ} ∩ Mi) ∩ Mo would have caused many additional
dependences, with no intuitive interpretation: slicing φ = λρ.{ρ} with the input

condition ρ(x) = 0 would include dependences of the form y
eφ
 x for any variable

y, which would not be meaningful. Therefore, we consider dependences of φ,
observed on the restriction.

Example 4 (Ex. 3 continued). Let us consider the program in Fig. 2(a). There
is only one possible value for b at l0, so Def. 2 defines no dependence on (l0, b),
as expected in Ex. 3.

In the program of Fig. 2(b), the condition on the output rules out all traces
going through the false branch. As a consequence, the set of dependences in the
semantic slice between l0 and l2 is {(y, x)} ∪ {(z, z) | z ∈ �

, z 6= y}.

2.4 Abstract dependences

A second restriction consists in defining dependences among abstractions of the
values the variables may take in the semantic slice. We consider simple abstrac-
tions only. For instance, we may wish to find out what may cause some variable
to take large values (e.g., to investigate an overflow alarm), or very small val-
ues (e.g., to investigate a division by 0), or out-of-spec values (in case a user-
provided specification maps variables to ranges they are supposed to live in). We
let such a property be represented by an abstraction of sets of values, defined

by a Galois-connection P(�) −−−→←−−−α

γ
D. The formalism of Galois-connections is

powerful enough for our needs here, since we express dependences among sim-
ple abstractions only (i.e. α is always defined). We let � denote the set of such
abstractions. An abstraction will be identified to its abstraction function, since
there is no ambiguity. For instance, if k is a large scalar value, we may define

γ[k](P [k]
∀

) = {v | |v| < k}, γ[k](P [k]
∃

) = {v | |v| ≥ k} and � [k] = {⊥, P [k]
∀

, P [k]
∃

,>};
this abstraction allows to select which variable may take a large value. If the
analyzer reports a possible overflow of x, then, we may wish to check what x de-
pends on, and more precisely what variables may take abnormal or special (e.g.,
large) values, causing x to overflow; indeed, most arithmetic operators (like +,
−, ?) tend to propagate large values in concrete executions and abstract analy-
ses. For instance, we may want to learn what may cause y to grow above 1 000
in the program in Fig. 2(b) (this was the purpose of the output condition on y

when defining the semantic slice) and more precisely to track other abnormal
values in the computation of y. This is the goal of the following definition:

Definition 3 (Abstract dependences). Let φ ∈ Den, Mi, Mo ⊆ � , x0, x1 ∈�
, α0, α1 ∈ � (we write D0, D1 for the abstract domains corresponding to

α0, α1). We say that φ induces an abstract dependence of (x1, α1) on (x0, α0)
in the semantic slice (Mi, Mo) if and only if ∃ρ ∈ Mi, da, db ∈ D0 and such that:

– ∀j ∈ {a, b}, γ0(dj) ∩Mi(x0) 6= ∅;
– α1(φ(ρ[x0 ← γ0(da)])(x1) ∩Mo(x1)) 6= α1(φ(ρ[x0 ← γ0(db)])(x1) ∩Mo(x1)).

We write (x1, α1) Mi Z⇒Mo
(x0, α0) for such a dependence.

Intuitively, an abstract dependence is a dependence that can be observed by
looking at abstractions of the values of the variables only. In particular, we
can remark that the notion of abstract dependences generalizes the notion of
observable dependences: if we let α0 = α1 = id where ∀P ⊆ � , id(P) = P ,
we define the same notion as in Def. 2. As usual, this definition is implicitly
extended to dependences in programs.

Example 5 (Ex. 3 continued). We consider the dependences of (l5, y) on the ex-
ample of Fig. 2(b) again, but we wish to consider dependences involving “large”
values only, i.e. we consider abstractions of the form α[k] where k > 1 000, with
the above notations. Since x does not take any large value, the dependence of
(l5, y, α[1 000]) is restricted to (l2, y, α[1 000]). Furthermore, in this case, the first
occurrence of a large value in the program coincides with the assignment right
before l2; in this sense, following the abstract dependence allows to get an insight
about where the abnormal value for y comes from.

Clearly, the approach proposed here may not lead to the actual error behind an
alarm (e.g., an overflow). First, some large values may be caused by a division by
small values (this case requires considering abstract dependences involving var-
ious kind of abstractions). Second an overflow may be due to a slow divergence;
in this case, only the “cycle” of dependences corresponding to the diverging
values will be discovered. Ideally, we would look for dependences of the form
(x1, α1) (x0, id) in order to collect all dependences of a variable x1 causing
an overflow; yet this would tend to yield too many dependences. Our approach
mainly aims at characterizing which variables are more likely to cause an error,
by looking at the dependences that may carry abnormal (e.g. large) values first.

3 Comparing dependences

In this section, we show in what extent abstract and observable dependences are
stronger forms of dependences than the standard notion presented in Def. 1.

Theorem 1 (Hierarchy of dependences). We let φ ∈ Den, Mi, Mo ⊆ � ,
x0, x1 ∈

�
, α0, α1 ∈ � . Then:

– if φ induces a dependence x1 Mi Z⇒Mo
x0, and M ′

i , M ′
o are such that Mi ⊆ M ′

i

and Mo ⊆ M ′
o, then φ induces a dependence x1 M ′

i
Z⇒M ′

o
x0;

– if φ induces a dependence (x1, α1) Mi Z⇒Mo
(x0, α0), and α′

0 is less abstract
than α0 (i.e., there exists an abstraction α′′

0 such that α0 = α′′
0 ◦α′

0) and α′
1 is

less abstract than α1, then φ induces a dependence (x1, α
′
1) Mi Z⇒Mo

(x0, α
′
0)

(in particular, if we let α0 = α1 = id, then we conclude that there exists a
dependence x1 Mi Z⇒Mo

x0);
– in particular, if φ induces a dependence (x1, α1) Mi Z⇒Mo

(x0, α0), and if we
let M ′

i = M ′
o = � and α0 = α1 = id, then we conclude that there exists a

dependence x1 x0 in the sense of Def. 1.

These properties are very intuitive: the smaller a semantic slice, the less depen-
dences one can observe on it; similarly, the more “abstract” the abstractions we

(l5, y)

(l4, y)

(l2, y)

(l3, y)

(l3, z)

(l1, x)

(l0, y)

(l0, z)

(l0, x)

dependence

observable dependence

abstract dependence

Fig. 3: Dependences from (l5, y) in the program of Fig. 2(b)

consider, the less dependences they let observe (the abstractions may hide de-
pendences). In particular, for any semantic slice and any abstraction, observable
and abstract dependences are a subset of the “usual” dependences introduced in
Def. 1. As a consequence, the abstract dependences allow to select some depen-
dences, that are more likely to be useful when trying to understand the origin of
(true or false) alarms; in this sense, they provide more precise information than
mere dependences. We now apply these principles to the program of Fig. 2(b):

Example 6 (Ex. 5 continued). We present in Fig. 3 all possible kinds of local de-
pendences (i.e.dependences on one-step transitions) collected recursively from
(l5, y). Next section discusses how to approximate dependences with such a
graph. As shown in the figure, the restriction to observable dependences in a
semantic slice defined by the conditions in Fig 2(a) allows to throw away the
dependences induced by the false branch; the abstract dependences are even
more restrictive, with only one abstract dependence. This dependence points to
the assignment in the true branch where a large value is assigned to y.

4 Fixpoint-based approximation for observable

dependences

At this point, we have introduced some relevant notions of dependences; yet,
we need algorithms to compute them (exactly or with some approximation);
the goal of this section is to provide a computable approximation for observable
dependences, to compare it with existing methods and propose refinements. We
generalize this techinique to the approximation of abstract dependences in the
next section.

We start with a semantic-based fixpoint algorithm for approximating de-
pendences and benefit from the semantic foundation to implement various re-
finements. The principle of this algorithm is comparable to existing dependence
analyses [19]; yet, the advantage of our presentation is to allow for a wide variety
of refinements inherited from static analysis to be formulated and proved; these
refinements are described in the end of the section.

The approximation of composition: First, we propose to define an ap-
proximation for ◦ in Depf . We let φ0, φ1 ∈ Den and consider the function

φ = φ1 ◦ φ0. We let D0, D1 be over-approximations of the dependences in-
duced by φ0, φ1; we try to approximate the set D of dependences of φ. Let
(x0, x2) ∈

� 2, such that ∀x1 ∈
�
, (x0, x1) 6∈ D0 ∨ (x1, x2) 6∈ D1. We let

ρ ∈ � , va, vb ∈ � , and W = {x1 ∈
� | φ0(ρa)(x1) 6= φ0(ρb)(x1)} where

∀i, ρi = ρ[x0 ← vi]. We can prove by induction on the number of elements
of W that φ1 ◦ φ0(ρa)(x2) = φ1 ◦ φ0(ρb)(x2) (W is finite since

�
is finite). As a

consequence:

Lemma 1 (Approximation of ◦). With the above notations, D ⊆ D0 � D1,
where � is the binary operator defined over Depf by D0 � D1 = {(x0, x2) ∈

� 2 |
∃x1 ∈

�
, (x0, x1) ∈ D0 ∧ (x1, x2) ∈ D1}. As a consequence, if Df [φ0] ⊆ D0 and

Df [φ1] ⊆ D1, then Df [φ1 ◦ φ0] ⊆ D0 � D1.

This approximation is clearly strict in general. Intuitively, the operator � pro-
vides a sound approximation for ◦ in Depf . An approximation for the depen-
dences of semantic slices can be computed in a similar way. Let φ0, φ1 ∈ Den,
and M0, M1, M2 ⊆ � , and φ = φ1 ◦ φ0. We consider the semantic slices of φ0

and φ1 defined respectively by (M0, M1) and (M1, M2); the semantic slice of the

composition is φ̃ : ρ 7→ φ1(φ0({ρ} ∩M0) ∩M1) ∩M2. If D0, D1 over-approximate
the dependences of the semantic slices of φ0 and of φ1 respectively, then we can
prove that D0 � D1 over-approximates the dependences of the slice φ̃.

Fixpoint-based over-approximation of dependences: The restriction JsK[p]

of JsK to a path p = l0 · l1 · . . . · ln is the set of traces that follow that path (i.e.
of the form 〈(l0, ρ0), (l1, ρ1), . . . , (ln, ρn)〉). We can abstract JsK[p] into a function
f[p] ∈ Den defined by f[p] : ρ0 7→ {ρn ∈ � | 〈(l0, ρ0), (l1, ρ1), . . . , (ln, ρn)〉 ∈ JsK};
furthermore, f[p] = δ

ln+1

ln
◦ . . . ◦ δl1

l0
where ∀l, l′ ∈ � , δl′

l (ρ) = {ρ′ ∈ � | (l, ρ) →
(l′, ρ′)} is a local semantic transformer. At this point, we can make two remarks:
– Lemma 1 provides an approximation for the dependences induced by f[p]:

Df [f[p]] ⊆ Df [δ
l1
l0

] � . . . � Df [δ
ln+1

ln
];

– the abstraction flnl0 of the traces from l0 to ln can be decomposed along all

paths from l0 to ln: ∀ρ ∈ � , flnl0 (ρ) = ∪{f[p](ρ) | p path from l0 to ln}; this
allows to prove that a dependence between l0 and ln should be observable
on at least one path from l0 to ln.

We let Dloc ∈ Dept be an approximation of all local dependences in s: (x, x′) ∈
Df [δ

l′

l] ⇒ ((l, x), (l′, x′)) ∈ Dloc. An example of a rough definition for Dloc is
shown on Fig. 4. We deduce from the two points above the following theorem (if
F is montone, we write lfpx0

F for the least fixpoint of F , greater than x0):

Theorem 2 (Dependences approximation). Let � be the operator defined
on Dept by D0 � D1 = {(ν0, ν2) | ∃ν1 ∈ (� × �

), (ν0, ν1) ∈ D0 ∧ (ν1, ν2) ∈ D1},
and ∆ = {(ν, ν) | ν ∈ (� × �

)}. Then, the dependences of s are approximated by:

Dt[s] ⊆ lfp∆Fdep where Fdep : Dept → Dept; D 7→ D ∪ Dloc � D

This theorem provides a fixpoint-based algorithm for the over-approximation of
dependences. Comparable algorithms can be obtained via typing approaches [1,

use : � → P(
�
)

use(c) = ∅
use(v) = {v}

use(e0 ⊕ e1) = use(e0) ∪ use(e1)
∀e ∈ � , ρ ∈ � , x ∈

�
, va, vb ∈ � ,

JeK(ρa) 6= JeK(ρb)⇒ x ∈ use(e)
(where ρi = ρ[x← vi])

(a) Deps. in expressions

assignment l0 : x = e; l1 :

Df [δ
l1

l0
] ⊆ use(e)× {x} ∪ {(y, y) | y ∈

�
\ {x}}

loop l0 : while(e){l1 : . . .}

Df [δ
l1

l0
] ⊆ use(e)×

�
∪ {(y, y) | y ∈

�
}

conditional l0 : if(e){l1 : . . . ; l2}else{. . .}l3
Df [δ

l1

l0
] ⊆ {(x, y) ∈

�
2 | x = y ∨ x ∈ use(e)}

Df [δ
l3

l2
] ⊆ {(x, x) | x ∈

�
}

(b) Approximation for local dependences

Fig. 4: Local dependences for a simple language

2]; we prefer providing a fixpoint based definition in order to design various kinds
of refinements (see the end of this section). Again this theorem also holds true
in the case of observable dependences; however, the proof relies on the closeness
assumption mentioned in Sect. 2.3. This hypothesis is necessary in order to prove
the first point (decomposition of the dependences along a path).

Remark 1 (Control dependences). To simplify the presentation, the fixpoint al-
gorithm of Theorem 2 does not distinguish control and data dependences like
most dependence analyses do [19]. This would result in a loss of precision: for in-
stance, in the case of a conditional l0 : if(b){l1}l2, a dependence (l2, x) (l0, b)
would be inferred for any variable x, since there is a dependence (l1, x) (l0, b).
Yet, we can prove that, if l, l′ ∈ � are such that ∀ρ ∈ � , fl

′

l (ρ) 6= ∅, if there exists
a dependence (l′, x′) (l, x), then there exists a path from l to l′ where the
value of x is modified. In the above example, x is not modified between l0 and
l1. Hence, our algorithm does not suffer the loss of precision mentioned above
(our implementation does not include the fictitious dependence (l2, x) (l0, b)).

Example 7 (Ex. 3 continued). We consider the program in Fig. 2(a) (the input
condition is ignored here). Then, Dloc contains the local dependences (l5, y)
(l2, y), (l2, y) (l1, x), (l1, x) (l0, b); the fixpoint algorithm of Theorem 2
composes these dependences together so, the dependence (l5, y) (l0, b) is dis-
covered. The dependence (l5, y) (l0, x) is inferred in the same way. Obviously,
the dependence on (l0, b) does not hold in the semantic slice; so we show in the
following how to get rid of it, by taking the properties of the semantic slice into
account. Similarly, in the case of the program in Fig. 2(b), dependences through
the false branch yield the dependences (l5, y) (l0, y), (l0, z), which are not
observable in the semantic slice.

Remark 2. Note that a sound dependence analysis for a real language (like C)
requires sound aliasing information to be known: indeed, if x and y are aliased,
an assignment to x creates an implicit dependence on y. Many alias analyses
exist in the literature, e.g. [8, 14], so we do not develop this issue here.

Dependence graphs: In general, we are not interested in all the dependences
of s; we only wish to track the dependences of a criterion c, i.e. a set of pairs
(control state,variable) of interest: the set of dependences of interest is dep[c] =
Dt[s] ∩ ((� × �

) × c). For instance, in the case of Fig. 2(b), we considered the
dependence of {(l5, y)}. We can approximate dep[c] by a least-fixpoint form:

Theorem 3 (Dependences of a criterion). dep[c] ⊆ lfp(� × �)×cFdep

In practice, a superset of the dependences (i.e. of Dloc) is collected during a
linear pass; then the computation of an over-approximation of the dependence
of a criterion c ⊆ � × �

follows from Theorem 3.

Refinements: We propose now a series of refinements, in order to restrict the
local dependences and their global composition so as to carry out more precise
fixpoint computations. These refinements can be expressed and proved formally
on the basis of Theorem 2. We consider a semantic slice E , approximated by
E] : � → P(�). Among these refinements, we can cite:

– Removal of unreachable control states: some control state l ∈ � may
be unreachable in the semantic slice. In this case, it is obvious there can be
no observable dependence from or to that point. In practice, the invariant E]

computed in the semantic slicing phase [23] provides an over-approximation
of the reachable control states in the semantic slice (if l reachable, then
E](l) 6= ∅); any other control state should be removed from the dependences
at this point.

– Removal of constant variables: similarly, a variable x may be proved con-
stant at point l in the semantic slice by the analyzer (this amounts to proving
∃v ∈ � , E](l)(x) ⊆ {v}); in this case, there can be no dependence to (l, x):
indeed, we cannot pick up two distinct values for x at l; as a consequence
any two stores ρa, ρb differing at most in the value for x generate the same
transitions from this point. For instance, in case the semantic slice specifies
a constant value for some input variable, any variable computed from this
input only is constant, hence should be removed from the dependences.
Note that the same simplification on the other side of the dependence does
not hold: indeed, proving ρ(x) ⊆ {v} does not rule out that ρ(x) may be ∅.

– Simplification of constant expressions: The above principle also applies
to sub-expressions, which may help reducing the local dependences induced
by assignments or conditions. For instance, if we consider the assignment
x = x0 ? x1 + x1 ? x2, where x, x0, x1, x2 ∈

�
and x0, x1 are proved constant

in the semantic slice, then only the dependence on x2 should be considered.
– Control partitioning: the analysis carried out in the semantic slicing may

resort to some kind of trace partitioning (either control-based [22] or to dis-
tinguish execution patterns [23]); then, the same principle could be applied
to the dependence analysis. In particular, this approach allows to benefit
from precise abstract invariants, so it may increase the number of contexts
the above refinements can be applied to (for instance, some statements may
be unreachable in some partitions, as shown in Ex. 9).

Example 8 (Ex. 7 continued). In Fig. 2(a), the value of b at l0 is true (constant
value) in the semantic slice; as a result, any dependence (l1, v) (l0, b) is re-
moved, so that the dependence (l5, y) (l0, b) does not appear in the fixpoint
computation anymore.

Similarly, in the semantic slice of the program in Fig. 2(b), the false branch
of the conditional is unreachable; as a result any local dependence involving l3
or l4 is removed from Dloc; as a result, the dependences (l5, y) (l0, y), (l0, z)
are no longer computed.

Example 9 (Partitioning analysis). Let us consider the program l0 : if(b){x0 =
y}else{x1 = y}; if(b′){z = x0}else{z = x1}; l1 and the semantic slice collect-
ing all executions going through the same branch in both if statements. Then,
the partitioning dependence analysis infers only one dependence from (l1, z),
namely (l0, y). The non-partitioning analysis would also include dependences on
(l0, b), (l0, b

′), (l0, x1), (l0, x0). We can see that this refinement allows for global
precision improvements.

5 Approximating abstract dependences

Chains of abstract dependences: All results of Sect. 4 can be generalized
straightforwardly to the case of abstract dependences. In particular, Lemma 1
and Theorem 2 can be generalized, by taking the abstractions into account
in the definition of � and �. Indeed, we could prove as for Lemma 1 that
((x0, α0), (x2, α2)) ∈ Df [φ1 ◦ φ0] entails that there exists (x1, α1) ∈

� × � such
that ((x0, α0), (x1, α1)) ∈ Df [φ0] and ((x1, α1), (x2, α2)) ∈ Df [φ1].

However, this solution is not completely satisfactory for several reasons:
– the lattice of all abstractions of P(�) is not representable.
– the fixpoint-based expressions would lead to a rough approximation. In par-

ticular if (l2, x2, α2)
φ1
 (l1, x1, α1) and (l1, x1, α1)

φ0
 (l0, x0, α0), then a de-

pendence (l2, x2, α2)
φ1◦φ0

 (l0, x0, α0) will always be added, which is overly
conservative in the case of abstract dependences.

– we wish to compute sets of abstract dependences that are immediately rel-
evant to the criterion; indeed, given a criterion c = (l, x, α), we would like
to track the observable abstract dependences following immediately from c

first; more complex dependences should be considered only after the sim-
pler ones did not reveal relevant causes for the alarm under investigation.
In this sense, an under-approximation of the abstract dependences from the
criterion makes sense.

As a consequence, we introduce a notion of abstract dependence chain, which
collects local abstract dependences, involving “interesting” abstractions only:

Definition 4 (� -abstract dependence chain). We let � ⊆ � be a set of
abstractions of interest and c be the criterion (l, x, α). An � -abstract dependence
chain from c is a finite sequence (l0, x0, α0), . . . , (ln, xn, αn), such that:

1. ∀i, αi ∈ � ,

2. ∀i, ((li, xi, αi), (li+1, xi+1, αi+1)) ∈ Dloc.

For instance, we may choose a family of abstractions composed of the abstrac-
tions mentioned in Sect. 2.4; e.g., we may let � = {α[10n] | n ∈ �

, n ≥ 3}, so as
to track large values.

Computation of abstract dependence chains: We need an abstract de-
pendence graph, that is, an over-approximation for all abstract dependences in-
volving abstractions in � only, that occur on one-step transitions (that is, on
edges of the control flow graph). The rules defined in Sect. 2.4 apply for the
over-approximation of such dependences; refinements of these local dependences
are considered below. In practice, the representation of the abstract dependence
graph consists in a dependence graph, with labels on the edges, that approximate
the abstractions the dependences they correspond to are valid for.

Once the abstract dependence graph is computed, an over-approximation
of the � -abstract dependence chains from any criterion c ∈ � × � × � can be
computed as suggested by Theorem 3, by a fixpoint-based algorithm.

Refinements: All refinements introduced in the case of (concrete) observable
dependences, in Sect. 2.4 are also sound in the case of abstract dependences.

We propose a refinement that generalizes the “removal of constant vari-
ables” (Sect. 4) to abstract dependences. Let us consider (l0, x0, α0), (l1, x1, α1) ∈

� × � × � . If there exists a minimal element d0 of D0 \ {⊥} (where ⊥ is the
least element of D0) such that E](l0)(x0) ⊆ γ0(d0), then the abstract domain
D0 is not able to distinguish the values observed for x0 at l0 in the seman-
tic slice. An obvious application of Def. 3 shows that there is no dependence

(l1, x1, α1)
E
 (l0, x0, α0). For instance, this refinement applies if α0 abstracts

together all “normal” (i.e., not too large) values and if all values for x0 at point
l0 are “normal”.

Example 10 (Ex. 5 continued). For instance, in the case of the program in
Fig. 2(b), x ∈ [0, 10] at point l0; hence, if we consider � as defined above, there

exist no abstractions αx, αy ∈ � such that (l2, y, αy)
E
 (l1, x, αx). As a con-

sequence, the only remaining abstract dependence from (l5, y) in the semantic
slice and involving abstractions in � is a dependence of (l5, y) on (l2, y); this � -
abstract dependence chain leads to the point where an “abnormal” value appears
for the first time in the sequence of computations leading to y (see Fig. 3).

6 Slicing and case study

Slicing: Slicing [26] aims at selecting a subset of the statements of a program
that may play a role in the computation of some variable x at some point l. The
principle is to include in the slice any statement at point l′ that may modify a
variable x′ such that (l, x) depends on (l′, x′).

The semantics of program slicing is rather subtle for several reasons:

– The notion of dependence involved in slicing is quite different to the one
we considered in Sect. 2. For instance the slice of l0 : x = 3; l1 : y = x; l2
for the criterion (l2, y) should include the statement l0 : x = 3; l1 as well,
even though (l2, y) does not depend on (l1, x) according to Def. 2, since x is
constant at l1.

– The usual expression of slicing correctness resorts to some kind of projection
of the program semantics, which is preserved by slicing. However, the removal
of non-terminating loops (or of possible sources for errors) may cause the
slice to present more behaviors than the projection of the semantics of the
source program. This issue can be solved by considering a non-standard,
more concrete semantics [7], which is preserved by the transformation, yet
this approach is not natural for static analysis.

As a consequence, we propose a transformation that should be more adapted to
static analysis.

Smaller, non-executable slices: In [23], semantic slices approximate program
executions with abstract invariants. Such an invariant together with a (subset
of a) syntactic slice allow to describe even more precisely a set of program exe-
cutions:

Definition 5 (Abstract slice). An abstract slice E of a program s is defined
by a sound invariant E] : � → P(�) for E and a subset s′ of the program
statements, which is defined by the set of corresponding control states L ′.

The semantics of a semantic slice is defined both by the program transitions (for
the statements which are included in the slice) and by the abstract invariants:

Definition 6 (Abstract slice semantics). The semantics Ls′M of the abstract
slice collects all the traces 〈(l0, ρ0), . . . , (ln, ρn)〉 such that:
– ∀i, ρi ∈ E](li);
– ∀i, (li ∈ L ′ ∧ li+1 ∈ L ′) =⇒ (li, ρi)→ (li+1, ρi+1).

Obviously, the definition of abstract slices leaves the choice of the syntactic
slice undetermined. However, the purpose of the abstract slices is to restrict to
the most interesting parts the program; hence, we propose to compute abstract
dependence chains and include any assignment which affect a variable in a de-
pendence chain: this way, the slice preserves only the � -abstract dependence
chains and abstract any other statement of the program into the invariants in
E]. Let us note that this notion allows to solve the two points mentioned above:
– parts of the program that are not immediately relevant to the criterion un-

der investigation (in the sense that they do not appear in the dependences
introduced in Def. 1, Def. 2 and Def. 3) do not need to be included into the
slice anymore; instead, they can be replaced with program invariants (in the
semantic slice). For instance, the assignment l0 : x = 3; l1 can be replaced
with the invariant x = 3 at point l1. Obviously, applying this principle to
larger programs may result in huge gain in slice sizes.

– the intersection with program invariants limits the loss of precision induced
by, e.g. the removal of a loop.

Example 11 (Abstract slice). Let us consider the program of Fig. 2(b), together
with its input/output conditions. Fig. 3 displays the local, observable and ab-
stract dependences that can be recursively composed when starting from (l5, y).
In case we compute an abstract slice for this program, starting from (l5, y), we
find only one � -abstract dependence chain (Ex. 10). As a consequence, we get the
abstract slice defined by the set of control states L ′ = {l1, l2, l5}. In particular,
the abstract slice contains the assignment l1 : y = 1000?x; l2, with the invariant
(x ∈ [5, 10]), which gives a likely cause for the error.

Early implementation results and case studies: A simple abstract depen-
dence analysis was implemented inside Astrée (for tracking large values and
overflows), together with an abstract slice extraction algorithm. We could run
these algorithms on some 70 kLOC real world program, which we modified so as
to make some computations unstable (Astrée proves the absence of overflow in
the original version). The static analysis by Astrée takes roughly 20 minutes
and uses 500 Mb on a Bi-opteron 2.2 Ghz with 8 Gb of RAM. The computation
of the dependence graph (by collecting all local dependences and applying local
refinements) takes 72 seconds and requires 300 Mb, on the same machine; this
phase provides all data required to extract a slice from any criterion. The slice
extraction computes a least fixpoint from the criterion (Theorem 3) and applies
recursively local dependences; in the case of abstract dependences, this amounts
to collecting � -abstract dependence chains. The typical slice extraction time is
about 5 seconds, with low memory requirements (around 110 Mb).

The table below displays the gain in size obtained by computing abstract
slices for a series of alarms (size of slices are in LOCs):
Slicing point a1 a2 a3

Classical slice 543 368 1572
Abstract slice 39 160 96
The resulting slices proved helpful for finding the direct consequences of errors
like overflows; moreover, it seemed promising for deriving automatically semantic
slicing criteria, which was one of the motivations for our present work. We re-
marked that the refinements presented in Section 4 played a great role in keeping
the size of dependences down. Cyclic abstract dependence chains suggest some
kind of partitioning could be done in order to isolate certain execution patterns;
they also allow to restrict the part of the program to look at in order to define
an adequate input for defining an error scenario, so that we envisage synthesiz-
ing input constraints in the future. Another possible use for abstract slices is to
cut down the size of programs to analyze during alarm inspection sessions, by
abstracting into invariants parts of the code to analyze.

7 Conclusion and Related Work

We proposed a framework for defining and computing valuable dependence in-
formation, for the understanding and refinement of static analysis results. Early
experiments back-up favorably the usefulness of this approach, especially for
giving good hints for the choice of semantic slicing criteria [23].

Our definition for dependences are rather related to the definition of non-
interference [18] commonly used in language-based security [24]. This approach is
rather different to the more traditional ways of defining dependences in program
slicing, which rely on program dependence graphs [19], yet these two problems
are related [2, 1]. We found that the main benefit of the “dependences as inter-
ference” definition is to allow for wide varieties of refinements for dependence
analyses and extension for the definition of dependences to be stated.

In particular, our definition of abstract dependences is closely related to the
notion of abstract non interference introduced in [17] in the security area, which
aims at classifying program attackers as abstract-interpretations. The authors
propose to compute the strongest safe attacker of a program by resolving an
equation on domains by fixpoint. In our settings, the abstraction on the output is
fixed by the kind of alarm being investigated; moreover, the dependence analysis
should discover the variables the criterion depends on and not only for what
observation. Therefore, the algorithms proposed in [17] do not apply to our goal.

Program slicing [26] is another area related to our work. Many alternative
notions of slices have been proposed since the first, syntactic versions of slic-
ing. In particular, conditioned slicing [6] (applied, e.g. in [12]) aim at extracting
slices preserving some executions of programs, specified by, e.g. a relation on
inputs. Our approach goes beyond these methods: indeed, a set of program exe-
cutions defined by a semantic property (e.g. leading to an error) is characterized
precisely by semantic slicing [23]; these invariants allow to refine precisely the de-
pendences. Dynamic slicing [3, 20, 16] records states during concrete executions
and inserts a dependence among the corresponding nodes according to a stan-
dard, rough dependence analysis, in order to produce “dynamic”, non-executable
slices. This approach is adapted to debugging; yet it does not allow to charac-
terize precisely a set of executions defined by semantic constraints either.

There exist a wide variety of methods applied to error cause localization. For
instance, [4] proposes to characterize transitions that always lead to an error
in abstract models; however, this kind of approach requires enumerating the
predicates and/or transitions; hence, it does not apply to Astrée, due to the
number of predicates in the abstract invariants (domains nearly infinite).

Debugging methods start with a concrete trace, which we precisely do not
have, since alarms arise from abstract analyzes.

A first possible direction for future work would be to express abstract depen-
dences involving more complicated, e.g. relational abstractions. Indeed, tracking
the origin of an alarm raised in the analysis of z =

√
x + y requires looking at

dependences involving the property x + y < 0. A second challenge is to let the
dependence analysis interact more closely with the forward-backward analyses
carried out by the semantic slicer [23]; in particular the dependence informa-
tion could give some hints about what part of the invariants to refine (after
specializing the semantic slicing criteria).

Acknowledgments We deeply thank B. Blanchet and J. Feret for their comments
on a preliminary version of this article.

References

1. M. Abadi. Secrecy by typing in security protocols. Journal of the ACM, 1999.
2. M. Abadi, A. Banerjee, N. Heintze, and J. G. Riecke. A core calculus of dependency.

In POPL, 1999.
3. H. Agrawal and J. R. Horgan. Dynamic program slicing. In PLDI, 1990.
4. T. Ball, M. Naik, and S. Rajamani. From symptom to cause: Localizing errors in

counterexample traces. In POPL, 2003.
5. B. Blanchet, P. Cousot, R. Cousot, J. Feret, L. Mauborgne, A. Miné, D. Monniaux,

and X. Rival. A Static Analyzer for Large Safety Critical Software. In PLDI, 2003.
6. G. Canfora, A. Cimitille, and A. D. Lucia. Condition program slicing. Information

and Software Technology; Special issue on Program Slicing, 1998.
7. R. Cartwright and M. Felleisen. The semantics of program dependence. In PLDI,

1989.
8. J.-D. Choi, M. Burke, and P. Carini. Efficient flow-sensitive interprocedural com-

putation of pointer-induced aliases and side effects. In PLDI, 1993.
9. P. Cousot. Constructive design of a hierarchy of semantics of a transition system

by abstract interpretation. ENTCS, 6, 1997.
10. P. Cousot and R. Cousot. Abstract Interpretation: a unified lattice model for static

analysis of programs by construction or approximation of fixpoints. In POPL, 1977.
11. P. Cousot, R. Cousot, J. Feret, L. Mauborgne, A. Miné, D. Monniaux, and X. Rival.

The ASTRÉE analyzer. In ESOP, 2005.
12. S. Danicic, D. Daoudi, C. Fox, R. Hierons, M. Harman, J. Howroyd, L. Ouarbya,

and M. Ward. ConSUS: A Light-Weight Program Conditioner. Journal of Systems

and Software, 2004.
13. D. E. Denning. A lattice model of secure information flow. Communications of the

ACM, 1976.
14. A. Deutsch. Interprocedural may-alias analysis for pointers: beyond k-limiting. In

PLDI, 1994.
15. N. Dor, M. Rodeh, and M. Sagiv. CSSV: Towards a realistic tool for statically

detecting all buffer overflows in C. In PLDI, 2003.
16. C. Fox, S. Danicic, M. Harman, and R. Hierons. ConSIT: A Conditioned Program

Slicing System. Software - Practice and Experience, 2004.
17. R. Giacobazzi and I. Mastroeni. Abstract non-interference: parameterizing non-

interference by abstract interpretation. In POPL, 2004.
18. J. A. Goguen and J. Meseguer. Security policies and security models. In IEEE

Symp. on Security and Privacy, 1982.
19. S. Horwitz, T. Reps, and D. Binkley. Interprocedural slicing using dependence

graphs. In PLDI, 1988.
20. B. Korel and J. Laski. Dynamic Program Slicing. Information Processing Letters,

1988.
21. T. Lev-Ami and M. Sagiv. TVLA: A system for implementing static analyses. In

SAS, 2000.
22. L. Mauborgne and X. Rival. Trace Partitioning in Abstract Interpretation Based

Static Analyzers. In ESOP, 2005.
23. X. Rival. Understanding the origin of alarms in astrée. In SAS, 2005.
24. A. Sabelfeld and A. Myers. Language-based information-flow security. IEEE Jour-

nal on Selected Areas in Communications, 2003.
25. A. Venet and G. Brat. Precise and efficient array bound checking for large embed-

ded c programs. In PLDI, 2004.
26. M. Weiser. Program slicing. In Proceeding of the Fifth International Conference

on Software Engineering, pages 439–449, 1981.

