
Static Analysis and Veri�cation of Aerospace Software

by Abstract Interpretation

(Abstract)

Julien Bertrane�

�Ecole normale sup�erieure, Paris

Patrick Cousot�;y

Courant Institute of Mathematical Sciences, NYU, New York & �Ecole normale sup�erieure, Paris

Radhia Cousot�

�Ecole normale sup�erieure & CNRS, Paris

J�erôme Feret�

�Ecole normale sup�erieure & INRIA, Paris

Laurent Mauborgne�;z

�Ecole normale sup�erieure, Paris & IMDEA Software, Madrid

Antoine Min�e�

�Ecole normale sup�erieure & CNRS, Paris

Xavier Rival�

�Ecole normale sup�erieure & INRIA, Paris

The validation of software checks informally (e.g., by code reviews or tests) the conformance of the
software executions to a speci�cation. More rigorously, the veri�cation of software proves formally the con-
formance of the software semantics (that is, the set of all possible executions in all possible environments) to a
speci�cation. It is of course di�cult to design a sound semantics, to get a rigorous description of all execution
environments, to derive an automatically exploitable speci�cation from informal natural language require-
ments, and to completely automatize the formal conformance proof (which is undecidable). In model-based
design, the software is often generated automatically from the model so that the certi�cation of the software
requires the validation or veri�cation of the model plus that of the translation into an executable software
(through compiler veri�cation or translation validation). Moreover, the model is often considered to be the
speci�cation, so there is no speci�cation of the speci�cation, hence no other possible conformance check.
These di�culties show that fully automatic rigorous veri�cation of complex software is very challenging and
perfection is impossible.

We present abstract interpretation1 and show how its principles can be successfully applied to cope with
the above-mentioned di�culties inherent to formal veri�cation.

� First, semantics and execution environments can be precisely formalized at di�erent levels of abstraction,
so as to correspond to a pertinent level of description as required for the formal veri�cation.

� Second, semantics and execution environments can be over-approximated, since it is always sound to
consider, in the veri�cation process, more executions and environments than actually occurring in real
executions of the software. It is crucial for soundness, however, to never omit any of them, even rare
events. For example, oating-point operations incur rounding (to nearest, towards 0, plus or minus
in�nity) and, in the absence of precise knowledge of the execution environment, one must consider the

��Ecole normale sup�erieure, D�epartement d’informatique, 45 rue d’Ulm, 75230 Paris cedex 05, First.Last@ens.fr.
yCourant Institute of Mathematical Sciences, New York University, 251 Mercer Street New York, N.Y. 10012-1185,

co o ysu u@t ue.s.np dc .
zFundaci�on IMDEA Software, Facultad de Inform�atica (UPM), Campus Montegancedo, 28660-Boadilla del Monte, Madrid,

Spain.

1 of 2

American Institute of Aeronautics and Astronautics

AIAA Infotech@Aerospace 2010 
20 - 22 April 2010, Atlanta, Georgia

AIAA 2010-3385

Copyright © 2010 by Patrick Cousot. Published by the American Institute of Aeronautics and Astronautics, Inc., with permission.



worst case for each oat operation. Another example is inputs, like voltages, that can be overestimated
by the maximum capacity of the hardware register containing the value (anyway, a well-designed software
should be defensive, i.e., have appropriate protections to cope with erroneous or failing sensors and be
prepared to accept any value from the register).

� In the absence of an explicit formal speci�cation or to avoid the additional cost of translating the spec-
i�cation into a format understandable by the veri�cation tool, one can consider implicit speci�cations.
For example, memory leaks, bu�er overruns, undesired modulo in integer arithmetics, oat overows,
data-races, deadlocks, live-locks, etc. are all frequent symptoms of software bugs, which absence can be
easily incorporated as a valid but incomplete speci�cation in a veri�cation tool, maybe using user-de�ned
parameters to choose among several plausible alternatives.

� Because of undecidability issues (which makes fully automatic proofs ultimately impossible on all pro-
grams) and the desire not to rely on end-user interactive help (which can be lengthy, or even intractable),
abstract interpretation makes an intensive use of the idea of abstraction, either to restrict the properties
to be considered (which introduces the possibility to have e�cient computer representations and algo-
rithms to manipulate them) or to approximate the solutions of the equations involved in the de�nition
of the abstract semantics. Thus, proofs can be automated in a way that is always sound but may be
imprecise, so that some questions about the program behaviors and the conformance to the speci�cation
cannot be de�nitely answered neither a�rmatively nor negatively. So, for soundness, an alarm will be
raise which may be false. Intensive research work is done to discover appropriate abstractions eliminating
this uncertainty about false alarms for domain-speci�c applications.

We report on the successful cost-e�ective application of abstract interpretation to the veri�cation of the
absence of runtime errors in aerospace control software by the Astr�ee static analyzer,2 illustrated �rst by
the veri�cation of the y-by-wire primary software of commercial airplanes3 and then by the validation of
the Monitoring and Sa�ng Unit (MSU) of the Jules Vernes ATV docking software.4

We discuss on-going extensions to imperfectly synchronous software, parallel software and target code
validation, and conclude with more prospective goals for rigorously verifying and validating aerospace soft-
ware.

References

1Cousot, P. and Cousot, R., \Abstract interpretation: a uni�ed lattice model for static analysis of programs by construction
or approximation of �xpoints," Conference Record of the Fourth Annual ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages, ACM Press, New York, Los Angeles, 1977, pp. 238{252.

2Cousot, P., Cousot, R., Feret, J., Mauborgne, L., Min�e, A., Monniaux, D., and Rival, X., \Varieties of Static Analyzers:
A Comparison with Astr�ee, invited paper," Proceedings of the First IEEE & IFIP International Symposium on Theoretical
Aspects of Software Engineering, TASE ’07 , edited by M. Hinchey, H. Jifeng, and J. Sanders, IEEE Computer Society Press,
Los Alamitos, Shanghai, 6{8 June 2007, pp. 3{17.

3Delmas, D. and Souyris, J., \Astr�ee: from Research to Industry," Proceedings of the Fourteenth International Symposium
on Static Analysis, SAS ’07 , edited by G. Fil�e and H. Riis-Nielson, Kongens Lyngby, Lecture Notes in Computer Science 4634,
Springer, Berlin, 22{24 August 2007, pp. 437{451.

4Bouissou, O., Conquet, E., Cousot, P., Cousot, R., Feret, J., Goubault, E., Ghorbal, K., Lesens, D., Mauborgne, L., Min,
A., Putot, S., Rival, X., and Turin, M., \Space Software Validation using Abstract Interpretation," The International Space
System Engineering Conference DASIA 2009, Data Systems In Aerospace, edited by E. publications, Istambul, Turkey, 26{29
May 2009.

2 of 2

American Institute of Aeronautics and Astronautics


