Automated Patient Screening for Clinical Trials

Overview of the literature and challenges

Antoine Recanati with Chloé-Agathe Azencott March, 12th 2019 Introduction : matching patients to clinical trials

 $Ontology + rule \ based \ feature \ extraction$

Deep (representation) learning methods ?

Conclusion

Introduction : matching patients to clinical trials

- Procedure to assess new drug safety and efficiency
- Need to select (screen) cohort of patients satisfying *eligibility criteria*

- Procedure to assess new drug safety and efficiency
- Need to select (screen) cohort of patients satisfying *eligibility criteria*
- Screening usually done **manually**, very **time consuming** (bottleneck in the CT process)

- Procedure to assess new drug safety and efficiency
- Need to select (screen) cohort of patients satisfying *eligibility criteria*
- Screening usually done **manually**, very **time consuming** (bottleneck in the CT process)
- Generalization of **electronic health records (EHRs)** can alleviate such tasks

- Title, Summary, Condition name, Interventions
- List of inclusion and exclusion criteria (free text)
- https://clinicaltrials.gov

EHRs of hospital patients typically contains

- **Structured** data (age, demographic data, treatments, physical characteristics : BMI, blood pressure, *etc.*)
- **Unstructured** (free text) data (clinical narratives, progress notes, imaging reports, discharge summaries)

- Clinical trials descriptions : all on https://clinicaltrials.gov
- EHRs from patients : 50000 deidentified EHRs (for research, English) (without matching data)

 $x \in \mathcal{X}$ represents a patient's EHR $y \in \mathcal{Y}$ represents a trial (list of criteria) Goal :

find $f : \mathcal{X} \times \mathcal{Y} \to \{0, 1\}$ such that f(x, y) = 1 iff $x \in \operatorname{Elig}(y)$ (x is eligible for y). Given x_1, \ldots, x_p patient records, y_1, \ldots, y_T trials, and $M \in \{0, 1\}^{p \times T}$ assignment matrix such that $M_{i,j} = 1$ if patient *i* participated in trial *j* and 0 otherwise,

$$P = \sum_{trial j} \frac{\sum_{patient i} f(x_i, y_j) M_{i,j}}{\sum_{patient i} f(x_i, y_j)}$$
$$R = \sum_{trial j} \frac{\sum_{patient i} f(x_i, y_j) M_{i,j}}{\sum_{patient i} M_{i,j}}$$

$$R = \sum_{trial j} \frac{\sum_{patient i} f(x_i, y_j) M_{i,j}}{\sum_{patient i} M_{i,j}}$$

$$R = \sum_{trial j} \frac{\sum_{patient i} f(x_i, y_j) M_{i,j}}{\sum_{patient i} M_{i,j}}$$

• $M_{i,j} \neq \mathbb{1}[x_i \in \operatorname{Elig}(y_j)]$; PU learning ?

$$R = \sum_{trial \ j} \frac{\sum_{patient \ i} f(x_i, y_j) M_{i,j}}{\sum_{patient \ i} M_{i,j}}$$

- $M_{i,j} \neq \mathbb{1}[x_i \in \operatorname{Elig}(y_j)]$; PU learning ?
- Metric of interest : time spent by doctor within acceptable recall interval

$$R = \sum_{trial \ j} \frac{\sum_{patient \ i} f(x_i, y_j) M_{i,j}}{\sum_{patient \ i} M_{i,j}}$$

- $M_{i,j} \neq \mathbb{1}[x_i \in \mathbf{Elig}(y_j)]$; PU learning ?
- Metric of interest : time spent by doctor within acceptable recall interval
- Leverage common criteria across different trials ?

Each trial = combination of inclusion / exclusion criteria. $z \in \mathbb{Z}$ represents a criterion $y_j = (z_j^{(1)}, \dots, z_j^{(n_j)})$ Goal :

 $\begin{array}{ll} \text{find} & \phi: \mathcal{X} \times \mathcal{Z} \to \{0, 1\} \\ \text{such that} & \phi(x, z) = 1 \quad \text{iff} \quad x \in \textbf{Elig}(z) \quad (x \text{ satisfies } z). \end{array}$

And $\tilde{M}_{i,k} = M_{i,j}$ for $k = 1, \ldots, n_j$, for all trial j.

• Division into **atomic criteria** / relation between criteria (NER)

- Division into **atomic criteria** / relation between criteria (NER)
- Synonyms, misspellings, equivalent formulations

- Division into **atomic criteria** / relation between criteria (NER)
- Synonyms, misspellings, equivalent formulations
- Still $\tilde{M}_{i,k} \neq \mathbb{1}[x_i \in \mathsf{Elig}(z_k)]$

- Division into **atomic criteria** / relation between criteria (NER)
- Synonyms, misspellings, equivalent formulations
- Still $\tilde{M}_{i,k} \neq \mathbb{1}[x_i \in \operatorname{Elig}(z_k)]$
- No matching data yet. Can we still make progress using proxys ?

Intermission : ICD10 classification

International Classification of Diseases (codes with descriptive sentence to tag patients' diseases. Essentially used for billing)

ICD-10 Version:2016	C77.1	Intrathoracic lymph nodes
I Certain infectious and parasitic diseases	C77.2	Intra-abdominal lymph nodes
 II Neoplasms C00-C97 Malignant neoplasms 	C77.3	Axillary and upper limb lymph nodes Pectoral lymph nodes
 C00-C75 Malignant neoplasms, stated or presumed to be primary, of specified sites, except of lymphoid, haematopoietic and related tissue 	C77.4 C77.5	Inguinal and lower limb lymph nodes Intrapelvic lymph nodes
 C76-C80 Malignant neoplasms of ill-defined, secondary and unspecified sites 	C77.8 C77.9	Lymph nodes of multiple regions Lymph node. unspecified
 C76 Malignant neoplasm of other and ill-defined sites C77 Secondary and unspecified malignant neoplasm of lymph nodes 	C78	Secondary malignant neoplasm of respiratory and digestive organs
C77.0 Secondary and unspecified malignant neoplasm: Lymph nodes of head, face and neck	C78.0 C78.1	Secondary malignant neoplasm of lung Secondary malignant neoplasm of mediastinum
C77.1 Secondary and unspecified malignant neoplasm: Intrathoracic lymph nodes C77.2 Secondary and unspecified malignant	C78.2	Secondary malignant neoplasm of pleura Malignant pleural effusion NOS
neoplasm: Intra-abdominal lymph nodes C77.3 Secondary and unspecified malignant	C78.3 C78.4	Secondary malignant neoplasm of other and unspecified respiratory organs Secondary malignant neoplasm of small intestine
neoplasm: Axillary and upper limb lymph nodes	C78.5	Secondary malignant neoplasm of large intestine and rectum
C77.4 Secondary and unspecified malignant neoplasm: Inguinal and lower limb lymph nodes C77.5 Secondary and unspecified malignant	C78.6	Secondary malignant neoplasm of retroperitoneum and peritoneum Malignant ascites NOS
neoplasm: Intrapelvic lymph nodes	C78.7	Secondary malignant neoplasm of liver and intrahepatic bile duct
C77.8 Secondary and unspecified malignant neoplasm: Lymph nodes of multiple regions	C78.8	Secondary malignant neoplasm of other and unspecified digestive organs
C77.9 Secondary and unspecified malignant neoplasm: Lymph node, unspecified	C79	Secondary malignant neoplasm of other and unspecified sites
 C78 Secondary malignant neoplasm of respiratory 	C79.0	Secondary malignant neoplasm of kidney and renal pelvis

International Classification of Diseases (codes with descriptive sentence to tag patients' diseases. Essentially used for billing)

- Well-posed classification (multilabel or multiclass) problem : input EHRs, output : ICD code (class)
- CNN works well with input text EHRs (Mullenbach et al. 2018)

• To structure or not to structure the data ?

- To structure or not to structure the data ?
- ICD10 classification : works well with CNNs to represent x but well-posed and large amount of labeled data.

- To structure or not to structure the data ?
- ICD10 classification : works well with CNNs to represent x but well-posed and large amount of labeled data.
- Here, x and z is text. Represent x and z in same space (translation-like problem ?)

- To structure or not to structure the data ?
- ICD10 classification : works well with CNNs to represent x but well-posed and large amount of labeled data.
- Here, x and z is text. Represent x and z in same space (translation-like problem ?)
- Old-fashioned NLP : use ontology + NER to extract features. Broadly used for clinical text.

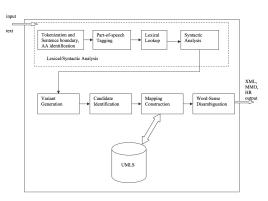
Ontology + rule based feature extraction

- ICD10 : disease codes with descriptive sentences
- MeSH (Medical Subject Headings) : thesaurus of controlled vocabulary used for PubMed indexing. Each term has short description and relations to other terms
- SNOMED CT : hiearchical+relational structure between classes of concepts
- UMLS : "Meta-thesaurus". Millions of concept codes associated with descriptives and relations between them

Mapping text to clinical concepts

Tools using NER and/or UMLS (parse text and map to concepts)

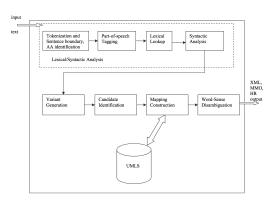
 MetaMap (https: //ii.nlm.nih.gov/ Interactive/UTS_ Required/metamap. shtml)(Figure from Aronson & Lang (2010)), cTAKES, DNorm



Mapping text to clinical concepts

Tools using NER and/or UMLS (parse text and map to concepts)

- MetaMap (https: //ii.nlm.nih.gov/ Interactive/UTS_ Required/metamap. shtml)(Figure from Aronson & Lang (2010)), cTAKES, DNorm
- ConText, NegEx : regex-based tools to find negative or context (family) in medical documents



Garcelon et al. (2016)

- context of rare diseases : text search may be sufficient
- family history important (e.g. father has Crohn disease)
- Text search + negation and context (family) yields good performance

Finding patients for clinical trials : use mapping to ontology to find similar patients

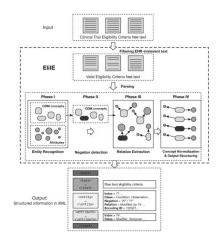
Garcelon et al. (2017)

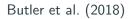
- context of rare diseases : sparse set of relevant clinical concepts
- Method : map EHR to UMLS concepts to find representation vector of patients
- (Incorporate context and negation disambiguation)
- Given patient with rare disease, identify potentially similar patients based on their EHR

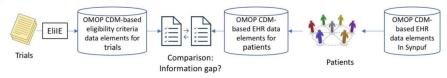
Use ontology-based mapping to extract information from clinical trials description

Kang et al. (2017)

- Goal : structure concepts in EC with terminology common to EHRs concepts ("normalization")
- Specific entity recognition for eligibility criteria (relation between criteria, *etc.*)
- Fine-tuned on Alzheimer's disease eligibility criteria







Butler et al. (2018)

 Goal : Assess intersection of concepts extracted from EC and EHRs

Butler et al. (2018)

- Goal : Assess intersection of concepts extracted from EC and EHRs
- Involves manual unification of the clinical terms in EC before concept extraction

Table 1. Manual revision of clinical entities.

Types of Revision	Example	
Formatting; Typo	delerium -> delirium	207
Formatting; Plural	cancers -> cancer	253
Formatting; removal of non- informative words	heart rate measurement -> heart rate	364
Formatting; removal of abbreviations	absolute neutrophil count (ANC) -> absolute neutrophil count	1768
Simplification	asthmatic conditions -> asthma	573
Breaking down long phrases to logically-connected single phrases	basal or squamous cell carcinoma -> basal cell carcinoma or squamous cell carcinoma	445
Total		3610

Butler et al. (2018)

- Goal : Assess intersection of concepts extracted from EC and EHRs
- Involves manual unification of the clinical terms in EC before concept extraction
- Also on Alzheimer's disease data

Table 1. Manual revision of clinical entities.

Types of Revision	Example	
Formatting; Typo	delerium -> delirium	207
Formatting; Plural	cancers -> cancer	253
Formatting; removal of non- informative words	heart rate measurement -> heart rate	364
Formatting; removal of abbreviations	absolute neutrophil count (ANC) -> absolute neutrophil count	1768
Simplification	asthmatic conditions -> asthma	573
Breaking down long phrases to logically-connected single phrases	basal or squamous cell carcinoma -> basal cell carcinoma or squamous cell carcinoma	445
Total		3610

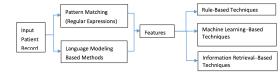
Butler et al. (2018)

- Goal : Assess intersection of concepts extracted from EC and EHRs
- Involves manual unification of the clinical terms in EC before concept extraction
- Also on Alzheimer's disease data
- Intersection not so broad

SNOMED CT Term	SNOMED-CT ID	Trial Count	Prevalence in Trials	Count of uses in EHR data for AD patients
Alzheimer's disease	26929004	972	64.29%	30,262
Mini-mental state examination	273617000	705	46.63%	0
Presenile dementia	12348006	599	39.62%	7,089
Disease	64572001	555	36.71%	12,029,900
Current chronological age	424144002	515	34.06%	0
Mental disorder	74732009	499	33.00%	505,870
Magnetic resonance imaging	113091000	482	31.88%	63,171
Cerebrovascular accident	230690007	371	24.54%	4
Global assessment of functioning - 1993 Diagnostic and Statistical Manual of Mental Disorders- ver.4 th	284061009	361	23.88%	0
Systemic disease	56019007	353	23.35%	0
Disorder of nervous system	118940003	335	22.16%	780,478
Substance abuse	66214007	279	18.45%	9,466
Parkinson's disease	49049000	275	18.19%	0
Impaired cognition	386806002	260	17.20%	13,375
Seizure disorder	128613002	240	15.87%	28,586
Hypersensitivity reaction	421961002	218	14.42%	4,686
Schizophrenic disorders	191526005	216	14.29%	40777
History of clinical finding in subject	417662000	207	13.69%	189,543
Risk identification: childbearing family	386414004	205	13.56%	0
Clinical dementia rating scale	273367002	204	13.49%	0

Adupa et al. (2016)

 EHR information extraction method for a given clinical trial (PARAGON)



Adupa et al. (2016)

- EHR information extraction method for a given clinical trial (PARAGON)
- Domain specific rules (Heart Failure)

Table 4. Regular expressions for extracting LVEF-containing sentences and values.

S/N	Regular Expression
1	$\label{eq:linear} $$ (left ventricular ejection fraction vef v ejection fraction eft ventricle ejection fraction ejection fraction ef ejection fraction (^_%), ^*; (\d-\\]+)\\s*'?% $$ (l\d-\\]+)\\s*'?% $$ (l\d-\)+)\\s*'?% $$ (l\d-\)+)\s*'?% $$ (l\d-\)+)\s*'?%$
2	(left ventricular systolic function) left ventricular function j systolic function of the left ventricle ly systolic function left ventricular ejection fraction ejection fraction left ventricle normal normal global low normal well preserved severty reduced moderately_decreased moderately_decreased]severt decreased severe markedly_decreased moderately_decreased moderately_globally_reduced mildly decreased severe markedly_decreased)
3	(normal normal global low normal well preserved severely reduced moderately decreased moderately depressed severely decreased severe markedly decreased markedly reduced severely globally reduced mildly decreased mildly depressed severely depressed)
4	.*(moderate marked severe) (Iv systolic dysfunction left ventricular dysfunction left ventricular systolic dysfunction).*
5	$((\d^*\))(\d^*\)(\d^*$
6	\\d+(\\.\\d+)?

Adupa et al. (2016)

- EHR information extraction method for a given clinical trial (PARAGON)
- Domain specific rules (Heart Failure)
- Goal : save time for prescreening with high recall

			g Gold Standard anual)
		Patients Included	Patients Excluded
Classification	Patients included	38	6
outcome (algorithmic)	Patients excluded	2	152

Deep (representation) learning methods ?

- Think of Computer Vision
- Now transfer learning works with text too (BERT, ELMO, etc.)
- Unsupervised methods ? (Word2Vec)
- Yet, not always satisfying in domain-specific tasks (even in CV)

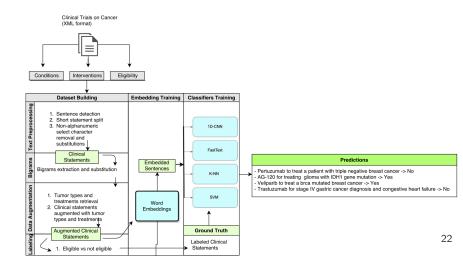
Training deep representation of clinical trials with a random classification task

Bustos & Pertusa (2018)

- Goal : train deep neural network (CNN) to obtain accurate embedding of clinical text (words)
- Task : classify statements as True or False (Eligible / Not eligible)
- Data : uses data from clinicaltrials.gov only) to generate data (labeling given by inclusion/exclusion, data augmentation through simple sentences)
- Belief in the magic of word embeddings

Training deep representation of clinical trials with a random classification task

Bustos & Pertusa (2018)



Training deep representation of clinical trials with a random classification task

Bustos & Pertusa (2018)

Condition	Intervention			
Rectal Neoplasms	Procedure: Irreversible electroporation (IRE)			
Criteria		٦		
Inclusion Criteria:				
· Rectal Neoplasms diagnosed by positive biopsy or non-invasive criteria	 Rectal Neoplasms diagnosed by positive biopsy or non-invasive criteria, 		Label	Clinical Statement
 Not suitable for surgical resection, 				
 Eastern Cooperative Oncology Group (ECOG) score of 0-1, 			Eligible	study intervention is irreversil electroporation , rectal neople
 A prothrombin time ratio > 50%, 				
 Platelet count > 80x10*9/L, 				not suitable for surgical resec
· Ability of patient to stop anticoagulant and anti-platelet therapy for seve	n days prior to and seven days post NanoKnife procedure,			
· Able to comprehend and willing to sign the written informed consent for	Able to comprehend and willing to sign the written informed consent form (ICF), Have a life expectancy of at least 3 months.			
 Have a life expectancy of at least 3 months. 			Not eligible	study intervention is irreversit electroporation . rectal neople cardiac insufficiency ongoing coronary artery disease or an
xolusion Criteria:				
 Cardiac insufficiency, ongoing coronary artery disease or arrhythmia, 				
 Any active implanted device (eg Pacemaker), 				
· Women who are pregnant or women of child-bearing potential who are				
· Have received treatment with an investigational agent/ procedure within	n 30 days prior to treatment with the NanoKnife™ LEDC System,			
 Are in the opinion of the Investigator unable to comply with the visit sch 	edule and protocol evaluations.			
			B Extracted feature	is after preprocessing

Original Source: https://clinicaltrials.gov/ct2/show/NCT02425059 Α.

Extracted features after preprocessing

Conclusion

Summary, TODOs, challenges and open questions

- Matching unstructured text data (EHRs) to unstructured text (Clinical Trials)
- Goal : prescreen patients with high recall, and provide reasonable number of patients for manual screening
- Domain restriction allows information retrieval with specifically designed rules (*e.g.*, Alzheimer's or Heart Failure)
- Degree of precision for matching also depends on domain restriction (*e.g.*, just output patients with "Heart Failure" in their EHR ?)
- Evaluate baselines (text-search and concept mapping tools)
- Make progress without matching data (other, simpler task (*e.g.*, classification of diseases))
- Annotate data ?
- Reliably augment the matching data (*e.g.*with patient similarity, or leveraging external corpus or ontology)

References

- Adupa, A. K., Garg, R. P., Corona-Cox, J., Shah, S., Jonnalagadda, S. R. et al. (2016), 'An information extraction approach to prescreen heart failure patients for clinical trials', arXiv preprint arXiv:1609.01594.
- Aronson, A. R. & Lang, F.-M. (2010), 'An overview of metamap: historical perspective and recent advances', *Journal of the American Medical Informatics Association* 17(3), 229–236.
- Bustos, A. & Pertusa, A. (2018), 'Learning eligibility in cancer clinical trials using deep neural networks', *Applied Sciences* 8(7), 1206.
- Butler, A., Wei, W., Yuan, C., Kang, T., Si, Y. & Weng, C. (2018), 'The data gap in the ehr for clinical research eligibility screening', AMIA Summits on Translational Science Proceedings 2017, 320.
- Garcelon, N., Neuraz, A., Benoit, V., Salomon, R. & Burgun, A. (2016),
 'Improving a full-text search engine: the importance of negation detection and family history context to identify cases in a biomedical data warehouse', *Journal of the American Medical Informatics Association* 24(3), 607–613.
- Garcelon, N., Neuraz, A., Benoit, V., Salomon, R., Kracker, S., Suarez, F.,Bahi-Buisson, N., Hadj-Rabia, S., Fischer, A., Munnich, A. et al. (2017),'Finding patients using similarity measures in a rare diseases-oriented clinical

data warehouse: Dr. warehouse and the needle in the needle stack', *Journal of biomedical informatics* **73**, 51–61.

Kang, T., Zhang, S., Tang, Y., Hruby, G. W., Rusanov, A., Elhadad, N. & Weng, C. (2017), 'Eliie: An open-source information extraction system for clinical trial eligibility criteria', *Journal of the American Medical Informatics Association* 24(6), 1062–1071.

Mullenbach, J., Wiegreffe, S., Duke, J., Sun, J. & Eisenstein, J. (2018), 'Explainable prediction of medical codes from clinical text', arXiv preprint arXiv:1802.05695.