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Seriation

The Seriation Problem.

m Pairwise similarity information A;; on n variables.

m Suppose the data has a serial structure, i.e. there is an order 7 such that
A (i)r(;) decreases with |¢ — j| (R-matrix)

Recover 77

Similarity matrix Reconstructed
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Genome Assembly

Seriation has direct applications in (de novo) genome assembly.

m Genomes are cloned multiple times and randomly cut into shorter reads
(~ 400bp to 100kbp), which are fully sequenced.

m Reorder the reads to recover the genome.
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Genome Assembly

Overlap Layout Consensus (OLC). Three stages.

m Compute overlap between all read pairs.
m Reorder overlap matrix to recover read order.

m Average the read values to create a consensus sequence.
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The read reordering problem is a seriation problem.
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Genome Assembly in Practice

Noise. In the noiseless case, the overlap matrix is a R-matrix. In practice. . .

m There are base calling errors in the reads, typically 2% to 20% depending on
the process.

m Entire parts of the genome are repeated, which breaks the serial structure.

Sequencing technologies

= Next generation : short reads (~ 400bp), few errors (~ 2%). Repeats are
challenging

= Third generation : long reads (~ 10kbp), more errors (~ 15%). Can resolve
some repeats, but not all of them + noise can be challenging
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Genome Assembly in Practice

Current assemblers.

s With short accurate reads, the reordering problem is solved by
combinatorial methods using the topology of the assembly graph and
additional pairing information.

= With long noisy reads, reads are corrected before assembly (hybrid correction
or self-mapping).

m Layout and consensus not clearly separated, many heuristics . . .

= minimap+miniasm : first long raw reads straight assembler (but consensus
sequence is as noisy as raw reads).
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Outline

= Introduction
= Spectral relaxation of Seriation (Spectral Ordering)
s Multi-dimensional Spectral Ordering

= Results (Application to genome assembly)
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2-SUM and the Graph Laplacian

The 2-SUM Combinatorial Problem.

m The 2-SUM problem is written

n
. . N2
min - ) Ariyr(iy (1 —7)
1,7=1
or alternatively,
min - ) 1Az'j(7f(i) —7(4))*
i,j=

= optimal permutation 7* : high values of A < low |7(i) — 7(j)

lay close to each other.
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2-SUM and the Graph Laplacian

Graph Laplacian

m A : adjacency matrix of a undirected weighted graph (A4;; > 0 iff. there is an
edge between nodes ¢ and j).

s Node ¢ has degree d; = ) |, A;;j. Degree matrix D = diag(A1) = diag(d).
m Laplacian matrix L =D — A.

m [he Laplacian can be viewed as a quadratic form,

FLf =5 S Aylfi— 1)

1,7=1
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2-SUM and the Graph Laplacian

Mathematical reminder

= For a vector f = (f1,..., fn)! € R™ and a matrix M € R™*", we have,

fIMf =370 Mijfif;

s (A €R, ueR")is a eigenvalue-eigenvector couple of L € R™*™ iff Lu = A\u
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2-SUM and the Graph Laplacian

The Laplacian can be viewed as a quadratic form,

- ZAZ]

1,7=1

Indeed for any f € R"™,

fILf = f'Df — frAf
= >ica JiDii = 320 iy Aijfif;
— Z?:l fZZ(ijl Aij) — Zm 1 Aij fif;
— >oi et Aig(ff = fifs)
5 2s i1 Aig(fF + f2 = 2fif))
= 3 2 j=1 Aii(fi = £5)?
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2-SUM and the Graph Laplacian

The Laplacian can be viewed as a quadratic form,

- ZAZ]

1,7=1

m L is symmetric and positive semi-definite.
m L has n non-negative, real-valued eigenvalues, 0 = A < Ay < ... < A\,
= 1=(1,...,1)T is eigenvector associated to eigenvalue 0.

m If A has K connected components, the eigenvalue 0 has multiplicity K + 1,
with eigenvectors being indicators of the connected components.

m If fe{—1,+1}", objective of min-cut (clustering).
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2-SUM and the Graph Laplacian

m [The 2-SUM problem is written

Min;cp ZZj:l AT('(”L)T(’(])(Z - ])2
or alternatively,

MiN;cp ZZj:l Aij (ﬂ-(/’“) - ﬂ_(]))2
1.€.,

min,ep 7 L7

s For certain matrices A, 2-SUM < seriation. ([Fogel et al., 2013])
s NP-Complete for generic matrices A.

m Constraints m&e P ?
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Spectral relaxation

min 7l Lm (2SUM)
TeP

Set of permutation vectors :
w(i) € {l,...,n}, Vi<i<n
™1 = nn+1)/2
|73 = nn+1)2n+1)/6

= Since L1 =0, (2SUM) is invariant by 7w < 7w — (”;“1)1, so enforce 711 = 0.

= Up to a dilatation, we can chose ||7]|3 = 1.

= Relax the integer constraints and let 7(i) € R.
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Spectral relaxation

Spectral Seriation. Define the Laplacian of A as L = diag(A1) — A. The
Fiedler vector of A is written

f =argmin z! Lax.

and is the second smallest eigenvector of the Laplacian.

The Fiedler vector reorders a R-matrix in the noiseless case.

Theorem [Atkins, Boman, and Hendrickson, 1998]

Spectral seriation. Suppose A € S,, is a pre-R matrix, with a simple Fiedler value
whose Fiedler vector f has no repeated values. Suppose that 11 € P is such that
the permuted Fielder vector 11v is monotonic, then ITAITY is an R-matrix.
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Spectral Ordering Algorithm

The Algorithm.

Input: Connected similarity matrix A € R"*"
1. Compute Laplacian L = diag(Al1) — A
2. Compute second smallest eigenvector of L, x*
3. Sort the values of x*
Output: Permutation 7 : X*w(l) < X*ﬂ-(Q) <. < X*W(n)

A. Recanati
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Spectral Solution

m Spectral solution easy to compute and scales well (polynomial time)
= But sensitive and not flexible (hard to include additional structural constraints)

m Other (convex) relaxations can handle structural constraints and solve more
robust objectives than 2SUM

Genome assembly pipeline

s Overlap : computed from k-mers, yielding a similarity matrix A

m Layout : A is thresholded to remove noise-induced overlaps, and reordered
with spectral ordering algorithm. Layout fine-grained with overlap
information.

m Consensus : Genome sliced in windows
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Spectral Solution vs Noisy Synthetic data
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m Gaussian noise over perfect R-matrix.
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Spectral Solution vs Real DNA data
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m Repeats are a more structured noise that makes the method fail.
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Outline

= Introduction
m Spectral relaxation of Seriation (Spectral Ordering)
s Multi-dimensional Spectral Ordering

= Results (Application to genome assembly)

A. Recanati Symbiose Seminar, Juin 2018, 20/29



Multi-dimensional Spectral Embedding

(Spoiler Alert!)

There is information in the rest of the eigenvectors of L
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3d scatter plot of the 3 first non-zero eigenvectors of L
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Multi-Dim 2-SUM and the Graph Laplacian

Generalize the quadratic expression involving the Laplacian,
. . 1 —
Tr ((I)TLA(I)) — 9 Z Aijlly; — ng%
ij=1

mletO=Xg< A1 <...< \,_1, Aédiag()\o,...)\n_l),
® = (1, fa1),-- -, fen—1)), be the eigendecomposition of L = PADT.

m Forany K <n, ®5) = (f4),..., fx)) defines a K-dimensional embedding

v, = (fy (@), f) (@), -, fry () €RE, for i=1,...,n.  (K-LE)

which solves the following embedding problem,

minimize ZZ;‘:1 Aijlly; — ng%
such that & = (y7,...,y7)" e R™K  §Td =1, 71, = 0k
(Lap-Emb)
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Intermission : Spectral Clustering

Spectral Clustering usually leverages the first few eigenvectors of L. To partition
data in K clusters,

m Compute the K lowest non-zero eigenvectors of L,
PK) = (f(l), Ce e f(K)) c R™<K

m Run the K-means algorithm on this K-dimensional embedding.
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Multi-Dimensional Spectral Ordering (MDSO)

How to extract ordering from multidimensional embedding ?

m Construct new similarity matrix .S

m For each point u, take k-NN in the embedding, fit by a line, use projection on
the line to define similarity S;; between points i, 7 € kNN(u).

m Run basic Spectral Ordering on S.

m If S is not connected, reorder each connected component, and use A to merge
the ends.
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Multi-Dimensional Spectral Ordering (MDSO)

m Simple generalization of Spectral Ordering
m Acts like a pre-preocessing on the similarity matrix
m Improves robustness to noise

= Handles circular orderings (with 2D embedding in a circle)

initial laplacian embedding of Hic
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Outline

= Introduction
m Spectral relaxation of Seriation (Spectral Ordering)
s Multi-dimensional Spectral Ordering

= Results (Application to genome assembly)
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Application to genome assembly

Bacterial genome.

m Escherichia coli reads sequenced by Loman et al. [2015]. ~ 4Mbp
= Oxford Nanopore Technology MinlON's device (third generation long reads).

m minimap2 used to compute overlap-based similarity between reads.
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Application to genome assembly

Layout.

m MDSO new similarity matrix .S is disconnected.

m Connected components can be merged by looking at the similarity between
their ends from the original matrix A.

m Kendall-Tau score with reference ordering : 99.5%

s Full assembly pipeline yields ~ 99% avg. identity (using MSA in sliding
window)
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Conclusion

s Equivalence 2-SUM < seriation.

m Spectral ordering : simple relaxation of 2-SUM using spectrum of the
Laplacian. Related to widespread Spectral Clustering algorithm.

m Spectral ordering is sensitive to repeats.

s Multi-dimensional Spectral Ordering can overcome this issue (and solve
circular seriation).

s Straightforward assembly pipeline with MSA to perform consensus.
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Application to genome assembly

Eukaryotic genome : S. Cerevisiae

m 16 chromosomes

m Many repeats

m Higher threshold on similarity

Soompes * @1

[, %" damase § Calel. Coge. {: o !, Neimas’s
T . . MR IPE 2 i
. . . . *
tg B umma e Nipe o
#s 0w e - b: e aT
. i . .
b 03 o0 cens sy Lo Y .
d{ '.a. w0 aves e 0.'.--,13\"‘- :a.‘ s -
lge oy comece | wys, ee [t g . e
T P A
=3 - cowmeed | FHER ] & "o -
- - W00 ., @ we H a8 .
e °8° (so0wees * o%° ] LA 4
e ® iddae-, B¢ o8N W
g @ ¥, 80 Cew T wcT
- - BTN N - . .- -0' .o
P L L) e PR
DR - JCRPRED B
Me, B ceedep.c Y a's
PRIy . . . . .
oo ete - . Ve
. . & L) .. - ® . . . )
PP e Vet comuer 2 ® ¢ Vg lingmge
- . .
4" te e, et = 08 et et e ot %
¥ I sghenes o d .. W e Pmgee e Ty
X - e wees * o ® ‘‘mee o8 -
°F .= 3 X ¢
B RTE R T e w Se Vet tiL e .. ca’te %
M .‘:' '.:;nn:- '.g.’ .',.,:a,‘,n i &‘_. . ‘o-'-:.o:‘-o. R
o STIME NPT 3 . .
i c . Doty s, & s "o L. o'~. ..
- = s . . .. .
2 LE: N 842 o
i T ' & ARt RO BRI
.= T e FsttEE Lty e s femmger Lt
. . .

o et - o ‘e g . .
s semans o wel sece et . fimenzer o

993 @ erwn. 9 0y 2 o
RO
!

. P A S R T T
IR R I AR IS A AR L I I

matrix = many connected components

7.
e s
...‘ Ll .e - 9
S|s H I
2% 2% g
ORI N
- .
ok
: S N
- s -
. 1.
-

l. ‘.." l'.. O. .l
T

TR
|
] L ]

ve
L ]
-
(=

2L
'
-
b
6

A. Recanati

recovered (spectral ordering)

true ordering (from BWA)

Symbiose Seminar, Juin 2018, 31/29



Conclusion

Straightforward assembly pipeline.

m Equivalence 2-SUM <= seriation.

= Layout correctly found by spectral relaxation for bacterial genomes (with
limited number of repeats)

m Consensus computed by MSA in sliding windows =~ 99% avg. identity with
reference

Future work.

= Additional information could help assemble more complex genomes (e.g.
with topological constraints on the similarity graph, or chromosome
assignment...)

m Other problems involving Seriation 7

= Convex relaxations can also handle constraints (e.g. |7(¢) — w(j)| < k) for
different problems
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Consensus

m Once layout is computed and fined-grained, slicing in windows
= Multiple Sequence Alignment using Partial Order Graphs (POA) in windows

s Windows merging

window 1

window 2

window 3

POA in windows

consensus 1

consensus 2

consensus (1+2)

consensus ((142) +3)
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Seriation

Combinatorial problems.

m The 2-SUM problem is written

n

. : N2 : . T
min A _cay(1 — or equivalentl min 7 Lam
meP L SOLOI) q Y e A

i,j=

where L 4 is the Laplacian of A.

s NP-Complete for generic matrices A.
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Convex Relaxation

Seriation as an optimization problem.

n

frneig 2 1Aw(i)w(j)(i—j)2
1,)]=

What'’s the point?

= Gives a spectral (hence polynomial) solution for 2-SUM on some R-matrices.

m Write a convex relaxation for 2-SUM and seriation.

o Spectral solution scales very well (cf. Pagerank, spectral clustering, etc.)
o Not very robust. . .

o Not flexible. . . Hard to include additional structural constraints.
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Convex Relaxation

m Let D,, the set of doubly stochastic matrices, where
D,={XecR"™:X>0,X1=1,X"1=1}
is the convex hull of the set of permutation matrices.

m Notice that P =D N O, i.e. Il permutation matrix if and only II is both
doubly stochastic and orthogonal.

= Solve
minimize  Tr(YITITLAITY) — p|| PII||%
subject to elllg + 1 < elllg, {
11 =1, 111 =1, (1)
II > 0,
in the variable II € R"*"*" where P =1 — %11T and Y € R™*P is a matrix
whose columns are small perturbations of g = (1,...,n)?.
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Convex Relaxation

Objective. Tr(YTHTLAIIY) — p| PII||2

s 2-SUM term Tr(Y TP L 1IY) = 0yl TIT L ATTy; where y; are small
perturbations of the vector g = (1,...,n)?

,

= Orthogonalization penalty —u| PII||%, where P =1 — +117"

n

o Among all DS matrices, rotations (hence permutations) have the highest
Frobenius norm.

o Setting 1t < Ao(L )N (YY?), keeps the problem a convex QP.

Constraints.

m elllg +1 < elTlg breaks degeneracies by imposing 7(1) < m(n). Without it,
both monotonic solutions are optimal and this degeneracy can significantly
deteriorate relaxation performance.

m 111 =1, 1171 =1 and II > 0, keep II doubly stochastic.

A. Recanati Symbiose Seminar, Juin 2018, 37/29



Convex Relaxation

Other relaxations.

= Relaxations for orthogonality constraints, e.g. SDPs in [???]. Simple idea:
Q1Q = 1 is a quadratic constraint on Q, lift it. This yields a O(y/n)

approximation ratio.

s O(+/logn) approximation bounds for Minimum Linear Arrangement

m All these relaxations form extremely large SDPs.

Our simplest relaxation is a QP. No approximation bounds at this point however.
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Semi-Supervised Seriation

Convex Relaxation.

s Semi-Supervised Seriation. We can add structural constraints to the
relaxation, where

a<m(i)—m()<b iswritten a<elllg— e;‘-FHg <b.

which are linear constraints in 11.

m Sampling permutations. We can generate permutations from a doubly
stochastic matrix D

o Sample monotonic random vectors u.

o Recover a permutation by reordering Du.

m Algorithms. Large QP, projecting on doubly stochastic matrices can be done
very efficiently, using block coordinate descent on the dual. Extended
formulations by [?] can reduce the dimension of the problem to O(nlogn) [?].
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Numerical results: nanopores

Nanopores DNA data. New sequencing hardware.

= 5=

Oxford nanopores MinlON.
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Numerical results: nanopores

Nanopores.
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Numerical results

Nanopores DNA data.

m Longer reads. Average 10k base pairs in early experiments. Compared with
~ 100 base pairs for existing technologies.

s High error rate. About 20% compared with a few percents for existing
technologies.

m Real-time data. Sequencing data flows continuously.
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