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Introduction



Genome sequencing

	 ...ATGGCGTGCAATG...

...TACCGCACGTTAC...
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DNA sequencing

Image: Nik Spencer/Nature

Genome is cut into

overlapping fragments

(reads).

Ex:
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Assembly

Goal: assemble reads together to reconstruct the full sequence.

The position and ordering of the reads are unknown.


CGTGCAA

ATGGCGT

TGCAATG

GGCGTGC

	
ATGGCGTGCAATG

ATGGCGTGCAATG

ATGGCGTGCAATG

ATGGCGTGCAATG

ATGGCGTGCAATG

3



Genome assembly: mapping

If reference genome available: map the fragments to it, then derive

consensus sequence

CGTGCAA

ATGGCGT

TGCAATG

GGCGTGC

ATGGCGTGCAATG

ATGGCGTGCAATG

ATGGCGTGCAATG

ATGGCGTGCAATG

ATGGCGTGCAATG (assembly)
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Genome assembly: de novo

No reference available. Greedy assembly: take one read, “add” the

one with largest overlap, etc., until all reads are included.
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De novo assembly paradigms

• Greedy methods

• De Bruijn graphs

• Overlap-Layout-Consensus
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Overlap-Layout-Consensus

• Compute overlaps between all read pairs

• Find tiling of reads consistent with overlaps

• Average reads values to create consensus sequence

ATGGCGT

CGTGCAA

TGCAATG

GGCGTGC

GGCGT

CGTGC

TGCAACGT

TGC

ATGGCGTGCAATG

ATGGCGTGCAATG

ATGGCGTGCAATG

ATGGCGTGCAATG

ATGGCGTGCAATG
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Modern sequencing technologies

• 2nd gen. (SGS): short (∼100bp), accurate (< 2% err.)reads

(Illumina/Solexa), with pairing information. De Bruijn

graphs methods (on k-mers based graph) preferred.

• 3rd. gen.: long (∼10000bp), noisy (∼10%) reads (Pacific

Biosciences [PacBio], Oxford Nanopore Technology [ONT]).

Come-back of OLC methods.

• Can be combined to have both accuracy and length (hybrid

methods)
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De novo assembly methods with ONT reads

State of the art: Canu (ex. Celera Assembler). Heavy

pre-processing, many heuristics

• correction: (uses [hash-based] overlaps for consensus)

• trimming: recalculate overlaps to filter

low-coverage/high-error regions

• re-computation of overlaps with specific target errors (uses a

priori model of errors)

• assemble unitigs (unambiguous sequences) first, then

incremental scaffolding
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De novo assembly methods with ONT reads

• ONT-only assemblers (non-hybrid): active field of research

2015-now

• Canu: complex pipeline, high quality consensus.

• Miniasm: ideas of Canu assembly, no pre-processing, smart

heuristics. Ultra-fast, low-quality.

• Naive OLC approach with clean mathematical formulation ?
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Introduction

De novo Genome Assembly

Seriation

Application of the Spectral Method to Genome Assembly

Robust Seriation

Multi-dimensional spectral ordering

Conclusion
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Introduction: The Seriation Problem

• Pairwise similarity information Aij on n variables.

• Suppose the data has a serial structure, i.e. there is an

order π such that

Aπ(i)π(j) decreases with |i − j | (R-matrix)

Recover π?

20 40 60 80 100 120 140 160

20

40

60

80

100

120

140

160
20 40 60 80 100 120 140 160

20

40

60

80

100

120

140

160

Similarity matrix Input Reconstructed
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Seriation in OLC assembly

Reorder the reads ?

ATGGCGT

CGTGCAA

TGCAATG

GGCGTGC

GGCGT

CGTGC

TGCAACGT

TGC

• • • •


CGTGCAA 7 3 5 5

ATGGCGT 3 7 0 5

TGCAATG 5 0 7 3

GGCGTGC 5 5 3 7

13



Seriation in OLC assembly (ctd.)

Solve Seriation to reorder reads:

• • • •


CGTGCAA 7 3 5 5

ATGGCGT 3 7 0 5

TGCAATG 5 0 7 3

GGCGTGC 5 5 3 7

	
• • • •


ATGGCGT 7 5 3 0

GGCGTGC 5 7 5 3

CGTGCAA 3 5 7 5

TGCAATG 0 3 5 7
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Seriation in OLC assembly (ctd.)

The ordering yields the layout:

• • • •


ATGGCGT 7 5 3 0

GGCGTGC 5 7 5 3

CGTGCAA 3 5 7 5

TGCAATG 0 3 5 7

	
ATGGCGTGCAATG

ATGGCGTGCAATG

ATGGCGTGCAATG

ATGGCGTGCAATG

ATGGCGTGCAATG
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The 2-SUM combinatorial problem

• The 2-SUM problem is written

min
π∈P

n∑
i ,j=1

Aij(π(i)− π(j))2 (2-SUM)

• optimal π∗: high Aij ⇔ low |π(i)− π(j)|, i.e., i and j are

nearby.

16



The 2-SUM combinatorial problem

f2SUM =
1

2

n∑
i ,j=1

Aij(πi − πj)2

• • • •


CGTGCAA 7 3 5 5

ATGGCGT 3 7 0 5

TGCAATG 5 0 7 3

GGCGTGC 5 5 3 7

	
f2SUM = (1/2) ∗ 4 ∗ 7 ∗ 12

+ 2 ∗ 3 ∗ 22

+ 2 ∗ 5 ∗ 32

+ 1 ∗ 5 ∗ 42

= 416
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The 2-SUM combinatorial problem

f2SUM =
1

2

n∑
i ,j=1

Aij(πi − πj)2

• • • •


ATGGCGT 7 5 3 0

GGCGTGC 5 7 5 3

CGTGCAA 3 5 7 5

TGCAATG 0 3 5 7

	
f2SUM = (1/2) ∗ 4 ∗ 7 ∗ 12

+ 3 ∗ 5 ∗ 22

+ 2 ∗ 3 ∗ 32

+ 1 ∗ 0 ∗ 42

= 142

18



Seriation vs 2SUM

• The optimal permutation for 2SUM solves Seriation [Fogel].

• Solve 2-SUM ?
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2-SUM is a quadratic

The 2-SUM objective is quadratic in π

f2SUM(π) =
n∑

i ,j=1

Aij(πi − πj)2

=
n∑

i ,j=1

Lijπiπj

= πTLπ.

with L = diag(A1)− A

(i.e., Lii =
∑

j 6=i Aij , Lij = −Aij , i 6= j).

20



2-SUM is a quadratic

f2SUM(x) =
n∑

i ,j=1

Aij(xi − xj)
2 = xTLx . (1)

• L is symmetric and positive semi-definite.

• L has n non-negative, real-valued eigenvalues,

0 = λ1 ≤ λ2 ≤ . . . ≤ λn.

• 1 = (1, . . . , 1)T is eigenvector associated to eigenvalue 0.

• Used in Spectral Clustering.
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Relaxations of the set of permutations

How to optimize over the set of permutations ?

Set of permutation vectors

π = (π1, . . . , πn):

∑
i πi = n(n + 1)/2

‖π‖22 = n(n + 1)(2n + 1)/6

πi ∈ {1, ..., n}
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Spectral relaxation

Drop integer constraints

Relaxed set

π = (π1, . . . , πn):
∑

i πi = n(n + 1)/2

‖π‖22 = n(n + 1)(2n + 1)/6

πi ∈ R

x

z

y

Hn

cn

{x | ‖x‖ = n(n+ 1)(2n+ 1) + 6}
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Spectral relaxation

minimize xTLx

such that
∑

i xi = n(n + 1)/2,

‖x‖22 = n(n + 1)(2n + 1)/6.

• L1 = 0: x ← x − (n+1)
2 1

• homogeneous function optimize over sphere:

x ← x/ (n(n + 1)(2n + 1)/6) .
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Spectral relaxation

minimize xTLx

such that
∑

i xi = 1,

‖x‖22 = 1.

• L1 = 0: x ← x − (n+1)
2 1

• homogeneous function optimize over sphere:

x ← x/ (n(n + 1)(2n + 1)/6) .

24



Spectral relaxation

minimize xTLx

such that xT1 = 0,

‖x‖22 = 1.

• eigenvalue problem on L (1 is first eigenvector).

• From NP hard to O(n2) (extremal eigenvalue)
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Spectral ordering

Define the Laplacian of A as L = diag(A1)−A. The Fiedler vector

f of A is the second smallest eigenvector of L:

f = argmin
1T x=0, ‖x‖2=1

xTLAx .

f reorders a R-matrix in the noiseless case.

Theorem ([Atkins)

Spectral Seriation] Suppose A ∈ Sn is a pre-R matrix, with a simple

Fiedler value whose Fiedler vector f has no repeated values. Suppose

that Π ∈ P is such that the permuted Fielder vector Πv is monotonic,

then ΠAΠT is an R-matrix.
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Spectral Ordering Algorithm

Input: Connected similarity matrix A ∈ Rn×n

1: Compute Laplacian L = diag(A1)− A

2: Compute second smallest eigenvector of L, f

3: Sort the values of f

Output: Permutation π : fπ(1) ≤ fπ(2) ≤ ... ≤ fπ(n)

0 20 40 60 80
0

20

40

60

80

0 20 40 60 80 100

0.15

0.10

0.05

0.00

0.05

0.10

0.15

Similarity matrix Fiedler vector
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Application of the Spectral Method

to Genome Assembly



Related publication

This section is based on the following publication:

Antoine Recanati, Thomas Brüls, and Alexandre d’Aspremont. A

spectral algorithm for fast de novo layout of uncorrected long

nanopore reads. Bioinformatics, 2016.

https://github.com/antrec/spectrassembler
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Data: ONT and PacBio long noisy reads

• bacteria: E. coli and A. baylyi.

Circular, prokaryotic, small

(∼4Mbp) genomes, nreads ∼20000,

cov∼30X.

• yeast: S. cerevisiae. Eukaryotic

genome, 16 chromosomes,

∼12Mbp, nreads ∼100000,

cov∼80X.
read length

0 5000 15000 25000

fr
e

q
u

e
n

c
y
 (

c
o

u
n

t)

0

Mean:    6863
Median: 7002
Min:         327
Max:    25494
>7Kbp:  50%

(E. coli read length hist.)
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Overlap Layout Consensus (OLC) pipeline

Input: Sequenced reads

1: Compute overlaps for all read pairs

2: Define similarity matrix from overlaps

3: Solve Seriation to reorder reads

4: Refine layout with overlap information

5: Compute consensus sequence by multiple sequence alignment

Output: Assembled sequence

30



Overlap-based similarity matrices

Repeats induce false overlaps between far-apart reads. In general

shorter than “real” overlaps.

(thr=0%) (thr=90%)
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Basic spectral ordering method

Repeats make spectral method fail

f2SUM =
1

2

n∑
i ,j=1

Aij(πi − πj)2

(thr=50%)

0 2500 5000 7500 10000 12500 15000 17500
partial orderings

0

1000000

2000000

3000000

4000000

tru
e 
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sit

io
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on
 g

en
om

e

(true vs spectral order)
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Band heuristic

Keep only large overlaps to remove repeat-induced overlaps.

Input: Overlap-similarity matrix S

1: for all Connected component A of S do

2: Reorder A with spectral algorithm

3: if bandwidth of Areordered ≥ 2× Coverage then

4: increase threshold on A and try again

5: end if

6: Compute layout from the ordering found and overlaps

7: Derive consensus sequence (contig)

8: end for

Output: Contig consensus sequences
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Results: ONT bacterial genomes (layout)

Yields correct but fragmented assemblies.

(E. coli ONT layout)

Contigs may overlap and be merged (one contig)

34



Results: ONT yeast genome (layout)

Even more fragmented assemblies. Cannot be merged into

chromosome sized contigs.

(S. cerevisiae ONT layout)
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Results (assembly quality)

Avg. identity with ref. (%) [# contigs]

Ours Canu Miniasm

A. baylyi 98.17 97.59 87.31

E. coli 98.80 99.40 89.28

S. cerevisiae1 98.00 [71] 98.33 [36] 89.00 [29]

S. cerevisiae2 98.81 [48] 99.02 [26] 93.55 [30]

1(R7.3 chemistry, coverage 68X)
2(R9 chemistry, coverage 86X)
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Robust Seriation
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De novo Genome Assembly
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Robust Seriation

Multi-dimensional spectral ordering

Conclusion
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Related publication

This section is based on the following preprint:

Antoine Recanati, Nicolas Servant, Jean-Philippe Vert, and

Alexandre d’Aspremont. Robust seriation and applications to

cancer genomics. arXiv preprint arXiv:1806.00664, 2018.
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Overlap-based similarity matrices

Similarity matrices arising in de novo

assembly are the sum of a banded

matrix (overlaps between neighboring

reads) and a sparse matrix

(repeat-induced overlaps).

39



Overlap-based similarity matrices

f2SUM =
1

2

n∑
i ,j=1

Aij(πi − πj)2

The 2-SUM function strongly penalizes

out-of-band terms, although there are

few of them.

39



Stylized similarity matrices

(Definition) Mn(δ, s): binary matrices

that are the sum of a band matrix of

bandwidth δ and a sparse out-of-band

matrix with s non-zero elements.

40



Robust Seriation

Goal: Solve Seriation on an approximation of the matrix yielding

cleaner serial structure.

find Π ∈ P
such that ΠAΠT ∈ R.

(Seriation)

minimize ‖S − ΠAΠT‖
such that Π ∈ P, S ∈ R∗.

(Robust Seriation)

41



Robust 2-SUM

Goal: Solve 2-SUM on an approximation of the matrix yielding

cleaner serial structure.

minimize
∑n

i ,j=1 Sij |πi − πj |2 + λ‖A− S‖1
such that π ∈ P, S ∈ S+.

(R2S(λ))

Can be re-written as:

minimize
∑n

i ,j=1 Aij min(λ, |πi − πj |2)

such that π ∈ P.
(R2SUM(λ))
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Robust Seriation vs. Robust 2-SUM

We proved that both problems are equivalent for stylized matrices:

Proposition

For s ≤ slim , (n − δ − 1) and A ∈ Sn, if A can be permuted to

belong toMn(δ, s), i.e., if there is Π ∈ Pn : ΠAΠT ∈Mn(δ, s),

then Π solves both Robust Seriation and R2SUM(λ) with

parameter λ = δ2, and the `1 norm in Robust Seriation.
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Convex relaxation of Robust 2-SUM

minimize
∑n

i ,j=1 Aij min(λ, |πi − πj |2)

such that π ∈ P.

• Relax the objective:

Huber-loss instead of

quadratic

• Relax set of permutation

vectors

3 2 1 0 1 2 3
0

1

2

3

4

5

6
2

1
Huber
trunc- 2
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Convex relaxation of Robust 2-SUM

minimize
∑n

i ,j=1 Aijhλ(|πi − πj |)
such that π ∈ P.

• Relax the objective:

Huber-loss instead of

quadratic

• Relax set of permutation

vectors

(3,1,2)

(2,1,3) (1,2,3)

(1,3,2)

(2,3,1)(3,2,1)
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Results on synthetic Mn(δ, s) matrices

Kendall-Tau scores

s/slim: 2.5 5 7.5 10

spectral 0.91 0.86 0.84 0.80

HGnCR 0.99 0.89 0.85 0.83

η-Spectral 0.98 0.97 0.96 0.94

H-UBI 0.98 0.97 0.96 0.94
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Results on ONT bacterial genomes
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Multi-dimensional spectral ordering
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Related publication

This section is based on the following preprint:

Antoine Recanati, Thomas Kerdreux, and Alexandre d’Aspremont.

Reconstructing latent orderings by spectral clustering. arXiv

preprint arXiv:1807.07122, 2018.

https://github.com/antrec/mdso
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Spectral method for Seriation

• Scalable (hence, widely used by practitioners)

• Theoretical guarantee to solve Seriation in noiseless setting

• Sentitive to noise in practice

• Limited to linear orderings
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Bacterial genomes are circular

AATTGGCATGCTGATGTGCTGATGCGTAGTGCTGTGCTAGTGCTGATC

AATTGGCATGC
TTGGCATGCTGATGTG

GCTGATGTGCT

TGCTAGTG
CTAGTGCTG

TGCTGATC
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Bacterial genomes are circular

1

2

3

n-3

n-2

n-1

n

50



Circular-Robinson matrices
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4

56

• Analog of Linear Seriation results ?
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Laplacian embedding

Generalize Spectral relaxation of 2-SUM with multiple

dimensions (d)

minimize
∑n

i ,j=1 Aij (xi − xj)
2 = xTLx

such that x ∈ Rn

xT1 = 1,

‖x‖22 = 1.
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Laplacian embedding

Generalize Spectral relaxation of 2-SUM with multiple

dimensions (d)

minimize
∑n

i ,j=1 Aij‖xi − xj‖2 = Tr(XTLX )

such that X ∈ Rn×d

XT1n = 1d ,

XTX = Id .

(2)
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Laplacian embedding

Let Φ =
(
1, f(1), . . . , f(n−1)

)
eigenvectors of L.

For d < n, Φ(d) ,
(
f(1), . . . , f(d)

)
is a d-dim. embedding:

xi =
(
f(1)(i), f(2)(i), . . . , f(d)(i)

)T ∈ Rd (d-LE)

The Laplacian embedding solves the multi-dimensional 2-SUM

problem (2).
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Laplacian embedding for R-matrices

Observation: Laplacian embedding: 1d manifold
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Laplacian embedding for R-matrices

Observation: Laplacian embedding: 1d manifold
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Laplacian embedding for circular R-matrices

Observation: Laplacian embedding: closed 1d manifold
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Laplacian embedding for circular R-matrices

Observation: Laplacian embedding: closed 1d manifold
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In theory ?

Only asymptotical results with stronger assumptions on the data

than in linear Seriation results.

• Toeplitz (circular) R matrices converge towards an operator

whose eigenfunctions are harmonic (frequency increases with

eigenvalues).

• No result for n finite
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Spectral circular ordering method [1]

Input: Connected similarity matrix A

1: Compute Laplacian L

2: Compute the two first non-trivial eigenvectors of L, (f1, f2)

3: Sort the values of θ(i) , tan−1 (f2(i)/f1(i)) + 1[f1(i) < 0]π

Output: Permutation σ : θ(σ(1)) ≤ . . . ≤ θ(σ(n))
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Theoretical guarantee for circular seriation

We proved the following non-asymptotical result, analog to linear

seriation.

Proposition (Circular Spectral Seriation)

For Toeplitz, circulant R-matrices, the previous 2d Spectral

ordering algorithm solves Circular Seriation.
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3-LE of overlap similarity matrix (E. coli)

(3d)
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Multi-dimensional spectral ordering

Claim: the latent ordering of points is easier to recover with

multi-dimensional embeddings in noisy settings.

Input: Similarity matrix

1: Compute d-LE

2: For all points, locally fit NNs by a line

3: Use projections on line to define new pairwise distance

4: Solve Seriation on the new matrix

Output: Ordering
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Results on synthetic, noisy data
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Results on ONT bacterial genomes

Successfully reorders the reads

0 2000 4000 6000 8000 10000 12000 14000 16000
ordering

0

500000

1000000

1500000

2000000

2500000

3000000

3500000

tru
e 

po
sit

io
n 

on
 g

en
om

e

0 2500 5000 7500 10000 12500 15000 17500
ordering

0

1000000

2000000

3000000

4000000

tru
e 

po
sit

io
n 

on
 g

en
om

e
(A. baylyi) (E. coli)

62



Conclusion



Summary

• Seriation: clean mathematical framework for layout in OLC

• Competitive in practice, although challenged by repeats

• Robust Seriation: essentially going from `2 to Huber loss.

• Robust Seriation increases robustness in practice but

repeats remain challenging

• Multi-dimensional Spectral Ordering: simple extension of

spectral baseline method, significant gains, notably in de novo

context.
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Extensions

• Seriation with Duplications: motivated by assembly of

genomes with structural variants from Hi-C data. Related to

Robust Seriation framework.

• Take multiple chromosomes into account ?
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