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Seriation

The Seriation Problem.

m Pairwise similarity information A;; on n variables.

m Suppose the data has a serial structure, i.e. there is an order 7 such that
A (i)r(;) decreases with |¢ — j| (R-matrix)

Recover 77

Similarity matrix Reconstructed

A. Recanati Institut Curie, Octobre 2016, 2/17



Genome Assembly

Seriation has direct applications in (de novo) genome assembly.

m Genomes are cloned multiple times and randomly cut into shorter reads
(~ 400bp to 10kbp), which are fully sequenced.

m Reorder the reads to recover the genome.
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Genome Assembly

Overlap Layout Consensus (OLC). Three stages.

m Compute overlap between all read pairs.

m Reorder overlap matrix to recover read order.

m Average the read values to create a consensus sequence.
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The read reordering problem is a seriation problem.
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Genome Assembly in Practice

Noise. In the noiseless case, the overlap matrix is a R-matrix. In practice. . .

m There are base calling errors in the reads, typically 2% to 20% depending on
the process.

m Entire parts of the genome are repeated, which breaks the serial structure.

Sequencing technologies

= Next generation : short reads (~ 400bp), few errors (~ 2%). Repeats are
challenging

= Third generation : long reads (~ 10kbp), more errors (~ 15%). Can resolve
repeats, but noise is challenging
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Genome Assembly in Practice

Current assemblers.

s With short accurate reads, the reordering problem is solved by
combinatorial methods using the topology of the assembly graph and
additional pairing information.

= With long noisy reads, reads are corrected before assembly (hybrid correction
or self-mapping).

m Layout and consensus not clearly separated, many heuristics . . .

= miniasm : first long raw reads straight assembler (but consensus sequence is as
noisy as raw reads).
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Outline

m Introduction
s Combinatorial problem
m Spectral relaxation

= Results (Application to genome assembly)
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Combinatorial problem (2-SUM)

2-SUM.

m The 2-SUM problem is written

n

frrleig A iyeiy (i — )7

1,7=1

m Define L4 = diag(A1) — A is the Laplacian of A. The 2-SUM problem is

equivalently written

Indeed for any x € R",

xTLAx =
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Seriation and 2-SUM

Combinatorial Solution.

For certain matrices A, 2-SUM < seriation. ([Fogel et al., 2013])
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Spectral relaxation

2-SUM problem :

min 7TTLA7T
TeP

NP-Complete for generic matrices A.

Set of permutation vectors :

m € {1,...,n}, Vi<i<n
7_‘_T]_ _ n(n2—|—1)

Hﬂ-H% _ n(n—|—1)6(2’n—|—1)

Let c = ”Tﬂl. L 41 = 0. Withdrawing ¢ from any vector m does not change the
objective value. Up to a constant factor, the Fiedler vector f defined as follows
solves a continuous relaxation of 2-SUM

f = argmin z’ L4z

1T:B:O,
|z |l2=1
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Spectral relaxation

Spectral Seriation. Define the Laplacian of A as L4 = diag(Al) — A, the
Fiedler vector of A is written

f =argmin z! Lax.

and is the second smallest eigenvector of the Laplacian.

The Fiedler vector reorders a R-matrix in the noiseless case.

Theorem [Atkins, Boman, Hendrickson, et al., 1998]

Spectral seriation. Suppose A € S,, is a pre-R matrix, with a simple Fiedler value
whose Fiedler vector f has no repeated values. Suppose that 11 € P is such that
the permuted Fielder vector 11v is monotonic, then ITAITY is an R-matrix.
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Spectral Solution

m Spectral solution easy to compute and scales well
= But sensitive and not flexible (hard to include additional structural constraints)

m Other (convex) relaxations handle structural constraints

Genome assembly pipeline

m Overlap : computed from k-mers, yielding a similarity matrix A

m Layout : A is thresholded to remove noise-induced overlaps, and reordered
with spectral ordering algorithm. Layout fine-grained with overlap
information.

m Consensus : Genome sliced in windows
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Outline
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Application to genome assembly

Bacterial genomes.

= Long raw reads (Oxford Nanopore Technology)
m Overlaps computed with minimap : hashing k-mers

m [hreshold on similarity matrix to remove false-overlaps
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Application to genome assembly

Layout.

m [wo bacterial genomes : E. Coli and A. Baylyi

m Circular genomes, size ~ 4Mbp

m A few connected components after threshold
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Application to genome assembly

Eukaryotic genome : S. Cerevisiae

m 16 chromosomes

m Many repeats

m Higher threshold on similarity
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Conclusion

Straightforward assembly pipeline.

m Equivalence 2-SUM <= seriation.

= Layout correctly found by spectral relaxation for bacterial genomes (with
limited number of repeats)

m Consensus computed by MSA in sliding windows =~ 99% avg. identity with
reference

Future work.

= Additional information could help assemble more complex genomes (e.g.
with topological constraints on the similarity graph, or chromosome
assignment...)

m Other problems involving Seriation 7

= Convex relaxations can also handle constraints (e.g. |7(¢) — w(j)| < k) for
different problems
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Consensus

m Once layout is computed and fined-grained, slicing in windows
= Multiple Sequence Alignment using Partial Order Graphs (POA) in windows

s Windows merging

window 1

window 2

window 3

POA in windows

consensus 1

consensus 2

consensus (1+2)

consensus ((142) +3)
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Seriation

Combinatorial problems.

m The 2-SUM problem is written

n

. : N2 : . T
min A _cay(1 — or equivalentl min 7 Lam
meP L SOLOI) q Y e A

i,j=

where L 4 is the Laplacian of A.

s NP-Complete for generic matrices A.
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Convex Relaxation

Seriation as an optimization problem.

n

frneig 2 1Aw(i)w(j)(i—j)2
i,j=

What'’s the point?

= Gives a spectral (hence polynomial) solution for 2-SUM on some R-matrices.

m Write a convex relaxation for 2-SUM and seriation.

o Spectral solution scales very well (cf. Pagerank, spectral clustering, etc.)
o Not very robust. . .

o Not flexible. . . Hard to include additional structural constraints.
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Convex Relaxation

m Let D,, the set of doubly stochastic matrices, where
D,={XecR"™:X>0,X1=1,X"1=1}
is the convex hull of the set of permutation matrices.

m Notice that P =D N O, i.e. Il permutation matrix if and only II is both
doubly stochastic and orthogonal.

= Solve
minimize  Tr(YITITLAITY) — p|| PII||%
subject to elllg + 1 < elllg,
m=1,T71=1, (1)
IT > 0,
in the variable II € R"*"*" where P =1 — %11T and Y € R™*P is a matrix
whose columns are small perturbations of g = (1,...,n)?.
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Convex Relaxation

Objective. Tr(YTHTLAIIY) — p| PII||2

s 2-SUM term Tr(Y TP L 1IY) = 0yl TIT L ATTy; where y; are small
perturbations of the vector g = (1,...,n)?

,

= Orthogonalization penalty —u| PII||%, where P =1 — +117"

n

o Among all DS matrices, rotations (hence permutations) have the highest
Frobenius norm.

o Setting 1t < Ao(L )N (YY?), keeps the problem a convex QP.

Constraints.

m elllg +1 < elTlg breaks degeneracies by imposing 7(1) < m(n). Without it,
both monotonic solutions are optimal and this degeneracy can significantly
deteriorate relaxation performance.

m 111 =1, 1171 =1 and II > 0, keep II doubly stochastic.
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Convex Relaxation

Other relaxations.

= Relaxations for orthogonality constraints, e.g. SDPs in [Nemirovski, 2007,
Coifman et al., 2008, So, 2011]. Simple idea: @Q?Q = I is a quadratic
constraint on @, lift it. This yields a O(y/n) approximation ratio.

s O(+/logn) approximation bounds for Minimum Linear Arrangement [Even
et al., 2000, Feige, 2000, Blum et al., 2000, Rao and Richa, 2005, Feige and
Lee, 2007, Charikar et al., 2010].

m All these relaxations form extremely large SDPs.

Our simplest relaxation is a QP. No approximation bounds at this point however.
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Semi-Supervised Seriation

Convex Relaxation.

m Semi-Supervised Seriation. We can add structural constraints to the
relaxation, where

a<m(i)—m()<b iswritten a<elllg— e]THg < b.

which are linear constraints in 11.

m Sampling permutations. We can generate permutations from a doubly
stochastic matrix D

o Sample monotonic random vectors wu.
o Recover a permutation by reordering Du.

m Algorithms. Large QP, projecting on doubly stochastic matrices can be done
very efficiently, using block coordinate descent on the dual. Extended
formulations by [Goemans, 2014| can reduce the dimension of the problem to
O(nlogn) [Lim and Wright, 2014].
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Numerical results: nanopores

Nanopores DNA data. New sequencing hardware.

= 5=

Oxford nanopores MinlON.
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Numerical results: nanopores

Nanopores.
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Numerical results

Nanopores DNA data.

m Longer reads. Average 10k base pairs in early experiments. Compared with
~ 100 base pairs for existing technologies.

s High error rate. About 20% compared with a few percents for existing
technologies.

m Real-time data. Sequencing data flows continuously.
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