
Falcon: Fast-Fourier Lattice-based
Compact Signatures over NTRU

Specifications v1.0

Pierre-Alain Fouque Jeffrey Hoffstein Paul Kirchner
Vadim Lyubashevsky Thomas Pornin Thomas Prest Thomas Ricosset

Gregor Seiler WilliamWhyte Zhenfei Zhang

falcon@ens.fr

falcon@ens.fr

Contents

1 Introduction 7

1.1 Genealogy of Falcon . 8

1.2 NIST requirements . 9

2 The Design Rationale of Falcon 11

2.1 A quest for compactness . 11

2.2 The Gentry-Peikert-Vaikuntanathan framework . 12

2.2.1 Features and instantiation of the GPV framework 13

2.2.2 Statefulness, de-randomization or hash randomization 14

2.3 NTRU lattices . 14

2.3.1 Introduction to NTRU lattices . 15

2.3.2 Instantiation with the GPV framework . 15

2.3.3 Choosing optimal parameters . 16

2.4 Fast Fourier sampling . 16

2.5 Security . 17

2.5.1 Known Attacks . 17

2.5.2 Precision of the Floating-Point Arithmetic 19

2.6 Advantages and Limitations of Falcon . 20

2.6.1 Advantages . 20

3

2.6.2 Limitations . 21

3 Specification of Falcon 23

3.1 Overview . 23

3.2 Technical overview . 24

3.3 Notations . 26

3.4 Keys . 28

3.4.1 Public Parameters . 28

3.4.2 Private Key . 28

3.4.3 Public key . 30

3.5 FFT and NTT . 30

3.6 Splitting andMerging . 32

3.6.1 Bisection: when ϕ(x) = ϕ′(x2) . 32

3.6.2 Trisection: when ϕ(x) = ϕ′(x3) . 34

3.6.3 The special case ϕ(x) = x2 − x+ 1 . 34

3.6.4 Algebraic interpretation . 35

3.6.5 Relationship with the field norm . 36

3.7 Hashing . 36

3.8 Key Pair Generation . 38

3.8.1 Overview . 38

3.8.2 Generating the polynomials f, g, F,G. 40

3.8.3 Computing a Falcon Tree . 44

3.9 Signature Generation . 46

3.9.1 Overview . 46

3.9.2 Fast Fourier sampling: the binary case . 50

3.9.3 Fast Fourier sampling: the ternary case . 50

4

3.10 Signature Verification . 52

3.10.1 Overview . 52

3.10.2 Specification . 52

3.11 Encoding Formats . 53

3.11.1 Bits and Bytes . 53

3.11.2 Compressing Gaussians . 53

3.11.3 Signatures . 55

3.11.4 Public Keys . 56

3.11.5 Private Keys . 56

3.11.6 NIST Competition API . 57

3.12 Recommended Parameters . 57

4 Implementation and Performances 59

4.1 Floating-Point . 59

4.2 FFT and NTT . 60

4.2.1 FFT . 60

4.2.2 Ternary FFT . 61

4.2.3 NTT . 62

4.3 LDL Tree . 63

4.4 Gaussian Sampler . 64

4.5 Key Pair Generation . 65

4.5.1 Gaussian Sampling . 65

4.5.2 Filtering . 65

4.5.3 Solving The NTRU Equation . 66

4.6 Performances . 69

5

Chapter 1

Introduction

Falcon is a lattice-based signature scheme. It stands for the following acronym:

Fast Fourier lattice-based compact signatures over NTRU

Thehigh-level design of Falcon is simple: we instantiate the theoretical framework described byGentry,
Peikert and Vaikuntanathan [GPV08] for constructing hash-and-sign lattice-based signature schemes.
This framework requires two ingredients:

• A class of cryptographic lattices. We chose the class of NTRU lattices.

• A trapdoor sampler. We rely on a new technique which we call fast Fourier sampling.

In a nutshell, the Falcon signature scheme may therefore be described as follows:

Falcon = GPV framework + NTRU lattices + Fast Fourier sampling

This document is the supporting documentation of Falcon. It is organized as follows. Chapter 2 ex-
plains the overall design of Falcon and its rationale. Chapter 3 is a complete specification of Falcon.
Chapter 4 discusses implementation issues and possible optimizations, and described measured perfor-
mance.

7

1.1 Genealogy of Falcon

NTRUSign
[HHGP+03]

GPV
Framework
[GPV08]

Provable
NTRUSign

[SS11]

Instantiation
of GPV IBE
[DLP14]

Falcon

Fast Fourier
Sampling
[DP16]

Figure 1.1: The genealogic tree of Falcon

Falcon is the product of many years of work, not only by the authors but also by others. This section
explains how these works gradually led to Falcon as we know it.

The first work is the signature scheme NTRUSign [HHGP+03] by Hoffstein et al., which was the
first, along with GGH [GGH97], to propose lattice-based signatures. The use of NTRU lattices by
NTRUSign allows it to be very compact. However, both had a flow in the deterministic signing proce-
dure which led to devastating key-recovery attacks [NR06, DN12].

At STOC 2008, Gentry, Peikert and Vaikuntanathan [GPV08] proposed a method which not only
corrected the flawed signing procedure but, even better, did it in a provably secure way. The result
was a generic framework (the GPV framework) for building secure hash-and-sign lattice-based signature
schemes.

The next step towards Falcon was the work of Stehlé and Steinfeld [SS11], who combined the GPV
framework with NTRU lattices. The result could be called – somewhat surprisingly – a provably secure
NTRUSign.

In amore practical work, Ducas et al. [DLP14] proposed a practical instantiation and implementation of
the IBE part of the GPV framework over NTRU lattices. This IBE can be converted in a straightforward
manner into a signature scheme. However, doing this would have resulted in a signing time inO(n2).

To address the issue of a slow signing time, Ducas and Prest [DP16] proposed a new algorithm running
in timeO(n log n). However, how to practically instantiate this algorithm remained a open question.

Falcon builds on these works to propose a practical lattice-based hash-and-sign scheme. The figure 1.1
shows the genealogic tree of Falcon, the first of the many trees that this document contain.

8

1.2 NIST requirements

In this section, we provide a mapping of the requirements by NIST to the appropriate sections of this
document. This document adresses the requirements in [NIS16, Section 2.B].

• The complete specification as per [NIS16, Section 2.B.1] can be found in chapter 3. A design ra-
tionale can be found in chapter 2.

• A performance analysis, as per [NIS16, Section 2.B.2], is provided in chapter 4, in particular sec-
tion 4.6.

• The security analysis of the scheme as per [NIS16, Section 2.B.4], and the analysis of known cryp-
tographic attacks against the scheme as per [NIS16, Section 2.B.5], are contained in section 2.5.

• A statement of the advantages and limitations as per [NIS16, Section 2.B.6] can be found in sec-
tion 2.6.

• Set of parameters to address the five security levels required by NIST [NIS16, Section 4.A.5] can
be found in section 3.12.

Other requirements in [NIS16] are not addressed in this document, but in other parts of the submission
package.

• A cover sheet as per [NIS16, Section 2.A] is present in this submission package.

• A reference implementation as per [NIS16, Section 2.C.1] and Known Answer Test values as per
[NIS16, Section 2.B.2] are present in this submission package.

• Signed statements of intellectual property, as required by [NIS16, Section 2.D], will be conveyed
to NIST physically by all submitters, patent owners and implementation authors.

9

Chapter 2

The Design Rationale of Falcon

2.1 A quest for compactness

The design rationale of Falcon stems from a simple observation: when switching from signatures based
onRSA or the discrete logarithm to post-quantum signatures, communication complexity is likely going
to be a larger problem than speed. Indeed, many post-quantum schemes have a simple algebraic descrip-
tion which makes them fast, but they always require either larger keys than pre-quantum schemes, larger
signatures, or both.

We expect such performance issues will hinder transition from pre-quantum to post-quantum schemes.
Hence our leadingdesignprinciple, whichunderliedmost of our decisions, was tominimize the following
quantity:

|pk|+|sig| = (bitsize of the public key) + (bitsize of a signature).

This led us to consider lattice-based signatures, which manage to keep both |pk| and |sig| rather small,
especially for structured lattices. When it comes to lattice-based signatures, there are essentially two
paradigms: Fiat-Shamir or hash-and-sign.

Both paradigms achieve comparable levels of compactness, but hash-and-sign have interesting proper-
ties: the GPV framework [GPV08], which describes how to obtain hash-and-sign lattice-based signature
schemes, is secure in the classical and quantum oracle models [GPV08, BDF+11]. In addition, it enjoys
message-recovery capabilities [dPLP16]. So we chose this framework. We detail this choice and its impli-
cations in section 2.2.

The next step was to choose a class of cryptographic lattices to instantiate this framework. A close to
optimal choice with respect to our main design principle – compactness – is NTRU lattices: as sketched
in [DLP14], they allow to obtain a rather compact instantiation of the GPV framework. In addition,

11

they come with a ring structure which speeds up many operations by two orders of magnitude (e.g. a
factorO(n/ log n) for signature verification). We detail this choice and its implications in section 2.3.

The last step was the trapdoor sampler. We devised a new trapdoor sampler which is asymptotically as
fast as the fastest generic trapdoor sampler [Pei10] and provides the same level of security as the most
secure sampler [Kle00]. We detail this choice and its implications in section 2.4.

2.2 The Gentry-Peikert-Vaikuntanathan framework

In 2008, Gentry, Peikert and Vaikuntanathan [GPV08] established a framework for obtaining secure
lattice-based signatures. At a very high level, this framework may be described as follows:

• The public key contains a full-rank matrix A ∈ Zn×m
q (withm > n) generating a q-ary lattice Λ.

• The private key contains a matrix B ∈ Zm×m
q generating Λ⊥

q , where Λ⊥
q denotes the lattice or-

thogonal to Λ modulo q: for any x ∈ Λ and y ∈ Λ⊥
q , we have ⟨x,y⟩ = 0 mod q. Equivalently,

the rows of A and B are pairwise orthogonal: B×At = 0.

• Given a messagem, a signature of m is a short value s ∈ Zm
q such that sAt = H(m), whereH :

{0, 1}∗ → Zn
q is a hash function. Given A, verifying that s is a valid signature is straightforward:

it only requires to check that s is indeed short and verifies sAt = H(m).

• Computing a valid signature is more delicate. First, an arbitrary preimage c0 ∈ Zm
q is computed,

which verifies c0At = c. As c0 is not required to be short andm ≥ n, this can simply be done
through standard linear algebra. B is then used in order to compute a vector v ∈ Λ⊥

q close to c0.
The difference s = c0 − v is a valid signature: indeed, sAt = c0At − vAt = c− 0 = c, and if
c0 and v are close enough, then s is short.

In this abstract form, this description of a signature scheme is not specific to the GPV framework: it was
first instantiated in the GGH [GGH97] and NTRUSign [HHGP+03] signature schemes. However,
GGH and NTRUSign suffer of total break attacks, whereas the GPV framework is proven to be secure
in the classical and quantum random oracle models assuming the hardness of SIS for some parameters.
The reason behind this is somewhat subtle, and lies in the fact that GGH/NTRUSign and the GPV
framework have radically different ways of computing v in the signing procedure.

Computing v in GGH and NTRUSign. In GGH and NTRUSign, v is computed using an algo-
rithm called the round-off algorithm and first formalized by Babai [Bab85, Bab86]. In this deterministic
algorithm, c0 is first expressed as a real linear combination of the rows of B, the vector of these real co-
ordinates is then rounded coefficient-wise and multiplied again by B: in a nutshell, v ← ⌊c0B−1⌉B,
where ⌊·⌉ denotes coefficient-wise rounding. At the end of the procedure, s = v − c0 is guaranteed to
lie in the parallelepiped [−1, 1]m ×B, which allows to tightly bound the norm ∥s∥.

12

The problemwith this approach is that each signature s lies in [−1, 1]m×B, and therefore each s leaks a
little information about thebasisB. This factwas successfully exploitedby several attacks [NR06,DN12]
which led to a total break on the schemes.

Computing v in the GPV framework. Amajor contribution of [GPV08], which is also the key
difference between the GPV framework and GGH/NTRUSign, is the way v is computed. Instead of
the round-off algorithm, the GPV framework relies on a randomized variant by [Kle00] of the nearest
plane algorithm, also formalized by Babai. Just as for the round-off algorithm, using the nearest plane
algorithm would have leaked the secret basis B and resulted in a total break of the scheme. However,
Klein’s algorithm prevents this: it is randomized in a way such that for a givenm, s is sampled according
to a spherical Gaussian distribution over the shifted lattice c0 + Λ⊥

q . This method is not only impervious
to the attacks described hereabove, but is also proven to leak no information about the basis B. Klein’s
algorithm was in fact the first of a family of algorithms called trapdoor samplers. More details about
trapdoor samplers are given in section 2.4.

2.2.1 Features and instantiation of the GPV framework

The topic of this section is to make explicit a few aspects and features of the GPV framework.

Security in the classical and quantum oracle models. In the original paper [GPV08], the
GPV framework has been proven to be secure in the random oracle model under the SIS assumption. In
our case, we use NTRU lattices so we need to adapt the proof for a “NTRU-SIS” assumption, but this
adaptation is straightforward. In addition, the GPV framework has also been proven to be secure in the
quantum oracle model [BDF+11].

Signatures with message recovery. In [dPLP16], it has been shown that a preliminary version
of Falcon can be instantiated in message-recovery mode: the message m can be recovered from the
signature sig. It requires to make the signature twice longer, but it allows to entirely recover a message
which size is a bit less than half the size of the original signature. In situations where we can apply it, it
makes Falcon even more competitive from a compactness viewpoint.

Identity-based encryption. Falconcanbe turned into an identity-based encryption scheme. This
is described in [DLP14]. However, this requires de-randomizing the signature procedure (see the para-
graph “Statefulness, de-randomization or hash randomization”).

13

2.2.2 Statefulness, de-randomization or hash randomization

In the GPV framework, two different signatures s, s′ of a same hash H(m) can never be made public
simultaneously, because doing so breaks the security proof [GPV08, Section 6.1].

Statefulness. A first solution proposed in [GPV08, Section 6.1] is to make the scheme stateful by
maintaining a list of the signedmessages and of their signatures. However, maintaining such a state poses
a number of operational issues, so we do not consider it as a credible solution.

De-randomization. A second possibility proposed by [GPV08] is to de-randomize the signing pro-
cedure. However, this raises another issue as pseudorandomness would need to be generated in a consis-
tent way over all the implementations (it is not uncommon to have a same signing key used in different
devices). While this solution canbe applied in a few specific usecases, wedonot consider it for the Falcon
signature scheme.

Hash randomization. A third solution is to prepend a salt r ∈ {0, 1}k to the message m before
hashing it. Provided that k is large enough, this effectively prevents collisions from occuring with non-
negligible probability. From an operational perspective, this solution is the easiest to apply, and it is still
covered by the security proof of theGPV framework (see [GPV08, Section 6.2]). For a given security level
λ and up to qs signature queries, taking k = λ+ log2(qs) is enough to guarantee that the probability of
collision is less than qs · 2−λ.

Out of the three solutions, Falcon opts for hash randomization: a salt r ∈ {0, 1}320 is randomly gener-
ated and prepended to themessage before hashing it. The bitsize 320 is equal toλ+log2(qs) forλ = 256
the highest security level required by NIST, and qs = 264 the maximal number of signature which may
be queried from a single signer. This size is actually overkill for security levels λ < 256, but fixing a single
size across all the security levels makes things easier from an API perspective: for example, one can hash a
message without knowing the security level of the private signing key.

2.3 NTRU lattices

The first choice when instantiating theGPV framework is the class of lattices to use. The design rationale
obviously plays a large part in this. Indeed, if emphasis is placed on security without compromise, then
the logical choice is to use standard lattices without any additional structure, as was done e.g. in the key-
exchange scheme Frodo [BCD+16].

Our main design principle is compactness. For this reason, Falcon rely on the class of NTRU lattices,
introduced by Hoffstein, Pipher and Silverman [HPS98]; they come with an additional ring structure
which not only does allow to reduce the public keys’ size by a factor O(n), but also speeds up many

14

computations by a factor at least O(n/ log n). Even in the broader class of lattices over rings, NTRU
lattices are among the most compacts: the public key can reduced to a single polynomial h ∈ Zq[x] of
degree at most n− 1. In doing this we follow the idea of Stehlé and Steinfeld [SS11], which have shown
that the GPV framework can be used in conjunction with NTRU lattices in a provably secure way.

Compactness, however, would be useless without security. From this perspective, NTRU lattices also
have reasons to inspire confidence as they have resisted extensive cryptanalysis for about two decades,
and we parameterize them in a way which we believe makes them even more resistant.

2.3.1 Introduction to NTRU lattices

Let ϕ ∈ Z[x] be a monic polynomial, and q ∈ N⋆. A set of NTRU secrets consists of four polynomials
f, g, F,G ∈ Z[x]/(ϕ) which verify the NTRU equation:

fG− gF = q mod ϕ (2.1)

Provided that f is invertible modulo q, we can define the polynomial h← g · f−1 mod q.

Typically, h will be a public key, whereas f, g, F,G will be secret keys. Indeed, one can check that the

matrices
[

1 h
0 q

]
and

[
f g
F G

]
generate the same lattice, but the first matrix contains two large poly-

nomials (h and q), whereas the second matrix contains only small polynomials, which allows to solve
problems as illustrated in section 2.2. If f, g are generatedwith enough entropy, thenhwill look pseudo-
random [SS11]. However in practice, even when f, g are quite small, it remains hard to find small poly-
nomials f ′, g′ such that h = g′ · (f ′)−1 mod q. The hardness of this problem constitutes the NTRU
assumption.

2.3.2 Instantiation with the GPV framework

We now instantiate the GPV framework described in section 2.2 over NTRU lattices:

• The public basis is A =
[

1 h⋆
]
, but this is equivalent to knowing h.

• The secret basis is

B =
[
g −f
G −F

]
(2.2)

One can check that the matrices A and B are indeed orthogonal: B×A⋆ = 0 mod q.

• The signature of a messagem consists of a salt r plus a pair of polynomials (s1, s2) such that s1 +
s2h = H(r∥m). We note that since s1 is completely determined bym, r and s2, there is no need
to send it: the signature can simply be (r, s2).

15

2.3.3 Choosing optimal parameters

Our trapdoor sampler samples signatures of norm essentially proportional to ∥B∥GS, where ∥B∥GS de-
notes the Gram-Schmidt norm of B.

Previousworks ([DLP14] and [Pre15, Sections 6.4.1 and 6.5.1]) have provided heuristic and experimental
evidence that in practice, ∥B∥GS is minimized for ∥(f, g)∥ ≈ 1.17√q. Therefore, we generate f, g as
discrete Gaussians in Z[x]/(ϕ) centered in 0, so that the expected value of ∥(f, g)∥ is about 1.17√q.
Once this is done, very efficientways to compute∥B∥GS are known, and if this value ismore than1.17√q,
new polynomials f, g’s are regenerated and the procedure starts over.

Quasi-optimality. The bound ∥B∥GS ≤ 1.17√q that we reach in practice is within a factor 1.17 of
the theoretic lower bound for∥B∥GS. Indeed, for anyB of the formgiven in equation 2.2with f, g, F,G
verifying the equation 2.1, we havedet(B) = fG−gF = q. So√q is a theoretic lower boundof∥B∥GS.

2.4 Fast Fourier sampling

The second choice when instantiating the GPV framework is the trapdoor sampler. A trapdoor sampler
takes as input amatrixA, a trapdoor T, a target c and outputs a short vector s such that stA = c mod q.
With the notations of section 2.2, this is equivalent to findingv ∈ Λ⊥

q close to c0, sowemay indifferently
refer by the term “trapdoor samplers” to algorithms which perform one task or the other.

We now list the existing trapdoor samplers, their advantages and limitations. Obviously, being efficient is
important for a trapdoor sampler. However, an equally important metric is the “quality” of the sampler:
the shorter the vector s is (or equivalently, the closer v is to c0), the more secure this sampler will be.

1. Klein’s algorithm [Kle00] takes as a trapdoor the matrix B. It outputs vectors s of norm propor-
tional to ∥B∥GS, which is short and therefore good for security. On the downside, its time and
space complexity are inO(m2).

2. Just like Klein’s algorithm is a randomized version of the nearest plane algorithm, Peikert pro-
posed a randomized version of the round-off algorithm [Pei10]. The good part about it is that
when B has a structure over rings – as in our case – then it can be made to run in time and space
O(m logm). However, it outputs vectors of norm proportional to the spectral norm ∥B∥2 ofB.
This is larger than what we get with Klein’s algorithm, and therefore it is worse security-wise.

3. Micciancio and Peikert [MP12] proposed a novel approach in which A and its trapdoor are con-
structed in a way which allows simple and efficient trapdoor sampling. This approach was gener-
alized in [LW15]. Unfortunately, it is not straightforwardly compatible with NTRU lattices and
whether we can reach the same level of compactness as with NTRU lattices is unclear.

4. Ducas andPrest [DP16]proposed a variant ofBabai’s nearest plane algorithm for lattices over rings.

16

It proceeds in a recursive waywhich is very similar to the fast Fourier transform, and for this reason
they dubbed it “fast Fourier nearest plane”. This algorithm can be randomized as well: it results in
a trapdoor sampler which combines the quality of Klein’s algorithm, the efficiency of Peikert’s and
can be used over NTRU lattices.

Of the four approaches we just described, it seems clear to us that a randomized variant of the fast Fourier
nearest plane [DP16] is the most adequate choice given our design rationale and our previous design
choices (NTRU lattices). For this reason, it is the trapdoor sampler used in Falcon.

Sampler Fast Short output s NTRU-friendly
Klein [Kle00] No Yes Yes
Peikert [Pei10] Yes No Yes
Micciancio-Peikert [MP12] Yes Yes No
Ducas-Prest [DP16] Yes Yes Yes

Table 2.1: Comparison of the different trapdoor samplers

Choosing the standard deviation. When using a trapdoor sampler, an important parameter to
set is the standard deviation σ. If it is too low, then it is no longer guaranteed that the sampler not leak
the secret basis (and indeed, for all known samplers, a value σ = 0 opens the door to learning attacks à la
[NR06,DN12]). But if it is too high, the sampler does not return optimally short vectors and the scheme
is not as secure as it could be. So there is a compromise to be found.

Our fast Fourier sampler shares many similarities with Klein’s sampler, including the optimal value for σ
(i.e. the shortest which is known not to leak the secret basis). According to [Pre17], it is sufficient for the
security level and number of queries set by NIST to take σ ≤ 1.312 ∥B∥GS, which in our case translates
to σ ≤ 1.55√q.

2.5 Security

2.5.1 Known Attacks

Key Recovery. The most efficient attacks come from lattice reduction. We start by considering the

lattice (Z[x]/(ϕ))2
[

0 q
1 h

]
. After using lattice reduction on this basis, we enumerate all lattice points

in a ball of radius
√

2nσ′, centeredon the origin. With significant probability, we are therefore able to find[
g f

]
. If we use a block-size ofB, enumeration takes negligible time if the 2n−Bth Gram-Schmidt

norm is larger than 0.75
√
Bσ′. For the best known lattice reduction algorithm, DBKZ [MW16], it is(B

2πe
)(1−n/B)√

q.

17

It is then easy to deduceB, and to show thatB = n + o(n). This givesB = 652 when n = 768 and
B = 921whenn = 1024. The security implied is detailed in the following table, using themethodology
of NewHope [ADPS16].

n B Classical Quantum
512 392 114 103
768 652 195 172
1024 921 263 230

Forging a Signature. Forging a signature can be perfomed by finding a lattice point at distance
bounded by β from a random point, in the same lattice as above. This task is also eased by first carry-
ing out lattice reduction on the original basis. One possibility is to enumerate all lattice points in a ball of
radius

√
nq
πe . As this ball is larger than the one of the previous attack, it would be slower. It may seem as if

it would be much smaller than the previous attack due to a factorΘ(
√
n) in the radius. It is not the case,

since the lattice has an (almost) orthogonal basis, which implies there are few (2o(n)) points at distance in
o(
√
n). This implies that the proposed method essentially starts by recovering the secret key, so that it is

slower than the previous algorithm. Also, embedding the point in the lattice does not help: the distance
to the lattice is Θ(

√
n) greater than the shortest non-zero point.

Combinatorial attack. If we were to choose q = O(n), the size of the coefficients would be con-
stant. Then, Kirchner-Fouque [KF15] BKWvariant would run in time 2n/((2+o(1)) log log n) to recover the
key, i.e. asymptotically faster than the previous algorithms. It indicates that the most compact scheme
uses q = n1+ϵ+o(1) for some ϵ > 0. However, since n is not huge, our moderate q is enough to make
this attack irrelevant. Indeed, even assuming that nearest neighbor search runs in constant time and other
optimistic assumptions, the best combinatorial attack runs in time 2135 for n = 512.

Hybrid attack. The hybrid attack [HG07] combines a meet-in-the-middle algorithm and the key
recovery algorithm. It was used with great effect against NTRU, due to its choice of sparse polynomials.
This is however not the case here, so that its impact is much more modest, and counterbalanced by the
lack of sieve-enumeration.

Dense, high rank sublattice. Recent works [ABD16, CJL16, KF17] have shown that when f, g are
extremely small compared to q, it is easy to attack cryptographic schemes based onNTRU lattices. To the
contrary, in Falconwe take f, g to be not too small while q is hardly large: a side-effect is that this makes
our scheme impervious to the so-called “overstretched NTRU” attacks. In particular, even if f, g were
taken to be binary, we would have to select q > n2.83 for this property to be useful for cryptanalysis. Our
large margin should allow even significant improvements of this algorithm to be irrelevant to our case.

18

Algebraic attacks. While there is a rich algebraic structure in Falcon, there is no known way to
improve all the algorithms previously mentioned with respect to their general lattice equivalent by more
than a factor n2. However, there exist efficient algorithms for finding not-so-small elements in ideals of
Z[x]/(ϕ) [CDW17].

2.5.2 Precision of the Floating-Point Arithmetic

Trapdoor samplers usually require the use of floating-point arithmetics, and our fast Fourier sampler is
no exception. This naturally raises the question of the precision required to claim meaningful security
bounds. A naive analysis would require a precision ofO(λ) bits (nonwithstanding logarithmic factors),
but this would result in a substantially slower signature generation procedure.

In order to analyze the requiredprecision,weuse aRényi divergence argument. As in [MW17],wedenote
by a ≲ b the fact that a ≤ b+ o(b), which allows to discard negligible factors in a rigorous way. Our fast
Fourier sampler is a recursive algorithm which relies on 2n discrete samplersDZ,cj ,σj

. We suppose that
the values cj (resp. σj) are known with an absolute error (resp. relative error) at most δc (resp. δσ) and
denote byD (resp. D̄) the output distribution of our sampler with infinite (resp. finite) precision. We
can then re-use the precision analysis of Klein’s sampler in [Pre17, Section 4.5]. For any output of our
sampler with non-negligible probability, in the worst case:∣∣∣∣∣log

(
D̄(z)
D(z)

)∣∣∣∣∣ ≲ 2n
[√

154
1.312

δc + (2π + 1)δσ

]
≤ 20n(δc + δσ) (2.3)

In the average case, the value 2n in equation 2.3 can be replaced with
√

2n. Following the security argu-
ments of [Pre17, Section 3.3], this allows to claim that in average, there is no security loss to be expected
if (δc + δσ) ≤ 2−46.

To check if this is the case for Falcon, we have run Falcon in two different precisions, a high precision
of 200 bits and a standard precision of 53 bits, and compared the values of the cj, σj ’s. The result of these
experiments is that we always have (δc + δσ) ≤ 2−40: while this is higher than 2−46, the difference is of
only 6 bits. Therefore, we consider that 53 bits of precision are sufficient for NIST’s parameters (security
level λ ≤ 256, number of queries qs ≤ 264), and that the possibility of our signature procedure leaking
information about the secret basis is a purely theoretic threat.

19

2.6 Advantages and Limitations of Falcon

This section lists the advantages and limitations of Falcon.

2.6.1 Advantages

Compactness. The main advantage of Falcon is its compactness. This doesn’t really come as a
surprise as Falcon was designed with compactness as the main criterion. Stateless hash-based signa-
tures often have small public keys, but large signatures [BHH+15, AE17]. Conversely, some multivari-
ate [KPG99, DS05] and code-based [CFS01] signature schemes achieve very small signatures but they
require large public keys. Lattice-based schemes [DLL+17] can somewhat offer the best of both worlds,
butwe do not knowof any post-quantum signature schemes getting |pk|+ |sig| to be as small as Falcon
does.

Fast signature generation and verification. The signature generation and verification proce-
dures are very fast. This is especially true for the verification algorithm, but even the signature algorithm
can performmore than 1000 signatures per second on a moderately-powered computer.

Security in the ROM and QROM. The GPV framework comes with a security proof in the ran-
dom oracle, and a security proof in the quantum random oracle model was later provided in [BDF+11].
This stands in contrast with schemes using the Fiat-Shamir heuristic, which are notoriously harder to
render secure in the QROM [KLS17, Unr17].

Modular design. The design of Falcon is modular. Indeed, we instantiate the GPV framework
with NTRU lattices, but it would be easy to replace NTRU lattices with another class of lattices if nec-
essary. Similarly, we use fast Fourier sampling as our trapdoor sampler, but it is not necessary either.
Actually, an extreme simplicity/speed trade-off would be to replace our fast Fourier sampler with Klein’s
sampler: signature generation would be about two orders of magnitudes slower, but it would be simpler
to implement and the security would remain exactly the same.

Message recovery mode. In some situations, it can be advantageous to use Falcon in message-
recovery mode. The signature becomes twice as long but the message does not need to be sent anymore,
which induces a gain on the total communication complexity.

Identity-based encryption. As shown in [DLP14], Falcon can be converted into an identity-
based encryption scheme in a straightforward manner.

20

Easy signature verification. The signature procedure is very simple: essentially, one just needs to
compute [H(r∥m)− s2h] mod q, which boils down to a fewNTT operations and a hash computation.

2.6.2 Limitations

Falcon also has a few limitations. These limitations are implementation-related and interestingly, they
concern only the signer. We list them below.

Delicate implementation. We believe that both the key generation procedure and the fast Fourier
sampling are non-trivial to understand and delicate to implement, and constitue the main shortcoming
of Falcon. On the bright side, the fast Fourier sampling uses subroutines of the fast Fourier transform
as well as trees, two objects most implementers are familiar with.

Floating-point arithmetic. Our signing procedure uses floating-point arithmetic with 53 bits of
precision. While this poses no problem for a software implementation, it may prove to be a major limita-
tion when implementation on constrained devices – in particular those without a floating-point unit –
will be considered.

Unclear side-channel resistance. Falcon relies heavily on discrete Gaussian sampling over the
integers. How to implement this securely with respect to timing and side-channel attacks has remained
largely unstudied, save for a few exceptions [MW17, RRVV14].

21

Chapter 3

Specification of Falcon

3.1 Overview

Main elements in Falcon are polynomials of degreenwith integer coefficients. The degreen is normally
a power of two (typically 512 or 1024) or a small multiple of a power of two (e.g. 768). Computations are
donemodulo amonic polynomial of degreen denotedϕ (in practice, ϕwill be a cyclotomic polynomial).

Mathematically, within the algorithm, some polynomials are intepreted as vectors, and some others as
matrices: a polynomial f modulo ϕ then stands for a square n × nmatrix, whose rows are xif mod ϕ
for all i from 0 to n − 1. It can be shown that additions and multiplications of such matrices map to
additions and multiplications of polynomials modulo ϕ. We can therefore express most of Falcon in
terms of operations on polynomials, even when we really are handling matrices that define a lattice.

The public key is a basis for a lattice of dimension 2n:[
−h In

qIn On

]
(3.1)

where In is the identity matrix of dimension n,On contains only zeros, and h is a polynomial modulo ϕ
that stands for an n× n sub-matrix, as explained above. Coefficients of h are integers that range from 0
to q − 1, where q is a specific small prime (in the recommended parameters, q is either 12289 or 18433).

The corresponding private key is another basis for the very same lattice, expressed as:[
g −f
G −F

]
(3.2)

where f , g, F andG are short integral polynomials modulo ϕ, that fulfill the two following relations:

h = g/f mod ϕ mod q
fG− gF = q mod ϕ

(3.3)

23

Such a lattice is known as a complete NTRU lattice, and the second relation, in particular, is called the
NTRU equation. Take care that while the relation h = g/f is expressed modulo q, the lattice itself, and
the polynomials, use nominally unbounded integers.

Key pair generation involves choosing random f and g polynomials using an appropriate distribution
that yields short, but not too short, vectors; then, the NTRU equation is solved to find matching F and
G. Keys are described in section 3.4, and their generation is covered in section 3.8.

Signature generation consists in first hashing the message to sign, along with a random nonce, into a
polynomial c modulo ϕ, whose coefficients are uniformly mapped to integers in the 0 to q − 1 range;
this process is described in section 3.7. Then, the signer uses his knowledge of the secret lattice basis
(f, g, F,G) to produce a pair of short polynomials (s1, s2) such that s1 = c− s2h mod ϕ mod q. The
signature properly said is s2.

Finding small vectors s1 and s2 is, in all generality, an expensive process. Falcon leverages the special
structure of ϕ to implement it as a divide-and-conquer algorithm similar to the Fast Fourier Transform,
which greatly speeds up operations. Moreover, some “noise” is added to the sampled vectors, with care-
fully tuned Gaussian distributions, to prevent signatures from leaking too much information about the
private key. The signature generation process is described in section 3.9.

Signature verification consists in recomputing s1 from the hashed message c and the signature s2, and
then verifying that (s1, s2) is an appropriately short vector. Signature verification can be done entirely
with integer computations modulo q; it is described in section 3.10.

Encoding formats for keys and signatures are described in section 3.11. In particular, since the signature
is a short polynomial s2, its elements are on average close to 0, which allows for a custom compressed
format that reduces signature size.

Recommended parameters for several security levels are defined in section 3.12.

3.2 Technical overview

In this section, we provide an overview of the used techniques. As Falcon is arguably math-heavy, a
clear comprehension of the mathematical principles in action goes a long way towards understanding
and implementing it.

Falconworks with elements in number fields of the formQ[x]/(ϕ). Here ϕ denotes a cyclotomic poly-
nomial, that is, a polynomial of the formϕ(x) = ∏

ζ∈Ω(x−ζ)whereΩ denotes the set of primitivem-th
roots of unity for an integerm. In particular, we will always use one of these two types of polynomials:

• ϕ = xn + 1 for n = 2κ; as this polynomial is binary and will entail manipulating binary trees, we
will say that we are in the binary case whenever we work with it; we note that in this case ϕ(x) =∏

k∈Z×
m

(x− ζk), withm = 2n and ζ an arbitrary primitivem-th root of 1 (e.g. ζ = exp(2iπ
m

)).

24

• ϕ = xn − xn/2 + 1 with n = 3 · 2κ; as this polynomial is ternary and will entail manipulating
ternary trees, we will say that we are in the ternary casewhenever we work with it. We note that in
this case ϕ(x) = ∏

k∈Z×
m

(x− ζk), wherem = 3n and ζ is a primitivem-th root of 1.

The interesting part about these number fieldsQ[x]/(ϕ) is that they come with a tower-of-fields struc-
ture. Indeed, in the binary case, we have the following tower of fields:

Q ⊆ Q[x]/(x2 + 1) ⊆ · · · ⊆ Q[x]/(xn/2 + 1) ⊆ Q[x]/(xn + 1) (3.4)

Similarly, in the ternary case, we have the following tower of fields:

Q ⊆ Q[x]/(x2 − x + 1) ⊆ Q[x]/(x6 − x3 + 1) ⊆ Q[x]/(x12 − x6 + 1) ⊆ . . .
. . . ⊆ Q[x]/(xn/2 − xn/4 + 1) ⊆ Q[x]/(xn − xn/2 + 1) (3.5)

In both the binary and ternary cases, wewill rely on this tower-of-fields structure. Evenmore importantly
for our purposes, by splitting polynomials between their odd and even coefficients we have the following
chain of space isomorphisms:

Qn ∼= (Q[x]/(x2 + 1))n/2 ∼= . . . ∼= (Q[x]/(xn/2 + 1))2 ∼= Q[x]/(xn + 1) (3.6)

Similarly, in the ternary case, we have the following chain of space isomorphisms:

Qn ∼= (Q[x]/(x2 − x + 1))n/2 ∼= (Q[x]/(x6 − x3 + 1))n/6 ∼= . . . ∼= Q[x]/(xn − xn/2 + 1) (3.7)

The equations 3.4, 3.5, 3.6 and 3.7 remain valid when replacing Q by Z, in which case they describe a
tower of rings and a chain of module isomorphisms.

We will see in section 3.6 that for appropriately defined multiplications, these are actually chains of ring
isomorphisms. The equations 3.6 and 3.7 will be used tomake our signature generation fast and “good”:
in lattice-based cryptography, the smaller the norm of signatures are, the better. So by “good” we mean
that our signature generation will output signatures with a small norm.

Onone hand, classical algebraic operations in the fieldsQ[x]/(xn−xn/2 +1) andQ[x]/(xn +1) are fast,
and using themwillmake our signature generation fast. On the other hand, wewill use the isomorphisms
exposed in equations 3.6 and 3.7 as a leverage to output signatures with small norm. However, using
these endomorphisms to their full potential is not easy, as it entails manipulating individual coefficients
of polynomials (or of their Fourier transform) and working with binary or even ternary trees. We will see
that most of the technicalities of Falcon arise from this.

25

3.3 Notations

Cryptographic parameters. For a cryptographic signature scheme, λ denotes its security level and
qs themaximal number of signature queries whichmay bemade. Following the assumptions of [NIS16],
we suppose that qs ≤ 264.

Matrices, vectors and scalars. Matrices will usually be in bold uppercase (e.g. B), vectors in bold
lowercase (e.g. v) and scalars – which include polynomials – in italic (e.g. s). We use the row convention
for vectors. The transpose of a matrix B may be noted Bt. It is to be noted that for a polynomial f , we
do not use f ′ to denote its derivative in this document.

Quotient rings. For q ∈ N⋆, we denote by Zq the quotient ring Z/qZ; in Falcon, q is prime so
Zq becomes a finite field. We also denote by Z×

q the group of invertible elements of Zq, and by φ Euler’s
totient function: φ(q) = |Z×

q |.

Number fields. We denote by ϕ a monic polynomial of Z[x], irreducible in Q[x], of degree n and
with distinct roots overC. In Falcon, we will always consider ϕ to take one of these two forms:

• Binary case. ϕ = xn + 1 for n = 2κ;

• Ternary case. ϕ = xn − xn/2 + 1 with n = 3 · 2κ.

Let a = ∑n−1
i=0 aix

i and b = ∑n−1
i=0 bix

i be arbitrary elements of the number fieldQ = Q[x]/(ϕ). We
note a⋆ and call (Hermitian) adjoint of a the unique element ofQ such that for any root ζ of ϕ, a⋆(ζ) =
a(ζ), where · is the usual complex conjugation overC. For the values of ϕ considered in Falcon, a⋆ can
be expressed simply:

• Binary case. If ϕ = xn + 1 with n = 2κ a power of 2, then

a⋆ = a0 −
n−1∑
i=1

aix
n−i (3.8)

• Ternary case. If ϕ = xn − xn/2 + 1 with n = 3 · 2κ, then

a⋆ = a0 +
n−1∑
i=1

ai(xn/2−i − xn−i) (3.9)

We extend this definition to vectors and matrices: the adjoint B⋆of a matrix B ∈ Qn×m (resp. a vector
v) is the component-wise adjoint of the transpose of B (resp. v).

The inner product over Q is ⟨a, b⟩ = 1
deg(ϕ)

∑
ϕ(ζ)=0 a(ζ) · b(ζ), and the associated norm is ∥a∥ =√

⟨a, a⟩. We extend this definition to vectors: for u = (ui)i and v = (vi)i inQm, we define ⟨u,v⟩ as∑
i⟨ui, vi⟩. Of special interest to us is the expression of the norm for specific values of ϕ.

26

• Binary case. The norm coincides with the usual coefficient-wise euclidean norm:

∥a∥2 =
∑

0≤i<n

a2
i ; (3.10)

• Ternary case. The norm can be expressed as:

∥a∥2 =
∑

0≤i<n/2
(a2

i + aiai+n/2 + a2
i+n/2). (3.11)

Ring Lattices. For the ringsQ = Q[x]/(ϕ) andZ = Z[x]/(ϕ), positive integersm ≥ n and a full-
rank matrix B ∈ Qn×m, we denote by Λ(B) and call lattice generated by B the setZn ·B = {zB|z ∈
Zn}. By extension, a set Λ is a lattice if there exists a matrix B such that Λ = Λ(B). We may say that
Λ ⊆ Zm is a q-ary lattice if qZm ⊆ Λ.

Discrete Gaussians. For σ, µ ∈ R with σ > 0, we define the Gaussian function ρσ,µ as ρσ,µ(x) =
exp(−|x− µ|2/2σ2), and the discrete Gaussian distributionDZ,σ,µ over the integers as

DZ,σ,µ(x) = ρσ,µ(x)∑
z∈Z ρσ,µ(z)

. (3.12)

The parameter µmay be omitted when it is equal to zero.

Field norm. LetK be a number field of degree n = [K : Q] overQ and L be a Galois extension of
K. We denote byGal(L/K) the Galois group ofL/K. The field normNL/K : L→ K is a map defined
for any f ∈ L by the product of the Galois conjugates of f :

NL/K(f) =
∏

g∈Gal(L/K)
g(f). (3.13)

Equivalently, NL/K(f) can be defined as the determinant of the K-linear map y ∈ L 7→ fy. One can
check that the field norm is a multiplicative morphism.

The Gram-Schmidt orthogonalization. AnymatrixB ∈ Qn×m can be decomposed as follows:

B = L× B̃, (3.14)

where L is lower triangular with 1’s on the diagonal, and the rows b̃i’s of B̃ verify bib⋆
j = 0 for i ̸= j.

WhenB is full-rank , this decomposition is unique, and it is called the Gram-Schmidt orthogonalization
(or GSO). We will also call Gram-Schmidt norm of B the following value:

∥B∥GS = max
b̃i∈B̃
∥b̃i∥. (3.15)

27

The LDL⋆ decomposition. Closely related to the GSO is the LDL⋆ decomposition. It writes any
full-rankGrammatrix as a productLDL⋆, whereL ∈ Qn×n is lower triangular with 1’s on the diagonal,
and D ∈ Qn×n is diagonal. It can be computed using algorithm 14.

The LDL⋆ decomposition and the GSO are closely related as for a basis B, there exists a unique GSO
B = L · B̃ and for a full-rank GrammatrixG, there exists a unique LDL⋆ decompositionG = LDL⋆.
If G = BB⋆, then G = L · (B̃B̃⋆) · L⋆ is a valid LDL⋆ decomposition of G. As both decompositions
are unique, the matrices L in both cases are actually the same. In a nutshell:[

L · B̃ is the GSO of B
]
⇔
[
L · (B̃B̃⋆) · L⋆ is the LDL⋆ decomposition of (BB⋆)

]
. (3.16)

The reasonwhywepresent both equivalent decompositions is because theGSO is amore familiar concept
in lattice-based cryptography, whereas the use of LDL⋆ decomposition is faster and thereforemakesmore
sense from an algorithmic point of view.

3.4 Keys

3.4.1 Public Parameters

Public keys use some public parameters that are shared by many key pairs:

1. A cyclotomic polynomial ϕ ∈ Z[x], which is monic and irreducible. In Falcon, ϕ is either of
these two types of polynomials:

• Binary case. ϕ = xn + 1, where n = 2κ is a power of 2;
• Ternary case. ϕ = xn − xn/2 + 1, where n = 3 · 2κ is 3 times a power of 2;

2. A modulus q ∈ N⋆. In Falcon, q may take either of these two values:
• Binary case. If n = 2κ is a power of 2, then q = 12289;
• Ternary case. If n = 3 · 2κ is 3 times a power of 2, then q = 18433;

In both cases, q is chosen so that (ϕ mod q) splits overZq[x].

3. A real bound β > 0.

For clarity, all the parameters presented may be omitted (e.g. in algorithms’ headers) when clear from
context.

3.4.2 Private Key

The core of a Falcon private key sk consists of four polynomials f, g, F,G ∈ Z[x]/(ϕ) with short
integer coefficients, verifying the NTRU equation:

fG− gF = q mod ϕ. (3.17)

28

The polynomial f shall furthermore be invertible in Zq[x]/(ϕ).

Given f and g such that there exists a solution (F,G) to the NTRU equation, F andGmay be recom-
puted dynamically, but that process is computationally expensive; therefore, it is normally expected that
at least F will be stored along f and g (given f , g and F ,G can be efficiently recomputed).

Two additional elements are computed from the private key, and may be recomputed dynamically, or
stored along f , g and F :

• The FFT representations of f , g, F andG, ordered in the form of a matrix:

B̂ =
[

FFT(g) −FFT(f)
FFT(G) −FFT(F)

]
, (3.18)

where FFT(a) denotes the fast Fourier transform of a in the underlying ring (here, the ring is
R[x]/(ϕ)).

• A Falcon tree T, described at the end of this section. An important subtlety in Falcon is that
the nature of the Falcon tree differs depending on ϕ: in the binary case (i.e. ϕ = xn + 1), the
Falcon tree is a binary tree – each node has at most two children –, and in the ternary case (i.e.
ϕ = xn − xn/2 + 1), the Falcon tree is a ternary tree – each node has at most three children.

FFT representations are described in section 3.5. The FFT representation of a polynomial formally con-
sists of n complex numbers (a complex number is normally encoded as two 64-bit floating-point values);
however, the FFT representation of a real polynomial f is redundant, because for each complex root ζ of
ϕ, its conjugate ζ is also a root ofϕ, and f(ζ) = f(ζ). Therefore, the FFT representation of a polynomial
may be stored as n/2 complex numbers, and B̂, when stored, requires 2n complex numbers.

Falcon binary trees. Falcon binary trees are defined inductively as follows:

• A Falcon binary tree T of height 0 consists of a single node whose value is a real σ > 0.

• A Falcon binary tree T of height κ verifies these properties:
– The value of its root, noted T.value, is a polynomial ℓ ∈ Q[x]/(xn + 1) with n = 2κ.

– Its left and right children, noted T.leftchild and T.rightchild, are Falcon binary trees of
height κ− 1.

The values of internal nodes – which are real polynomials – are stored in FFT representation (i.e. as com-
plex numbers, see section 3.5 for a formal definition). Hence all the nodes of a Falconbinary tree contain
polynomials in FFT representation, except the leaves which contain real values> 0.

A Falcon binary tree of height 3 is represented in the figure 3.1. As illustrated by the figure, a Falcon
binary tree can be easily represented by an array of 2κ(1 + κ) complex numbers (or exactly half as many,
if the redundancy of FFT representation is leveraged, as explained above), and access to the left and right
children can be performed efficiently using simple pointer arithmetic.

29

ℓ

ℓ0

ℓ00

σ000 σ001

ℓ01

σ010 σ011

ℓ1

ℓ10

σ100 σ101

ℓ11

σ110 σ111σ1 σ2 σ3 σ4 σ5 σ6 σ7 σ8

Figure 3.1: A Falcon binary tree of height 3

Falcon ternary trees. In the ternary case, a mostly binary tree is built, except in one level whose
nodes have three children instead of two. Generally speaking, leaf nodes correspond to degree 1, and
each upper level either doubles or triples the degree; the tree root then corresponds to the degree n of ϕ.
Since n = 3 · 2κ, there must be exactly one level that corresponds to a “degree tripling”; nodes in that
level have three children each.

Exactly which level consists in ternary nodes is in fact left open as an implementation choice. The descrip-
tion of Falcon in this specification corresponds to a tripling immediately above the leaf nodes. As in
the binary case, the index of each node in a continuous array representation can be efficiently computed.

The contents of a Falcon tree T are computed from the private key elements f , g, F and G using the
algorithms described in section 3.8.3.

3.4.3 Public key

The Falcon public key pk corresponding to the private key sk = (f, g, F,G) is a polynomial h ∈
Zq[x]/(ϕ) such that:

h = gf−1 mod (ϕ, q). (3.19)

3.5 FFT and NTT

The FFT. Let f ∈ Q[x]/(ϕ). We note Ωϕ the set of complex roots of ϕ. We suppose that ϕ is monic
withdistrinct roots overC, so thatϕ(x) = ∏

ζ∈Ωϕ

(x−ζ). Wedenote byFFTϕ(f) the fast Fourier transform

of f with respect to ϕ:
FFTϕ(f) = (f(ζ))ζ∈Ωϕ

(3.20)

30

Whenϕ is clear from context, we simply note FFT(f). Wemay also use the notation f̂ to indicate that f̂ is
the FFT of f . FFTϕ is a ring isomorphism, andwe note invFFTϕ its inverse. Themultiplication in the FFT
domain is denoted by⊙. We extend the FFT and its inverse to matrices and vectors by component-wise
application.

Additions, subtractions,multiplications anddivisions of polynomialsmoduloϕ canbe computed inFFT
representations by simply performing them on each coordinate. In particular, this makesmultiplications
and divisions very efficient.

Of particular interest to us is the FFT for the particular values of ϕ taken in Falcon:

• Binary case: Ωϕ = {ζk|k ∈ Z×
2n}, with ζ a primitive 2n-th complex root of 1.

• Ternary case: Ωϕ = {ζk|k ∈ Z×
3n}, with ζ a primitive 3n-th complex root of 1.

A note on implementing the FFT. There exist several ways of implementing the FFT, which may
yield slightly different results. For example, some implementations of the FFT scale our definition by
a constant factor (e.g. 1/ deg(ϕ)). Another differentiation point is the order of (the roots of) the FFT.
Common orders are the increasing order (i.e. the roots are sorted by their order on the unit circle, starting
at 1 and moving clockwise) or (variants of) the bit-reversal order. In the case of Falcon:

• The FFT is not scaled by a constant factor.

• There is no constraint on the order of the FFT, the choice is left to the implementer. However, the
chosen order shall be consistent for all the algorithms using the FFT.

Representation of polynomials in algorithms. The algorithms which specify Falcon heavily
rely on the fast Fourier transform, and some of them explicitly require that the inputs and/or outputs are
given in FFT representation. When the directive “Format:” is present at the beginning of an algorithm,
it specifies in which format (coefficient or FFT representation) the input/output polynomials shall be
represented. When the directive “Format:” is absent, no assumption on the format of the input/output
polynomials is made.

TheNTT. TheNTT(NumberTheoreticTransform) is the analogof theFFT in the fieldZp, wherep is
a prime such that p = 1 mod 2n (binary case) or p = 1 mod 3n (ternary case). Under these conditions,
ϕ has exactly n roots (ωi) over Zp, and any polynomial f ∈ Zp[x]/(ϕ) can be represented by the values
f(ωi). Conversion to and fromNTT representation can be done efficiently inO(n log n) operations in
Zp. When in NTT representation, additions, subtractions, multiplications and divisions of polynomials
(modulo ϕ and p) can be performed coordinate-wise in Zp.

In Falcon, the NTT allows for faster implementations of public key operations (usingZq) and key pair
generation (with variousmedium-sized primes p). Private key operations, though, rely on the fast Fourier
sampling, which uses the FFT, not the NTT.

31

3.6 Splitting and Merging

In this section, we make explicit the chains of isomorphisms described in section 3.2, by presenting split-
ting (resp. merging) operators which allow to travel these chains from right to left (resp. left to right).

Let ϕ, ϕ′ be cyclotomic polynomials such that we either have ϕ(x) = ϕ′(x2) or ϕ(x) = ϕ′(x3). In this
section we define operators which are at the heart of our signing algorithm. Our algorithms require the
ability to split an element ofQ[x]/(ϕ) into two or three smaller elements ofQ[x]/(ϕ′). Conversely, we
will require the ability to merge small elements ofQ[x]/(ϕ′) into a larger element ofQ[x]/(ϕ).

3.6.1 Bisection: when ϕ(x) = ϕ′(x2)

In this sectionwe suppose thatϕ(x) = ϕ′(x2) and define operators splitting a polynomial f ∈ Q[x]/(ϕ)
in two smaller polynomials ofQ[x]/(ϕ′), or performing the reciprocal merging operation.

The splitfft2 operator. Let n be the degree of ϕ, and f = ∑n−1
i=0 aix

i be an arbitrary element of
Q[x]/(ϕ), f can be decomposed uniquely as f(x) = f0(x2) + xf1(x2), with f0, f1 ∈ Q[x]/(ϕ′). In
coefficient representation, such a decomposition is straightforward to write:

f0 =
∑

0≤i<n/2
a2ix

i and f1 =
∑

0≤i<n/2
a2i+1x

i (3.21)

f is simply split with respect to its even or odd coefficients. We note (f0, f1) = split2(f). In Falcon,
polynomials are repeatedly split, multiplied together, split again and so forth. To avoid switching back
and forth between the coefficient and FFT representation, we always perform the split operation in the
FFT representation. It is defined in algorithm 1.

Algorithm 1 splitfft2(FFT(f))
Require: FFT(f) = (f(ζ))ζ for some f ∈ Q[x]/(ϕ)
Ensure: FFT(f0) = (f0(ζ ′))ζ′ and FFT(f1) = (f1(ζ ′))ζ′ for some f0, f1 ∈ Q[x]/(ϕ′)
Format: All polynomials are in FFT representation.
1: for ζ such that ϕ(ζ) = 0 and Im(ζ) > 0 do
2: ζ ′ ← ζ2

3: f0(ζ ′)← 1
2 [f(ζ) + f(−ζ)]

4: f1(ζ ′)← 1
2ζ

[f(ζ)− f(−ζ)]
5: return (FFT(f0), FFT(f1))

splitfft2 is split2 realized in the FFT representation: for any f, FFT(split2(f)) = splitfft2(FFT(f)).
Readers familiar with the Fourier transform will recognize that splitfft2 is a subroutine of the inverse
fast Fourier transform, more precisely the part which from FFT(f) computes two FFT’s twice smaller.

32

f ∈ Q[x]/(ϕ) f0, f1 ∈ Q[x]/(ϕ′)

f̂ ∈ FFT(Q[x]/(ϕ)) f̂0, f̂1 ∈ FFT(Q[x]/(ϕ′))

FFT FFTinvFFT invFFT

split2

splitfft2

merge2

mergefft2

Figure 3.2: Relationship between FFT, invFFT, split2,merge2, splitfft2 andmergefft2

The mergefft2 operator. With the previous notations, we define the operator merge2 as follows:
merge2(f0, f1) = f0(x2) + xf1(x2) ∈ Q[x]/(ϕ). Similarly to split2, it is often relevant from an
efficiently standpoint to performmerge2 in the FFT representation. This is done in algorithm 2.

Algorithm 2mergefft2(f0, f1)
Require: FFT(f0) = (f0(ζ ′))ζ′ and FFT(f1) = (f1(ζ ′))ζ′ for some f0, f1 ∈ Q[x]/(ϕ′)
Ensure: FFT(f) = (f(ζ))ζ for some f ∈ Q[x]/(ϕ)
Format: All polynomials are in FFT representation.
1: for ζ such that ϕ(ζ) = 0 do
2: ζ ′ ← ζ2

3: f(ζ)← f0(ζ ′) + ζf1(ζ ′)
4: return FFT(f)

It is immediate that split2 andmerge2 are inverses of each other, and equivalently splitfft2 andmergefft2
are inverses of each other. Just as for splitfft2, readers familiar with the Fourier transform can observe that
mergefft2 is a step of the fast Fourier transform: it is the reconstruction step which from two small FFT’s
computes a larger FFT.

Relationship with the FFT. There is no requirement on the order in which the values f(ζ) (resp.
f0(ζ ′), resp. f1(ζ ′)) are to be stored, and the choice of this order is left to the implementer. It is however
recommended to use a unique order convention for the FFT, invFFT, splitfft2 andmergefft2 operators.
Since the FFT and invFFT need to implemented anyway, this unique convention can be achieved e.g. by
implementing splitfft2 as part of invFFT, andmergefft2 as part of the FFT.

The intricate relationships between the split2 andmerge2 operators, their counterparts in the FFT repre-
sentation and the (inverse) fast Fourier transform are illustrated in the commutative diagramof figure 3.2.

33

3.6.2 Trisection: when ϕ(x) = ϕ′(x3)

In this section we suppose that ϕ(x) = ϕ′(x3). In Falcon, this may happen only if ϕ is ternary. We
define splitting and merging operators similarly to the bisection case. For any f ∈ Q[x]/(ϕ), we can
uniquely write f(x) = f0(x3)+xf1(x3)+x2f2(x3)with f0, f1, f2 ∈ Q[x]/(ϕ). We then define split3
as split3(f) = (f0, f1, f2), andmerge3 as being the reciprocal operator. Translations of these operators
in the FFT domain are given in algorithms 3 and 4.

Algorithm 3 splitfft3(FFT(f))
Require: FFT(f) = (f(ζ))ζ for f ∈ Q[x]/(ϕ)
Ensure: FFT(f0), FFT(f1), FFT(f2) for f0, f1, f2 ∈ Q[x]/(ϕ′)
Format: All polynomials are in FFT representation.
1: for ζ such that ϕ(ζ) = 0 and arg(ζ) ∈ (0, 2π

3) do
2: ζ ′ ← ζ3

3: f0(ζ ′)← 1
3 [f(ζ) + f(jζ) + f(j2ζ)] ▷ j is a primitive cube root of 1: j = ei(2π)/3

4: f1(ζ ′)← 1
3ζ

[f(ζ) + j2f(jζ) + jf(j2ζ)]
5: f2(ζ ′)← 1

3ζ2 [f(ζ) + jf(jζ) + j2f(j2ζ)]
6: return (FFT(f0), FFT(f1), FFT(f2))

Algorithm 4mergefft3(f0, f1, f2)
Require: FFT(f0), FFT(f1), FFT(f2) for f0, f1, f2 ∈ Q[x]/(ϕ′)
Ensure: FFT(f) = (f(ζ))ζ for f ∈ Q[x]/(ϕ)
Format: All polynomials are in FFT representation.
1: for ζ such that ϕ(ζ) = 0 do
2: ζ ′ ← ζ3

3: f(ζ)← f0(ζ ′) + ζf1(ζ ′) + ζ2f2(ζ ′)
4: f(jζ)← f0(ζ ′) + jζf1(ζ ′) + j2ζ2f2(ζ ′)
5: f(j2ζ)← f0(ζ ′) + j2ζf1(ζ ′) + jζ2f2(ζ ′)
6: return FFT(f)

Relationshipwith the FFT. Theoperators split3,merge3, splitfft3 andmergefft3 have an identical
relationship with the FFT as their bisection counterparts do (see section 3.6.1 and figure 3.2).

3.6.3 The special case ϕ(x) = x2 − x+ 1

The roots of the polynomialx2−x+1 are the two sixth roots of unity ζ6 = 1
2 +

√
3

2 i and ζ̄6 = 1
2−

√
3

2 i. In
contrast to the other cases it is not true that for a root ζ also−ζ is a root ofx2−x+1. We give specialized
split and merge algorithms for this case in Algorithms 5 and 6. Let f = f0 + f1 be a polynomial in

34

Q[x]/(x2−x+1). Then its FFT representation is given by f(ζ6) = f0 + 1
2f1 +

√
3

2 f1i and the complex
conjugate. The splitted polynomials f0 and f1 lie inQ and hence their FFT representation is just f0 and
f1. We have f1 = 2√

3ℑf(ζ6) and f0 = ℜf(ζ6)− 1
2f1.

Algorithm 5 splitfft6(FFT(f))
Require: FFT(f) = (f(ζ))ζ for f ∈ Q[x]/(x2 − x+ 1)
Ensure: f0, f1 ∈ Q
Format: All polynomials are in FFT representation.
1: ζ ← 1

2 +
√

3
2 i ▷ sixth root of unity

2: f1 ← 2√
3ℑ(f(ζ)) ▷ℑ denotes the imaginary part

3: f0 ← ℜ(f(ζ))− 1
2f1 ▷ℜ denotes the real part

4: return (f0, f1)

Algorithm 6mergefft6(f0, f1)
Require: f0, f1 ∈ Q
Ensure: FFT(f) = (f(ζ))ζ for f ∈ Q[x]/(x2 − x+ 1)
Format: All polynomials are in FFT representation.
1: for ζ such that ζ2 − ζ + 1 = 0 do
2: f(ζ)← f0 + ζf1

3: return FFT(f)

3.6.4 Algebraic interpretation

The purpose of the splitting and merging operators that we defined is not only to represent elements of
Q[x]/(ϕ) using smaller elements ofQ[x]/(ϕ′), but to do so in a manner which is compatible with ring
operations. As an illustration, we consider the operation:

a = bc (3.22)

where a, b, c ∈ Q[x]/(ϕ). For f ∈ Q[x]/(ϕ), we consider the associated endomorphism ψf : z ∈
Q[x]/(ϕ) 7→ fz. The equation 3.22 can be rewritten as a = ψc(b). We will show how to use the
splitting operator to express it as a vector-matrix product in the module (Q[x]/(ϕ′))k.

1. Bisection. By the splitting isomorphism split2, a and b (resp. ψc) can also be considered as elements
(resp. an endomorphism) of (Q[x]/(ϕ′))2. The equation 3.22 can be expressed overQ[x]/(ϕ′) as

[
a0 a1

]
=
[
b0 b1

] [c0 c1
xc1 c0

]
(3.23)

35

2. Trisection. The equation 3.22 is now expressed as

[
a0 a1 a2

]
=
[
b0 b1 b2

] c0 c1 c2
xc2 c0 c1
xc1 xc2 c0

 (3.24)

More formally, we have used the fact that splitting operators are isomorphisms between Q[x]/(ϕ) and
(Q[x]/(ϕ′))k, which express elements ofQ[x]/(ϕ) in the (Q[x]/(ϕ′))-basis {1, x} for the bisection, or
{1, x, x2} for the trisection (hence “breaking” a, b in vectors of smaller elements).

Similarly,writing the transformationmatrix of the endomorphismψc in thebasis{1, x} (resp. {1, x, x2})
yields the 2× 2 (resp. 3× 3) matrix of the equation 3.23 (resp. 3.24)

3.6.5 Relationship with the field norm

The splitting and merging operators allow to easily express the field norm for some specific cyclotomic
fields. Let L = Q[x]/(ϕ),K = Q[x]/(ϕ′) and f ∈ L. Since by definition NL/K(f) = detK(ψd), we
can use the equations 3.23 and 3.24 to compute it explicitly. This yields:

1. If ϕ′(x2) = ϕ(x), then NL/K(f) = f 2
0 − xf 2

1 , where (f0, f1) = split2(f);

2. If ϕ′(x3) = ϕ(x), thenNL/K(f) = f 3
0 +xf 3

1 +x2f 3
2 + 3f0f1f2, where (f0, f1, f2) = split3(f);

3. If ϕ(x) = x2 − x+ 1, then NL/Q(f) = f 2
0 + f0f1 + f 2

1 , where f = f0 + xf1.

For f ∈ Lwith L = Q[x]/(ϕ), we will also denote N(f) = NL/K(f), where:

1. if ∃ a cyclotomic polynomial ϕ′ such that ϕ′(x2) = ϕ(x), thenK = Q[x]/(ϕ′);

2. else, if ∃ a cyclotomic polynomial ϕ such that ϕ′(x3) = ϕ(x), thenK = Q[x]/(ϕ′);

3. else,K = Q.

For the values of ϕ considered in this document, this allows to define N(f) in an unambiguous way for
any f ∈ Q[x]/(ϕ).

3.7 Hashing

As for any hash-and-sign signature scheme, the first step to sign a message or verify a signature consists
of hashing the message. In our case, the message needs to be hashed into a polynomial inZq[x]/(ϕ). An
approved extendable-output hash function (XOF), as specified in FIPS 202 [NIS15], shall be used during
this procedure.

36

This XOF shall have a security level at least equal to the security level targeted by our signature scheme.
In addition, we should be able to start hashing a message without knowing the security level at which it
will be signed. For these reasons, we use a unique XOF for all security levels: SHAKE-256.

• SHAKE-256 -Init () denotes the initialization of a SHAKE-256 hashing context;

• SHAKE-256 -Inject (ctx, str) denotes the injection of the data str in the hashing context ctx;

• SHAKE-256 -Extract (ctx, b) denotes extraction from a hashing context ctx of b bits of pseudo-
randomness.

In Falcon, big-endian convention is used to interpret a chunk of b bits, extracted from a SHAKE-256
instance, into an integer in the 0 to 2b− 1 range (the first of the b bits has numerical weight 2b−1, the last
has weight 1).

Algorithm 7HashToPoint(str, q, n)
Require: A string str, a modulus q ≤ 216, a degree n ∈ N⋆

Ensure: An polynomial c = ∑n−1
i=0 cix

i inZq[x]
1: k ← ⌊216/q⌋
2: ctx← SHAKE-256-Init()
3: SHAKE-256-Inject(ctx, str)
4: i← 0
5: while i < n do
6: t← SHAKE-256-Extract(ctx, 16)
7: if t < kq then
8: ci ← t mod q
9: i← i+ 1
10: return c

Algorithm 7 defines the hashing process used in Falcon. It is defined for any q ≤ 216.

Possible variants.

• If q > 216, then larger chunks can be extracted from SHAKE-256 at each step.

• Algorithm 7 may be difficult to efficiently implement in a constant-time way; constant-timeness
may be a desirable feature if the signed data is also secret.

A variant which is easier to implement with constant-time code extracts 64 bits instead of 16 at
step 6, and omits the conditional check of step 7. While the omission of the check means that
some target values modulo q will be slightly more probable than others, a Rényi argument [Pre17]
allows to claim that this variant is secure for the parameters set by NIST [NIS16].

Of course, any variant deviating from the procedure expressed in algorithm 7 implies that the same mes-
sage will hash to a different value, which breaks interoperability.

37

3.8 Key Pair Generation

3.8.1 Overview

The key pair generation is arguably the most technical part of Falcon to describe. It can be chronolog-
ically and conceptually decomposed in two clearly separate parts, which each contain their own techni-
calities, make use of different mathematical tools and require to address different challenges.

• Solving the NTRU equation. The first step of the key pair generation consists of computing poly-
nomials f, g, F,G ∈ Z[x]/(ϕ) which verify the equation 3.17 – the NTRU equation. Generat-
ing f and g is easy enough, but the hard part is to compute efficiently polynomials F,G such that
equation 3.17 is verified.
In order to do this, we propose a novel method which exploits the tower-of-rings structure ex-
plicited in the equations 3.4 and 3.5. We use the field normN to map the NTRU equation onto a
smaller ringZ[x]/(ϕ′) of the tower of rings, all the way down toZ. We then solve the equation in
Z – which amounts to an extended gcd – and use the properties of the norm to lift the solutions
(F,G) in the tower of rings, up to the ring Z[x]/(ϕ).
From an implementation point of view, the main technicality of this part is that it requires to han-
dle polynomials with large coefficients (a few thousands of bit per coefficient in the lowest levels
of the recursion). This step is specified in section 3.8.2.

• Computing a Falcon tree. Once suitable polynomials f, g, F,G are generated, the second part of
the key generation consists of preprocessing them into an adequate format: by adequate we mean
that this format should be reasonably compact and allow fast signature generation on-the-go.
Falcon trees are precisely this adequate format. To compute a Falcon tree, we compute the
LDL⋆ decomposition G = LDL⋆ of the matrix G = BB⋆, where

B =
[
g −f
G −F

]
, (3.25)

which is equivalent to computing the Gram-Schmidt orthogonalization B = L× B̃. If we were
usingKlein’swell-known sampler (or a variant thereof) as a trapdoor sampler, knowingLwouldbe
sufficient but a bit unsatisfactory aswewouldnot exploit the tower-of-rings structure ofQ[x]/(ϕ).
So instead of stopping there, we store L (or rather L10, its only non-trivial term) in the root of a
tree, use the splitting operators defined in section 3.6 to “break” the diagonal elementsDii of D
into matrices Gi over smaller rings Q[x]/(ϕ′), at which point we create subtrees for each matrix
Gi and recursively start over the process of LDL⋆ decomposition and splitting.
The recursion continues until the matrixG has its coefficients inQ, which correspond to the bot-
tom of the recursion tree. How this is done is specified in section 3.8.3.
The main technicality of this part is that it exploits the tower-of-rings structure of Q[x]/(ϕ) by
breaking its elements onto smaller rings. In addition, intermediate results are stored in a tree, which

38

Keygen

NTRUGen ffLDL⋆

NTRUSolve LDL⋆

Figure 3.3: Flowchart of the key generation

requires precise bookkeeping as elements of different tree levels donot live in the same field. Finally,
for performance reasons, the step is realized completely in the FFT domain.

Once these two steps are done, the rest of the key pair generation is straightforward. A final step normal-
izes the leaves of the LDL tree to turn it into a Falcon tree. The result is wrapped in a private key sk and
the corresponding public key pk is h = gf−1 mod q.

A formal description is given in the algorithms 8 to 16, the main algorithm being the procedure Keygen
(algorithm 8). The general architecture of the key pair generation is also illustrated in figure 3.3.

Algorithm 8 Keygen(ϕ, q)
Require: A monic polynomial ϕ ∈ Z[x], a modulus q
Ensure: A secret key sk, a public key pk
1: f, g, F,G, γ ← NTRUGen(ϕ, q) ▷ Solving the NTRU equation

2: B←
[
g −f
G −F

]
3: B̂← FFT(B)
4: G← B̂× B̂⋆

5: T← ffLDL⋆(G) ▷ Computing the LDL⋆ tree
6: if ϕ is binary then
7: σ ← 1.55√q
8: else if ϕ is ternary then
9: σ ← 1.32 · 21/4√q
10: for each leaf leaf of T do ▷Normalization step
11: leaf.value← σ/

√
leaf.value

12: sk← (B̂, T)
13: h← gf−1 mod q
14: pk← h
15: return sk, pk

39

3.8.2 Generating the polynomials f, g, F,G.

The first step of the key pair generation generates suitable polynomials f, g, F,G verifying the NTRU
equation: fG − gF = q mod ϕ. This is specified in algorithm 9 (NTRUGen). We provide a general
explanation of the algorithm:

1. At the first step, the polynomials f, g are generated randomly. A few conditions over f, g are
checked to ensure they are suitable for our purposes (steps 1 to 11). It particular, it shall be checked
that:
(a) A public key h can be computed from f, g. This is true if and only if f is invertible mod q,

which is true if and only if Res(f, ϕ) mod q ̸= 0, where Res denotes the resultant. The
NTT can be used to perform this check and then compute h (f is invertible in Zq[x]/(ϕ) if
and only if its NTT representation contains no zero).

(b) The polynomials f, g, F,G allow to generate short signatures. This is the case if and only if
γ = max

{
∥(g,−f)∥ ,

∥∥∥(qf⋆

ff⋆+gg⋆ ,
qg⋆

ff⋆+gg⋆)
∥∥∥} is small enough.

2. At the second step, short polynomials F,G are computed such that f, g, F,G verify the NTRU
equation. This is done by the procedure NTRUSolve, which exists in two versions: binary (algo-
rithm 11) and ternary (algorithm 13).

Algorithm 9NTRUGen(ϕ, q) (Binary case)
Require: A monic polynomial ϕ ∈ Z[x] of degree n, a modulus q
Ensure: Polynomials f, g, F,G
1: σ′ ← 1.17

√
q/2n ▷ σ′ is chosen so thatE[∥(f, g)∥] = 1.17√q

2: for i from 0 to n− 1 do
3: fi ← DZ,σ′,0
4: gi ← DZ,σ′,0

5: f ← ∑
i fix

i ▷ f ∈ Z[x]/(ϕ)
6: g ← ∑

i gix
i ▷ g ∈ Z[x]/(ϕ)

7: if Res(f, ϕ) mod q = 0 then ▷ Check that f is invertible mod q
8: restart
9: γ ← max

{
∥(g,−f)∥ ,

∥∥∥(qf⋆

ff⋆+gg⋆ ,
qg⋆

ff⋆+gg⋆)
∥∥∥}

10: if γ > 1.17√q then ▷ Check that signatures will be short
11: restart
12: F,G← NTRUSolven,q(f, g) ▷ Computing F,G such that fG− gF = 1 mod ϕ
13: return f, g, F,G

Things are slightly different in the ternary case: to ensure the proper distribution, coefficients of f and
gmust be generated as Gaussians in the FFT embedding, then converted back to normal representation,
and only then rounded to integers. Moreover, the vector normsmust be evaluated in the FFT embedding
as well. This is due to the fact that the FFT, in the ternary case, is not an orthogonal transform, and we
need f and g to use a proper spheroid in the FFT embedding. Details are expressed in algorithm 10.

40

Algorithm 10NTRUGen(ϕ, q) (Ternary case)
Require: A monic polynomial ϕ ∈ Z[x] of degree n, a modulus q
Ensure: Polynomials f, g, F,G
1: σ′ ←

√
q/
√

8
2: for j from 0 to n− 1 do
3: Generate random uniform real numbers a, b, c, d ∈]0..1]
4: f̂j ← σ′√−2 log aei(2π)b

5: ĝj ← σ′√−2 log cei(2π)d

6: f ← invFFT(f̂)
7: g ← invFFT(ĝ)
8: for j from 0 to n− 1 do
9: fj ← ⌊fj⌉
10: gj ← ⌊gj⌉
11: if Res(f, ϕ) mod q = 0 then ▷ Check that f is invertible mod q
12: restart
13: γ ← max

{
∥(g,−f)∥ ,

∥∥∥(qf⋆

ff⋆+gg⋆ ,
qg⋆

ff⋆+gg⋆)
∥∥∥}

14: if γ > 4nq/
√

8 then ▷ Check that signatures will be short
15: restart
16: F,G← NTRUSolven,q(f, g) ▷ Computing F,G such that fG− gF = 1 mod ϕ
17: return f, g, F,G

41

Solving the NTRU equation: the binary case

We now explain how to solve the equation 3.17 in the binary case. As said before, we repeatedly use the
field normN (see section 3.6.5 for explicit formulae) to map f, g to a smaller ringZ[x]/(xn/2 + 1), until
we reach the ringZ. Solving 3.17 then amounts to computing an extendedGCDoverZ, which is simple.
Once this is done, we use the multiplicative properties of the field norm to repeatedly lift the solutions
up to Z[x]/(xn + 1), at which point we have solved the equation 3.17.

Algorithm 11NTRUSolven,q(f, g) (Binary case)
Require: f, g ∈ Z[x]/(xn + 1) with n a power of two
Ensure: Polynomials F,G such that the equation 3.17 is verified
1: if n = 1 then
2: Compute u, v ∈ Z such that uf − vg = gcd(f, g)
3: if gcd(f, g) ̸= 1 then
4: abort
5: (F,G)← (vq, uq)
6: return (F,G)
7: else
8: f ′ ← N(f) ▷ f ′, g′, F ′, G′ ∈ Z[x]/(xn/2 + 1)
9: g′ ← N(g)
10: (F ′, G′)← NTRUSolven/2,q(f ′, g′)
11: F ← F ′(x2)g′(x2)/g(x) ▷ F,G ∈ Z[x]/(xn + 1)
12: G← G′(x2)g′(x2)/g(x)
13: Reduce(f, g, F,G) ▷ (F,G) is reduced with respect to (f, g)
14: return (F,G)

NTRUSolve uses the procedure Reduce as a subroutine to reduce the size of the solutions F,G. Unlike
NTRUSolve, the description of this subroutine is the same in the binary and ternary cases.

The principle of Reduce is a simple generalization of textbook vectors’ reduction. Given vectors u,v ∈
Zk, reducinguwith respect tov is done by simply performingu← u−

⌊
uv⋆

vv⋆

⌉
v. Reduce does the same

by replacing Zk by (Z[x]/(ϕ))2, u by (F,G) and v by (f, g).

Algorithm 12 Reduce(f, g, F,G)
Require: Polynomials f, g, F,G ∈ Z[x]/(ϕ)
Ensure: (F,G) is reduced with respect to (f, g)
1: do
2: k ←

⌊
F f⋆+Gg⋆

ff⋆+gg⋆

⌉
▷ F f⋆+Gg⋆

ff⋆+gg⋆ ∈ Q[x]/(ϕ) and k ∈ Z[x]/(ϕ)
3: F ← F − kf
4: G← G− kg
5: while k ̸= 0 ▷Multiple iterations may be needed, e.g. if k is computed in small precision.

42

Algorithm 13NTRUSolven,q(f, g) (Ternary case)
Require: f, g ∈ Z[x]/(xn − xn/2 + 1) with n = 3 · 2κ

Ensure: Polynomials F,G such that the equation 3.17 is verified
1: if n = 1 then
2: Compute u, v ∈ Z such that uf − vg = gcd(f, g)
3: if gcd(f, g) ̸= 1 then
4: abort
5: (F,G)← (vq, uq)
6: return (F,G)
7: else
8: if n = 6 then
9: k ← 3
10: else
11: k ← 2
12: f ′ ← N(f) ▷ f ′, g′, F ′, G′ ∈ Z[x]/(xn/k − xn/(2k) + 1)
13: g′ ← N(g)
14: (F ′, G′)← NTRUSolve(n/k),q(f ′, g′)
15: F ← F ′(xk) · g′(xk)/g(x) ▷ F,G ∈ Z[x]/(xn − xn/2 + 1)
16: G← G′(xk) · f ′(xk)/f(x)
17: Reduce(f, g, F,G)
18: return (F,G)

Solving the NTRU equation: the ternary case

For the ternary case, the principle ofNTRUSolve is the same, except that the recursion is less straightfor-
ward as there aremore cases to consider. However, the polynomialsN(f)(xk)/f(x) can still be expressed
simply. Reprising the notations of section 3.6.5:

1. If n > 6, then N(f)(x2)/f(x) = f(−x) = f0(x2)− xf1(x2).

2. If n = 6, then N(f)(x3)/f(x) = f(x7)f(x13). This is equal to

f 2
0 (x3) + x2f 2

1 (x3) + x4f 2
2 (x3)− xf0f1(x3)− x2f0f2(x3)− x3f1f2(x3).

3. If n = 2, then N(f)(x2)/f(x) = f(x5) = f0 + f1 − xf1.

The ternary version ofNTRUSolve is more complex than the binary; a complete specification is given in
algorithm 13.

43

3.8.3 Computing a Falcon Tree

The second step of the key generation consists of preprocessing the polynomials f, g, F,G into an ade-
quate secret key format. The secret key is of the form sk = (B̂, T), where:

• B̂ =
[

FFT(g) −FFT(f)
FFT(G) −FFT(F)

]

• T is a Falcon tree computed in two steps:

1. First, a tree T is computed from G ← B̂ × B̂⋆, called an LDL tree. This is specified in
algorithm 15. At this point, T is a Falcon tree but it is not normalized.

2. Second, T is normalized with respect to a standard deviation σ. It is described near the end
of algorithm 8.

The polynomials manipulated in the algorithm 15 and its subroutine algorithm 14 are all in FFT
representation. While it is possible to convert these algorithms to the coefficient representation,
doing so would be suboptimal from an efficiency viewpoint.

At a high level, the method for computing the LDL tree at step 1 (before normalization) is simple:

1. We compute the LDL decomposition ofG: we writeG = L×D×L⋆, withL a lower triangular
matrixwith 1’s on the diagonal andD a diagonalmatrix. Such a decomposition is easy to compute:
we recall a method for computing the LDL decomposition in algorithm 14.
We store the matrix L in T.value, which is the value of the root of T. Since L is a lower triangular
matrix with 1’s on the diagonal of dimensions – in our case – (2×2) or (3×3), this only amounts
to storing one or three elements ofQ[x]/(ϕ).

2. We then use the splitting operator to “break” each diagonal element of D into a matrix of smaller
elements. More precisely, for a diagonal element d ∈ Q[x]/(ϕ), we consider the associated endo-
morphism ψd : z ∈ Q[x]/(ϕ) 7→ dz and write its transformation matrix over the smaller ring
Q[x]/(ϕ′).
(a) Binary case. If ϕ = xn + 1, then we take ϕ′ = xn/2 + 1. Following the argument of

section 3.6.4, the transformation matrix of ψd can be written as[
d0 d1
xd1 d0

](
=
[
d0 d1
d⋆

1 d0

])
1. (3.26)

(b) Ternary case. If ϕ = xn − xn/2 + 1, then depending on the value of n we may take either
ϕ′ = xn/2−xn/4 + 1 or ϕ′ = xn/3−xn/6 + 1. The first case amounts to splitting d in two,
and we can then simply use the equation 3.26. In the second case, we split d in three, so we

1The equality in parenthesis is true if and only if d is self-adjoint, i.e. d⋆ = d.

44

need to express ψd differently, and its transformation matrix is

 d0 d1 d2
xd2 d0 d1
xd1 xd2 d0

=

 d0 d1 d2
d⋆

1 d0 d1
d⋆

2 d⋆
1 d0

 1. (3.27)

For each diagonal element broken into a self-adjoint matrix Gi over a smaller ring, we recursively
compute its LDL tree as in step 1 and store the result in the left, middle or right child of T (which
we denote T.leftchild, T.middlechild and T.rightchild respectively).

We continue the recursion until we end up with coefficients in the ring Q (in the binary case) or
Q[x]/(x2 − x+ 1) (in the ternary case).

A detailed specification of this “LDL tree” strategy is given in the following subsections of this section.

Algorithm 14 LDL⋆(G)
Require: A full-rank autoadjoint matrix G = (Gij) ∈ FFT(Q[x]/(ϕ))n×n

Ensure: The LDL⋆ decomposition G = LDL⋆ over FFT(Q[x]/(ϕ))
Format: All polynomials are in FFT representation.
1: L,D← 0 n×n

2: for i from 1 to n do
3: Lii ← 1
4: Di ← Gii −

∑
j<i Lij ⊙ L⋆

ij ⊙Dj

5: for j from 1 to i− 1 do
6: Lij ← 1

Dj

(
Gij −

∑
k<j Lik ⊙ L⋆

jk ⊙Dk

)
7: return (L,D)

The binary case

In the binary case, the application of our LDL tree strategy is rather simple and can be implemented using
only the bisection (splitting a polynomial in two). It is specified in algorithm 15.

The ternary case

In the binary case, aplying ourLDL tree strategy ismore complex and also requires the trisection (splitting
a polynomial in three). It is specified in algorithm 16.

In the ternary case, normalization uses a slightly different value forσ. Also, once the normalized leaf value
v is computed, it may be relevant to precompute and store 2v/

√
3, as the latter value will also be used for

signature generation. This is specific to the ternary case.

45

Algorithm 15 ffLDL⋆(G) (Binary case)
Require: A full-rank Grammatrix G ∈ FFT (Q[x]/(xn + 1))2×2

Ensure: A binary tree T
Format: All polynomials are in FFT representation.

1: (L,D)← LDL⋆(G) ▷L =
[

1 0
L10 1

]
,D =

[
D00 0
0 D11

]
2: T.value← L10
3: if (n = 1) then
4: T.leftchild← D00
5: T.rightchild← D11
6: return T
7: else
8: d00, d01 ← splitfft2(D00)
9: d10, d11 ← splitfft2(D11)

10: G0 ←
[
d00 d01
xd01 d00

]
, G1 ←

[
d10 d11
xd11 d10

]
▷G0,G1 ∈ FFT

(
Q[x]/(xn/2 + 1)

)2×2

11: T.leftchild← ffLDL⋆(G0)
12: T.rightchild← ffLDL⋆(G1)
13: return T

3.9 Signature Generation

3.9.1 Overview

At a high level, the principle of the signature generation algorithm is simple: it first computes a hash value
c ∈ Zq[x]/(ϕ) from themessagem and a salt r, and it then uses its knowledge of the secret key f, g, F,G
to compute two short values s1, s2 such that s1 + s2h = c mod q.

A naive way to find such short values (s1, s2) would be to compute t ← (c, 0) · B−1, to round it
coefficient-wise to a vector z and to output (s1, s2)← (t−z)B; one can check that (s1, s2) does indeed
fill all the requirements to be a legitimate, but this method is known to be insecure and to leak the secret
key.

The proper way to generate (s1, s2) without leaking the secret key is to use a trapdoor sampler (see sec-
tion 2.4 for a brief reminder on trapdoor samplers). In Falcon, we use a trapdoor sampler called fast
Fourier sampling. The computation of the falcon tree T by the procedure ffLDL⋆ during the key pair
generation was the initialization step of this trapdoor sampler.

The heart of our signature generation, the procedure ffSampling (algorithm 18), will adaptatively apply
a randomized rounding (according to a discrete Gaussian distribution) on the coefficients of t. But it will
do so in an adaptative manner, using the information stored in the Falcon tree T.

46

Algorithm 16 ffLDL⋆(G) (Ternary case: ϕ = xn − xn/2 + 1)

Require: A full-rank Grammatrix G ∈ FFT
(
Q[x]/(xn − xn/2 + 1)

)k×k
, with k ∈ {2, 3}

Ensure: A binary tree T
Format: All polynomials are in FFT representation.
1: (L,D)← LDL⋆(G)
2: if (n > 6) then ▷ k = 2
3: d00, d01 ← splitfft2(D00)
4: d10, d11 ← splitfft2(D11)

5: G0 ←
[
d00 d01
xd01 d00

]
, G1 ←

[
d10 d11
xd11 d10

]
6: T.value← L10
7: T.leftchild← ffLDL⋆(G0)
8: T.rightchild← ffLDL⋆(G1)
9: return T
10: if (n = 6) then ▷ k = 2
11: d00, d01, d02 ← splitfft3(D00)
12: d10, d11, d12 ← splitfft3(D11)

13: G0 ←

 d00 d01 d02
xd02 d00 d01
xd01 xd02 d00

 ,G1 ←

 d10 d11 d12
xd12 d10 d11
xd11 xd12 d10

14: T.value← L10
15: T.leftchild← ffLDL⋆(G0)
16: T.rightchild← ffLDL⋆(G1)
17: return T
18: if (n = 2) then ▷ k = 3
19: T.value← (L10, L20, L21)
20: T.leftchild← D00
21: T.middlechild← D11
22: T.rightchild← D22
23: return T

47

At a high level, our fast Fourier sampling algorithm canbe seen as a recursive variant ofKlein’swell known
trapdoor sampler (also known as the GPV sampler). Klein’s sampler uses a matrix L (and the norm of
Gram-Schmidt vectors) as a trapdoor, whereas ours uses a tree of such matrices (or rather, a tree of their
non-trivial elements). Given t = (t0, t1), our algorithm first splits t1 using the splitting operator, recur-
sively applies itself to it (using the right child T.rightchild of T), and uses the merging operator to lift the
solution to the base ring of Z[x]/(ϕ); it then applies itself again recursively with t0. It is important to
notice that the recursions cannot be done in parallel: the second recursion takes into account the result
of the first recursion, and this is done using information contained in T.value.

The most delicate part of our signature algorithm is the fast Fourier sampling described in algorithm 18,
because it makes use of the Falcon tree and of discrete Gaussians over Z. The rest of the algorithm,
including the compression of the signature, is rather straightforward to implement.

Formally, given a secret key sk and a messagem, the signer uses sk to signm as follows:

1. A random salt r is generated uniformly in {0, 1}320. The concatenated string (r∥m) is then hashed
to a point c ∈ Zq[x]/(ϕ) as specified by algorithm 7

2. A (not necessarily short) preimage t of c is computed, and is then given as input to the fast Fourier
sampling algorithm, which outputs two short polynomials s1, s2 ∈ Z[x]/(ϕ) (in FFT representa-
tion) such that s1 + s2h = c mod q, as specified by algorithm 18.

3. s2 is encoded (compressed) to a bitstring s as specified in section 3.11.

4. The signature consists of the pair (r, s).

A note on sampling over Z. The algorithm 18 requires access to an oracle D for the distribution
DZ,σ′,c′ , whereσ′ can be the value of any leaf of the private Falcon tree T, and c′ ∈ Q is arbitrary2. How
to implement D is outside the scope of this specification. It is only required that the Rényi divergence
between this oracle and an ideal discrete GaussianDZ,σ′,c′ verifiesR512(D∥DZ,σ′,c′) ≤ 1 + 2−66, for the
definition of the Rényi divergence given in e.g. [BLL+15].

The Falcon reference implementation uses a Gaussian sampler based on rejection sampling against a
bimodal distribution; it is described in section 4.4. It is noteworthy that the range of possible values for
the standard deviation in the Gaussian sampler is limited: it is always greater than 1.2, and always lower
than 1.9 (in the binary case) or 2.20 (in the ternary case).

The general architecture of the signing procedure is illustrated in figure 3.4.

2In the ternary case, leaf values may also be multiplied by 2/
√

3.

48

Sign

HashToPoint ffSampling Compress

SHAKE-256 DZ,·,·

Figure 3.4: Flowchart of the signature

Algorithm 17 Sign (m, sk, β)
Require: A messagem, a secret key sk, a bound β
Ensure: A signature sig of m
1: r← {0, 1}320 uniformly
2: c← HashToPoint(r∥m)
3: t← (FFT(c), FFT(0)) · B̂−1

4: do
5: z← ffSamplingn(t, T)
6: s = (t− z)B̂
7: while ∥s∥ > β
8: (s1, s2)← invFFT(s)
9: s← Compress(s2)
10: return sig = (r, s)

49

3.9.2 Fast Fourier sampling: the binary case

This section describes our fast Fourier sampling algorithm in the binary case. This is done in algorithm 18.
It isworthnoticing thatweperformall the operations inFFT representation for efficiency reasons, but the
whole algorithm could also be executed in coefficient representation instead, at a price of aO(n/ log n)
penalty in speed.

Algorithm 18 ffSampling n(t, T) (Binary case)
Require: t = (t0, t1) ∈ FFT (Q[x]/(xn + 1))2, a Falcon tree T
Ensure: z = (z0, z1) ∈ FFT (Z[x]/(xn + 1))2

Format: All polynomials are in FFT representation.
1: if n = 1 then
2: σ′ ← T.value
3: z0 ← DZ, t0, σ′ ▷ Since n = 1, t0 = invFFT(t0) ∈ Q and z0 = invFFT(z0) ∈ Z
4: z1 ← DZ, t1, σ′ ▷ Since n = 1, t1 = invFFT(t1) ∈ Q and z1 = invFFT(z1) ∈ Z
5: return z = (z0, z1)
6: (ℓ, T0, T1)← (T.value, T.leftchild, T.rightchild)
7: t1 ← splitfft2(t1) ▷ t1 ∈ FFT

(
Q[x]/(xn/2 + 1)

)2

8: z1 ← ffSampling n/2(t1, T1) ▷ First recursive call to ffSampling n/2

9: z1 ← mergefft2(z1) ▷ z1 ∈ FFT
(
Z[x]/(xn/2 + 1)

)2

10: t′0 ← t0 + (t1 − z1)⊙ ℓ
11: t0 ← splitfft2(t′0)
12: z0 ← ffSampling n/2(t0, T0) ▷ Second recursive call to ffSampling n/2
13: z0 ← mergefft2(z0)
14: return z = (z0, z1)

3.9.3 Fast Fourier sampling: the ternary case

This section describes our fast Fourier sampling algorithm in the ternary case. This is done in algo-
rithm 19. Once again, the description is more complex than in the binary case but the general strategy
remains the same.

We explain the last step for n = 2. The scalar product onQ2 induced by the isomorphismQ[X]/(x2 −
x+ 1) ∼= Q2 is

⟨(a0, a1), (b0, b1)⟩ = a0b0 + a1b1 + 1
2
a0b1 + 1

2
a1b0.

Let t = t0 + t1x ∈ Q[x]/(x2 − x + 1). Then the matrix overQ corresponding to the endomorphism
ψt : z 7→ tz is given by [

t0 t1
−t1 t0 + t1

]
.

50

We need to Gram-Schmidt orthogonalize this matrix with respect to the norm above. One finds for the
Gram-Schmidt coefficient:

ℓ = ⟨(−t1, t0 + t1), (t0, t1)⟩
⟨(t0, t1), (t0, t1)⟩

= 1
2
.

The lengths of the Gram-Schmidt vectors are ∥(t0, t1)∥ and ∥(−t1 − 1
2t0, t0 + 1

2t1)∥ =
√

3
2 ∥(t0, t1)∥.

In theLDL∗ decomposition of the basis matrix overQ[x]/(x2 − x+ 1), the diagonal coefficients ofD
are precisely the norms ∥t∥2.

Algorithm 19 ffSampling n(t, T) (Ternary case)

Require: t = (t0, t1) ∈ FFT
(
Q[x]/(xn − xn/2 + 1)

)k
, a Falcon tree T

Ensure: z = (z0, z1) ∈ FFT
(
Z[x]/(xn − xn/2 + 1)

)k

Format: All polynomials are in FFT representation.
1: if (n > 6) then ▷ k = 2
2: (ℓ, T0, T1)← (T.value, T.leftchild, T.rightchild)
3: z1 ← mergefft2 ◦ ffSampling n/2(splitfft2(t1), T1)
4: t′0 ← t0 + (t1 − z1)⊙ ℓ
5: z0 ← mergefft2 ◦ ffSampling n/2(splitfft2(t′0), T0)
6: return z = (z0, z1)
7: if (n = 6) then ▷ k = 2
8: (ℓ, T0, T1)← (T.value, T.leftchild, T.rightchild)
9: z1 ← mergefft3 ◦ ffSampling n/3(splitfft3(t1), T1)
10: t′0 ← t0 + (t1 − z1)⊙ ℓ
11: z0 ← mergefft3 ◦ ffSampling n/3(splitfft3(t′0), T0)
12: return z = (z0, z1)
13: if (n = 2) then ▷ k = 3
14: ((ℓ10, ℓ20, ℓ21), T0, T1, T2)← (T.value, T.leftchild, T.middlechild, T.rightchild)
15: z2 ← mergefft6 ◦ ffSampling n/2(splitfft6(t2), T2)
16: t′1 ← t1 + (t2 − z2)⊙ ℓ21
17: z1 ← mergefft6 ◦ ffSampling n/2(splitfft6(t′1), T1)
18: t′0 ← t0 + (t1 − z1)⊙ ℓ10 + (t2 − z2)⊙ ℓ20
19: z0 ← mergefft6 ◦ ffSampling n/2(splitfft6(t′1), T0)
20: return z = (z0, z1, z2)
21: if (n = 1) then ▷ k = 2
22: σ′ ← T.value
23: z1 ← DZ, t1, 2√

3
σ′

24: t′0 ← t0 + 1
2(t1 − z1)

25: z0 ← DZ, t′
0, σ′

26: return z = (z0, z1)

Note that in the ternary case, for each tree leaf value σ′, the Gaussian sampler is invoked twice, with stan-
dard deviations σ′ and 2σ′/

√
3. The practical consequence is that the range of inputs for the Gaussian

51

sampler is larger in the ternary case, compared to the binary case.

3.10 Signature Verification

3.10.1 Overview

The signature verification procedure is much simpler than the key pair generation and the signature gen-
eration, both to describe and to implement. Given a public key pk = h, a messagem, a signature sig =
(r,s) and an acceptance bound β, the verifier uses pk to verify that sig is a valid signature for the message
m as specified hereinafter:

1. The value r (called ”the salt”) and themessagem are concatenated to a string (r∥m)which is hashed
to a polynomial c ∈ Zq[x]/(ϕ) as specified by algorithm 7.

2. s is decoded (decompressed) to a polynomial s2 ∈ Z[x]/(ϕ) as specified in section 3.11.

3. The value s1 = c− s2h mod q is computed.

4. If ∥(s1, s2)∥ ≤ β, then the signature is accepted as valid. Otherwise, it is rejected.

The only subtlety here is that, as recalled in the notations, ∥∥ denotes the embedding norm and not the
coefficient norm. However, it is possible to compute it in linear time. Given two polynomials a and b in
Zq[x]/(ϕ), whose coefficients are denoted aj and bj , respectively, the norm ∥(a, b)∥ is such that, in the
binary case:

∥(a, b)∥2 =
n−1∑
j=0

(a2
j + b2

j) (3.28)

and, in the ternary case:

∥(a, b)∥2 =
n−1∑
j=0

(a2
j + b2

j) +
n/2−1∑

j=0
(ajaj+n/2 + bjbj+n/2) (3.29)

3.10.2 Specification

The specification of the signature verification is given in algorithm 20.

Computation of s1 can be performed entirely inZq[x]/(ϕ); the resulting values should then be normal-
ized to the ⌈−q/2⌉ to ⌊q/2⌋ range.

In order to avoid computing a square root, the squared norm can be computed, using only integer oper-
ations, and then compared to β2.

52

Algorithm 20 Verify (m, sig, pk, β)
Require: A messagem, a signature sig = (r, s), a public key pk = h ∈ Zq[x]/(ϕ), a bound β
Ensure: Accept or reject
1: c← HashToPoint(r∥m, q, n)
2: s2 ← Decompress(s)
3: s1 ← c− s2h mod q
4: if ∥(s1, s2)∥ ≤ β then
5: accept
6: else
7: reject

3.11 Encoding Formats

3.11.1 Bits and Bytes

A byte is a sequence of eight bits (formally, an octet). Within a byte, bits are ordered from left to right.
A byte has a numerical value, which is obtained by adding the weighted bits; the leftmost bit, also called
“top bit” or “most significant”, has weight 128; the next bit has weight 64, and so on, until the rightmost
bit, which has weight 1.

Someof the encoding formats definedbelowuse sequences of bits. When a sequence of bits is represented
as bytes, the following rules apply:

• The first byte will contain the first eight bits of the sequence; the second byte will contain the next
eight bits, and so on.

• Within each byte, bits are ordered left-to-right in the same order as they appear in the source bit
sequence.

• If the bit sequence length is not a multiple of 8, up to 7 extra padding bits are added at the end of
the sequence. The extra padding bits MUST have value zero.

This handling of bits matches widely deployed standard, e.g. bit ordering in the SHA-2 and SHA-3
functions, and BIT STRING values in ASN.1.

3.11.2 Compressing Gaussians

In Falcon as in other lattice-based signatures schemes, it is not uncommon to have to deal with discrete
Gaussians. In particular, the signature of a message essentially consists of a polynomial s ∈ Zq[x]/(ϕ)
which coefficients are distributed around 0 according to a discrete Gaussian distribution of standard de-
viation σ = 1.55√q ≪ q. A naive encoding of s would require about ⌈log2 q⌉ · deg(ϕ) bits, which is
far from optimal for communication complexity.

53

In this section we specify algorithms for compressing and decompressing efficiently polynomials such as
s. The description of this compression procedure is simple:

1. For each coefficient si, a compressed string stri is defined as follows:

(a) The first bit of stri is the sign of si;

(b) The 7 next bits of stri are the 7 least significant bits of |si|, in order of significance, i.e. most
to least significant (in the ternary case, we use 8 bits here, owing to the larger value of q);

(c) The last bits of stri are an encoding of the most significant bits of |si| using unary coding. If
⌊|si|/27⌋ = k, then its encoding is 0 . . . 0︸ ︷︷ ︸

k times

1;

2. The compression of s is the concatenated string str← (str0∥str1∥ . . . ∥strn−1).

The rationale behind this encoding is based on two observations. First, since si mod 27 is close to uni-
form, there is nothing to be gained by trying to compress the 7 least significant bits of si. Second, if a
Huffman table is computed for the most significant bits of |si|, it results in the unary code we just de-
scribed. So our unary code is actually a Huffman code for the distribution of the most significant bits
of |si|. A formal description is given in algorithm 21, for the binary case. For the ternary case, the same
algorithm is used, except that 8 low bits are used instead of 7.

Algorithm 21Compress(s) (Binary case)
Require: A polynomial s = ∑

six
i ∈ Z[x] of degree< n

Ensure: A compressed representation str of s
1: str← {} ▷ str is the empty string
2: for i from 0 to n− 1 do ▷At each step, str← (str∥stri)
3: str← (str∥b), where b = 1 if si > 0, b = 0 otherwise
4: str← (str∥b0b1 . . . b6), where bj = ⌊|si|/2j⌋ mod 2
5: k ← ⌊|si|/27⌋
6: for j from 1 to k do
7: str← (str∥0)
8: str← (str∥1)
9: return str

The corresponding decompression algorithm is given in algorithm 22. There again, the ternary case
is similar, except that it expects 8 low bits instead of 7. For any polynomial s ∈ Z[x], it holds that
Decompress ◦ Compress(s) = s.

54

Algorithm 22Decompress(str) (Binary case)
Ensure: A string str = (str[i])i=0...ℓ−1 of length ℓ
Require: A polynomial s = ∑

six
i ∈ Z[x]

1: j ← 0
2: for i from 0 to n− 1 do
3: s′

i ←
∑6

j=0 2jstr[1 + j] ▷We recover the lowest bits of |si|.
4: k ← 0 ▷We recover the highest bits of |si|.
5: while str[7 + k] = 0 do
6: k ← k + 1
7: si ← (−1)str[0]+1 · (s′

i + 27k) ▷We recover si.
8: str← str[9 + k . . . ℓ− 1] ▷We remove the bits of str already read.
9: return s = ∑n−1

i=0 six
i

3.11.3 Signatures

A Falcon signature consists of two strings r and s. They are normally encoded separately, because the
salt r must be known before beginning to hash the message itself, while the s value can be obtained or
verified only after the whole message has been processed. In a format that supports streamed processing
of longmessages, the salt rwouldnormally be encodedbefore themessage, while the s valuewould appear
after the message bytes.

s encodes the polynomial s2 in a sequence of bytes. The first byte has the following format (bits indicated
frommost to least significant):

t c c 0 n n n n

with these conventions:

• The leftmost bit t is 1 in the ternary case, 0 in the binary case.

• Bitscc indicates the compression algorithm: 00 is “uncompressed”, and01 is “compressed”. Values
10 and 11 are reserved and shall not be used for now.

• The fourth bit is reserved and must be zero.

• Bits nnnn encode a value ℓ. In the binary case, degree is n = 2ℓ; in the ternary case, degree is
n = 3 · 2ℓ−1. Degree must be in the allowed range (2 to 1024 in binary, 12 to 768 in ternary).

Following this header byte is the encoded s2 value (s string). If the compression algorithm is “uncom-
pressed”, then the n coefficients of s2 follow, in signed (two’s complement) big-endian 16-bit encoding.
If the algorithm is “compressed”, then the compression algorithm described in section 3.11.2 is applied
and yields s as a sequence of bits; extra bits in the final byte (if the length of s is not a multiple of 8) are
set to 0.

55

3.11.4 Public Keys

A Falcon public key is a polynomial hwhose coefficients are considered modulo q. An encoded public
key starts with a header byte:

t 0 0 0 n n n n

with these conventions:

• The leftmost bit t is 1 in the ternary case, 0 in the binary case.

• The next three bits are reserved and must be zero.

• Bits nnnn encode a value ℓ. In the binary case, degree is n = 2ℓ; in the ternary case, degree is
n = 3 · 2ℓ−1. Degree must be in the allowed range (2 to 1024 in binary, 12 to 768 in ternary).

After the header byte comes the encoding of h: each value (in the 0 to q − 1 range) is encoded as a 14-
bit or 15-bit sequence (in the binary case, q = 12289 and 14 bits per value are used; in the ternary case,
q = 18433 and 15 bits are used). The encoded values are concatenated into a bit sequence of 14n or 15n
bits, which is then represented as ⌈14n/8⌉ or ⌈15n/8⌉ bytes.

3.11.5 Private Keys

Private keys use the following header byte:

t c c g n n n n

with these conventions:

• The leftmost bit t is 1 in the ternary case, 0 in the binary case.

• Bitscc indicates the compression algorithm: 00 is “uncompressed”, and01 is “compressed”. Values
10 and 11 are reserved and shall not be used for now.

• Bit g is 0 if the key includes the polynomialG, or 1 ifG is absent.

• Bits nnnn encode a value ℓ. In the binary case, degree is n = 2ℓ; in the ternary case, degree is
n = 3 · 2ℓ−1. Degree must be in the allowed range (2 to 1024 in binary, 12 to 768 in ternary).

Following the header byte are the encodings of f , g, F , and optionallyG, in that order. When no com-
pression is used (bit c is 0), each coordinate is encoded as a 16-bit signed value (two’s complement, big-
endian convention). When compression is used, each polynomial is compressed with the algorithm de-
scribed in section 3.11.2; each of the four polynomial yields a bit sequence which is split into bytes with
up to 7 padding bits so that each encoded polynomial starts at a byte boundary.

56

WhenG is absent (bit g is 1), users must recompute it. This is easily done thanks to theNTRU equation:

G = (q + gF)/f mod ϕ (3.30)

Since the coefficients of f , g, F andG are small, this computation can be done modulo q as well, using
the same techniques as signature verification (e.g. the NTT).

3.11.6 NIST Competition API

In order to fit the API to be implemented by candidates to the NIST call for post-quantum algorithms,
the following choices have been made:

• Private keys use uncompressed format: the API does not provide for keeping a private key length
parameter, so the uncompressed format is used because it has a known, fixed length.

• TheAPI assumes that a signed message is encoded as a single entity. In the case of Falcon, a signed
message is the concatenation of, in that order:

– the signature length, in bytes (encoded over two bytes, big-endian convention);

– the salt r (40 bytes);

– the message itself;

– the signature (s).

3.12 Recommended Parameters

In this section,we specify three set of parameters to address the five security levels requiredbyNIST[NIS16,
Section 4.A.5]. These can be found in table 3.1.

Level Dimension n Polynomial ϕ Modulus q Acceptance bound β2

1 - AES128 512 xn + 1 12289 43533782
2 - SHA256 768 xn − xn/2 + 1 18433 1004644913 - AES192
4 - SHA384 1024 xn + 1 12289 870675655 - AES256

Table 3.1: Falcon security parameters

Acceptance bound. It is important that signers and verifiers agree exactly on the acceptance bound,
since signatures may come arbitrarily close to that bound (signers restart the signing process when they

57

exceed it). We thus define the bound β in the binary case (with q = 12289) such that:

β2 =
⌊87067565n

1024

⌋
(3.31)

and, in the ternary case (with q = 18433):

β2 =
⌊100464491n

768

⌋
(3.32)

58

Chapter 4

Implementation and Performances

We list here a number of noteworthy points related to implementation.

4.1 Floating-Point

Signature generation, and also part of key pair generation, involve the use of complex numbers. These
can be approximated with standard IEEE 754 floating-point numbers (“binary64” format, commonly
known as “double precision”). Each such number is encoded over 64 bits, that split into the following
elements:

• a sign s = ±1 (1 bit);

• an exponent e in the−1022 to +1023 range (11 bits);

• a mantissam such that 1 ≤ m < 2 (52 bits).

In general, the represented value is sm2e. The mantissa is encoded as 252(m − 1); it has 53 bits of
precision, but its top bit, of value 1 by definition, is omitted in the encoding.

The exponent euses 11 bits, but its range covers only 2046 values, not 2048. The two extra possible values
for that field encode special cases:

• The value zero. IEEE 754 has two zeros, that differ by the sign bit.

• Subnormals: they use the minimum value for the exponent (−1022) but the implicit top bit of
the mantissa is 0 instead of 1.

• Infinites (positive and negative).

• Erroneous values, known as NaN (Not a Number).

59

Apart from zero, Falcon does not exercise these special cases; exponents remain relatively close to zero;
no infinite or NaN is obtained.

TheC language specification does not guarantee that its double typemaps to IEEE 754 “binary64” type,
only that it provides an exponent range and precision that match at least that IEEE type. Support of
subnormals, infinites and NaNs is left as implementation-defined. In practice, most C compilers will
provide what the underlying hardware directly implements, and may include full IEEE support for the
special cases at the price of some non-negligible overhead, e.g. extra tests and supplementary code for
subnormals, infinites and NaNs. Common x86 CPU, in 64-bit mode, use SSE2 registers and operations
for floating-point, and the hardware already provides complete IEEE 754 support. Other processor types
have only a partial support; e.g. manyPowerPCcoresmeant for embedded systemsdonot handle subnor-
mals (such values are then rounded to zeros). Falcon works properly with such limited floating-point
types.

Someprocessors donot have a FPUat all. Thesewill need touse some emulationusing integer operations.
As explained above, special cases need not be implemented.

4.2 FFT and NTT

4.2.1 FFT

The Fast Fourier Transform for a polynomial f computes f(ζ) for all roots ζ ofϕ (overC). It is normally
expressed recursively. If ϕ = xn + 1, and f = f0(x2) + xf1(x2), then the following holds for any root
ζ of ϕ:

f(ζ) = f0(ζ2) + ζf1(ζ2)
f(−ζ) = f0(ζ2)− ζf1(ζ2) (4.1)

ζ2 is a root of xn/2 + 1: thus, the FFT of f is easily computed, with n/2multiplications and n additions
or subtractions, from the FFT of f0 and f1, both being polynomials of degree less than n/2, and taken
modulo ϕ′ = xn/2 + 1. This leads to a recursive algorithm of costO(n log n) operations.

The FFT can be implemented iteratively, with minimal data movement and no extra buffer: in the equa-
tions above, the computed f(ζ) and f(−ζ)will replace f0(ζ2) and f1(ζ2). This leads to an implementa-
tion known as “bit reversal”, due to the resulting ordering of the f(ζ): if ζj = ei(π/2n)(2j+1), then f(ζj)
ends up in slot rev(j), where rev is the bit-reversal function over log2 n bits (it encodes its input in binary
with left-to-right order, then reinterprets it back as an integer in right-to-left order).

In the iterative, bit-reversed FFT, the first step is computing the FFT of n/2 sub-polynomials of degree
1, corresponding to source index pairs (0, n/2), (1, n/2 + 1), and so on.

Some noteworthy points for FFT implementation in Falcon are the following:

• The FFT uses a table of pre-computed roots ζj = ei(π/2n)(2j+1). The inverse FFT nominally

60

requires, similarly, a table of inverses of these roots. However, ζ−1
j = ζj ; thus, inverses can be

efficiently recomputed by negating the imaginary part.

• ϕ has n distinct roots in C, leading to n values f(ζj), each being a complex number, with a real
and an imaginary part. Storage space requirements are then 2n floating-point numbers. However,
if f is real, then, for every root ζ of ϕ, ζ is also a root of ϕ, and f(ζ) = f(ζ). Thus, the FFT repre-
sentation is redundant, and half of the values can be omitted, reducing storage space requirements
to n/2 complex numbers, hence n floating-point values.

• TheHermitian adjoint of f is obtained in FFT representation by simply computing the conjugate
of each f(ζ), i.e. negating the imaginary part. This means that when a polynomial is equal to
its Hermitian adjoint (e.g. ff ⋆ + gg⋆), then its FFT representation contains only real values. If
then multiplying or dividing by such a polynomial, the unnecessary multiplications by 0 can be
optimized away.

• TheC language (since 1999) offers direct support for complex numbers. However, itmay be conve-
nient to keep the real and imaginary parts separate, for values in FFT representation. If the real and
imaginary parts are kept at indexes k and k + n/2, respectively, then some performance benefits
are obtained:

– The first step of FFT becomes free. That step involves gathering pairs of coefficients at in-
dexes (k, k + n/2), and assembling them with a root of x2 + 1, which is i. The source
coefficients are still real numbers, thus (f0, fn/2) yields f0 + ifn/2, whose real and imaginary
parts must be stored at indexes 0 and n/2 respectively, where they already are. The whole
loop disappears.

– When a polynomial is equal to its Hermitian adjoint, all its values in FFT representation are
real. The imaginary parts are all null, and they represent the second half of the array. Storage
requirements are then halved, without requiring any special reordering or move of values.

4.2.2 Ternary FFT

In the ternary case, the same general rules apply, but with some variations. Informally, in the binary case,
the FFT is a succession of degree doublings; in the ternary case, there are three different operations:

• Initial step: modulus is ϕ = x2 − x + 1, whose roots are not i and−i; instead, its roots are eiπ/3

and e−iπ/3. The first step of the FFT is no longer free.

• Degree doublings are similar to the binary case; roots of xn − xn/2 + 1 are the square roots of the
roots of xn/2 − xn/4 + 1.

• Since n is a multiple of 3, there must be a degree tripling operation. Degree tripling uses the fol-

61

lowing equations:

f(ζ) = f0(ζ3) + ζf1(ζ3) + ζ2f2(ζ3)
f(ζδ) = f0(ζ3) + ζδf1(ζ3) + ζ2δ2f2(ζ3)
f(ζδ2) = f0(ζ3) + ζδ2f1(ζ3) + ζ2δf2(ζ3)

(4.2)

where δ = ei(2π/3) (a primitive cube root of 1).

The degree tripling operation can occur before the doublings, or after, or even in between. However, this
choice must match the sequence of splittings andmergings in the Fast Fourier sampling. The description
made in algorithm 19 elects to perform the degree tripling operation near the initial step, i.e. to bring the
modulus from x2 − x+ 1 to x6 − x3 + 1.

4.2.3 NTT

The Number Theoretic Transform is the analog of the FFT, in the finite field Zp of integers modulo a
prime p. In the binary case, ϕ = xn +1will have roots inZp if and only if p = 1 mod 2n. In the ternary
case, ϕ = xn − xn/2 + 1 is a divisor of x3n/2 + 1, hence we will need p = 1 mod 3n. The NTT, for an
input polynomial f whose coefficients are integers modulo p, computes f(ω) mod p for all roots ω of ϕ
inZp.

Signature verification is naturally implemented modulo q. That small modulus was chosen precisely to
allow the NTT to be used:

• Binary case: q = 12289 = 1 + 12 · 2048

• Ternary case: q = 18433 = 1 + 8 · 2304

Computations modulo q can be implemented with pure 32-bit integer arithmetics, avoiding divisions
and branches, both being relatively expensive. For instance, modular addition of x and y may use this
function:

static inline uint32_t
mq_add(uint32_t x, uint32_t y, uint32_t q)
{

uint32_t d;

d = x + y - q;
return d + (q & -(d >> 31));

}

This code snippet uses the fact that C guarantees operations on uint32_t to be performedmodulo 232;
since operands fits on 15 bits, the top bit of the intermediate value dwill be 1 if and only if the subtraction
of q yields a negative value.

62

For multiplications, Montgomery multiplication is effective:

static inline uint32_t
mq_montymul(uint32_t x, uint32_t y, uint32_t q, uint32_t q0i)
{

uint32_t z, w;

z = x * y;
w = ((z * q0i) & 0xFFFF) * q;
z = ((z + w) >> 16) - q;
return z + (q & -(z >> 31));

}

The parameter q0i contains 1/q mod 216, a value which can be hardcoded since q is also known at
compile-time. Montgomery multiplication, given x and y, computes xy/(216) mod q. The interme-
diate value z can be shown to be less than 2q, which is why a single conditional subtraction is sufficient.

Modular divisions are not needed for signature verification, but they are handy for computing the public
keyh from f anf g, as part of key pair generation. Inversion of xmodulo q can be computed in a number
of ways; exponentation is straightforward: 1/x = xq−2 mod q. For both 12289 and 18433, minimal
addition chains on the exponent yield the result in 18Montgomery multiplications (assuming input and
output are in Montgomery representation).

Key pair generation may also use the NTT, modulo a number of small primes pi, and the branchless
implementation techniques described above. The choice of the size of such small moduli pi depends on
the abilities of the current architecture. The Falcon reference implementation, that aims at portability,
uses moduli pi which are slightly below 231, a choice which has some nice properties:

• Modular reductions after additions or subtractions can be computed with pure 32-bit unsigned
arithmetics.

• Values may fit in the signed int32_t type.

• When doing Montgomery multiplications, intermediate values are less than 263 and thus can be
managed with the standard type uint64_t.

On a 64-bit machine with 64× 64→ 128 multiplications, 63-bit moduli would be a nice choice.

4.3 LDL Tree

From the private key properly said (the f , g, F andG short polynomials), signature generation involves
twomain steps: building the LDL tree, and then using it to sample a short vector. The LDL tree depends
only on the private key, not the data to be signed, and is reusable for an arbitrary number of signatures;

63

thus, it can be considered part of the private key. However, that tree is rather bulky (about 90 kB for
n = 1024), and will use floating-point values, making its serialization complex to define in all generality.
Therefore, the Falcon reference code rebuilds the LDL tree dynamically when the private key is loaded;
its API still allows a built tree to be applied to many signature generation instances.

It would be possible to regenerate the LDL tree on the go, for a computational overhead similar to that
of sampling the short vector itself; this would save space, since at no point would the full tree need to
be present in RAM, only a path from the tree root to the current leaf. For degree n, a saved path would
amount to about 2n floating-point values, i.e. roughly 16 kB. On the other hand, computational cost per
signature would double.

Both LDL tree construction and sampling involve operations on polynomials, includingmultiplications
(and divisions). It is highly recommended to use FFT representation, sincemultiplication and division of
two degree-n polynomials in FFT representation requires only n elementary operations. The LDL tree
is thus best kept in FFT.

4.4 Gaussian Sampler

When sampling a short vector, the inner Gaussian sampler is invoked twice for each leaf of the LDL tree.
Each invocation should produce an integer value that follows a Gaussian distribution centered on a value
µ and with standard deviation σ. The centers µ change from call to call, and are dynamically computed
based on themessage to sign, and the values returned by previous calls to the sampler. The values of σ are
the leaves of the LDL tree: they depend on the private key, but not on the message; they range between
1.2 and 1.9 (in the ternary case, they may reach up to 2.20).

In the Falcon reference code, rejection sampling with regards to a bimodal Gaussian is used:

• The target µ is moved into the [0..1[interval by adding an appropriate integer value, which will
be subtracted from the sampling result at the end. For the rest of this description, we assume that
0 ≤ µ < 1.

• A nonnegative integer z is randomly sampled following a half Gaussian distribution of standard
deviation σ0 = 2, centered on 0 (in the ternary case, we use σ0 =

√
5 ≈ 2.236).

• A random bit b is obtained, to compute z′ = b + (2b − 1)z. The integer z′ follows a bimodal
Gaussian distribution, and in the range of possible values for z′ (depending on b), that distribution
is above the target Gaussian of center µ and standard deviation σ.

• Rejection sampling is applied. z′ follows the distribution:

G(z) = e−(z−b)2/(2σ2
0) (4.3)

and we target the distribution:
S(z) = e−(z−µ)2/(2σ2) (4.4)

64

We thus generate a random bit d, whose value is 1 with probability:

P (d = 1) = S(z)/G(z)
= e(z−b)2/(2σ2

0)−(z−µ)2/(2σ2) (4.5)

If bit d is 1, then we return z′; otherwise, we start over.

Random values are obtained from a custom PRNG; the reference code uses ChaCha20, but any PRNG
whose output is indistinguishable from random bits can be used. On a recent x86 CPU, it would make
sense to use AES in CTRmode, to leverage the very good performance of the AES opcodes implemented
by the CPU.

With a careful Rényi argument, the 53-bit precision of floating-point values used in the sampler compu-
tations are sufficient to achieve the required security levels.

4.5 Key Pair Generation

4.5.1 Gaussian Sampling

The f and g polynomials must be generated with an appropriate distribution. In the binary case, it is
sufficient to generate each coefficient independently, with a Gaussian distribution centered on 0; values
are easily tabulated.

In the ternary case, the coefficients should use a Gaussian distribution in the FFT embedding. For each
of the n/2 coefficients f̂j of the FFT representation of f , two uniformly random values aj and bj are
generated in the]0..1] range; the coefficient is then set to:

f̂j = σ
√
−2 log aje

i2πbj (4.6)

An inverse FFT is then applied, and the resulting values rounded to the nearest integers, to obtain f . The
aj and bj needs not be generated with high precision; the Falcon reference code uses 32 random bits for
each. The polynomial g is generated in a similar way.

4.5.2 Filtering

As per the Falcon specification, once f and g have been generated, some tests must be applied to deter-
mine their appropriateness:

• The (g,−f) and its orthogonalized version must be short enough. In the ternary case, the norm
must be measured on the FFT representation (this must be computed after the rounding of coef-
ficients to integers, which may be done only in non-FFT representation).

65

• f must be invertible modulo ϕ and q; this is necessary in order to be able to compute the public
key h = g/f mod ϕ mod q. In practice, the NTT is used on f : all the resulting coefficients of f
in NTT representation must be distinct from zero. Computing h is then straightforward.

• The Falcon reference implementation furthermore requires that Res(f, ϕ) and Res(g, ϕ) be
both odd. If they are both even, theNTRU equation does not have a solution, but our implemen-
tation cannot tolerate that one is even and the other is odd. Computing the resultant modulo 2 is
inexpensive; in the binary case, this is equal to the sum of the coefficients modulo 2.

If any of these tests fails, new (f, g) must be generated.

4.5.3 Solving The NTRU Equation

Solving the NTRU equation is formally a recursive process. At each depth:

1. Input polynomials f and g are received as input; they are modulo ϕ = xn + 1 for a given degree
n.

2. New values f ′ = N(f) and g′ = N(g) are computed; they live modulo ϕ′ = xn/2 + 1, i.e. half
the degree of ϕ. However, their coefficients are typically twice longer than the coefficients of f and
g.

3. The solver is invoked recursively over f ′ and g′, and yields a solution (F ′, G′) such that f ′G′ −
g′F ′ = q.

4. Unreduced values (F,G) are generated, as:

F = F ′(x2)g′(x2)/g(x) mod ϕ
G = G′(x2)f ′(x2)/f(x) mod ϕ

(4.7)

F andG are modulo ϕ (of degree n), and their coefficients have a size which is about three times
that of the coefficients of inputs f and g.

5. Babai’s nearest plane algorithm is applied, to bring coefficients of F and G down to that of the
coefficients of f and g.

RNS and NTT

The operations implied in the recursion are much easier when operating on the NTT representation of
polynomials. Indeed, if working modulo p, and ω is a root of xn + 1 modulo p, then:

f ′(ω2) = N(f)(ω2) = f(ω)f(−ω)
F (ω) = F ′(ω2)g(−ω) (4.8)

66

Therefore, the NTT representations of f ′ and g′ can be easily computed from the NTT representations
of f and g; and, similarly, the NTT representation of F andG (unreduced) are as easily obtained from
the NTT representations of F ′ andG′.

This naturally leads to the use of a Residue Number System (RNS), in which a value x is encoded as a
sequence of values xj = x mod pj for a number of distinct small primes pj . In the Falcon reference
implementation, the pj are chosen such that pj < 231 (to make computations easy with pure integer
arithmetics) and pj = 1 mod 2048 (to allow the NTT to be applied).

Conversion from the RNS encoding to a plain integer in base 231 is a straightforward application of the
Chinese Remainder Theorem; if done prime by prime, then the only required big-integer primitives will
be additions, subtractions, and multiplication by a one-word value. In general, coefficient values are
signed, while the CRT yields values ranging from 0 to

∏
pj − 1; normalisation is applied by assuming

that the final value is substantially smaller, in absolute value, than the product of the used primes pj .

Coefficient Sizes

Key pair generation has the unique feature that it is allowed occasional failures: it may reject some cases
which are nominally valid, but do not match some assumptions. This does not induce any weakness
or substantial performance degradation, as long as such rejections are rare enough not to substantially
reduce the space of generated private keys.

In that sense, it is convenient to use a priori estimates of coefficient sizes, to perform the relevantmemory
allocations and decide howmany small primes pj are required for the RNS representation of any integer
at any point of the algorithm. The following maximum sizes of coefficients, in bits, have been measured
over thousands of random key pairs, at various depths of the recursion (in the binary case):

depth max f , g std. dev. max F ,G std. dev.
10 6307.52 24.48 6319.66 24.51
9 3138.35 12.25 9403.29 27.55
8 1576.87 7.49 4703.30 14.77
7 794.17 4.98 2361.84 9.31
6 400.67 3.10 1188.68 6.04
5 202.22 1.87 599.81 3.87
4 101.62 1.02 303.49 2.38
3 50.37 0.53 153.65 1.39
2 24.07 0.25 78.20 0.73
1 10.99 0.08 39.82 0.41
0 4.00 0.00 19.61 0.49

These sizes are expressed in bits; for each depth, each category of value, and each key pair, the maximum
size of the absolute value is gathered. The array above lists the observed averages and standard deviations

67

for these values.

AFalconkeypair generatormay thus simply assume that values fit correspondinglydimensionedbuffers,
e.g. by using themeasured average added to, say, six times the standard deviation. This would ensure that
values almost always fit. A final test at the end of the process, to verify that the computedF andGmatch
the NTRU equation, is sufficient to detect failures.

Note that for depth 10, the maximum size ofF andG is the one resulting from the extended GCD, thus
similar to that of f and g.

Binary GCD

At the deepest recursion level, inputs f and g are plain integers (the modulus is ϕ = x + 1); a solution
can be computed directly with the Extended Euclidean Algorithm, or a variant thereof. The Falcon
reference implementation uses the binary GCD. This algorithm can be expressed in the following way:

• Values a, b, u0, u1, v0 and v1 are initialized and maintained with the following invariants:

a = fu0 − gv0
b = fu1 − gv1

(4.9)

Initial values are:
a = f
u0 = 1
v0 = 0
b = g
u1 = g
v1 = f − 1

(4.10)

• At each step, a or b is reduced: if a and/or b is even, then it is divided by 2; otherwise, if both
values are odd, then the smaller of the two is subtracted from the larger, and the result, now even, is
divided by 2. Corresponding operations are applied onu0, v0,u1 and v1 tomaintain the invariants.
Note that computations on u0 and u1 are done modulo g, while computations on v0 and v1 are
done modulo f .

• Algorithm stops when a = b, at which point the common value is the GCD of f and g.

If the GCD is 1, then a solution (F,G) = (qv0, qu0) can be returned. Otherwise, the Falcon reference
implementation rejects the (f, g) pair. Note that the (rare) case of a GCD equal to q itself is also rejected;
as noted above, this does not induce any particular algorithm weakness.

The description above is a bit-by-bit algorithm. However, it can be seen that most of the decisions are
taken only on the low bits and high bits of a and b. It is thus possible to group updates of a, b and other
values by groups of, say, 31 bits, yielding much better performance.

68

Iterative Version

Each recursion depth involves receiving (f, g) from the upper level, and saving them for the duration of
the recursive call. Since degrees are halved and coefficients double in size at each level, the storage space
for such an (f, g) pair is mostly constant, around 13000 bits per depth. For n = 1024, depth goes to 10,
inducing a space requirement of at least 130000 bits, or 16 kB, just for that storage. In order to reduce
space requirements, the Falcon reference implementation recomputes (f, g) dynamically from start
when needed. Measures indicate a relatively low CPU overhead (about 15%).

A side-effect of this recomputation is that each recursion level has nothing to save. The algorithm thus
becomes iterative.

Babai’s Reduction

When candidates F andG have been assembled, they must be reduced against the current f and g. Re-
duction is performed as successive approximate reductions, that are computed with the FFT:

• Coefficients of f , g,F andG are converted to floating-point values, yielding ḟ , ġ, Ḟ and Ġ. Scaling
is applied so that themaximum coefficient of Ḟ and Ġ is about 230 times themaximum coefficient
of ḟ and ġ; scaling also ensures that all values fit in the exponent range of floating-point values.

• An integer polynomial k is computed as:

k =
⌊
Ḟ ḟ ⋆ + Ġġ⋆

ḟ ḟ ⋆ + ġġ⋆

⌉
(4.11)

This computation is typically performed in FFT representation, wheremultiplication and division
of polynomials are easy. Rounding to integers, though, must be done in coefficient representation.

• kf and kg are subtracted fromF andG, respectively. Note that this operation must be exact, and
is performed on the integer values, not the floating-point approximations. At high degree (i.e. low
recursion depth), RNS and NTT are used: the more efficient multiplications in NTT offset the
extra cost for converting values to RNS and back.

This process reduces the maximum sizes of coefficients ofF andG by about 30 bits at each iteration; it is
applied repeatedly as long as it works, i.e. themaximum size is indeed reduced. A failure is reported if the
final maximum size ofF andG coefficients does not fit the target size, i.e. the size of the buffers allocated
for these values.

4.6 Performances

TheFalconreference implementation achieves the followingperformanceonan Intel®Core® i7-6567U
CPU (clocked at 3.3 GHz):

69

degree keygen (ms) keygen (RAM) sign/s vrfy/s pub length sig length
512 6.98 14336 6081.9 37175.3 897 617.38
768 12.69 27648 3547.9 20637.7 1441 993.91
1024 19.64 28672 3072.5 17697.4 1793 1233.29

The following notes apply:

• RAM usage for key pair generation is expressed in bytes. It includes temporary buffers for all in-
termediate values, including the floating-point polynomials used for Babai’s reduction.

• Public key length and average signature length are expressed in bytes. The size of public keys in-
cludes a one-byte header that identifies the degree and modulus. For signatures, compression is
used, which makes the size slightly variable; the average is reported here.

• TheFalconreference implementationuses only standardCcode, not inline assembly, intrinsics or
128-bit integers. In particular, it is expected that replacing the internal PRNG (a straightforward,
portable implementation of ChaCha20) with AES-CTR using the dedicated CPU opcodes will
yield a substantial performance improvement. SSE2 and AVX opcodes should help with FFT, and
64-bit multiplications (with 128-bit results) might improve key generation time as well.

• The i7-6567U processor implements dynamic frequency scaling based on load and temperature.
As such, measures are not very precise and tend to move by as much as 15% between any two
benchmark runs.

• Signature generation time does not include the LDL tree building, which is done when the private
key is loaded. These figures thus correspond to batch usage, whenmany valuesmust be signedwith
a given key. This matches, for instance, the use case of a busy TLS server. If, in a specific scenario,
keys are used only once, then the LDL tree building cost must be added to each signature attempt.
It is expected that this would about double the CPU cost of each signature.

70

Bibliography

[ABD16] Martin R. Albrecht, Shi Bai, and Léo Ducas. A subfield lattice attack on overstretched
NTRU assumptions - cryptanalysis of some FHE and graded encoding schemes. In
Matthew Robshaw and Jonathan Katz, editors, CRYPTO 2016, Part I, volume 9814 of
LNCS, pages 153–178, Santa Barbara, CA, USA, August 14–18, 2016. Springer, Heidel-
berg, Germany. 18

[ADPS16] Erdem Alkim, Léo Ducas, Thomas Pöppelmann, and Peter Schwabe. Post-quantum key
exchange - A new hope. In 25th USENIX Security Symposium, USENIX Security 16,
Austin, TX, USA, August 10-12, 2016., pages 327–343, 2016. 18

[AE17] Jean-Philippe Aumasson and Guillaume Endignoux. Improving stateless hash-based sig-
natures. Cryptology ePrint Archive, Report 2017/933, 2017. http://eprint.iacr.
org/2017/933. 20

[Bab85] L Babai. On lovasz’ lattice reduction and the nearest lattice point problem. InProceedings
on STACS 85 2Nd Annual Symposium on Theoretical Aspects of Computer Science, New
York, NY, USA, 1985. Springer-Verlag New York, Inc. 12

[Bab86] László Babai. On lovasz’ lattice reduction and the nearest lattice point problem. Combi-
natorica, 6(1), 1986. 12

[BCD+16] Joppe W. Bos, Craig Costello, Léo Ducas, Ilya Mironov, Michael Naehrig, Valeria Niko-
laenko, Ananth Raghunathan, and Douglas Stebila. Frodo: Take off the ring! Practi-
cal, quantum-secure key exchange from LWE. In Edgar R. Weippl, Stefan Katzenbeisser,
Christopher Kruegel, Andrew C. Myers, and Shai Halevi, editors, ACM CCS 16, pages
1006–1018, Vienna, Austria, October 24–28, 2016. ACM Press. 14

[BDF+11] Dan Boneh, Özgür Dagdelen, Marc Fischlin, Anja Lehmann, Christian Schaffner, and
Mark Zhandry. Random oracles in a quantum world. In Dong Hoon Lee and Xiaoyun
Wang, editors, ASIACRYPT 2011, volume 7073 of LNCS, pages 41–69, Seoul, South
Korea, December 4–8, 2011. Springer, Heidelberg, Germany. 11, 13, 20

[BHH+15] Daniel J. Bernstein, Daira Hopwood, Andreas Hülsing, Tanja Lange, Ruben Niederha-
gen, Louiza Papachristodoulou, Michael Schneider, Peter Schwabe, and Zooko Wilcox-
O’Hearn. SPHINCS: Practical stateless hash-based signatures. In Elisabeth Oswald and

71

http://eprint.iacr.org/2017/933
http://eprint.iacr.org/2017/933

Marc Fischlin, editors, EUROCRYPT 2015, Part I, volume 9056 of LNCS, pages 368–
397, Sofia, Bulgaria, April 26–30, 2015. Springer, Heidelberg, Germany. 20

[BLL+15] Shi Bai, Adeline Langlois, Tancrède Lepoint, Damien Stehlé, and Ron Steinfeld. Im-
proved security proofs in lattice-based cryptography: Using the Rényi divergence rather
than the statistical distance. In Tetsu Iwata and Jung Hee Cheon, editors, ASI-
ACRYPT 2015, Part I, volume 9452 of LNCS, pages 3–24, Auckland, New Zealand,
November 30 – December 3, 2015. Springer, Heidelberg, Germany. 48

[CDW17] Ronald Cramer, LéoDucas, and BenjaminWesolowski. Short stickelberger class relations
and application to ideal-SVP. In Coron and Nielsen [CN17], pages 324–348. 19

[CFS01] Nicolas Courtois, Matthieu Finiasz, and Nicolas Sendrier. How to achieve a McEliece-
based digital signature scheme. In Colin Boyd, editor,ASIACRYPT 2001, volume 2248
of LNCS, pages 157–174, Gold Coast, Australia, December 9–13, 2001. Springer, Heidel-
berg, Germany. 20

[CJL16] Jung Hee Cheon, Jinhyuck Jeong, and Changmin Lee. An algorithm for NTRU prob-
lems and cryptanalysis of the GGH multilinear map without a low level encoding of
zero. Cryptology ePrint Archive, Report 2016/139, 2016. http://eprint.iacr.org/
2016/139. 18

[CN17] Jean-Sébastien Coron and Jesper Buus Nielsen, editors. EUROCRYPT 2017, Part I, vol-
ume 10210 of LNCS, Paris, France, May 8–12, 2017. Springer, Heidelberg, Germany. 72,
73

[DLL+17] Leo Ducas, Tancrede Lepoint, Vadim Lyubashevsky, Peter Schwabe, Gregor Seiler, and
Damien Stehle. CRYSTALS – dilithium: Digital signatures from module lattices. Cryp-
tology ePrint Archive, Report 2017/633, 2017. http://eprint.iacr.org/2017/
633. 20

[DLP14] Léo Ducas, Vadim Lyubashevsky, and Thomas Prest. Efficient identity-based encryp-
tion over NTRU lattices. In Palash Sarkar and Tetsu Iwata, editors,ASIACRYPT 2014,
Part II, volume 8874 of LNCS, pages 22–41, Kaoshiung, Taiwan, R.O.C., December 7–
11, 2014. Springer, Heidelberg, Germany. 8, 11, 13, 16, 20

[DN12] Léo Ducas and Phong Q. Nguyen. Learning a zonotope and more: Cryptanalysis of
NTRUSign countermeasures. InWang and Sako [WS12], pages 433–450. 8, 13, 17

[DP16] Léo Ducas and Thomas Prest. Fast fourier orthogonalization. In Sergei A. Abramov, Eu-
geneV.Zima, andXiao-ShanGao, editors,Proceedings of the ACM on International Sym-
posium on Symbolic and Algebraic Computation, ISSAC 2016, Waterloo, ON, Canada,
July 19-22, 2016, pages 191–198. ACM, 2016. 8, 16, 17

[dPLP16] Rafaël del Pino, Vadim Lyubashevsky, and David Pointcheval. The whole is less than the
sum of its parts: Constructing more efficient lattice-based AKEs. In Vassilis Zikas and

72

http://eprint.iacr.org/2016/139
http://eprint.iacr.org/2016/139
http://eprint.iacr.org/2017/633
http://eprint.iacr.org/2017/633

RobertoDe Prisco, editors, SCN 16, volume 9841 ofLNCS, pages 273–291, Amalfi, Italy,
August 31 – September 2, 2016. Springer, Heidelberg, Germany. 11, 13

[DS05] Jintai Ding and Dieter Schmidt. Rainbow, a new multivariable polynomial signature
scheme. In John Ioannidis, Angelos Keromytis, and Moti Yung, editors,ACNS 05, vol-
ume 3531 ofLNCS, pages 164–175, NewYork, NY,USA, June 7–10, 2005. Springer, Hei-
delberg, Germany. 20

[GGH97] Oded Goldreich, Shafi Goldwasser, and Shai Halevi. Public-key cryptosystems from lat-
tice reduction problems. In Burton S. Kaliski Jr., editor, CRYPTO’97, volume 1294 of
LNCS, pages 112–131, Santa Barbara, CA, USA, August 17–21, 1997. Springer, Heidel-
berg, Germany. 8, 12

[GPV08] Craig Gentry, Chris Peikert, and Vinod Vaikuntanathan. Trapdoors for hard lattices and
new cryptographic constructions. In Richard E. Ladner and Cynthia Dwork, editors,
40thACMSTOC, pages 197–206, Victoria, BritishColumbia, Canada,May 17–20, 2008.
ACM Press. 7, 8, 11, 12, 13, 14

[HG07] Nick Howgrave-Graham. A hybrid lattice-reduction and meet-in-the-middle attack
against NTRU. InAlfredMenezes, editor,CRYPTO 2007, volume 4622 ofLNCS, pages
150–169, Santa Barbara, CA, USA, August 19–23, 2007. Springer, Heidelberg, Germany.
18

[HHGP+03] JeffreyHoffstein, NickHowgrave-Graham, Jill Pipher, JosephH. Silverman, andWilliam
Whyte. NTRUSIGN: Digital signatures using the NTRU lattice. In Marc Joye, editor,
CT-RSA 2003, volume 2612 ofLNCS, pages 122–140, San Francisco, CA,USA,April 13–
17, 2003. Springer, Heidelberg, Germany. 8, 12

[HPS98] Jeffrey Hoffstein, Jill Pipher, and Joseph H. Silverman. NTRU: A ring-based public key
cryptosystem. In Joe Buhler, editor, Algorithmic Number Theory, Third International
Symposium, ANTS-III, Portland, Oregon, USA, June 21-25, 1998, Proceedings, volume
1423 of Lecture Notes in Computer Science, pages 267–288. Springer, 1998. 14

[KF15] Paul Kirchner and Pierre-Alain Fouque. An improved BKW algorithm for LWEwith ap-
plications to cryptography and lattices. In Rosario Gennaro andMatthew J. B. Robshaw,
editors, CRYPTO 2015, Part I, volume 9215 of LNCS, pages 43–62, Santa Barbara, CA,
USA, August 16–20, 2015. Springer, Heidelberg, Germany. 18

[KF17] PaulKirchner andPierre-AlainFouque. Revisiting lattice attacks onoverstretchedNTRU
parameters. In Coron and Nielsen [CN17], pages 3–26. 18

[Kle00] Philip N. Klein. Finding the closest lattice vector when it’s unusually close. In David B.
Shmoys, editor, 11th SODA, pages 937–941, San Francisco, CA,USA, January 9–11, 2000.
ACM-SIAM. 12, 13, 16, 17

73

[KLS17] Eike Kiltz, Vadim Lyubashevsky, and Christian Schaffner. A concrete treatment of fiat-
shamir signatures in the quantum random-oracle model. Cryptology ePrint Archive, Re-
port 2017/916, 2017. http://eprint.iacr.org/2017/916. 20

[KPG99] Aviad Kipnis, Jacques Patarin, and Louis Goubin. Unbalanced oil and vinegar signature
schemes. In Jacques Stern, editor, EUROCRYPT’99, volume 1592 of LNCS, pages 206–
222, Prague, Czech Republic, May 2–6, 1999. Springer, Heidelberg, Germany. 20

[LW15] Vadim Lyubashevsky and Daniel Wichs. Simple lattice trapdoor sampling from a broad
class of distributions. In Jonathan Katz, editor, PKC 2015, volume 9020 of LNCS, pages
716–730, Gaithersburg, MD, USA, March 30 – April 1, 2015. Springer, Heidelberg, Ger-
many. 16

[MP12] Daniele Micciancio and Chris Peikert. Trapdoors for lattices: Simpler, tighter, faster,
smaller. In David Pointcheval and Thomas Johansson, editors, EUROCRYPT 2012, vol-
ume 7237 of LNCS, pages 700–718, Cambridge, UK, April 15–19, 2012. Springer, Hei-
delberg, Germany. 16, 17

[MW16] Daniele Micciancio and Michael Walter. Practical, predictable lattice basis reduction. In
Marc Fischlin and Jean-Sébastien Coron, editors, EUROCRYPT 2016, Part I, volume
9665 of LNCS, pages 820–849, Vienna, Austria, May 8–12, 2016. Springer, Heidelberg,
Germany. 17

[MW17] Daniele Micciancio and Michael Walter. Gaussian sampling over the integers: Efficient,
generic, constant-time. In Jonathan Katz and Hovav Shacham, editors, CRYPTO 2017,
Part II, volume 10402 ofLNCS, pages 455–485, Santa Barbara, CA,USA,August 20–24,
2017. Springer, Heidelberg, Germany. 19, 21

[NIS15] NIST. Sha-3 standard: Permutation-based hash and extendable-output functions, 2015.
http://dx.doi.org/10.6028/NIST.FIPS.202. 36

[NIS16] NIST. Submission requirements and evaluation criteria for the post-quantum cryp-
tography standardization process, 2016. https://csrc.nist.gov/Projects/
Post-Quantum-Cryptography. 9, 26, 37, 57

[NR06] Phong Q. Nguyen and Oded Regev. Learning a parallelepiped: Cryptanalysis of GGH
and NTRU signatures. In Serge Vaudenay, editor, EUROCRYPT 2006, volume 4004 of
LNCS, pages 271–288, St. Petersburg, Russia, May 28 – June 1, 2006. Springer, Heidel-
berg, Germany. 8, 13, 17

[Pei10] Chris Peikert. An efficient and parallel Gaussian sampler for lattices. In Tal Rabin, edi-
tor, CRYPTO 2010, volume 6223 of LNCS, pages 80–97, Santa Barbara, CA, USA, Au-
gust 15–19, 2010. Springer, Heidelberg, Germany. 12, 16, 17

[Pre15] Thomas Prest. Gaussian Sampling in Lattice-Based Cryptography. Theses, ÉcoleNormale
Supérieure, December 2015. 16

74

http://eprint.iacr.org/2017/916
http://dx.doi.org/10.6028/NIST.FIPS.202
https://csrc.nist.gov/Projects/Post-Quantum-Cryptography
https://csrc.nist.gov/Projects/Post-Quantum-Cryptography

[Pre17] Thomas Prest. Sharper bounds in lattice-based cryptography using the rényi divergence.
IACR Cryptology ePrint Archive, 2017:480, 2017. 17, 19, 37

[RRVV14] Sujoy Sinha Roy, Oscar Reparaz, Frederik Vercauteren, and Ingrid Verbauwhede. Com-
pact and side channel secure discrete Gaussian sampling. Cryptology ePrint Archive, Re-
port 2014/591, 2014. http://eprint.iacr.org/2014/591. 21

[SS11] Damien Stehlé and Ron Steinfeld. Making NTRU as secure as worst-case problems over
ideal lattices. InKennethG.Paterson, editor,EUROCRYPT 2011, volume6632ofLNCS,
pages 27–47, Tallinn, Estonia, May 15–19, 2011. Springer, Heidelberg, Germany. 8, 15

[Unr17] Dominique Unruh. Post-quantum security of fiat-shamir. IACR Cryptology ePrint
Archive, 2017:398, 2017. 20

[WS12] Xiaoyun Wang and Kazue Sako, editors. ASIACRYPT 2012, volume 7658 of LNCS,
Beijing, China, December 2–6, 2012. Springer, Heidelberg, Germany. 72

75

http://eprint.iacr.org/2014/591

	Introduction
	Genealogy of Falcon
	NIST requirements

	The Design Rationale of Falcon
	A quest for compactness
	The Gentry-Peikert-Vaikuntanathan framework
	Features and instantiation of the GPV framework
	Statefulness, de-randomization or hash randomization

	NTRU lattices
	Introduction to NTRU lattices
	Instantiation with the GPV framework
	Choosing optimal parameters

	Fast Fourier sampling
	Security
	Known Attacks
	Precision of the Floating-Point Arithmetic

	Advantages and Limitations of Falcon
	Advantages
	Limitations

	Specification of Falcon
	Overview
	Technical overview
	Notations
	Keys
	Public Parameters
	Private Key
	Public key

	FFT and NTT
	Splitting and Merging
	Bisection: when phi(x) = phi'(x^2)
	Trisection: when phi(x) = phi'(x^3)
	The special case phi(x) = x^2 - x + 1
	Algebraic interpretation
	Relationship with the field norm

	Hashing
	Key Pair Generation
	Overview
	Generating the polynomials f, g, F, G.
	Computing a Falcon Tree

	Signature Generation
	Overview
	Fast Fourier sampling: the binary case
	Fast Fourier sampling: the ternary case

	Signature Verification
	Overview
	Specification

	Encoding Formats
	Bits and Bytes
	Compressing Gaussians
	Signatures
	Public Keys
	Private Keys
	NIST Competition API

	Recommended Parameters

	Implementation and Performances
	Floating-Point
	FFT and NTT
	FFT
	Ternary FFT
	NTT

	LDL Tree
	Gaussian Sampler
	Key Pair Generation
	Gaussian Sampling
	Filtering
	Solving The NTRU Equation

	Performances

