
A Synchronous Look at the Simulink Standard Library

Timothy Bourke1,2 François Carcenac4 Jean-Louis Colaço4

Bruno Pagano4 Cédric Pasteur4 Marc Pouzet3,2,1

1. Inria Paris

2. DI, École normale supérieure

3. Univ. Pierre et Marie Curie

4. ANSYS/Esterel-Technologies

EMSOFT – Seoul – October 2017

Paper at: http://www.di.ens.fr/~pouzet/bib/emsoft17.pdf



A hybrid system = control software + physical model

Mixed signals (discrete + continuous)



A trend in building safe and complex embedded software



The “Model Based Design” motto

Write an executable deterministic model in a
mathematical language used as:

A reference semantics independent of any implementation.

A basis for simulation, testing, formal verification.

Compiled into executable code, sequential or parallel

with semantics preservation all along the chain.

A way to achieve correct-by-construction software



Domain Specific Languages (DSL)

Directly write the mathematical models of the control scientist/engineer.

Difference and stream equations,

hierarchical finite state machines,

differential equations (ODEs),

composed with deterministic synchronous parallelism,

+ imperative programming constructs for the algorithmic part.



A representative of this trend is Simulink



Simulink Model 1

The model is used for simulation (off-line/on-line), automatic testing,
formal verification and code generation.

The compiler has a central role.

1Image taken from the standard distribution of Simulink



Study it from a PL perspective

Which models make sense?

Which should be statically rejected?

How to ensure determinacy?

How to ensure that compilation is correct?



Some models mix discrete logical time and continuous time

in an undisciplined manner

They are wrongly typed.



Typing Issues
Dubious compositions of discrete and continuous time: statically reject?

Unit Delay

z

1

ScopeIntegrator

1

s

Constant

1

Add

cpt

time

Basic model

0 0.5 1 1.5 2 2.5 3
0

10

20

30

40

50

60

70

80

90

100

Time

I The value of cpt depends on the steps chosen by the solver



Typing Issues
Dubious compositions of discrete and continuous time: statically reject?

Unit Delay

z

1

ScopeIntegrator

1

s

Constant

1

Add

cpt

time

Basic model

0 0.5 1 1.5 2 2.5 3
0

10

20

30

40

50

60

70

80

90

100

Time

I The value of cpt depends on the steps chosen by the solver

discrete time is that of the simulation engine



Wrongly typed models

Design type systems to statically reject bizarre models.

Can we formally ensure a property like:

“Well typed programs cannot go wrong” (Robin Milner) ?

What is a wrong model/program?



To study those questions, define a minimalistic language,

consider only constructs for which the semantics is precisely defined,

together with typing constraints to ensure safety properties.



Build a Hybrid Modeler on Synch. Language Principles

Milestones

I An ideal semantics based on non standard analysis [JCSS’12]

I Lustre with ODEs; typing discrete/continuous [LCTES’11]

I Hierarchical automata, both discrete and hybrid [EMSOFT’11]

I Causality analysis [HSCC’14]; Sequential code generation [CC’15]

Implemented in Zélus [HCSS’13]

http://zelus.di.ens.fr

Simulate with an off-the-shelf solver: SUNDIALS CVODE from LLNL

SCADE Hybrid = SCADE + ODEs/Xcrossings

I Prototype based on KCG 6.4 (now 6.6) at ANSYS/Esterel-Tech.

http://zelus.di.ens.fr


Yet, is that enough to program a comprehensive library

of discrete/continuous-time control blocks,

e.g., those of Simulink, so that

the program is the formal specification?



The Simulink Standard Library



A comprehensive set of blocks, some being the composition of
simpler ones, some being directly implemented in C;

described through an informal documentation.



An experiment with Zélus and SCADE Hybrid.



Combinational Blocks
E.g., Math operations, Logic and bit operations, look-up tables.

Essentially Lustre or SCADE: data-flow equations + external functions.

let fun half(a, b) = (s, co)

where

rec s = if a then not b else b

and co = a & b

let fun adder(c, a, b) = (s, co)

where

rec (s1, c1) = half(a, b)

and (s, c2) = half(c, s1)

and co = c1 or c2

val half : bool * bool -A-> bool * bool

val adder : bool * bool * bool -A-> bool * bool

The type t1
A−→ t2 for f means that f (x) is executed at every instant.

Other are written similarily.



Combinatorial Blocks: Lookup tables

Typically programmed in the host language (e.g., C, Matlab).

Can we express that the size of the array is statically fixed?

A function f with type t1
S−→ t2 means that f (x) must be a static value.

val lut1D : (l: int) -S-> float[l] -S-> float -A-> float

val lut2D : (l1: int) -S-> (l2: int)

-S-> float[l1][l2]

-S-> float * float -A-> float



Arrays and Loops

The for loop is borrowed from the SISAL 2 language.

let sum(l)(x, y) = z where

rec

forall i in 0 .. l - 1, xi in x, yi in y, zi out z

do

zi = xi + yi

done

val sum : (l:int) -S-> int[l] * int[l] -A-> int[l]

The equation zi = xi + yi means for all i ∈ [0..l − 1]:

z(i) = x(i) + y(i)

That is for all i ∈ [0..l − 1], for all n ∈ N:

z(i)n = x(i)n + y(i)n

2“Streams and Iteration in a Single Assignment Language”, by McGraw et al.



Accummulator
let scalar(l)(x, y) = acc where

rec forall i in 0 .. l - 1, xi in x, yi in y

do

acc = (xi * yi) + last acc

initialize

last acc = 0.0

done

val scalar : (l: int) -S-> float array[l] * float array[l]

-A-> float

The equation acc = (xi ∗. yi) +. last acc stands for:

acc(i) = (x(i) ∗ y(i)) + acc(i − 1) with i ∈ [0..l − 1]
acc(−1) = 0

and so, for all n ∈ N and i ∈ [0..l − 1] :

acc(i)n = (x(i)n ∗ y(i)n) + acc(i − 1)n
acc(−1)(n) = 0



Discrete-time Blocks



Unit Delay (synchronous register)

1. ∀i ∈ N∗.(pre(x))i = xi−1 and (pre(x))0 = nil .

2. ∀i ∈ N∗.(x fby y)i = yi−1 and (x fby y)0 = x0

3. ∀i ∈ N∗.(x -> y)i = yi and (x -> y)0 = x0

(* difference *)

let node diff(u) = o where

rec o = u -. (u fby u)

val diff : float -D-> float

∀i ∈ N. oi = (u − (u fby u))i
= ui − ui−1 if i ≥ 1
= u0 − u0 = 0 otherwise

The type t1
D−→ t2 for f meands that f (x) is discrete-time, that is,

transforms sequences into sequences.



State space representation

The discrete-space representation is defined by:

x(n + 1) = Ax(n) + Bu(n)
y(n) = Cx(n) + Du(n)

let node discrete_state_space(l)(m)(r)(x0)(a)(b)(c)(d)(u) = y

where

rec x = const(l)(x0) fby sum(l)(mvproduct(l)(l)(a,x),

mvproduct(l)(m)(b,u))

and y = sum(r)(mvproduct(r)(l)(c,x),

mvproduct(r)(m)(d,u))

let node discrete_state_space_0(l)(m)(r)(x0)(a)(b)(c)(d)(u) = y

where

rec x = const(l)(x0) fby sum(l)(mvproduct(l)(l)(a,x),

mvproduct(l)(m)(b,u))

and y = mvproduct(r)(l)(c,x)



A difficulty

According to the Simulink documentation, if D = 0, output y does not
depend on input u.

The causality analysis of Zélus is unable to express this.

What solution? write two functions? do multi-stage (specialise the
function at compile-time)? make a more expressive causality analysis?



Discrete-time blocks: the Integrator
E.g., forward/backward Euler, Trapezoidal, with state port, saturation.

let node forward_euler(t)(k, x0, u) = output where

rec output = x0 fby (output +. (k *. t) *. u)

let node backward_euler(t)(k, x0, u) = output where

rec output = x0 -> pre output +. (k *. t) *. u

The compiler computes type but also causality signatures:

They express how inputs and output depend on each other.

val forward_euler :

{’a < ’b, ’c, ’d}. ’b -> ’c * ’a * ’d -> ’a

That is, output is available before k, x0 and u are read.

val backward_euler : {}. ’a -> ’a * ’a * ’a -> ’a



Discrete-time PID

Transfer function:

Cpar (z) = P + Ia(z) + D(
N

1 + Nb(z)
)

Suppose int is the integration function; filter is the filtering function:

val int : float -S-> float * float * float -D-> float

val filter : float -S-> float -S-> float * float -D-> float

(* PID controller

* p is the proportional gain; i the integral gain;

* d the derivative gain; n the filter coefficient *)

let node pid_par(h)(n)(p, i, d, u) = c where

rec c_p = p *. u

and i_p = int(h)(i, 0.0, u)

and c_d = filter(n)(h)(d, u)

and c = c_p +. i_p +. c_d



When there is no filtering, the definition of filter is the derivative:

let node filter(n)(h)(k, u) = derivative(h)(k, u)

Otherwise, approximate it using a linear low pass filter:

(* Apply a low pass filter on the input *)

(* (see Astrom & Murray’s book, 2008). *)

let node filter(n)(h)(k, u) = udot where

rec udot = n *. (k *. u -. f)

and f = int(h)(n, 0.0, udot)



A Discrete-time PID as a higher-order function

let node generic_pid(int)(filter)(h)(p, i, d, u) = c where

rec c_p = p *. u

and i_p = run (int h)(i, 0.0, u)

and c_d = run (filter h)(d, u)

and c = c_p +. i_p +. c_d

let node pid_forward_no_filter(h)(p, i, d, u) =

generic_pid(forward_euler)(derivative)(h)(p, i, d, u)

let node pid_backward_no_filter(h)(p, i, d, u) =

generic_pid(backward_euler)(derivative)(h)(p, i, d, u)

The type for generic_pid is:

val generic_pid :

(’a -S-> ’b * float * float -D-> float) -S->

(’a -S-> ’c * float -D-> float) -S->

’a -S-> float * ’b * ’c * float -D-> float



Conclusion: discrete-time blocks

Other blocks can be programmed in a similar manner.

A discrete-time version of the “discontinuous blocks” too.

Exercice all features of the language: data-flow equations, hierarchical
automata, arrays, higher-order.

The program is very close to the mathematical specification.

A comprehensive library has been developed in SCADE in 2017.



Discrete-time blocks

This is not that surprising.

Since the work of Caspi et al. 3, several tools automatically translate a
subset of Simulink discrete-time blocks into Lustre.

But they are mostly designed for model checking, targetting “flat” Lustre.

Efficiency/readability/modularity of the code has not been considered.

This experiment raises interesting PL questions:

Simulink blocks come in various forms with overloading of operations.

The strong typing discipline we impose is painful.

All static verifications are done on the function definition.

Should we do specialisation/macro-expansion before static typing?

3P. Caspi and A. Curic and A. Maignan and C. Sofronis and S. Tripakis.
Translating Discrete-Time Simulink to Lustre, TECS’05



Continuous-time Blocks



The integrator block

u x

Basic form

let hybrid int(x0, u) = x where

der x = u init x0

val int :

float * float -C-> float

(* when [u] is an array *)

let hybrid vint(n)(x0, u) = x where

forall i in 0 .. (n - 1),

x0i in x0, ui in u,

xi out x do

der xi = ui init x0i

done

val vint :

(n_6:int) -S-> float[n_6] * float[n_6]

-C-> float[n_6]



The integrator block

u

res x

With reset port

let hybrid reset_int(x0, res, u) = x

where

reset

der x = u init x0

every res



The integrator block

u

res x

last x

With reset and state ports

let hybrid reset_int(x0, res, u)

= (x, last x)

where

reset

der x = u init x0

every res

last x is the left limit of x [HSCC’14]



The integrator block

u

res x

sat

With reset and saturation ports

let hybrid limit_int

(k, y0, upper, lower, r, u)

= (y, sat)

where

rec

reset

init y = y0

and automaton ... end

every r



let hybrid limit_int(y0, upper, lower, r, u) = (y, sat)

where rec reset

init y = y0

and automaton

| BetweenState ->

(* regular mode. Integrate the signal *)

do der y = u and sat = Between

unless up(y -. upper) then UpperState

else up(-. (y -. lower)) then LowerState

| UpperState ->

(* when the input [u] is negative *)

do y = upper and sat = Upper

unless up(-. u) then BetweenState

| LowerState ->

(* when the input [u] is positive *)

do y = lower and sat = Lower

unless up(u) then BetweenState

end

every r

up(.) detects a zero-crossing.



Continuous-time PID

let hybrid pid_par(int)(filter)(p, i, d, u) = c where

rec c_p = p *. u

and i_p = run int(0.0, i *. u)

and c_d = run filter(d *. u)

and c = c_p +. i_p +. c_d

let hybrid pid(n)(p, i, d, u) =

pid_par(Cint.int)(Cint.filter(n))(p, i, d, u)

let hybrid filter(n)(int)(k, u) = udot where

rec udot = n *. (u -. f)

and f = run int (0.0, k *. udot)

Types and causalities signatures are computed automatically.



State space representation

The continuous-time state-space representation is now:

ẋ = Ax + Bu
y = Cx + Du

open Arrays

open Cint

let hybrid state_space(n)(m)(r)(x0)(a)(b)(c)(d)(u) = y where

rec

x = vint(n)(const(n)(x0), sum(n)(mvproduct(n)(n)(a, x),

mvproduct(n)(m)(b, u)))

and

y = sum(r)(mvproduct(r)(n)(c, x), mvproduct(r)(m)(d, u))

The structure is the same as for the discrete-time version.

The previous remark about d = 0 stay the same.



Other continuous-time blocks programmed similarly (see paper).



Discontinuous Blocks



Discontinuous blocks

Some blocks are relatively easy to program (see paper).

E.g., sign, coulomb friction, quantization, saturation, relay, comparison,
dead-zone

Several use the zero-crossing detection (function up(.)).

(* Relay *)

let hybrid relay(son, so , von, vo , u) = r where

rec automaton

| On -> do r = von unless up(so -. u) then Off

| Off -> do r = vo unless up(u -. son) then On

end



up(x) detects when x goes from strictly negative to strictly positive.

The language also provides periodic timers, that correspond to a
particular form of zero-crossing (but compiled without it).

All discontinuous changes must be aligned on a zero-crossing or a timer.

The type system statically ensures that continuous-time signals are
continuous during integration.



The compiler forbid writting some of the standard Simulink blocks
when applied to continuous-time inputs.



Troublesome blocks in continuous time

I What is the ‘previous’ value of a continuous time
input?

I The ideal definition is:

delay(τ)(x)(t) = x(t − τ) if t ≥ τ
= 0 otherwise

I How to implement it?

I no symbolic differentiation is computed.

I what should be the output?



They explicitely rely on the major step of the simulation engine.

This makes models very fragile.

Their use in continuous time model is warned in the Simulink
documentation (for good reasons).

In Zélus and SCADE Hybrid, they are wrongly typed.

Yet, it is possible to define a discrete time version of them, explicitely
passing a signal telling when a discrete step is performed.

E.g., the memory block.

let hybrid memory(x0, z, x) =

present z -> x0 fby x init x0

val memory : ’a * zero * ’a -C-> ’a

The memory block is often used to break algebraic loops. For that,
Zélus and SCADE Hybrid provide the safer construct last x.



Conclusion

Most blocks can be programmed in a purely functional manner.

This gives a mathematically precise specification of the blocks that is
compiled into sequential code.

Yet, some blocks cannot because they mix discrete and continuous time
in an unprincipled manner.

An experiment with both Zélus, SCADE/SCADE Hybrid. 4

For SCADE, blocks can be used and adapted according to the designer’s
needs.

The ability to mix discrete/continuous make possible to test/simulate a
SCADE model of the software with its physical environment.

4Code available on the web page associated to the paper.



Open questions

Discrete/continuous

For up(x), the compiler ensures that x is continuous during integration.

Yet, it is not able to impose that x must be C 1.

The type discipline impacts the way models are written.

It also inpacts the performance with possibly more zero-crossings.

Yet, zero crossings can be shared: let x = up(e) in f(x) + g(x)

Overloading

The type system is not powerful enough to express overloaded operators.

Do we need dynamic dispatch or can we stick to a stongly typed
discipline (e.g., type classes)?



http://zelus.di.ens.fr

http://zelus.di.ens.fr

